
14th International Conference on Automated Planning and Scheduling (ICAPS-04)
Whistler, British Columbia, Canada • June 3 - 7, 2004

Breadth-First Heuristic Search

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762
{rzhou,hansen}@cse.msstate.edu

Abstract

Recent work shows that the memory requirements of best-
first heuristic search can be reduced substantially by using a
divide-and-conquer method of solution reconstruction. We
show that memory requirements can be reduced even further
by using a breadth-first instead of a best-first search strategy.
We describe optimal and approximate breadth-first heuristic
search algorithms that use divide-and-conquer solution re-
construction. Computational results show that they outper-
form other optimal and approximate heuristic search algo-
rithms in solving domain-independent planning problems.

Introduction
The A* graph-search algorithm and its variants are widely
used for path planning, robot motion planning, and domain-
independent STRIPS planning. But as is well-known, the
scalability of A* is limited by its memory requirements. A*
stores all explored nodes of a search graph in memory, us-
ing an Open list to store nodes on the search frontier and a
Closed list to store already-expanded nodes. This serves two
purposes. First, it allows the optimal solution path to be re-
constructed after completion of the search by tracing point-
ers backwards from the goal node to the start node. Second,
it allows nodes that have been reached along one path to be
recognized if they are reached along another path, in order
to prevent duplicate search effort. It is necessary to store all
explored nodes in order to perform both functions, but not
to perform just one. This leads to two different strategies for
reducing the memory requirements of heuristic search: one
strategy gives up duplicate elimination and the other gives
up the traceback method of solution reconstruction.

Linear-space variants of A* such as IDA* (Korf 1985) and
RBFS (Korf 1993) give up duplicate elimination. Instead of
storing Open and Closed lists, they use a stack to organize
the search. Since the current best solution path is stored on
the stack, solution reconstruction by the traceback method
is straightforward. But because they only store nodes on the
current path, they are severely limited in their ability to rec-
ognize when newly-generated nodes have been previously
explored. Essentially, linear-space search algorithms con-
vert graph-search problems into tree-search problems. This

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

can lead to an exponential increase in the time complexity of
search (measured by the number of node expansions) as the
depth of the search increases, and for complex graph-search
problems with many duplicate paths, IDA* and RBFS can
perform very poorly, due to excessive node re-generations.
Their performance can be improved by using available mem-
ory to store as many explored nodes as possible in or-
der to check for duplicates (Reinefeld & Marsland 1994;
Miura & Ishida 1998), but this requires as much memory
as A* to eliminateall duplicate search effort.

A second strategy for reducing the memory requirements
of search prevents duplicate search effort, but does not use
the traceback method of solution reconstruction. It is based
on the insight that it is not necessary to store all expanded
nodes in order to prevent node re-generation. It is only nec-
essary to store enough to form aboundarybetween the fron-
tier and interior of the search graph. This strategy was in-
troduced to the AI community in a pair of related search al-
gorithms (Korf 1999; Korf & Zhang 2000), which in turn
are related to earlier work on reducing the memory re-
quirements of dynamic programming for sequence compar-
ison (Hirschberg 1975). Instead of the traceback method,
this strategy uses a divide-and-conquer method of solution
reconstruction in which memory is saved by finding a node
in the middle of an optimal path, instead of the complete op-
timal path, and then using the midpoint node to divide the
original problem into two sub-problems. Each subproblem
is solved recursively by the same algorithm until all nodes
on the optimal path are identified.

The contribution of this paper is to show that when using
divide-and-conquer solution reconstruction, a breadth-first
search strategy is more memory-efficient than a best-first
strategy. Although breadth-first search may lead to more
node expansions, it reduces the size of the set of boundary
nodes that need to be retained in memory. This allows larger
problems to be solved. To substantiate this claim, our pa-
per begins with a review of best-first search algorithms that
use divide-and-conquer solution reconstruction. Then we in-
troduce a family of breadth-heuristic search algorithms that
includes Breadth-First Iterative-Deepening A* for optimal
search, and Divide-and-Conquer Beam Search for approx-
imate search. Computational results for the Fifteen Puzzle
and for domain-independent STRIPS planning show the ad-
vantages of this approach.

Divide-and-conquer solution reconstruction
The divide-and-conquer strategy for solution reconstruction
has long been used to reduce the space complexity of dy-
namic programming for sequence comparison (Hirschberg
1975; Myers & Miller 1988). It was recently introduced to
the heuristic search community by Korf (1999). Korf and
Zhang (2000) describe a version of A* that uses it. Zhou
and Hansen (2003a; 2003b) introduce enhancements.

The strategy is based on recognition that it is not neces-
sary to store all expanded nodes in a Closed list in order to
prevent re-generation of already-expanded nodes. It is only
necessary to store a subset of nodes that forms aboundary
between the frontier and interior of the search graph. The
concept of a “boundary” expresses the intuition that the set
of explored nodes forms a “volume” that encompasses the
start node and grows outward, and no unexpanded node out-
side the boundary can reach an already-expanded node with-
out passing through some node in the boundary, as illus-
trated by Figure 1. Thus, storing only the boundary nodes
is as effective as storing all expanded nodes with respect to
preventing node re-generation.

Although nodes inside the boundary can be removed from
memory without risking duplicate search effort, this means
it is no longer possible to reconstruct a solution by the tra-
ditional traceback method. To allow divide-and-conquer so-
lution reconstruction, each node stores information about a
node along an optimal path to it that divides the problem in
about half. Once the search problem is solved, information
about this midpoint node is used to divide the search prob-
lem into two sub-problems: the problem of finding an opti-
mal path from the start node to the midpoint node, and the
problem of finding an optimal path from the midpoint node
to the goal node. Each of these subproblems is solved by
the original search algorithm, in order to find a node in the
middle of their optimal paths. The process continues recur-
sively until primitive subproblems (in which the goal node
is an immediate successor of the start node) are reached, and
all nodes on the optimal solution path have been identified.
Since the time it takes to solve all subproblems is very short
compared to the time it takes to solve the original search
problem, this approach saves a great deal of memory in ex-
change for limited time overhead for solution reconstruction.

Search algorithms that use this strategy to reduce memory
requirements differ in detail. In Korf and Zhang’s (2000)
Divide-and-Conquer Frontier Search (DCFA*), each node
past the midpoint of the search stores (via propagation) all
state information about a node along an optimal path to this
node that is about halfway between the start and goal node.
In Sparse-Memory A* (Zhou & Hansen 2003a), each node
stores a pointer to its predecessor or to an intermediate node
along an optimal path, called arelay node, that is retained in
memory. Since storing pointers and relay nodes takes less
space and allows faster solution reconstruction, we adopt
that technique in this paper.

Algorithms also differ in how they distinguish the bound-
ary from closed nodes that can be removed from memory.
For example, DCFA* only stores the frontier nodes of the
search (the Open List) and not the interior nodes (the Closed
list). Already-closed nodes are prevented from being re-

Figure 1:A set of boundary nodes separates the frontier from the
interior of the search graph. (All nodes inside the boundary are
closed and all nodes outside the boundary are open. The boundary
itself may contain closed and/or open nodes.)

generated by storing a list offorbidden operatorsin each
node. The list includes one operator (stored as a bit) for
each potential successor of the node that has already been
generated. Each time a node is expanded, each of its suc-
cessor nodes is given a forbidden operator that blocks re-
generation of the just-expanded node. In undirected graphs,
this is sufficient to prevent re-generation of already-closed
nodes. In directed graphs in which a node can have prede-
cessors that are not also potential successors, an additional
technique must be used. Each time a node is expanded, all
of its predecessor nodes are generated as well as its succes-
sor nodes. If the search has not yet found a legal path to
these predecessor nodes, they are assigned an infinitef -cost
to prevent them from being expanded until a legal path is
found. Note that thesevirtual nodesacquire an actual, finite
cost once a path to them is found.

Zhou and Hansen (2003a) propose a different technique
for preventing node re-generation that does not require for-
bidden operators or virtual nodes. Instead, they associate
with each node a counter that is initially set to the num-
ber of potential predecessors of a node. Each time a node
is expanded, the counter of each of its successors is decre-
mented. Closed nodes can be removed from memory when
their counter is equal to zero.

For the special case of multiple sequence alignment, Zhou
and Hansen (2003b) propose an even simpler technique. Be-
cause the search graph of the multiple sequence alignment
problem is a lattice, it can be decomposed into a sequence
of layers such that each node in a layer can only have suc-
cessors in the current layer or the next layer, but not in any
previous layer. If all nodes in one layer are expanded before
the next layer is considered, then all previously-expanded
layers can be removed from memory without risking node
re-generation. Because this technique does not require for-
bidden operators, virtual nodes or predecessor counters, it is
much easier to implement. It also uses much less memory
than DCFA* or Sparse-Memory A*.

The breadth-first heuristic search algorithms we introduce
in this paper can be viewed as generalizations of this algo-
rithm, in that they also expand the search graph on a layer-
by-layer basis instead of in best-first order. However, layers
are defined differently, and the algorithms we introduce are
more general in the sense that they can search graphs with
arbitrary structure, and not simply graphs that share the lat-
tice structure of the multiple sequence alignment problem.

Breadth-First Heuristic Search

In the rest of this paper, we describe a family of heuristic
search algorithms that use divide-and-conquer solution re-
construction in combination with a breadth-first strategy of
node expansion. The only assumption we make about the
graphs searched by these algorithms is that all edges have
unit cost; in other words, we assume planning problems have
unit-cost actions. This assumption allows a breadth-first
search algorithm to guarantee that when a node is first gen-
erated, an optimal path to it has been found. Our approach
can be extended to graphs that have varying and real-valued
edge costs. But this extension requires some modifications
of the algorithm, and we postpone discussion of it to a later
paper.

A breadth-first search graph divides into layers, one for
each depth. Since actions have unit cost, all nodes in the
same layer have the sameg-cost, which is identical to their
depth in the graph. Although nodes are expanded in breadth-
first order, we use a lower-bound heuristic function to limit
exploration of the search space. As in A*, a lower-bound
estimate of the cost of an optimal path through noden is
given by a node evaluation functionf(g) = g(n) + h(n),
whereh is an admissible heuristic. No node is inserted into
the Open list if itsf -cost is greater than an upper bound
on the cost of an optimal solution, since such nodes cannot
be on an optimal path. We discuss how to obtain an upper
bound later in this section.

So far, the algorithm we have described is essentially
breadth-first branch-and-bound search. This search strat-
egy is rarely used in practice because the number of nodes
it expands is at least as great, and usually greater, than the
number of nodes expanded by A*, which can be viewed as
best-first branch-and-bound search. If all expanded nodes
are stored in memory, breadth-first branch-and-bound uses
as much or more memory than A*, and has no advantage.

But we propose a breadth-first branch-and-bound algo-
rithm that uses divide-and-conquer solution reconstruction.
Its memory requirements depend on the number of nodes
needed to maintain a boundary between the frontier and in-
terior of the search, and not the total number of nodes ex-
panded. The central result of our paper is that when divide-
and-conquer solution reconstruction is used, a breadth-
first branch-and-bound search algorithm can be much more
memory-efficient than a best-first algorithm such as DCFA*
or Sparse-memory A*.

Figure 2 conveys an intuition of how breadth-first search
results in a smaller set of boundary nodes. It shows that best-
first node expansion ”stretches out” the boundary, whereas
breadth-first search does not and uses the upper bound to
limit the width of the boundary. Although breadth-first
search expands more nodes than best-first search, the mem-
ory it saves by storing a smaller boundary results in more
efficient search, as our test results will show.

Before discussing details of the algorithm, we consider
the question: how many layers of the breadth-first search
graph need to be stored in memory to prevent duplicate
search effort?

Figure 2: Comparison of best-first and breadth-first boundaries.
The outer ellipse encloses all nodes withf -cost less than or equal
to an (optimal) upper bound.

Duplicate elimination
When nodes are expanded in breadth-first order, the Open
and Closed lists of the algorithm can be considered to have
a layered structure, whereOpen` denotes the set of open
nodes in layer̀ andClosed` denotes the set of closed nodes
in layer `. As a result, we sometimes refer to the Open or
Closed list of a particular layer, as if each layer has its own
Open and Closed lists. Note that at any time, all open nodes
are in the current layer or in the next layer, whereas closed
nodes can be in the current layer or any previous layer.

Each time the algorithm expands a node in the current
layer, it checks whether each successor node is a duplicate
of a node that is in the Open list of the next layer, or whether
it is a duplicate of a node in the Open or Closed list of the
current layer. In addition, it checks whether it is a duplicate
of a node that is in the Closed list of one or more previous
layers. This raises the following crucial question: how many
previous layers must be retained in memory and checked for
duplicates to prevent re-generation of already-closed nodes?
The answer determines when a closed layer of the search
graph can be removed from memory. As it turns out, the
answer depends on the structure of the graph.

Definition 1 The locality of a breadth-first search graph is
defined as

max
n,n′∈N s.t. n∈pred(n′)

{ g∗(n)− g∗(n′), 0 },

whereN is the set of nodes,g∗(n) is the length of a shortest
path to noden (or equivalently, it is the layer in which node
n first appears), andpred(n) is the set of predecessors ofn.

Note thatg∗(n) can never be less thang∗(n′) by more than
one. But in general, there is no a priori limit on how much
greaterg∗(n) can be thang∗(n′). In other words, the short-
est path to a noden may be arbitrarily longer than the short-
est path to its successor noden′. The locality of a graph de-
termines the “thickness” of the set of boundary nodes needed
to completely prevent duplicate nodes.

Theorem 1 The number of previous layers of a breadth-first
search graph that need to be retained to prevent duplicate
search effort is equal to the locality of the search graph.

Proof: First assume that the number of previous layers saved
in memory is less than the localityk of the graph. To see how
this can result in re-generation of a node, consider nodesn

andn′ such thatg∗(n) − g∗(n′) > k. When noden is ex-
panded, its successorn′ is either in the previousk layers or
not. If it is not, it is re-generated. If it is, it has been previ-
ously re-generated since it was first generated more thank
layers before. In either case, there is a duplicate node.

Now assume the number of stored previous layers of a
breadth-first search graph is equal to or greater than the lo-
cality of the graph. We prove by induction that this prevents
node re-generation. The base step is obvious since for the
first k layers of the graph, all previous layers are stored and
re-generation of a duplicate node is impossible. For the in-
ductive step, we assume that no duplicates are generated for
the firstm layers. When layerm + 1 is generated, no pre-
viously deleted node can be re-generated since the locality
of the graph is less than or equal to the number of previous
layers stored in memory.¤

In general, it is not easy to determine the locality of graph.
But in the special case of undirected graphs, the locality is
one and we have the following important result.

Corollary 1 In undirected graphs, use of the immediate
previous layer to check for duplicates is sufficient to prevent
re-generation of closed nodes.

Proof: This follows from the fact that the locality of any
undirected graph is one. In undirected graphs, the set of
predecessors of a node coincides with the set of successors.
Therefore, the optimalg-cost of a predecessor is at most one
greater than the optimalg-cost of a successor.¤

In graphs with a locality of one, such as undirected
graphs, the number of layers the algorithm must keep in
memory for the purpose of duplicate elimination is three;
the previous layer, the currently-expanding layer, and the
next layer. In general, the number of layers that need to
be retained in memory to prevent duplicate search effort is
equal to the locality of the graph plus two. (One additional
“relay” layer is needed to allow divide-and-conquer solution
reconstruction, as described later.)

Korf and Zhang (2000) use forbidden operators to prevent
re-generation of closed nodes. It is easy to see that use of
forbidden operators (without virtual nodes) has the same ef-
fect as storing one previous layer of the breadth-first search
graph, since blocking a node from re-generating a prede-
cessor has the same effect as storing the previous layer and
checking for duplicates. But in graphs with locality greater
than one, forbidden operators alone are not sufficient to pre-
vent duplicate search effort. In this case, breadth-first search
provides a simple alternative: store more than one previous
layer of the search graph.

We conjecture that for many directed graphs, it is suf-
ficient to store one previous layer to prevent re-generation
of most, if not all, duplicate nodes. Even if the number of
stored layers is less than the locality of the graph, an impor-
tant result is that in the worst case, the number of times a
node can be re-generated is at most linear in the depth of the
search. This is in sharp contrast to the potentially exponen-
tial number of node re-generations for linear-space search
algorithms that rely on depth-first search.

Theorem 2 In breadth-first heuristic search, the worst-case

number of times a noden can be re-generated is bounded by
⌊ f∗ − g∗(n)

number of saved layers

⌋
.

Proof: Let ∆ ≥ 2 be the total number of layers saved by
the algorithm. Obviously, no duplicate nodes can exist in
these∆ layers, because the algorithm always checks for
duplicates in all saved layers before inserting any newly-
generated node into the Open list for the next layer. There-
fore, the earliest time for a noden to be re-generated is
g∗(n) + ∆ and the earliest time for the same node to be
re-generated twice isg∗(n) + 2∆, and so on. Since the to-
tal number of layers is bounded by the length of the short-
est solution path (f∗), the number of times a noden is re-
generated cannot exceed the bound stated in the theorem.¤

Use of bounds to prune the search graph further reduces
the chance of re-generating already closed nodes. Because
nodes are expanded in breadth-first order, it is impossible to
improve on theg-cost of a node after it is generated. It fol-
lows that any node with anf -cost equal to the upper bound
will not be re-generated, since it will have a greaterg-cost in
a subsequent layer, and thus anf -cost greater than the upper
bound, causing it to be pruned. From this and the fact that
the breadth-first algorithm stores one or more previous lay-
ers of the search graph, we have the following optimization
that can further improve space efficiency.

Theorem 3 In breadth-first heuristic search, any node in
thek-th previous layer whosef -cost is greater than or equal
to the upper bound minusk cannot be re-generated and can
be removed from memory.

If only one previous layer of the search graph is stored, this
means that any node in the immediate previous layer whose
f-cost is one less than the upper bound can be removed from
memory. (This optimization is not included in our pseu-
docode, although it is included in our implementation.)

Algorithm
Figure 3 gives the pseudocode of the basic breadth-first
heuristic search algorithm. The main algorithm,BFHS, is
the same as A* except that the Open and Closed lists are
indexed by layers, previous layers are deleted to recover
memory, and the solution is reconstructed by the divide-
and-conquer method once the goal node is selected from the
Open list. The procedureExpandNodeworks in the usual
way except that it uses an upper boundU to prune nodes
that cannot be on an optimal path. (Note that for subprob-
lems solved during divide-and-conquer solution reconstruc-
tion, the upper bound is optimal since the optimal cost of
the overall solution is determined before beginning solution
reconstruction.)

To allow divide-and-conquer solution reconstruction,
each node must store information about an intermediate
node along an optimal solution path. We use the method
described by Zhou and Hansen (2003a), in which each node
stores a pointer to either its predecessor node or to an an-
cestor node (called a relay node) along an optimal path. For
simplicity, the pseudocode assumes that a single interme-
diate layer of the breadth-first search graph (called arelay

ProcedureDeletePreviousLayer(Integer`, relay; Nodestart)
1 if ` ≤ relay then
2 for eachn ∈ Closed` do
3 ancestor(n) ← start
4 else
5 for eachn ∈ Closed` do
6 α ← ancestor(n)
7 while α /∈ Closedrelay do /* find relay node forn */
8 α ← ancestor(α)
9 ancestor(n) ← α
10 for eachn ∈ Closed`−1 do /* delete previous layer */
11 Closed`−1 ← Closed`−1 \ {n}
12 deleten

ProcedureExpandNode(Noden; Integer`, U)
13 for eachn′ ∈ Successors(n) do
14 if g(n) + 1 + h(n′) > U continue /* prune */
15 if n′ ∈ Closed`−1 ∪ Closed` continue /* duplicate */
16 if n′ ∈ Open` ∪Open`+1 continue /* duplicate */
17 g(n′) ← g(n) + 1
18 ancestor(n′) ← n
19 Open`+1 ← Open`+1 ∪ {n′}

Algorithm BFHS(Nodestart, goal; IntegerU)
20 g(start) ← 0
21 ancestor(start) ← nil
22 Open0 ← {start}, Open1 ← ∅
23 Closed0 ← ∅
24 ` ← 0 /* ` = layer */
25 relay ← bU/2c /* relay = relay layer */
26 while Open` 6= ∅ or Open`+1 6= ∅ do
27 while Open` 6= ∅ do
28 n ← arg minn{g(n) | n ∈ Open`}
29 Open` ← Open` \ {n}
30 Closed` ← Closed` ∪ {n}
31 if n is goal then /* solution reconstruction */
32 middle ← ancestor(n)
33 if g(middle) = 1 then /* recursion ends */
34 π0 ← 〈start, middle〉
35 else
36 π0 ←BFHS(start, middle, g(middle))
37 if g(n)− g(middle) = 1 then /* recursion ends */
38 π1 ← 〈middle, n〉
39 else
40 π1 ←BFHS(middle, n, g(n)− g(middle))
41 return Concatenate(π0, π1)
42 ExpandNode(n, `, U) /* U = upper bound */
43 if 1 < ` ≤ relay or ` > relay + 1 then
44 DeletePreviousLayer(`, relay, start)
45 ` ← ` + 1 /* move on to next layer */
46 Open`+1 ← ∅
47 Closed` ← ∅
48 return ∅

Figure 3:Pseudocode forBFHS(Breadth-First Heuristic Search).

layer) is preserved in memory for use in divide-and-conquer
solution reconstruction. It also assumes the relay layer is ap-
proximately in the middle of the search graph, since equal-
sized sub-problems are easier to solve. When the proce-
dureDeletePreviousLayeris invoked to delete a previously-
expanded layer of the breadth-first search graph that is no

longer needed for duplicate detection, it adjusts the ances-
tor pointers in its successor layer so that they point to nodes
in the relay layer, if the deleted layer comes after the relay
layer (lines# 4-9), or else to the start node, if the deleted
layer comes before the relay layer (lines# 1-3).

The divide-and-conquer method can be implemented in a
more sophisticated and efficient way than presented in the
pseudocode. Since the middle layer is typically the largest
layer of the graph (see Figure 4), we have found that in prac-
tice, it is more memory-efficient to save the layer that is at
the 3/4 point in the graph, for example. This reduces the
peak memory requirements of the algorithm, and in prac-
tice, increases the time overhead of solution reconstruction
by an almost negligible amount.

The time efficiency of the algorithm can be improved sig-
nificantly by not using the divide-and-conquer method when
there is enough memory to solve a problem, or one of the re-
cursive subproblems, by keeping all the layers of the search
graph in memory and using the traceback method to recover
the solution path. After one level of divide-and-conquer re-
cursion, for example, there is often enough memory to solve
the resulting subproblems without deleting any layers, and
without needing to continue the divide-and-conquer recur-
sion. In an efficient implementation of the algorithm, a lazy
approach to deleting previous layers of the search graph is
adopted, in which previous layers are deleted only when
memory is close to full.

Breadth-First Iterative-Deepening A*
Our breadth-first algorithm uses an upper bound on the cost
of an optimal solution to prune the search space, and the
quality of the upper bound has a significant effect on the ef-
ficiency of the algorithm. The better the upper bound, the
fewer nodes are expanded and stored. (In fact, given an op-
timal upper bound, the algorithm does not expand any more
nodes than A*, disregarding ties.)

An upper bound can be obtained by finding an approxi-
mate solution to the search problem. There are many pos-
sible ways to quickly compute an approximate solution in
order to obtain an upper bound. An obvious method is to
use weighted A* search. Below, we describe a beam search
algorithm that is also very effective.

Here, we point out that it is possible to define a ver-
sion of breadth-first heuristic search that does not need
a previously-computed upper bound. Instead, it uses an
iterative-deepening strategy to avoid expanding nodes that
have anf -cost greater than a hypothetical upper bound. The
algorithm first runs breadth-first heuristic search using the
f -cost of the start node as an upper bound. If no solution is
found, it increases the upper bound by one (or to the least
f -cost of any unexpanded nodes) and repeats the search.
Because of the similarity of this algorithm to Depth-First
Iterative-Deepening A* (Korf 1985), we call itBreadth-First
Iterative-Deepening A*(BFIDA*). The amount of memory
it uses is the same as the amount of memory BFHS would
use given an optimal upper bound. However, BFIDA* may
run more slowly than BFHS with a previously-computed
upper bound, because running multiple iterations of BFHS
takes extra time.

Figure 4: Size of layer (logarithmically scaled) as function of
search depth for Korf’s most difficult 15-puzzle instance (No. 88).

Divide-and-Conquer Beam Search

Breadth-first heuristic search can significantly reduce the
memory requirements of search, while still eliminating all
duplicate search effort. But it can still run out of memory if
the number of nodes in any layer becomes too large. Typi-
cally, the largest layer is in the middle of the search graph,
since layers close to the start node are relatively small due to
reachability constraints, and layers close to the goal node are
relatively small because of the strength of the heuristic close
to the goal, which makes it possible to prune most nodes.
Figure 4 illustrates this and shows how the size of each layer
varies with the depth of the search for a difficult instance of
the 15-puzzle.

If the largest layer of the breadth-first search graph does
not fit in memory, one way to handle this follows from
recognition that breadth-first heuristic search is very closely-
related to beam search. Instead of considering all nodes in
a layer, we propose a beam-search variant of breadth-first
heuristic search that considers the most promising nodes un-
til memory is full (or reaches a predetermined bound). At
that point, the algorithm recovers memory by pruning the
least-promising nodes (i.e., the nodes with the highestf -
cost) from the Open list. Then it continues the search.

Aside from pruning the least-promising open nodes when
memory is full, the algorithm is identical to breadth-first
heuristic search. The difference from traditional beam
search is that it uses divide-and-conquer solution reconstruc-
tion to reduce memory requirements. But this is an impor-
tant difference since it allows it to use a much larger beam
width in order to improve performance. We call the result-
ing algorithm Divide-and-Conquer Beam Search, and report
impressive empirical results later in the paper.

Computational results

We first consider the performance of Breadth-First Heuris-
tic Search on the Fifteen-puzzle, since this makes for eas-
ier comparison to the best-first alternatives of DCFA* and
Sparse-Memory A*. Then we consider its performance on a
range of difficult STRIPS planning problems from the Plan-
ning Competition.

Len Stored A* Exp BFIDA* Exp
17 66 16,584,444 218,977,081 279,167,411
49 59 21,177,925 243,790,912 345,700,085
53 64 12,753,096 177,244,033 224,545,853
56 55 13,066,308 141,157,391 208,900,977
59 57 13,974,753 158,913,130 228,900,723
60 66 56,422,199 767,584,679 978,804,885
66 61 21,435,302 275,076,045 368,138,264
82 62 46,132,337 549,557,759 765,608,989
88 65 77,547,650 999,442,569 1,360,582,446
92 57 12,591,419 151,699,572 213,871,768

Table 1: Performance of BFIDA* on the 10 most difficult in-
stances of Korf’s 100 random instances of the 15-puzzle. Columns
show the instance number (#); solution length (Len); peak number
of nodes stored (Stored); number of node expansions in the last it-
eration, which is equal to the number of nodes that A* must expand
(A* Exp); and the total number of node expansions (BFIDA* Exp).

Fifteen-puzzle
We tested BFIDA* on the same 100 instances of the 15-
puzzle used as a test set by Korf (1985). For the 15-puzzle,
our implementation of BFIDA* uses forbidden operators to
block re-generation of nodes in the previous layer, rather
than storing the previous layer, since this saves space and
is easily implemented for this problem. Table 1 shows re-
sults for the ten most difficult instances. BFIDA* solves all
100 instances using no more than 1.3 gigabytes of memory.
Given 4 gigabytes of memory, neither DCFA* nor Sparse-
memory A* can solve more than 96 instances; the instances
they cannot solve are numbers 17, 60, 82, and 88.1 For the
96 solvable instances, DCFA* stores 5 times more nodes
than BFIDA*, and Sparse-Memory A* stores 3.4 times more
nodes. This clearly shows the advantage of breadth-first over
best-first divide-and-conquer heuristic search.

Based on the number of nodes that need to be expanded
to solve these 15-puzzle instances, A* would need between
12 and 16 times more memory than BFIDA* just to store the
Closed list. Although BFIDA* must re-expand some nodes
due to iterative deepening and divide-and-conquer solution
reconstruction, the last column of Table 1 shows that it only
expands from 30% to 40% (on average) more nodes than A*
would expand in solving these 15-puzzle instances. IDA*
expands many more nodes than this, but still runs much
faster in solving the 15-puzzle due to lower node-generation
overhead and the fact that the number of duplicate paths
does not grow too fast with the depth of the search, for this
problem. (For the planning problems considered next, IDA*
loses its advantage.)

Domain-independent STRIPS planning
Over the past several years, the effectiveness of heuristic
search for domain-independent STRIPS planning has be-

1DCFA* and Sparse-memory A* can solve instance 49 but not
instance 17, even though BFIDA* requires less memory to solve 17
than 49. The explanation is that the best-first boundary for instance
17 has more nodes than the best-first boundary for instance 49,
although the breadth-first boundary for instance 17 is smaller than
for instance 49.

A* BFHS
Instance Len Stored Exp Secs Stored Exp Secs
blocks-14 38 735,905 252,161 12.5 228,020 863,495 37.9
gripper-6 41 2,459,599 2,436,847 35.1 1,529,307 11,216,130 157.1
satellite-6 20 3,269,703 2,423,288 177.6 1,953,396 3,750,119 257.4
elevator-11 37 3,893,277 3,884,960 181.1 1,144,370 8,678,466 433.9
depots-3 27 > 6,100,806 > 3,389,343 > 112.2 4,841,706 8,683,716 270.3
driverlog-10 17 > 7,626,008 > 1,484,326 > 95.1 6,161,424 10,846,888 560.7
freecell-4 27 > 6,990,507 > 3,674,734 > 432.9 5,891,140 17,140,644 1,751.0

Table 2:Comparison of A* and BFHS (using an upper bound found by beam search) on STRIPS planning problems. Columns show optimal
solution length (Len); peak number of nodes stored (Stored); number of node expansions (Exp); and running time in CPU seconds (Secs).
The> symbol indicates that A* ran out of memory before solving the problem.

IDA* BFIDA*
Instance Len Stored Exp Secs Stored Exp Secs
blocks-12 34 5,015 180,305 50.3 6,354 34,687 1.6
blocks-14 38 94,011 51,577,732 20,631.0 224,058 1,324,320 44.4
logistics-4 20 2,289 45,194,644 621.7 1,730 16,077 0.5
depots-2 15 2,073 227,289 31.1 1,923 8,139 0.5
gripper-2 17 1,769 16,381,009 312.7 1,398 17,281 0.3
gripper-6 41 - - - 1,848,788 85,354,245 1,029.3
satellite-4 17 - - - 70,298 303,608 8.2

Table 3: Comparison of IDA* (using transposition table) and BFIDA* on STRIPS planning problems. Columns show optimal solution
length (Len); peak number of nodes stored (Stored); number of node expansions (Exp); and running time in CPU seconds (Secs). IDA* could
not solve the last two problems after 12 hours of CPU time.

come widely-recognized. A* and IDA* are used to find opti-
mal plans, given an admissible heuristic (Haslum & Geffner
2000). Weighted A* is used to find approximate plans
for difficult planning problems, guided by an informative
though usually non-admissible heuristic (Bonet & Geffner
2001b). Heuristic-search planners have performed very well
in the biennial planning competitions, and the problems used
in the competition provide a good test set for comparing
graph-search algorithms since they give rise to a variety of
search graphs with different kinds of structure, and memory
is a limiting factor in solving many of the problems.

For domain-independent STRIPS planning, breadth-first
search has an important advantage over best-first search
when divide-and-conquer solution reconstruction is used:
it is mucheasier to implement. Implementing DCFA* or
Sparse-memory A* for STRIPS planning problems presents
several difficulties. Implementing forbidden operators in a
domain-independent way can increase node size substan-
tially, since every possible operator instantiation must be
considered. When STRIPS operators are only conditionally
reversible, forbidden operators are also difficult to imple-
ment because it is impossible to determine reversibility in
advance. For STRIPS planning problems that correspond to
directed graphs, implementing virtual nodes (as in DCFA*)
or even predecessor counting (as in Sparse-memory A*) is
challenging given the difficulty of identifying all predeces-
sors of a node, especially since the number of potential pre-
decessors is exponential in the size of the Add list of an op-
erator, and all operators must be considered. Since many po-
tential predecessors may not even be reachable in the search
graph, the boundary could become cluttered with nodes that
will never be removed.

By contrast, implementation of a breadth-first algo-
rithm that uses divide-and-conquer solution reconstruction
is straightforward. Because of the layered structure of the
search graph, there is no need for forbidden operators, vir-
tual nodes or predecessor counters. The algorithm sim-
ply stores one or more previous layers and checks for du-
plicates. Given the difficulty of implementing DCFA* or
Sparse-memory A* for domain-independent planning, we
compare our breadth-first divide-and-conquer algorithms to
A*, IDA*, and weighted A*.

The following experiments were performed on a Pentium
IV 2.4 GHz processer with 512 megabytes of RAM. We used
the HSPr planning system of Blai Bonet as a foundation for
implementing our algorithms (Bonet & Geffner 2001a). Al-
though divide-and-conquer search algorithms implemented
using relay nodes can use extra memory to reduce the over-
head of solution reconstruction, we ran our algorithms to
minimize memory use. We also stored only a single previ-
ous layer in checking for duplicates. Although two of the
planning domains among our eight test domains correspond
to directed graphs for which graph locality is not obvious
(freecellandsatellite), we found empirically that storing a
single previous layer was sufficient to eliminate all dupli-
cates in both cases. The other six planning problems corre-
spond to undirected graphs.

BFHS vs. A* Table 2 shows representative results from
a comparison of A* to Breadth-First Heuristic Search (us-
ing an upper bound computed by Divide-and-Conquer Beam

Weighted A* (W = 2.0) Divide-and-Conquer Beam Search
Instance Len LB Stored Exp Secs Len LB Stored Exp Secs
blocks-10 60 24 59,250 47,017 1.0 36 34 20,000 144,655 4.2
blocks-20 - 36 > 3,195,661 > 1,710,952 > 149.0 60 48 50,000 1,058,716 103.0
depots-4 - 14 > 5,162,221 > 2,519,509 > 151.7 30 17 120,000 547,622 33.1
depots-5 - 14 > 4,793,491 > 1,571,290 > 114.4 45 20 100,000 1,248,798 91.8
depots-8 - 10 > 4,473,925 > 812,213 > 90.0 34 12 50,000 239,361 30.3
depots-10 27 10 286,657 30,155 3.2 25 13 50,000 147,951 14.4
depots-11 - 14 > 3,728,271 > 823,102 > 148.2 49 17 500,000 5,522,175 1,073.5
depots-14 - 11 > 3,532,046 > 200,226 > 68.9 29 13 800,000 1,706,529 383.9
depots-16 29 9 2,041,919 190,157 29.4 26 12 50,000 133,046 17.0
driverlog-12 52 12 27,740 8,158 0.7 38 16 5,000 47,944 3.9
driverlog-15 64 11 1,890,205 235,462 41.6 36 13 50,000 295,044 48.3
freecell-2 17 11 734,703 1,878,993 102.2 17 12 5,000 11,460 1.0
freecell-3 27 13 282,548 486,796 25.3 21 14 10,000 33,944 2.6
freecell-4 - 17 > 5,592,406 > 10,815,416 > 878.1 27 18 10,000 46,116 6.4

Table 4:Comparison of weighted A* (with weight of 2.0) and Divide-and-Conquer Beam Search on STRIPS planning problems. Columns
show solution length (Len); provable lower bound (LB); peak number of nodes stored (Stored); number of node expansions (Exp); and
running time in CPU seconds (Secs). The> symbol indicates that weighted A* ran out of memory before solving the problem.

Search).2 Although BFHS expands more nodes than A*,
it uses less memory and thus can solve larger problems.
The memory savings for these planning problems is not as
great as for the 15-puzzle because the best available admis-
sible heuristic for domain-independent planning, themax-
pair heuristic of Haslum and Geffner (2000), is very weak.
In general, the more informative a heuristic, the greater the
advantage of a breadth-first divide-and-conquer strategy, for
two reasons. First, the more informative a heuristic, the
more it “stretches out” a best-first boundary, whereas a weak
heuristic results in a boundary that is more similar to the
boundary of breadth-first search. Second, a more informed
heuristic ”narrows” the breadth-first boundary because it
prunes more nodes.

BFIDA* vs. IDA* Table 3 shows representative results
from a comparison of Haslum’s implementation of IDA* us-
ing a transposition table, as described in his paper (Haslum
& Geffner 2000), with Breadth-First Iterative-Deepening
A*. IDA* performs much worse than A* due to excessive
node re-generations. This clearly illustrates that the prob-
lem of duplicate paths is much more severe for the Planning
Competition problems than for the 15-puzzle, and effective
duplicate elimination is essential for good performance.

Divide-and-Conquer Beam Search vs. weighted A* Ta-
ble 4 shows representative results from a comparison of
weighted A* (using a weight of 2.0) to Divide-and-Conquer
Beam Search. Since we are willing to accept approximate
solutions in order to solve larger problems, we use the more
informative, although non-admissible,additive heuristicto
guide the search (Bonet & Geffner 2001b). However, we
also use the admissiblemax-pairheuristic to evaluate each
node, since this lets us compute a lower bound on the opti-
mal solution length; the lower bound is the least admissible

2The implementation of A* is Bonet’s, except that we re-
implemented his node-ordering algorithm so that it uses a hash ta-
ble instead of a linked list, in order to improve performance.

f -cost of any unexpanded node. Since the solution found
is an upper bound on the optimal solution length, the lower
bound lets us bound the sub-optimality of the solution.

It is interesting that the beam search algorithm consis-
tently finds better lower bounds than weighted A*, even
when it expands far fewer nodes. This is due to the fact
that it distributes search effort more evenly among layers,
and fully expands early layers of the search graph, whereas
weighted A* tends to focus search effort near the goal.

In the results for the beam search algorithm, the peak
number of stored nodes corresponds to a predetermined
bound. We adjusted the bound for different problems based
on the difficulty of the problem, in order to adjust a time-
quality tradeoff. The peak number of stored nodes is roughly
equal to the size of a layer times four, since Divide-and Con-
quer Beam Search only stores four layers in memory; the
current, previous, and next layer, and the relay layer used
for solution reconstruction. Because a divide-and-conquer
implementation of beam search is more memory-efficient
than ordinary beam search, it allows larger beam widths that
lead to better solutions. For some of the test problems (e.g.,
depot-11and depot-14), traditional beam search (without
divide-and-conquer solution reconstruction) would run out
of memory if it used the same beam width.

An interesting side-effect of the divide-and-conquer strat-
egy, when used with beam search, is that the length of the
initial solution found by beam search can be improved on
during solution reconstruction, since better solutions to sub-
problems can be found in the divide-and-conquer phase.
This occurred for four of the examples in Table 4, and re-
sulted in a reduction of between 2% and 6% in the length of
the initial solution found by beam search.

Although the beam search algorithm uses much less mem-
ory than weighted A*, it solves larger problems and finds
much higher-quality solutions. Given the extensive use
of weighted A* in the Planning Competition, the fact that
Divide-and-Conquer Beam Search performs so much better
is very encouraging and suggests that this is a promising di-
rection for continued research.

Conclusion
Best-first search is traditionally considered more efficient
than breadth-first search because it minimizes the num-
ber of node expansions. The contribution of this paper
is to show that when divide-and-conquer solution recon-
struction is used to reduce the memory requirements of
search, breadth-first search becomes more efficient than
best-first search because it needs less memory to prevent re-
generation of closed nodes.

We have described a family of algorithms that use a
breadth-first heuristic search strategy, including algorithms
that find optimal and approximate solutions. We have shown
that this strategy outperforms A*, IDA*, and weighted A* in
solving STRIPS planning problems, and that it outperforms
DCFA* and Sparse-Memory A* on the 15-puzzle. Because
a breadth-first strategy is simpler to implement, it is also
practical for a wider class of problems than the best-first
strategy of DCFA* and Sparse-memory A*.

In adopting breadth-first search, we made the limiting as-
sumption that all actions have unit cost. In future work, we
will show how to relax this assumption and extend this ap-
proach to planning problems in which actions have varying
or real-valued costs, including metric planning problems.

Acknowledgments We thank Blai Bonet and Patrick
Haslum for making the code for their heuristic-search plan-
ners publicly available. We thank the anonymous reviewers
for their comments. This work was supported in part by NSF
grant IIS-9984952 and NASA grant NAG-2-1463.

References
Bonet, B., and Geffner, H. 2001a. Heuristic search planner
2.0. AI Magazine22(3):77–80.

Bonet, B., and Geffner, H. 2001b. Planning as heuristic
search.Artificial Intelligence129(1):5–33.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the 5th International Con-
ference on AI Planning and Scheduling, 140–149.

Hirschberg, D. S. 1975. A linear space algorithm for com-
puting maximal common subsequences.Communications
of the ACM18(6):341–343.

Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search.Artificial Intelligence27:97–109.

Korf, R. 1993. Linear-space best-first search.Artificial
Intelligence62:41–78.

Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. InProc. of the 16th International Joint Con-
ference on Artifiicial Intelligence (IJCAI-99), 1184–1189.

Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. InProceed-
ings of the 17th National Conference on Artificial Intelli-
gence (AAAI-00), 910–916.

Miura, T., and Ishida, T. 1998. Stochastic node caching
for memory-bounded search. InProc. of the 15th National
Conference on Artificial Intelligence (AAAI-98), 450–456.

Myers, E., and Miller, W. 1988. Optimal alignments in
linear space.Computer Appl. in the Biosciences4:11–17.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening search.IEEE Trans. on Pattern Analysis and
Machine Intelligence16:701–710.
Zhou, R., and Hansen, E. 2003a. Sparse-memory graph
search. InProceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03), 1259–1266.
Zhou, R., and Hansen, E. 2003b. Sweep A*: Space-
efficient heuristic search in partially ordered graphs. In
Proc. of the 15th IEEE International Conf. on Tools with
Artificial Intelligence, 427–434.

