14th International Conference on Automated Planning and Scheduling (ICAPS-04)

Whistler, British Columbia, Canada e June 3 - 7, 2004

Breadth-First Heuristic Search

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering
Mississippi State University, Mississippi State, MS 39762

{rzhou,hansen}@cse.msstate.edu

Abstract

Recent work shows that the memory requirements of best-
first heuristic search can be reduced substantially by using a
divide-and-conquer method of solution reconstruction. We

show that memory requirements can be reduced even further
by using a breadth-first instead of a best-first search strategy.
We describe optimal and approximate breadth-first heuristic

search algorithms that use divide-and-conquer solution re-
construction. Computational results show that they outper-

form other optimal and approximate heuristic search algo-

rithms in solving domain-independent planning problems.

Introduction

The A* graph-search algorithm and its variants are widely
used for path planning, robot motion planning, and domain-
independent STRIPS planning. But as is well-known, the
scalability of A* is limited by its memory requirements. A*
stores all explored nodes of a search graph in memory, us-
ing an Open list to store nodes on the search frontier and a

Closed list to store already-expanded nodes. This serves two

purposes. First, it allows the optimal solution path to be re-
constructed after completion of the search by tracing point-

ers backwards from the goal node to the start node. Second,
it allows nodes that have been reached along one path to be

recognized if they are reached along another path, in order
to prevent duplicate search effort. It is necessary to store all
explored nodes in order to perform both functions, but not
to perform just one. This leads to two different strategies for
reducing the memory requirements of heuristic search: one
strategy gives up duplicate elimination and the other gives
up the traceback method of solution reconstruction.
Linear-space variants of A* such as IDA* (Korf 1985) and

RBFS (Korf 1993) give up duplicate elimination. Instead of

storing Open and Closed lists, they use a stack to organize
the search. Since the current best solution path is stored on

the stack, solution reconstruction by the traceback method
is straightforward. But because they only store nodes on the
current path, they are severely limited in their ability to rec-

ognize when newly-generated nodes have been previously

explored. Essentially, linear-space search algorithms con-

vert graph-search problems into tree-search problems. This

Copyright © 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

can lead to an exponential increase in the time complexity of
search (measured by the number of node expansions) as the
depth of the search increases, and for complex graph-search
problems with many duplicate paths, IDA* and RBFS can
perform very poorly, due to excessive node re-generations.
Their performance can be improved by using available mem-
ory to store as many explored nodes as possible in or-
der to check for duplicates (Reinefeld & Marsland 1994;
Miura & Ishida 1998), but this requires as much memory
as A* to eliminateall duplicate search effort.

A second strategy for reducing the memory requirements
of search prevents duplicate search effort, but does not use
the traceback method of solution reconstruction. It is based
on the insight that it is not necessary to store all expanded
nodes in order to prevent node re-generation. It is only nec-
essary to store enough to fornbaundarybetween the fron-
tier and interior of the search graph. This strategy was in-
troduced to the Al community in a pair of related search al-
gorithms (Korf 1999; Korf & Zhang 2000), which in turn
are related to earlier work on reducing the memory re-
guirements of dynamic programming for sequence compar-
ison (Hirschberg 1975). Instead of the traceback method,
this strategy uses a divide-and-conquer method of solution
reconstruction in which memory is saved by finding a node
in the middle of an optimal path, instead of the complete op-
timal path, and then using the midpoint node to divide the
original problem into two sub-problems. Each subproblem
is solved recursively by the same algorithm until all nodes
on the optimal path are identified.

The contribution of this paper is to show that when using
divide-and-conquer solution reconstruction, a breadth-first
search strategy is more memory-efficient than a best-first
strategy. Although breadth-first search may lead to more
node expansions, it reduces the size of the set of boundary
nodes that need to be retained in memory. This allows larger
problems to be solved. To substantiate this claim, our pa-
per begins with a review of best-first search algorithms that
use divide-and-conquer solution reconstruction. Then we in-
troduce a family of breadth-heuristic search algorithms that
includes Breadth-First Iterative-Deepening A* for optimal
search, and Divide-and-Conquer Beam Search for approx-
imate search. Computational results for the Fifteen Puzzle
and for domain-independent STRIPS planning show the ad-
vantages of this approach.

Divide-and-conquer solution reconstruction

The divide-and-conquer strategy for solution reconstruction
has long been used to reduce the space complexity of dy-
namic programming for sequence comparison (Hirschberg
1975; Myers & Miller 1988). It was recently introduced to
the heuristic search community by Korf (1999). Korf and
Zhang (2000) describe a version of A* that uses it. Zhou Interior Boundary Frontier

and Hansen (2003a; 2003b) introduce enhancements.

The strategy is based on recognition that it is not neces- Figure 1:A set of boundary nodes separates the frontier from the
sary to store all expanded nodes in a Closed list in order to interior of the search graph. (All nodes inside the boundary are
prevent re-generation of already-expanded nodes. It is only closed and all nodes outside the boundary are open. The boundary
necessary to store a subset of nodes that forlnsuadary itself may contain closed and/or open nodes.)
between the frontier and interior of the search graph. The
concept of a “boundary” expresses the intuition that the set
of explored nodes forms a “volume” that encompasses the generated by storing a list éérbidden operatorsn each
start node and grows outward, and no unexpanded node out-node. The list includes one operator (stored as a bit) for
side the boundary can reach an already-expanded node with-each potential successor of the node that has already been
out passing through some node in the boundary, as illus- generated. Each time a node is expanded, each of its suc-
trated by Figure 1. Thus, storing only the boundary nodes cessor nodes is given a forbidden operator that blocks re-
is as effective as storing all expanded nodes with respect to generation of the just-expanded node. In undirected graphs,
preventing node re-generation. this is sufficient to prevent re-generation of already-closed

Although nodes inside the boundary can be removed from nodes. In directed graphs in which a node can have prede-
memory without risking duplicate search effort, this means cessors that are not also potential successors, an additional
it is no longer possible to reconstruct a solution by the tra- technique must be used. Each time a node is expanded, all
ditional traceback method. To allow divide-and-conquer so- Of its predecessor nodes are generated as well as its succes-
lution reconstruction, each node stores information about a sor nodes. If the search has not yet found a legal path to
node along an optimal path to it that divides the problem in these predecessor nodes, they are assigned an inffinist
about half. Once the search problem is solved, information to prevent them from being expanded until a legal path is
about this midpoint node is used to divide the search prob- found. Note that thesértual nodesacquire an actual, finite
lem into two sub-problems: the problem of finding an opti- cost once a path to them is found.
mal path from the start node to the midpoint node, and the ~ Zhou and Hansen (2003a) propose a different technique
problem of finding an optimal path from the midpoint node for preventing node re-generation that does not require for-
to the goal node. Each of these subproblems is solved by bidden operators or virtual nodes. Instead, they associate
the original search algorithm, in order to find a node in the with each node a counter that is initially set to the num-
middle of their optimal paths. The process continues recur- ber of potential predecessors of a node. Each time a node
sively until primitive subproblems (in which the goal node is expanded, the counter of each of its successors is decre-
is an immediate successor of the start node) are reached, andnented. Closed nodes can be removed from memory when
all nodes on the optimal solution path have been identified. their counter is equal to zero.

Since the time it takes to solve all subproblems is very short For the special case of multiple sequence alignment, Zhou
compared to the time it takes to solve the original search and Hansen (2003b) propose an even simpler technique. Be-
problem, this approach saves a great deal of memory in ex- cause the search graph of the multiple sequence alignment
change for limited time overhead for solution reconstruction. problem is a lattice, it can be decomposed into a sequence

Search algorithms that use this strategy to reduce memory of layers such that each node in a layer can only have suc-
requirements differ in detail. In Korf and Zhang's (2000) cessors in the current layer or the next layer, but not in any
Divide-and-Conquer Frontier Search (DCFA*), each node previous layer. If all nodes in one layer are expanded before
past the midpoint of the search stores (via propagation) all the next layer is considered, then all previously-expanded
state information about a node along an optimal path to this layers can be removed from memory without risking node
node that is about halfway between the start and goal node. re-generation. Because this technique does not require for-
In Sparse-Memory A* (Zhou & Hansen 2003a), each node bidden operators, virtual nodes or predecessor counters, it is
stores a pointer to its predecessor or to an intermediate nodemuch easier to implement. It also uses much less memory
along an optimal path, calledralay nodethat is retained in than DCFA* or Sparse-Memory A*.
memory. Since storing pointers and relay nodes takes less The breadth-first heuristic search algorithms we introduce
space and allows faster solution reconstruction, we adopt in this paper can be viewed as generalizations of this algo-
that technique in this paper. rithm, in that they also expand the search graph on a layer-

Algorithms also differ in how they distinguish the bound- by-layer basis instead of in best-first order. However, layers
ary from closed nodes that can be removed from memory. are defined differently, and the algorithms we introduce are
For example, DCFA* only stores the frontier nodes of the more general in the sense that they can search graphs with
search (the Open List) and not the interior nodes (the Closed arbitrary structure, and not simply graphs that share the lat-
list). Already-closed nodes are prevented from being re- tice structure of the multiple sequence alignment problem.

R e T

Goal

Breadth-First Heuristic Search

In the rest of this paper, we describe a family of heuristic
search algorithms that use divide-and-conquer solution re-
construction in combination with a breadth-first strategy of
node expansion. The only assumption we make about the
graphs searched by these algorithms is that all edges have
unit cost; in other words, we assume planning problems have
unit-cost actions. This assumption allows a breadth-first
search algorithm to guarantee that when a node is first gen-
erated, an optimal path to it has been found. Our approach
can be extended to graphs that have varying and real-valued
edge costs. But this extension requires some modifications
of the algorithm, and we postpone discussion of it to a later
paper.

A breadth-first search graph divides into layers, one for
each depth. Since actions have unit cost, all nodes in the
same layer have the samecost, which is identical to their
depth in the graph. Although nodes are expanded in breadth-
first order, we use a lower-bound heuristic function to limit
exploration of the search space. As in A*, a lower-bound
estimate of the cost of an optimal path through nadis
given by a node evaluation functiof{g) = g(n) + h(n),
whereh is an admissible heuristic. No node is inserted into
the Open list if its f-cost is greater than an upper bound
on the cost of an optimal solution, since such nodes cannot
be on an optimal path. We discuss how to obtain an upper
bound later in this section.

So far, the algorithm we have described is essentially
breadth-first branch-and-bound search. This search strat-
egy is rarely used in practice because the number of nodes

Goal

Breadth-first boundary

Best-first boundary

Figure 2: Comparison of best-first and breadth-first boundaries.
The outer ellipse encloses all nodes witttost less than or equal
to an (optimal) upper bound.

Duplicate elimination

When nodes are expanded in breadth-first order, the Open
and Closed lists of the algorithm can be considered to have
a layered structure, whei@pen, denotes the set of open
nodes in layef andClosed, denotes the set of closed nodes
in layer . As a result, we sometimes refer to the Open or
Closed list of a particular layer, as if each layer has its own
Open and Closed lists. Note that at any time, all open nodes
are in the current layer or in the next layer, whereas closed
nodes can be in the current layer or any previous layer.
Each time the algorithm expands a node in the current
layer, it checks whether each successor node is a duplicate
of a node that is in the Open list of the next layer, or whether
it is a duplicate of a node in the Open or Closed list of the
current layer. In addition, it checks whether it is a duplicate
of a node that is in the Closed list of one or more previous
layers. This raises the following crucial question: how many

it expands is at least as great, and usually greater, than thePrévious layers must be retained in memory and checked for
number of nodes expanded by A*, which can be viewed as duplicates to prevent re-generation of already-closed nodes?
best-first branch-and-bound search. If all expanded nodes The answer determines when a closed layer of the search

are stored in memory, breadth-first branch-and-bound uses
as much or more memory than A*, and has no advantage.

But we propose a breadth-first branch-and-bound algo-
rithm that uses divide-and-conquer solution reconstruction.
Its memory requirements depend on the number of nodes
needed to maintain a boundary between the frontier and in-
terior of the search, and not the total number of nodes ex-
panded. The central result of our paper is that when divide-
and-conquer solution reconstruction is used, a breadth-
first branch-and-bound search algorithm can be much more
memory-efficient than a best-first algorithm such as DCFA*
or Sparse-memory A*.

Figure 2 conveys an intuition of how breadth-first search
results in a smaller set of boundary nodes. It shows that best-
first node expansion "stretches out” the boundary, whereas
breadth-first search does not and uses the upper bound to
limit the width of the boundary. Although breadth-first
search expands more nodes than best-first search, the mem
ory it saves by storing a smaller boundary results in more
efficient search, as our test results will show.

Before discussing details of the algorithm, we consider
the question: how many layers of the breadth-first search
graph need to be stored in memory to prevent duplicate
search effort?

graph can be removed from memory. As it turns out, the
answer depends on the structure of the graph.

Definition 1 Thelocality of a breadth-first search graph is
defined as

max
n,n’E€N s.t. nEpred(n’)

{g"(n) —g"(n'), O},

whereN is the set of nodeg,"(n) is the length of a shortest
path to noden (or equivalently, it is the layer in which node
n first appears), anghred(n) is the set of predecessorsraf

Note thatg*(n) can never be less thari(n’) by more than
one. But in general, there is no a priori limit on how much
greaterg*(n) can be thay*(n’). In other words, the short-
est path to a node may be arbitrarily longer than the short-
est path to its successor noae The locality of a graph de-
termines the “thickness” of the set of boundary nodes needed
to completely prevent duplicate nodes.

Theorem 1 The number of previous layers of a breadth-first
search graph that need to be retained to prevent duplicate
search effort is equal to the locality of the search graph.

Proof. First assume that the number of previous layers saved
in memory is less than the localikyof the graph. To see how
this can result in re-generation of a node, consider nades

andn’ such thaty*(n) — ¢g*(n’) > k. When noden is ex- number of times a nodecan be re-generated is bounded by
panded, its successat is either in the previous layers or N N
not. If it is not, it is re-generated. If it is, it has been previ- { f g JS
ously re-generated since it was first generated more than number of saved laye
layers before. In either case, there is a duplicate node. Proof Let A > 2 be the total number of layers saved by
Now assume the number of stored previous layers of a the algorithm. Obviously, no duplicate nodes can exist in
breadth-first search graph is equal to or greater than the lo- these A layers, because the algorithm always checks for
cality of the graph. We prove by induction that this prevents duplicates in all saved layers before inserting any newly-
node re-generation. The base step is obvious since for the generated node into the Open list for the next layer. There-
first k layers of the graph, all previous layers are stored and fore, the earliest time for a node to be re-generated is
re-generation of a duplicate node is impossible. For the in- ¢*(n) + A and the earliest time for the same node to be
ductive step, we assume that no duplicates are generated forre-generated twice ig*(n) + 2A, and so on. Since the to-
the firstm layers. When layem + 1 is generated, no pre- tal number of layers is bounded by the length of the short-
viously deleted node can be re-generated since the locality est solution pathf*), the number of times a nodeis re-
of the graph is less than or equal to the number of previous generated cannot exceed the bound stated in the thégrem.
layers stored in memory.l Use of bounds to prune the search graph further reduces
In general, it is not easy to determine the locality of graph. the chance of re-generating already closed nodes. Because
But in the special case of undirected graphs, the locality is nodes are expanded in breadth-first order, it is impossible to
one and we have the following important result. improve on they-cost of a node after it is generated. It fol-
lows that any node with ajfi-cost equal to the upper bound
will not be re-generated, since it will have a greaterost in
a subsequent layer, and thusfanost greater than the upper
bound, causing it to be pruned. From this and the fact that
Proof. This follows from the fact that the locality of any the breadth-first algorithm stores one or more previous lay-
undirected graph is one. In undirected graphs, the set of ers of the search graph, we have the following optimization
predecessors of a node coincides with the set of successorsthat can further improve space efficiency.

Therefore, the optimaj-cost of a predecessor is at most one Theorem 3 In breadth-first heuristic search, any node in

greater than the optimgtcost of a successdr] thek-th previous layer whosg-cost is greater than or equal

In graphs with a locality of one, such as undirected {4 the upper bound minuscannot be re-generated and can
graphs, the number of layers the algorithm must keep in pe removed from memory.

memory for the purpose of duplicate elimination is three;)) i
the previous layer, the currently-expanding layer, and the If only one previous Ia_yer of.the segrch graph is stored, this
next layer. In general, the number of layers that need to means that any node in the immediate previous layer whose
be retained in memory to prevent duplicate search effort is f-cOstis one less than the upper bound can be removed from
equal to the locality of the graph plus two. (One additional Memory. (This optimization is not included in our pseu-
“relay” layer is needed to allow divide-and-conquer solution docode, although itis included in our implementation.)
reconstruction, as described later.) lqorith
Korf and Zhang (2000) use forbidden operators to prevent A gorithm) . .
re-generation of closed nodes. It is easy to see that use of Figure 3 gives the pseudocode of the basic breadth-first
forbidden operators (without virtual nodes) has the same ef- heuristic search algorithm. The main algorithBFHS is
fect as storing one previous layer of the breadth-first search the same as A* except that the Open and Closed lists are
graph, since blocking a node from re-generating a prede- indexed by layers, previous layers are deleted to recover
cessor has the same effect as storing the previous layer andmemory, and the solution is reconstructed by the divide-
checking for duplicates. But in graphs with locality greater and-conquer method once the goal node is selected from the
than one, forbidden operators alone are not sufficient to pre- Open list. The procedurBxpandNodeworks in the usual
vent duplicate search effort. In this case, breadth-first search Way except that it uses an upper bouido prune nodes
provides a simple alternative: store more than one previous that cannot be on an optimal path. (Note that for subprob-
layer of the search graph. Igms solved during d|V|Qe-anQ—conquer squtlon reconstruc-
We conjecture that for many directed graphs, it is suf- tion, the upper bound is optimal since the optimal cost of
ficient to store one previous layer to prevent re-generation the overall solution is determined before beginning solution
of most, if not all, duplicate nodes. Even if the number of reconstruction.) . _
stored layers is less than the locality of the graph, an impor- 10 allow divide-and-conquer solution reconstruction,
tant result is that in the worst case, the number of times a €ach node must store information about an intermediate
node can be re-generated is at most linear in the depth of the N0de along an optimal solution path. We use the method
search. This is in sharp contrast to the potentially exponen- described by Zhou and Hansen (2003a), in which each node
tial number of node re-generations for linear-space search Stores a pointer to either its predecessor node or to an an-

algorithms that rely on depth-first search. cestor node (called a relay node) along an optimal path. For
simplicity, the pseudocode assumes that a single interme-

Theorem 2 In breadth-first heuristic search, the worst-case diate layer of the breadth-first search graph (calledlay

Corollary 1 In undirected graphs, use of the immediate
previous layer to check for duplicates is sufficient to prevent
re-generation of closed nodes.

Procedure DeletePreviousLayefinteger?, relay; Nodestart)

1
2
3
4

5
6
7
8

©

10
11
12

if £ < relay then
for eachn € Closed, do
ancestor(n) «— start
else
for eachn € Closed, do
a «— ancestor(n)
while a ¢ Closedreiay do /* find relay node fom */
a — ancestor(a)
ancestor(n) «— «
for eachn € Closed,—, do /* delete previous layer */
Closedy_1 «— Closed;—1 \ {n}
deleten

Procedure ExpandNodéNoden; Integert, U)

13
14
15
16
17
18
19

for eachn’ € Successors(n) do
if g(n) +1+ h(n') > U continue [* prune */
if n’ € Closedy—1 U Closed, continue /* duplicate */
if n’ € Open, U Opengs1 continue * duplicate */
g(n") — g(n) + 1
ancestor(n') «—n
Opengt1 < Opengy1 U {n'}

Algorithm BFHS(Nodestart, goal; IntegerU)

48

Figure 3:Pseudocode faBFHS (Breadth-First Heuristic Search).

g(start) — 0
ancestor(start) «— nil

Openg «— {start}, Open, «— 0

Closedy «— 0

l—0 [* £ =layer */
relay «— [U/2] [* relay = relay layer */
while Open, # () or Openg41 # (0 do

while Open, # 0 do
n « argmin,{g(n) | n € Open,}
Openg «— Openg \ {n}
Closedy — Closedy U {n}
if n is goal then [* solution reconstruction */
middle «— ancestor(n)
if g(middle) = 1then I* recursion ends */
o «— (start, middle)
else
mo «—BFHS start, middle, g(middle))
if g(n) — g(middle) = 1 then /* recursion ends */
m — (middle,n)
else
m «—BFHSmiddle, n, g(n) — g(middle))
return Concatenatémo, 1)
ExpandNodén, ¢,U) [* U = upper bound */
if 1 </ <relayor{>relay+ 1then
DeletePreviousLayeft, relay, start)
{+—1+1 /* move on to next layer */
Openg+1 — @
Closedy «—
return ()

longer needed for duplicate detection, it adjusts the ances-
tor pointers in its successor layer so that they point to nodes
in the relay layer, if the deleted layer comes after the relay
layer (lines# 4-9), or else to the start node, if the deleted
layer comes before the relay layer (lines# 1-3).

The divide-and-conquer method can be implemented in a
more sophisticated and efficient way than presented in the
pseudocode. Since the middle layer is typically the largest
layer of the graph (see Figure 4), we have found that in prac-
tice, it is more memory-efficient to save the layer that is at
the 3/4 point in the graph, for example. This reduces the
peak memory requirements of the algorithm, and in prac-
tice, increases the time overhead of solution reconstruction
by an almost negligible amount.

The time efficiency of the algorithm can be improved sig-
nificantly by not using the divide-and-conquer method when
there is enough memory to solve a problem, or one of the re-
cursive subproblems, by keeping all the layers of the search
graph in memory and using the traceback method to recover
the solution path. After one level of divide-and-conquer re-
cursion, for example, there is often enough memory to solve
the resulting subproblems without deleting any layers, and
without needing to continue the divide-and-conquer recur-
sion. In an efficient implementation of the algorithm, a lazy
approach to deleting previous layers of the search graph is
adopted, in which previous layers are deleted only when
memory is close to full.

Breadth-First Iterative-Deepening A*

Our breadth-first algorithm uses an upper bound on the cost
of an optimal solution to prune the search space, and the
quality of the upper bound has a significant effect on the ef-
ficiency of the algorithm. The better the upper bound, the
fewer nodes are expanded and stored. (In fact, given an op-
timal upper bound, the algorithm does not expand any more
nodes than A*, disregarding ties.)

An upper bound can be obtained by finding an approxi-
mate solution to the search problem. There are many pos-
sible ways to quickly compute an approximate solution in
order to obtain an upper bound. An obvious method is to
use weighted A* search. Below, we describe a beam search
algorithm that is also very effective.

Here, we point out that it is possible to define a ver-
sion of breadth-first heuristic search that does not need
a previously-computed upper bound. Instead, it uses an
iterative-deepening strategy to avoid expanding nodes that
have anf-cost greater than a hypothetical upper bound. The
algorithm first runs breadth-first heuristic search using the
f-cost of the start node as an upper bound. If no solution is
found, it increases the upper bound by one (or to the least
f-cost of any unexpanded nodes) and repeats the search.
Because of the similarity of this algorithm to Depth-First
Iterative-Deepening A* (Korf 1985), we calllBreadth-First

layer) is preserved in memory for use in divide-and-conquer Iterative-Deepening AtBFIDA*). The amount of memory
solution reconstruction. It also assumes the relay layer is ap- it uses is the same as the amount of memory BFHS would
proximately in the middle of the search graph, since equal- use given an optimal upper bound. However, BFIDA* may
sized sub-problems are easier to solve. When the proce- run more slowly than BFHS with a previously-computed

dureDeletePreviousLayds invoked to delete a previously-

upper bound, because running multiple iterations of BFHS

expanded layer of the breadth-first search graph that is no takes extra time.

108 TR e # | Len Stored A*Exp | BFIDA* Exp
107 A = 17 66 | 16,584,444| 218,977,081 279,167,411
106 o h 49 | 59 | 21,177,925| 243,790,912| 345,700,085
8 10 53 64 | 12,753,096| 177,244,033| 224,545,853
B o 56 | 55 | 13,066,308 141,157,391 208,900,977
2 59 | 57| 13,974,753| 158,913,130 228,900,723
31 60 | 66 | 56,422,199| 767,584,679 978,804,885
10 66 61 | 21,435,302| 275,076,045 368,138,264
101 82 | 62 | 46,132,337| 549,557,759 765,608,989
100 | 88 65 | 77,547,650| 999,442,569| 1,360,582,446

0 Layerr?amber 64 92 57 | 12,591,419| 151,699,572| 213,871,768

Table 1: Performance of BFIDA* on the 10 most difficult in-
stances of Korf’s 100 random instances of the 15-puzzle. Columns
show the instance number (#); solution length (Len); peak humber
of nodes stored (Stored); number of node expansions in the last it-
eration, which is equal to the number of nodes that A* must expand
(A* Exp); and the total number of node expansions (BFIDA* Exp).

Figure 4: Size of layer (logarithmically scaled) as function of
search depth for Korf’s most difficult 15-puzzle instance (No. 88).

Divide-and-Conquer Beam Search
Breadth-first heuristic search can significantly reduce the

memory requirements of search, while still eliminating all
duplicate search effort. But it can still run out of memory if

Fifteen-puzzle

We tested BFIDA* on the same 100 instances of the 15-
the number of nodes in any layer becomes too large. Typi- puzzle used as a test set by Korf (1985). For the 15-puzzle,
cally, the largest layer is in the middle of the search graph, our implementation of BFIDA* uses forbidden operators to
since layers close to the start node are relatively small due to block re-generation of nodes in the previous layer, rather
reachability constraints, and layers close to the goal node are than storing the previous layer, since this saves space and
relatively small because of the strength of the heuristic close is easily implemented for this problem. Table 1 shows re-
to the goal, which makes it possible to prune most nodes. sults for the ten most difficult instances. BFIDA* solves all
Figure 4 illustrates this and shows how the size of each layer 100 instances using no more than 1.3 gigabytes of memory.
varies with the depth of the search for a difficult instance of Given 4 gigabytes of memory, neither DCFA* nor Sparse-

the 15-puzzle.

If the largest layer of the breadth-first search graph does
not fit in memory, one way to handle this follows from
recognition that breadth-first heuristic search is very closely-
related to beam search. Instead of considering all nodes in
a layer, we propose a beam-search variant of breadth-firs

heuristic search that considers the most promising nodes un-

til memory is full (or reaches a predetermined bound). At
that point, the algorithm recovers memory by pruning the
least-promising nodes (i.e., the nodes with the highfest
cost) from the Open list. Then it continues the search.

Aside from pruning the least-promising open nodes when
memory is full, the algorithm is identical to breadth-first
heuristic search. The difference from traditional beam
search is that it uses divide-and-conquer solution reconstruc-
tion to reduce memory requirements. But this is an impor-
tant difference since it allows it to use a much larger beam
width in order to improve performance. We call the result-
ing algorithm Divide-and-Conquer Beam Search, and report
impressive empirical results later in the paper.

Computational results

We first consider the performance of Breadth-First Heuris-
tic Search on the Fifteen-puzzle, since this makes for eas-
ier comparison to the best-first alternatives of DCFA* and
Sparse-Memory A*. Then we consider its performance on a
range of difficult STRIPS planning problems from the Plan-
ning Competition.

memory A* can solve more than 96 instances; the instances
they cannot solve are numbers 17, 60, 82, and 88r the

96 solvable instances, DCFA* stores 5 times more nodes
than BFIDA*, and Sparse-Memory A* stores 3.4 times more
nodes. This clearly shows the advantage of breadth-first over

+ best-first divide-and-conquer heuristic search.

Based on the number of nodes that need to be expanded
to solve these 15-puzzle instances, A* would need between
12 and 16 times more memory than BFIDA* just to store the
Closed list. Although BFIDA* must re-expand some nodes
due to iterative deepening and divide-and-conquer solution
reconstruction, the last column of Table 1 shows that it only
expands from 30% to 40% (on average) more nodes than A*
would expand in solving these 15-puzzle instances. IDA*
expands many more nodes than this, but still runs much
faster in solving the 15-puzzle due to lower node-generation
overhead and the fact that the number of duplicate paths
does not grow too fast with the depth of the search, for this
problem. (For the planning problems considered next, IDA*
loses its advantage.)

Domain-independent STRIPS planning

Over the past several years, the effectiveness of heuristic
search for domain-independent STRIPS planning has be-

'DCFA* and Sparse-memory A* can solve instance 49 but not
instance 17, even though BFIDA* requires less memory to solve 17
than 49. The explanation is that the best-first boundary for instance
17 has more nodes than the best-first boundary for instance 49,
although the breadth-first boundary for instance 17 is smaller than
for instance 49.

A* BFHS
Instance Len Stored Exp Secs Stored Exp Secs
blocks-14 38 735,905 252,161 125 228,020 863,495 37.9
gripper-6 41 2,459,599 2,436,847 35.1| 1,529,307| 11,216,130| 157.1
satellite-6 20 3,269,703 2,423,288 177.6 || 1,953,396 3,750,119| 257.4
elevator-11 37 3,893,277 3,884,960 181.1 || 1,144,370| 8,678,466 433.9
depots-3 27 || >6,100,806| > 3,389,343| > 112.2 || 4,841,706 8,683,716 270.3
driverlog-10 || 17 || > 7,626,008| > 1,484,326/ >95.1 || 6,161,424| 10,846,888 560.7
freecell-4 27 || >6,990,507| > 3,674,734| > 432.9 | 5,891,140| 17,140,644| 1,751.0

Table 2:Comparison of A* and BFHS (using an upper bound found by beam search) on STRIPS planning problems. Columns show optime
solution length (Len); peak number of nodes stored (Stored); number of node expansions (Exp); and running time in CPU seconds (Sec
The > symbol indicates that A* ran out of memory before solving the problem.

IDA* BFIDA*
Instance Len || Stored Exp Secs Stored Exp Secs
blocks-12 34 5,015 180,305 50.3 6,354 34,687 1.6
blocks-14 38 || 94,011 | 51,577,732| 20,631.0 224,058 | 1,324,320 444
logistics-4 20 2,289 | 45,194,644 621.7 1,730 16,077 0.5
depots-2 15 2,073 227,289 311 1,923 8,139 0.5
gripper-2 17 1,769 | 16,381,009 312.7 1,398 17,281 0.3
gripper-6 41 - - - || 1,848,788| 85,354,245| 1,029.3
satellite-4 17 - - - 70,298 303,608 8.2

Table 3: Comparison of IDA* (using transposition table) and BFIDA* on STRIPS planning problems. Columns show optimal solution
length (Len); peak number of nodes stored (Stored); number of node expansions (Exp); and running time in CPU seconds (Secs). IDA* cou
not solve the last two problems after 12 hours of CPU time.

By contrast, implementation of a breadth-first algo-
rithm that uses divide-and-conquer solution reconstruction
is straightforward. Because of the layered structure of the
search graph, there is no need for forbidden operators, vir-
tual nodes or predecessor counters. The algorithm sim-
ply stores one or more previous layers and checks for du-
plicates. Given the difficulty of implementing DCFA* or
Sparse-memory A* for domain-independent planning, we
compare our breadth-first divide-and-conquer algorithms to
A*, IDA*, and weighted A*.

The following experiments were performed on a Pentium
For domain-independent STRIPS planning, breadth-first 1V 2.4 GHz processer with 512 megabytes of RAM. We used

search has an important advantage over best-first searchthe HSPr planning system of Blai Bonet as a foundation for

when divide-and-conquer solution reconstruction is used: implementing our algorithms (Bonet & Geffner 2001a). Al-

it is mucheasier to implement. Implementing DCFA* or though divide-and-conquer search algorithms implemented

Sparse-memory A* for STRIPS planning problems presents using relay nodes can use extra memory to reduce the over-

several difficulties. Implementing forbidden operators in a head of solution reconstruction, we ran our algorithms to

domain-independent way can increase node size substan-minimize memory use. We also stored only a single previ-

tially, since every possible operator instantiation must be ous layer in checking for duplicates. Although two of the

considered. When STRIPS operators are only conditionally planning domains among our eight test domains correspond

reversible, forbidden operators are also difficult to imple- to directed graphs for which graph locality is not obvious

ment because it is impossible to determine reversibility in (freecelland satellite), we found empirically that storing a

advance. For STRIPS planning problems that correspond to single previous layer was sufficient to eliminate all dupli-

directed graphs, implementing virtual nodes (as in DCFA*) cates in both cases. The other six planning problems corre-

or even predecessor counting (as in Sparse-memory A*) is spond to undirected graphs.

challenging given the difficulty of identifying all predeces-

sors of a node, especially since the number of potential pre-

decessors is exponential in the size of the Add list of an op-

erator, and all operators must be considered. Since many po-

tential predecessors may not even be reachable in the searcl BFHS vs. A* Table 2 shows representative results from

graph, the boundary could become cluttered with nodes that a comparison of A* to Breadth-First Heuristic Search (us-

will never be removed. ing an upper bound computed by Divide-and-Conquer Beam

come widely-recognized. A* and IDA* are used to find opti-
mal plans, given an admissible heuristic (Haslum & Geffner
2000). Weighted A* is used to find approximate plans
for difficult planning problems, guided by an informative
though usually non-admissible heuristic (Bonet & Geffner
2001b). Heuristic-search planners have performed very well
in the biennial planning competitions, and the problems used
in the competition provide a good test set for comparing
graph-search algorithms since they give rise to a variety of
search graphs with different kinds of structure, and memory
is a limiting factor in solving many of the problems.

Weighted A* (W = 2.0) Divide-and-Conquer Beam Search
Instance Len | LB Stored Exp Secs|| Len | LB Stored Exp Secs
blocks-10 60 | 24 59,250 47,017 1.0 36| 34| 20,000 144,655 4.2
blocks-20 -| 36| >3,195661| >1,710,952| > 149.0 60 | 48 | 50,000| 1,058,716/ 103.0
depots-4 -| 14 | >5,162,221| >2,519,509| > 151.7 30| 17 | 120,000 547,622 331
depots-5 -| 14 | >4,793,491| >1571,290| >114.4| 45| 20 | 100,000| 1,248,798 91.8
depots-8 -| 10 | > 4,473,925 >812,213| >90.0 34| 12 | 50,000 239,361 30.3
depots-10 27| 10 286,657 30,155 3.2 25| 13| 50,000 147,951 14.4
depots-11 -| 14| >3,728,271 > 823,102 | > 148.2 49 | 17 | 500,000| 5,522,175| 1,073.5
depots-14 - | 11 | > 3,532,046 > 200,226| > 68.9 29 | 13| 800,000| 1,706,529 383.9
depots-16 29 9 2,041,919 190,157 294 26 | 12 | 50,000 133,046 17.0
driverlog-12 52 | 12 27,740 8,158 0.7 38| 16 5,000 47,944 3.9
driverlog-15 64 | 11 1,890,205 235,462 41.6 36 | 13| 50,000 295,044 48.3
freecell-2 17 | 11 734,703 1,878,993 102.2 17 | 12 5,000 11,460 1.0
freecell-3 27 | 13 282,548 486,796 25.3 21| 14| 10,000 33,944 2.6
freecell-4 -| 17 | >5,592,406| > 10,815,416| > 878.1 27| 18 | 10,000 46,116 6.4

Table 4:Comparison of weighted A* (with weight of 2.0) and Divide-and-Conquer Beam Search on STRIPS planning problems. Columns
show solution length (Len); provable lower bound (LB); peak number of nodes stored (Stored); number of node expansions (Exp); an

running time in CPU seconds (Secs). Thesymbol indicates that weighted A* ran out of memory before solving the problem.

Searchyf. Although BFHS expands more nodes than A*,
it uses less memory and thus can solve larger problems.
The memory savings for these planning problems is not as

great as for the 15-puzzle because the best available admis-

sible heuristic for domain-independent planning, thax-

pair heuristic of Haslum and Geffner (2000), is very weak.
In general, the more informative a heuristic, the greater the
advantage of a breadth-first divide-and-conquer strategy, for
two reasons. First, the more informative a heuristic, the
more it “stretches out” a best-first boundary, whereas a weak
heuristic results in a boundary that is more similar to the
boundary of breadth-first search. Second, a more informed
heuristic "narrows” the breadth-first boundary because it
prunes more nodes.

BFIDA* vs. IDA* Table 3 shows representative results
from a comparison of Haslum’s implementation of IDA* us-
ing a transposition table, as described in his paper (Haslum
& Geffner 2000), with Breadth-First Iterative-Deepening
A*. IDA* performs much worse than A* due to excessive
node re-generations. This clearly illustrates that the prob-
lem of duplicate paths is much more severe for the Planning
Competition problems than for the 15-puzzle, and effective
duplicate elimination is essential for good performance.

Divide-and-Conquer Beam Search vs. weighted A* Ta-

ble 4 shows representative results from a comparison of
weighted A* (using a weight of 2.0) to Divide-and-Conquer
Beam Search. Since we are willing to accept approximate
solutions in order to solve larger problems, we use the more
informative, although non-admissiblagdditive heuristicto
guide the search (Bonet & Geffner 2001b). However, we
also use the admissiblaax-pairheuristic to evaluate each
node, since this lets us compute a lower bound on the opti-
mal solution length; the lower bound is the least admissible

2The implementation of A* is Bonet's, except that we re-
implemented his node-ordering algorithm so that it uses a hash ta-
ble instead of a linked list, in order to improve performance.

f-cost of any unexpanded node. Since the solution found
is an upper bound on the optimal solution length, the lower
bound lets us bound the sub-optimality of the solution.

It is interesting that the beam search algorithm consis-
tently finds better lower bounds than weighted A*, even
when it expands far fewer nodes. This is due to the fact
that it distributes search effort more evenly among layers,
and fully expands early layers of the search graph, whereas
weighted A* tends to focus search effort near the goal.

In the results for the beam search algorithm, the peak
number of stored nodes corresponds to a predetermined
bound. We adjusted the bound for different problems based
on the difficulty of the problem, in order to adjust a time-
quality tradeoff. The peak number of stored nodes is roughly
equal to the size of a layer times four, since Divide-and Con-
guer Beam Search only stores four layers in memory; the
current, previous, and next layer, and the relay layer used
for solution reconstruction. Because a divide-and-conquer
implementation of beam search is more memory-efficient
than ordinary beam search, it allows larger beam widths that
lead to better solutions. For some of the test problems (e.qg.,
depot-11and depot-14, traditional beam search (without
divide-and-conquer solution reconstruction) would run out
of memory if it used the same beam width.

An interesting side-effect of the divide-and-conquer strat-
egy, when used with beam search, is that the length of the
initial solution found by beam search can be improved on
during solution reconstruction, since better solutions to sub-
problems can be found in the divide-and-conquer phase.
This occurred for four of the examples in Table 4, and re-
sulted in a reduction of between 2% and 6% in the length of
the initial solution found by beam search.

Although the beam search algorithm uses much less mem-
ory than weighted A*, it solves larger problems and finds
much higher-quality solutions. Given the extensive use
of weighted A* in the Planning Competition, the fact that
Divide-and-Conquer Beam Search performs so much better
is very encouraging and suggests that this is a promising di-
rection for continued research.

Conclusion

Best-first search is traditionally considered more efficient
than breadth-first search because it minimizes the num-
ber of node expansions. The contribution of this paper
is to show that when divide-and-conquer solution recon-
struction is used to reduce the memory requirements of

Myers, E., and Miller, W. 1988. Optimal alignments in
linear spaceComputer Appl. in the Biosciencdsl1-17.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening searchlEEE Trans. on Pattern Analysis and
Machine Intelligencd 6:701-710.

Zhou, R., and Hansen, E. 2003a. Sparse-memory graph

search, breadth-first search becomes more efficient than search. IrProceedings of the 18th International Joint Con-
best-first search because it needs less memory to prevent re- ference on Artificial Intelligence (IJCAI-03)259-1266.

generation of closed nodes.

We have described a family of algorithms that use a
breadth-first heuristic search strategy, including algorithms
that find optimal and approximate solutions. We have shown
that this strategy outperforms A*, IDA*, and weighted A* in
solving STRIPS planning problems, and that it outperforms
DCFA* and Sparse-Memory A* on the 15-puzzle. Because
a breadth-first strategy is simpler to implement, it is also
practical for a wider class of problems than the best-first
strategy of DCFA* and Sparse-memory A*.

In adopting breadth-first search, we made the limiting as-
sumption that all actions have unit cost. In future work, we
will show how to relax this assumption and extend this ap-
proach to planning problems in which actions have varying
or real-valued costs, including metric planning problems.

Acknowledgments We thank Blai Bonet and Patrick
Haslum for making the code for their heuristic-search plan-
ners publicly available. We thank the anonymous reviewers
for their comments. This work was supported in part by NSF
grant 11S-9984952 and NASA grant NAG-2-1463.

References

Bonet, B., and Geffner, H. 2001a. Heuristic search planner
2.0. Al Magazine22(3):77-80.

Bonet, B., and Geffner, H. 2001b. Planning as heuristic
search Artificial Intelligence129(1):5-33.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. IrProc. of the 5th International Con-
ference on Al Planning and Scheduljrigt0—149.

Hirschberg, D. S. 1975. A linear space algorithm for com-
puting maximal common subsequenc&€ommunications
of the ACM18(6):341-343.

Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree searchurtificial Intelligence27:97—-109.

Korf, R. 1993. Linear-space best-first searchrtificial
Intelligence62:41—-78.

Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. InProc. of the 16th International Joint Con-
ference on Artifiicial Intelligence (IJCAI-991184-1189.

Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignmenBrbteed-
ings of the 17th National Conference on Atrtificial Intelli-
gence (AAAI-00)910-916.

Miura, T., and Ishida, T. 1998. Stochastic node caching
for memory-bounded search. Rroc. of the 15th National
Conference on Artificial Intelligence (AAAI-98)50-456.

Zhou, R., and Hansen, E. 2003b. Sweep A*. Space-
efficient heuristic search in partially ordered graphs. In
Proc. of the 15th IEEE International Conf. on Tools with
Artificial Intelligence 427—-434.

