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Abstract

Recent work shows that the memory requirements of A* and related graph-search algorithms can be reduced substantially by
only storing nodes that are on or near the search frontier, using special techniques to prevent node regeneration, and recovering the
solution path by a divide-and-conquer technique. When this approach is used to solve graph-search problems with unit edge costs,
we show that a breadth-first search strategy can be more memory-efficient than a best-first strategy. We also show that a breadth-
first strategy allows a technique for preventing node regeneration that is easier to implement and can be applied more widely.
The breadth-first heuristic search algorithms introduced in this paper include a memory-efficient implementation of breadth-first
branch-and-bound search and a breadth-first iterative-deepening A* algorithm that is based on it. Computational results show that
they outperform other systematic search algorithmsin solving arange of challenging graph-search problems.
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1. Introduction

The A* agorithm [9], and related graph-search algorithms such as Dijkstra's single-source shortest-path algo-
rithm [4] and breadth-first search, store all of the generated nodes of a search graph in memory, using an Open list to
store nodes on the search frontier and a Closed list to store already-expanded nodes. Asiswell known, this creates a
memory bottleneck that severely limits the scalability of these graph-search agorithms.

Storing al generated nodes serves two purposes. First, it allows states that have been reached a ong one path to be
recognized if they are reached along another path, in order to prevent generation of duplicate nodes that represent the
same state; thisis called duplicate detection. Second, it allows the solution path to be reconstructed after completion of
the search by the traceback method; each node stores a pointer to its parent node along the best path, and the solution
path is recovered by tracing the pointers backwards from the goal node to the start node. Storing all generated nodes
makes it possible to perform both of these functions. But it is not necessary to store al generated nodes in order to
perform just one of these functions. Thisleadsto two different strategies for reducing the memory requirements of A*:
one strategy gives up duplicate detection and the other gives up the traceback method of solution reconstruction.
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Linear-space variants of A* such as recursive best-first search (RBFS) [14] and depth-first iterative-deepening A*
(DFIDA*) [13] give up duplicate detection. Instead of storing Open and Closed lists, they use a stack to organize the
search. Since the current best solution path is stored on the stack, solution reconstruction by the traceback method is
straightforward. Because they only store nodes on the current path, however, these algorithms are severely limited in
their ability to recognize when newly-generated nodes represent states that have already been reached by a different
path. Essentialy, linear-space search algorithms convert graph-search problems into tree-search problems. As the
depth of the search increases, the number of node regenerations relative to the number of distinct nodes (i.e., the
size of the search tree relative to the size of the search graph) can increase exponentially. For complex graph-search
problems in which the same state can be reached along many different paths, DFIDA* and RBFS perform very poorly
due to excessive node regenerations. Their performance can be improved by using available memory to store as many
generated nodes as possiblein order to check for duplicates[21,24]. But this requires as much memory as A* in order
to eliminate all duplicate search effort.

A second strategy for reducing the memory requirements of A* prevents duplicate search effort, but does not use
the traceback method of solution reconstruction. It is based on the development of techniques for duplicate detection
that do not require storing all generated nodes, but only nodes that are on or near the search frontier. This strategy
was introduced to the artificial intelligence community in the form of an algorithm called frontier search, which only
stores the Open list and saves memory by not storing the Closed list [15,18,19]. A closely-related algorithm called
sparse-memory graph search stores only a small part of the Closed list [26]. Instead of the traceback method, both
algorithms use a divide-and-conquer technique to recover the solution path. In this technique, the search algorithm
finds an intermediate node along an optimal path and uses it to divide the original problem into two subproblems —
the problem of finding an optimal path from the start node to the intermediate node, and the problem of finding an
optimal path from the intermediate node to the goal node. The subproblems are solved recursively by the same search
algorithm until all nodes along an optimal solution path for the original problem are identified.

The contribution of this paper is to show that when this second strategy for reduced-memory graph search is
adopted, a breadth-first branch-and-bound search algorithm can be more memory-efficient than A*. This appears
counter-intuitive because breadth-first branch-and-bound typically requires more node expansions than A*. However,
we show that a breadth-first search strategy can reduce the number of nodes that need to be stored in memory in
order to perform duplicate detection, and this allows larger problems to be solved in the same amount of memory.
In addition, a breadth-first strategy allows a technique for duplicate detection that is easier to implement and can be
applied more widely.

The paper is organized as follows. Section 2 reviews previous work on A* search using this divide-and-conquer
strategy for reducing memory requirements. Section 3 describes how the same approach can be used to reduce the
memory requirements of breadth-first branch-and-bound search. Section 4 uses this memory-efficient breadth-first
branch-and-bound algorithm to create a breadth-first iterative-deepening A* algorithm. Section 5 reports computa-
tional results that show the advantages of the breadth-first approach in solving the Fifteen Puzzle problem, the 4-peg
Towers of Hanoi problem, and STRIPS planning problems. Potential extensions of this work are discussed in Sec-
tion 6.

We focus on graph-search problemswith unit (or uniform) edge costs, which are best-suited for breadth-first search.
In Section 6.1, we briefly discuss how to extend the breadth-first approach to find optimal solutions to graph-search
problems with non-uniform edge costs. However, we leave the details of this extension for future work.

2. Background
2.1. Graph-search preliminaries

State-space search is a widely-used problem-solving framework in artificial intelligence. A state space consists
of aset of states and a set of operators for transforming one state into another. A state space can be represented by
aweighted graph G = (N, E, ¢) in which each node n € N corresponds to a problem state, each edge (n,n’) € E
corresponds to a state transition, and a cost function ¢: E — R™ associates a non-negative cost ¢(n, n’) with each
transition (n, n’). A probleminstance is a state-space graph with a start node, s € N, and a set of goal (or terminal)
nodes, T < N. A solution isapath from the start node s to agoal noder € 7. An optimal solution is a minimum-cost



R. Zhou, E.A. Hansen / Artificial Intelligence 170 (2006) 385—408 387

path, where the cost of a path is the sum of the costs of its edges. In this paper, we assume that all edges have unit
cost. In this case, aminimum-cost path is also a shortest path from the start node to a goal node.

Typicaly, agraphisrepresented implicitly by aprocedure for generating the successors of anode, which isreferred
to as expanding the node. This procedure allows parts of the graph to be generated and stored in memory, possibly
deleted from memory, and then possibly regenerated later, in the course of the search for a solution path. The set of
nodes and edgesthat is stored in memory at any timeisreferred to as the explicit graph, in contrast to the entire graph,
which is called the implicit graph. Implicit representation of a graph is useful since the entire graph does not usually
need to be stored in memory, or even generated, in order to solve a particular problem instance.

There are two general approaches to systematic graph search. One relies on a stack to organize the search and
determine the next node to expand; it includes depth-first search, depth-first branch-and-bound search, depth-first
iterative-deepening A* [13], and recursive best-first search [14]. The other relies on a priority queue to organize the
search and determine the next node to expand; it includes breadth-first search, Dijkstra’s single-source shortest-path
algorithm [4], and the best-first search algorithm A* [9]. The priority queue is called an Open list and contains the
frontier nodes of the explicit graph, that is, the nodes that have been generated but not yet expanded. In breadth-first
search, the Open list is ordered by the depth of each node n; in Dijkstra's single-source shortest-path algorithm, it is
ordered by the cost of a best path from the start node to each node n, denoted g(n); in A*, or best-first search, it is
ordered by an estimate of the cost of the best solution path that goes through each node n, denoted f (n) = g(n) +h(n),
where h(n) is an estimate of the cost of a best path from node n to agoal node.

If h(n) never over-estimates the cost of a best path from node n to a goa node, for any node n, it is said to be an
admissible heuristic (or equivalently, alower-bound function). Using an admissible heuristic, A* is guaranteed to find
minimum-cost paths. A heuristicissaid to be consistent if 2(n) < c(n, n’) +h(n’) for all n and n’. Consistency implies
admissibility. Using a consistent heuristic, A* is guaranteed to expand the fewest nodes of any algorithm for finding
aminimum-cost solution that uses the same heuristic, up to ties [3]. Breadth-first search and Dijkstra's single-source
shortest-path algorithm are also guaranteed to find optimal solution paths, under appropriate assumptions.

In graph search, there are multiple paths to a node, and in order to avoid duplicate search effort, it isimportant to
recognize when an already generated node has been reached along a different path; thisis called duplicate detection.
The traditional approach to duplicate detection is to store all generated nodes in memory, typically in a hash table,
and to check these stored nodes before adding a new node to the explicit graph. This prevents the search algorithm
from storing more than one node that represents the same problem state. If the search a gorithm finds another path to
a node with a lower g-cost, it updates the cost information associated with the node already in the explicit graph, as
well as the pointer to its parent node along a best path. When A* uses a consistent heuristic, the g-cost of anodeis
guaranteed to be optimal once the node is expanded.

For graph-search algorithms that use an Open list to store frontier nodes that have been generated but not yet
expanded, nodes that have been expanded are stored in a Closed list. The memory needed to store all open and closed
nodes is the bottleneck of these algorithms. Although some depth-first search algorithms can find an optimal solution
without storing al generated nodes, their inability to detect duplicates typically leads to an exponential increase in
time complexity that can make their performance unacceptably slow in practice. In the rest of this paper, we consider
an approach to reducing the memory requirements of graph search that does not give up duplicate detection.

2.2. Reduced-memory graph search

The strategy for reduced-memory graph search that we adopt in this paper was introduced to the Al heuristic
search community by Korf [15]. (A similar, although less general, strategy was previously used to reduce the memory
requirements of dynamic-programming agorithms for sequence comparison [12,22].) Korf and Zhang [18] describe
a version of A* that uses this strategy. Korf also uses this strategy in Dijkstra’s single-source shortest-path algo-
rithm [15], bidirectional A* [15], and (uninformed) breadth-first search [16]. Zhou and Hansen [26,27] introduce
enhancements.

The strategy is based on the insight that it is not necessary to store all expanded nodes in a Closed list in order
to perform duplicate detection. Often, duplicate detection only requires storing nodes that are on or near the search
frontier. The intuition is that the set of generated nodes forms a“volume” that encompasses the start node and grows
outward as the search frontier is expanded. If the graph has a particular structure, or if special techniques are used by
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the search algorithm, nodes on the frontier cannot regenerate nodes in the interior of the search volume. Therefore
interior nodes do not need to be stored in memory in order to perform duplicate detection.

If nodes in the interior of the search volume are removed from memory, however, this prevents recovery of the
solution path by the traditional traceback method. Therefore search algorithms that use this memory-saving technique
rely on a divide-and-conquer technique of solution recovery. Each node n stores information about an intermediate
node along the best path to n from the start node. It could be a node in the middle of the search space, but does
not have to be in the middle. (Whether a node is in the middle of the search space, or at some other position, can
be estimated in various ways. For example, its position can be estimated by comparing its g-value to its f-value, or
by comparing its depth to an estimate of solution length.) Once the search problem is solved, information about this
intermediate node is used to divide the search problem into two subproblems: the problem of finding an optimal path
from the start node to the intermediate node, and the problem of finding an optimal path from the intermediate node
to the goal node. Each of these subproblems is solved by the same search algorithm in order to find an intermediate
node along their optimal paths. The process continues recursively until primitive subproblems (in which the optimal
path consists of a single edge) are reached, and all nodes on an optimal solution path for the original search problem
have been identified. The time it takes to solve all of these subproblems is usually very short compared to the time it
takes to solve the origina search problem, and this approach can save a substantial amount of memory in exchange
for very limited time overhead for solution recovery.

Search algorithms that use this memory-reduction strategy differ in detail. We briefly review some of the differ-
ences by considering, in turn, the two key issuesin this strategy: duplicate detection and divide-and-conquer solution
reconstruction.

2.2.1. Duplicate detection

Korf et a. [15,18,19] describe a memory-efficient approach to graph search called divide-and-conquer frontier
search or simply frontier search. Frontier search only stores nodes on the search frontier (the Open List) and not
nodes in the search interior (the Closed list). Closed nodes are prevented from being regenerated by storing a list of
used-operator bitsin each open node. The list has one bit for each operator; the bit indicates whether the neighboring
node reached by that operator has already been expanded. Each time a node is expanded, only unused legal operators
are used to generate successor nodes. If a newly-generated node could have the just-expanded node as a successor (as
in undirected graphs), a used-operator bit in the successor node is set to block later regeneration of the just-expanded
node. When anode is generated that is a duplicate of a node already stored in the Open list, the operators marked in
the saved node are the union of the used operators of the individual nodes. In undirected graphs, used-operator bits are
sufficient to prevent regeneration of already-closed nodes. In directed graphs in which a node can have predecessors
that are not also potential successors, an additional technique must be used. Each time a node is expanded, frontier
search not only generates its successor nodes, it generates its predecessor nodes to which alegal path has not yet been
found (i.e., they have not yet been inserted in the Open list). Such nodes are assigned an infinite f-cost to prevent
them from being expanded until alegal path isfound. Note that these dummy nodes acquire an actual, finite cost once
apath to them is found.

Zhou and Hansen [26] describe a closely-related approach to reducing the memory requirements of graph search,
called sparse-memory graph search, that prevents node regeneration without used-operator bits or dummy nodes. In-
stead, each node has a counter (called a predecessor counter) that is initially set to the number of predecessors of
that node in the implicit graph. Each time a node is expanded, the counter of each of its successor nodes is decre-
mented by one. Unlike frontier search, sparse-memory graph search uses a Closed list. However, closed nodes can be
removed from memory once their counter is equal to zero, since this ensures they cannot be regenerated. Although
this technique delays removal of closed nodes from memory, which is a disadvantage compared to frontier search, it
has advantages that make up for this. One advantage is that it allows use of an upper bound on the cost of an opti-
mal solution to prune any open node with an f-cost greater than the bound. Such nodes will never be expanded and
memory is saved by not storing them. By contrast, frontier-A* cannot remove sub-optimal nodes from the Open list
because doing so discards used-operator bits; if it did so and the same node was later regenerated via a shorter path,
loss of the used-operator bits could allow already-closed nodes to be regenerated.

Sparse-memory graph search has some other advantages over frontier search. For problemswith avery high branch-
ing factor, storing a counter in each node takes much less memory than storing used-operator bits, one for each
operator. Moreover, in directed graphs, the sparse-memory approach does not generate dummy nodes. On the other
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hand, frontier search has some advantages over sparse-memory graph search; in particular, it saves space by not stor-
ing any closed nodes. In practice, whether frontier search or sparse-memory graph search is more memory-efficient is
problem-dependent.

2.2.2. Divide-and-conquer solution reconstruction

InKorf et a.'s[18,19] implementation of frontier search, each node past the middle of the search space stores (via
propagation from its parent node) all state information about a node along the best path to it that is about halfway
between the start and goal nodes. After a goa node is expanded, the midpoint node identified by this information is
used as a pivot point for divide-and-conguer solution recovery.

In sparse-memory graph search, Zhou and Hansen [26] use a different technique for keeping track of an interme-
diate node along a best path. Each node stores a pointer to the intermediate node, which is called a relay node, and
these relay nodes are saved in memory. Although the count of nodes in memory is increased by storing relay nodes,
overall memory use can be decreased because the node data structure is smaller; it contains a pointer instead of all
state information about an intermediate node. In fact, thisisthe same node data structure used by A*, since the pointer
stored in each node could be a pointer to either aparent node or arelay node. If enough memory is availableto solvea
search problem (or subproblem) using A*, thismakesit possible to avoid the overhead of divide-and-conquer solution
reconstruction by retaining al nodesin memory, letting each node store a pointer to its parent, and using the traceback
method of solution recovery. The technique of pointers and relay nodes can also be used in frontier search, and usually
improves its performance. In the rest of this paper, all of the algorithms described will use pointers and relay nodes
for divide-and-conquer solution reconstruction.

3. Memory-efficient breadth-first branch-and-bound search

The frameworks of frontier search and sparse-memory graph search have been used to implement A* in amemory-
efficient way. Because both frontier-A* and sparse-memory A* are best-first search algorithms, their memory require-
ments depend on the size of a best-first frontier.

In this section, we consider the potential advantages of a breadth-first approach to heuristic search that adopts a
similar strategy for reducing memory requirements. First we consider the possibility that a breadth-first frontier could
be smaller than a best-first frontier, requiring less memory for duplicate detection. Then we discuss other potential
advantages. In particular, for problems where frontier search and sparse-memory graph search are too complex to
implement, we show that breadth-first search allows a simpler method of duplicate detection.

By breadth-first heuristic search, we mean a search algorithm that expands nodes in breadth-first order, but uses
the same heuristic information as A* in order to prune the search space. For any node », a lower-bound estimate of
the cost of an optimal path through the node is given by the node evaluation function f (n) = g(n) + h(n), where h(n)
is an admissible heuristic; this is the same node evaluation function used by A*. In breadth-first heuristic search, no
nodeisinserted into the Open list if its f-cost is greater than an upper bound on the cost of an optimal solution, since
such nodes cannot be on an optimal path. We discuss how to obtain an upper bound | ater.

This simple search algorithm, which combines breadth-first search with pruning using upper and lower bounds,
is breadth-first branch-and-bound search (abbreviated BFBnB). This search strategy has been rarely used in practice
because the number of nodes it expandsisat |east as great, and usually greater, than the number of nodes expanded by
the best-first search algorithm A*. Given a perfect upper bound, BFBnB expands the same nodes as A*, disregarding
ties. (For adiscussion of tie-breaking, see Section 4.2.) If the upper bound is not perfect, BFBnB expands more nodes
than A*. Therefore, if al expanded nodes are stored in memory, breadth-first branch-and-bound search uses as much
or more memory than A*, and has no advantage.

However we propose a breadth-first branch-and-bound algorithm that uses the same divide-and-conquer approach
to memory reduction reviewed in the previous section. Its memory requirements depend on the number of nodes
needed to store the search frontier and perform duplicate detection, and not the total number of nodes expanded. As
we will show, a breadth-first branch-and-bound search algorithm can have a smaller search frontier than a best-first
search algorithm like A*, giving it an advantage in terms of memory efficiency.
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Fig. 1. Comparison of best-first and breadth-first search frontiers. The outer ellipse encloses all nodes with f-cost less than or equal to an (optimal)
upper bound.

3.1. Relative size of breadth-first and best-first frontiers

Fig. 1 illustrates, in an intuitive way, how breadth-first branch-and-bound search could result in a smaller search
frontier. It shows that best-first node expansion “stretches out" the search frontier, whereas breadth-first search does
not, and uses bounds to limit its width. Even if breadth-first branch-and-bound search expands more nodes than best-
first search, its smaller search frontier could result in more memory-efficient search and improved scalability. We do
not claim this always happens. But results reported in Section 5 provide evidence that it often happens.

The intuition conveyed by this picture can be expressed in a somewhat more formal argument, although not a
proof. Just as each layer of a breadth-first search graph is associated with a different g-cost, we can imagine that a
best-first search graph is divided into layers, with each layer corresponding to a different f-cost. Note that the size of
any layer isalower bound on the size of the frontier. We can compare the average layer size of breadth-first heuristic
search with that of best-first heuristic search. The average layer size is defined as the total number of nodes expanded
divided by the number of layers in the search graph. Given an optimal upper bound, the number of nodes expanded
by BFBnB and A* is the same, disregarding ties. Therefore, the average layer size is inversely proportional to the
number of layers. In other words, the more layers, the smaller the layers, on average. For BFBnB, the number of
layers (or equivalently, the depth of the search) is f* + 1, where f* is the length of the shortest solution path. For
A* (using a consistent heuristic function), the number of layers (or equivalently, the number of distinct f-costs) is
f*—h(start) + 1, where h(start) isthe heuristic estimate of the start node. Thus, the average layer size of breadth-first
heuristic search is always less than for best-first search. For example, if h(start) = % f*, then alayer of breadth-first
heuristic search is, on average, haf the size of a layer of best-first search. As the heuristic function becomes more
accurate, the value of A (start) increases, and this increases the relative size of an average best-first layer compared to
an average breadth-first layer. For example, suppose the value of i (start) is 90% of f*. Then alayer of breadth-first
heuristic search is ten times smaller than alayer of best-first search, on average.

Because this reasoning considers the average size of alayer, it does not prove that the peak memory requirements
of breadth-first heuristic search are less than those of a best-first strategy. The layers of a search graph are of different
sizes, and peak memory requirements depend on the size of the largest layer (or largest adjacent layers), and not on
the average layer size. Nevertheless, it gives us reason to believe that the size of a breadth-first layer/frontier can often
be smaller than the size of a best-first layer/frontier.

3.2. Frontier breadth-first branch-and-bound search

Frontier search can be combined with other graph-search agorithms besides A*. It has previously been combined
with Dijkstra’s single-source shortest-path algorithm [15] and with (uninformed) breadth-first search [16]. We now
discuss how to combine frontier search with BFBnB.

In one very important way, frontier search can be more memory-efficient in combination with BFBnB than in
combination with A*. Given an upper bound on the cost of an optimal solution, any node with an f-cost greater than
this bound cannot be part of an optimal path and will never be expanded. We already pointed out that pruning these
nodes from the Open list can save alot of memory, and this can be done in both A* and sparse-memory A*. But for
reasons given in Section 2.2.1, frontier-A* cannot prune nodes from the Open list without allowing duplicate nodes
to be generated. When frontier search is combined with BFBnB, however, and the search graph has uniform edge
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costs, then using an upper bound to prune the Open list does not affect duplicate detection. (This is because BFBnB
generates nodes in order of g-cost, and after a node is generated, a better path to it cannot be found.) Because using
bounds to prune the Open list can significantly reduce memory use, thisis an important advantage of frontier-BFBnB
over frontier-A*.

Use of breadth-first search can improve efficiency in other ways. Instead of storing the g-cost of each node, a
single g-cost is stored for each layer of the search graph, since every node in the same layer has the same g-cost.
This simplifies the node data structure. Because all nodes in the same layer have the same g-cost, the Open list does
not need to be sorted, and this allows a simpler data structure for both the node and the Open list. A first-in-first-
out queue, implemented as a circular buffer, can be used, instead of a priority queue, which is commonly used to
implement the Open list of A*. Use of acircular buffer not only saves memory, it makes dynamic memory allocation
easier. In addition, breadth-first search usually has better cache performance than best-first search, since expanding
nodes from the front of a first-in-first-out queue and appending newly-generated nodes to the end usualy leads to
better memory-access locality than selecting nodes for expansion from a repeatedly-sorted Open list.

3.3. Sparse-memory breadth-first branch-and-bound search

Combining sparse-memory graph search with breadth-first branch-and-bound search is aso straightforward. As
already mentioned, an advantage of sparse-memory A* over frontier-A* is that the former can use an upper bound
to prune the Open list, and the latter cannot. But since frontier-BFBnB can use an upper bound to prune the Open
list, sparse-memory BFBNB does not have this advantage over frontier-BFBnB. For high-branching factor problems,
however, where storing a predecessor counter requires less memory than storing used-operator bits, or in directed
graphs, where frontier search generates dummy nodes, sparse-memory BFBnB may still have an advantage over
frontier-BFBNB.

3.4. Layered duplicate detection

Although breadth-first branch-and-bound search can be combined with frontier search or sparse-memory graph
search, an important advantage of the breadth-first approach is that it also allows a much simpler method of duplicate
detection which we call layered duplicate detection. Because it is simpler, this method of duplicate detection can be
used in solving search problems for which frontier search and sparse-memory graph search may be too complex to
implement.

A breadth-first search graph dividesinto layers, one for each depth, and all nodesin one layer are expanded before
considering nodes in the next layer. In fact, the Open and Closed lists of a breadth-first search agorithm can be
considered to have alayered structure, where Open, denotes the set of open nodesin layer ¢ and Closed, denotesthe
set of closed nodes in layer ¢. As aresult, we sometimes refer to the Open or Closed list of a particular layer, as if
each layer hasits own Open and Closed lists. At any time, all open nodes arein the current layer or its successor layer,
whereas closed nodes can be in the current layer or any previous layer.

Each time a breadth-first search algorithm expands a node in the current layer, it checks whether each successor
node is a duplicate of a node that is in the Open list of the next layer, or whether it is a duplicate of a node in the
Open or Closed list of the current layer. In addition, it checks whether it is a duplicate of anode that isin the Closed
list of one or more previous layers. This raises the following question: how many previous layers must be retained in
memory and checked for duplicates to prevent regeneration of already-closed nodes? The answer determines when a
closed layer of the search graph can be removed from memory, and depends on the structure of the graph.

Definition 1. The locality of a breadth-first search graph is defined as

max *n) — g*(n), 0},
n,n’eN st. nEpred(n’){g () & ) }

where N isthe set of nodes, ¢g*(n) isthe length of a shortest path from the start node to node n (or equivalently, it is
the layer in which node r first appears), and pred(n) is the set of predecessors of 7.

The locality of agraph is a non-negative integer that determines how many closed layers of a breadth-first search
graph need to be stored in order to completely prevent duplicate nodes. Note that g*(n) can never be less than g*(n')
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by more than one. But in general, there is no a priori limit on how much greater g*(n) can be than g*(n’). In other
words, the shortest path to anode » may be arbitrarily longer than the shortest path to its successor node n’.

Theorem 1. The number of previous layers of a breadth-first search graph that need to be retained in memory to
prevent node regeneration is equal to the locality of the search graph.

Proof. First assume that k, the number of previous layers saved in memory, is less than the locality of the graph. To
see how this allows regeneration of a node, consider nodes n and n’ such that g*(n) — g*(n’) > k. When node n is
expanded, its successor n’ is either in the previous k layers or not. If it is not, it is regenerated. If it is, it has been
previously regenerated since it was first generated more than & layers before. In either case, there is a duplicate node.

Now assume the number of stored previous layers of a breadth-first search graph is equal to or greater than the
locality of the graph. We prove by induction that this prevents node regeneration. The base step is obvious since for
the first k layers of the graph, all previous layers are stored and regeneration of a duplicate node is impossible. For
the inductive step, we assume that no duplicates are generated for the first m layers. When layer m + 1 is generated,
no previously deleted node can be regenerated since the locality of the graph is less than or equal to the number of
previous layers stored in memory. 0O

In general, it is not easy to determine the locality of a graph. But in the special case of undirected graphs, the
locality is obviously equal to one and we have the following important result.

Corallary 1. In undirected graphs, use of the immediate previous layer to check for duplicates is sufficient to prevent
regeneration of closed nodes.

Proof. This follows from the fact that the locality of any undirected graph is one. In undirected graphs, the set of
predecessors of a node coincides with the set of successors. Therefore, the optimal g-cost of a predecessor is at most
one greater than the optimal g-cost of asuccessor. O

In graphswith alocality of one, such as undirected graphs, the number of layers that a breadth-first algorithm must
keep in memory for the purpose of duplicate detection is three; the previous layer, the currently-expanding layer, and
the next layer. In general, the number of layers that need to be retained for duplicate detection is equal to the locality
of the graph plus two. (To alow divide-and-conquer solution reconstruction, an additional layer of relay nodes may
also be retained in memory.)

Frontier search uses used-operator bits to prevent regeneration of closed nodes. It is easy to see that use of used-
operator bits (without dummy nodes) has the same effect as storing one previous layer of the breadth-first search graph,
since blocking a node from regenerating a predecessor has the same effect as storing the previous layer and checking
for duplicates. But in graphs with locality greater than one, used-operator bits alone are not sufficient for duplicate
detection. In this case, breadth-first search provides an aternative method of duplicate detection that is simpler than
creating dummy nodes: store more than one previous layer of the search graph.

We conjecture that for many directed graphs, it is sufficient to store one previous layer to prevent regeneration of
most, if not al, closed nodes. Even if the number of stored layersis less than the locality of the graph, an important
result is that in the worst case, the number of times a hode can be regenerated is at most linear in the depth of the
search. Thisisin sharp contrast to the potentialy exponential number of node regenerations for linear-space search
algorithms that rely on depth-first search.

Theorem 2. In breadth-first heuristic search, the worst-case number of times a node n can be regenerated is bounded
by

A )
number of saved layers |’

Proof. Let A > 2 be the total number of layers saved by the algorithm. Obviously, no duplicate nodes can exist in
these A layers, because the agorithm always checks for duplicates in al saved layers before inserting any newly-
generated node into the Open list for the next layer. Therefore, the earliest time for a node n to be regenerated is
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g*(n) + A and the earliest time for the same node to be regenerated twice is g*(n) + 24, and so on. Since the
total number of layers is bounded by the length of the shortest solution path (f*), the number of times anode n is
regenerated cannot exceed the bound stated in the theorem. O

Use of boundsto prune the search graph further reduces the chance of regenerating aready-closed nodes. Because
nodes are expanded in breadth-first order, it is impossible to improve on the g-cost of a node after it is generated. It
follows that any node with an f-cost equal to the upper bound will not be regenerated, since it will have a greater
g-cost in a subsequent layer, and thus an f-cost greater than the upper bound, causing it to be pruned. From this and
the fact that the breadth-first algorithm stores one or more previous layers of the search graph, we have the following
optimization that can further improve space efficiency.

Theorem 3. In breadth-first heuristic search, any node in the kth previous layer whose f-cost is greater than or equal
to the upper bound minus & cannot be regenerated and thus can be removed from memory.

If only one previous layer of the search graph is stored, this means that any node in the immediate previous layer
whose f-cost is greater than or equal to the upper bound minus one can be removed from memory. (This optimization
is not included in the pseudocode of Fig. 2, but isincluded in our implementation.)

Note that an upper bound may or may not be associated with an actual solution. Theorem 3 does not assume it is.
But if a solution has been found with the same cost as the upper bound, breadth-first heuristic search can prune the
Closed list even more aggressively than Theorem 3 allows by removing nodes with an f-cost greater than or equal
to the upper bound minus (k + 1) in the kth previous layer. This follows because the search algorithm only needs to
find a solution if the currently available solution is not already optimal. By similar reasoning, BFBnB can prune the
Open list more aggressively by not inserting any node with an f-cost greater than or equal to an upper bound, when
the upper bound is the cost of a solution that has already been found.

An interesting question is whether layered duplicate detection can also be used in best-first search. As suggested
in Section 3.1, we can consider a best-first search graph to be divided into layers, one for each f-cost. However,
use of layered duplicate detection in best-first search seems impractical because best-first search makesiit difficult to
bound the number of previouslayers, or the number of successor layers, that need to be retained in memory to perform
duplicate detection. It is difficult to bound the number of previous layers becauseit is difficult to determine thelocality
of a best-first search graph (i.e., the maximum difference between the f-cost of a node when it is expanded and the
f-cost of any of its successor nodes that have been previously expanded), at |east without making special assumptions
about the heuristic function. It is difficult to bound the number of successor layers because, in general, there is no
apriori limit on how much greater the f-cost of a node can be than the f-cost of its predecessor. There may be
some specia cases in which layered duplicate detection could be useful in best-first search. But in general, it seems
impractical.

3.5. Breadth-first branch-and-bound search with layered duplicate detection

Fig. 2 gives the pseudocode of a breadth-first branch-and-bound search algorithm that uses layered duplicate de-
tection and divide-and-conquer solution reconstruction. The main algorithm, BFBnB, differsfrom A* in thefollowing
ways, the Open and Closed lists are indexed by layers, previous layers are del eted to recover memory, and the solution
is reconstructed by the divide-and-conquer method once agoal node is generated. (In breadth-first search, one can be
sure a solution is optimal as soon as a goal node is generated, without waiting for the goal node to be selected from
the Open list for expansion.)

The function ExpandNode works in the usua way, with two differences. First, it uses an upper bound U to prune
nodes that cannot be on an optimal path. (Note that for subproblems solved during divide-and-conquer solution re-
construction, the upper bound is optimal since the optimal cost of the overall solution is determined before beginning
solution reconstruction.) Second, it sets the ancestor pointer in each node to an intermediate node along an optimal
path, called arelay node, in order to allow divide-and-conguer solution reconstruction. For simplicity, the pseudocode
stores al relay nodes in a single intermediate layer of the breadth-first search graph (called arelay layer), which is
approximately in the middle of the search graph. Only nodes that come after the relay layer have a pointer to arelay
node. Nodes that come before have a pointer to the start node.
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Function ExpandNode (Node n, start, goal; Integer ¢, relay, U)
1 for each n’ e Successors(n) do

2 if g(n) +1+h(’) > U continue  /* prune sub-optimal node */

3 if " € Closed,_ U Closed, U Open, U Open, ; continue  /* duplicate */
4 gn') < gm) +1

5 if £ <relay then

6 ancestor (n') < start

7 elseif £ =relay then

8 ancestor (n’) < n

9 dse  [*e>relay*/

10 ancestor (n’) < ancestor (n)

11  if n’ isgoal then return »’

12 Open(+l <~ Open(+l U {n/}

13 return nil

Algorithm BFBnB (Node start, goal; Integer U)  /* U = upper bound */
14 g(start) < 0, ancestor (start) < nil

15 Openg <« {start}, Open; < @, Closedg < ¢

16 ¢ < 0/* ¢ = index of layer */

17 relay < |[U/2] I* relay = index of relay layer */

18 while Open, # @ or Openy 1 # ¥ do

19  while Open, # ¥ do

20 n < argminy{h(n) | n € Open,}  /* (optional) tie-breaking rule */
21 Open, < Openy \ {n}, Closed; < Closed, U {n}

22 sol < ExpandNode (n, start, goal, ¢, relay, U)

23 if sol # nil then  /* solution reconstruction */
24 middle < ancestor (sol)

25 if g(middle) =21then  /* recursion ends*/

26 o < (start, middle)

27 else

28 o < BFBnB(start, middle, g(middie))

29 if g(sol) — g(middle) =1then  /* recursion ends*/
30 1 < (middle, sol)

31 else

32 11 < BFBnB(middle, sol, g(sol) — g(middle))
33 return Concatenate (g, 71)

34 ifl<e<relayor ¢ >relay+ 1then

35 for each n € Closed;,_1 do  /* delete previous layer */
36 Closed;_1 < Closed;_1 \ {n}

37 deleten

38 £<«¢+4+1 /*moveonto nextlayer*/

39 Openy ;< ¥, Closedy < @

40 return ¢

Fig. 2. Pseudocode for breadth-first branch-and-bound search with layered duplicate detection and divide-and-conquer solution reconstruction. For
simplicity, this pseudocode does not include several optimizations described in the text.

The divide-and-conquer method can be implemented in a more sophisticated and efficient way than presented in
the pseudocode. An important observation about breadth-first branch-and-bound search is that the middle layers of
the search graph are typically the largest, and often orders of magnitude larger than the other layers. (For an example,
seeFig. 3.) Thereason for thisisthat layers close to the start node are small due to reachability constraints, and layers
close to the goal node are small due to tightness of the bounds. Therefore, storing alayer of relay nodesin the middle
of the search graph will cause the search algorithm to use more memory than necessary. We have found that it is more
memory-efficient to save arelay layer at the 3/4 point in the graph. This reduces the peak memory requirements of
the algorithm, and in practice, increases the time overhead of solution reconstruction by an insignificant amount.
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The time efficiency of the algorithm can be improved by not using the divide-and-conquer method when there
is enough memory to solve a problem, or one of the recursive subproblems. If al layers of the search graph fit in
memory, the traditional traceback method can be used to recover the solution path. After one level of divide-and-
conguer recursion, for example, there is often enough memory to solve the resulting subproblems without deleting
any layers, and without needing to continue the divide-and-conquer recursion. In an efficient implementation of the
algorithm, a lazy approach to deleting previous layers of the search graph is adopted, in which previous layers are
deleted only when memory is close to full.

In animplementation of BFBNB that uses layered duplicate detection, we can also improve the efficiency of divide-
and-conguer solution reconstruction by taking advantage of the fact that the deepest three layers of the breadth-first
search graph are guaranteed to be retained in memory. Thus, in each level of divide-and-conquer recursion, instead of
solving the subproblem that corresponds to finding an optimal path from the intermediate node to the goal node, we
only need to find an optimal path from the intermediate node to the grandparent of the goal node, and the complete
optimal path can be obtained by appending the parent of the goal node and the goal nodeitself to the end of the solution
path for this subproblem. Thisimprovement isincorporated in our implementation, but not in the pseudocodein Fig. 2.

4. Breadth-first iterative-degpening A*

In breadth-first branch-and-bound search, an upper bound on the cost of an optimal solution is used to prune the
search space. The quality of the upper bound has a significant effect on the efficiency of the algorithm. The better the
upper bound, the fewer nodes are expanded and stored. In fact, given an optimal upper bound, the algorithm does not
expand any more nodes than A*, disregarding ties.

An upper bound can be obtained by finding an approximate solution to the search problem. Many different search
methods can be used to find approximate solutions quickly, including weighted A* [23] and beam search [28]. For
search problems with many close-to-optimal solutions, a good upper bound can often be found very quickly. For
search problems in which solutions are sparse, a close-to-optimal solution and corresponding upper bound may not
be easy to find.

Instead of computing an upper bound using an approximate search method, it is possible to use an iterative-
deepening strategy that does not expand nodes with an f-cost greater than a hypothetical upper bound, and gradually
increases the hypothetical upper bound until an optimal solution is found. This is the strategy used in depth-first
iterative-deepening A* (DFIDA*) [13]. We can also use it to create a breadth-first iterative-deepening A* (BFIDA*)
algorithm. The algorithm begins by performing breadth-first branch-and-bound search using the f-cost of the start
node as an upper bound. If no solution is found, the upper bound is increased by one (or else set to the least f-cost
of any unexpanded node from the previous iteration) and BFBnB is repeated. This continues until a solution isfound,
which is guaranteed to be optimal. Both DFIDA* and BFIDA* use an identical iterative-deepening strategy. The only
difference is that DFIDA* uses depth-first branch-and-bound search (DFBnB), whereas BFIDA* uses a memory-
efficient implementation of BFBnB.

The relative performance of DFIDA* and BFIDA* depends on the structure of the search space. In a search tree,
or in asearch space that can be closely approximated by atree, DFIDA* is more effective because duplicate detection
is not critical and node-generation overhead is less in DFIDA* than in BFIDA*. But in a search graph with many
duplicate paths, BFIDA* can be more effective.

Whether BFIDA* ismore effective than BFBnB depends on whether a close-to-optimal solution and corresponding
tight upper bound can be found quickly for use by BFBnB. If so, BFBnB may be faster than BFIDA* because BFIDA*
performs multiple iterations of BFBnB and this takes extra time. But when a close-to-optimal solution is not easy to
compute, BFIDA* can be more effective than BFBnB because it avoids generating and storing many nodes that would
be considered by BFBnB if it did not have atight upper bound. In this respect, there is a symmetry between breadth-
first and depth-first search, since the relative effectiveness of DFBnB and DFIDA* is problem-dependent in a similar

way.
4.1. Asymptotic optimality

Korf [13] proves that DFIDA* expands the same number of nodes, asymptotically, as A*, assuming the search
space is a tree and the number of nodes expanded increases exponentially in each iteration of the algorithm. Given
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that DFIDA* expands the same number of nodes, asymptotically, as A*, it follows that DFIDA* is asymptatically
optimal with respect to the number of node expansions, since A* is known to be optimal in terms of the number of
node expansions, disregarding ties, under reasonable assumptions [3].

We now show that BFIDA* expands the same number of nodes, asymptotically, as A*, under the same assumptions
—but in graphs, not just trees. From this, it follows that BFIDA* is asymptotically optimal with respect to the number
of node expansions in graphs. We first prove this for undirected graphs and then for directed graphs. It is possible
for us to prove this for graphs and not just trees because BFIDA* eliminates al duplicates in undirected graphs,
and bounds the number of duplicates in directed graphs. Like Korf’s result for DFIDA*, our theorems rely on the
assumption that the number of nodes expanded increases exponentially in each iteration of the algorithm. Thisis a
stronger assumption in our case because we consider graph search, and assume the number of distinct nodes expanded
increases exponentially each iteration. But the result is also stronger because it compares our iterative-deepening
algorithm to A* graph search, and not just A* tree search.

Theorem 4. BFIDA* is asymptotically optimal with respect to the number of node expansions in undirected graphs,
if b' new nodes are expanded in the ith iteration, where b is a constant greater than one.

Proof. Let d be the depth of the shallowest goal and let N be the number of nodes expanded by A*. Since b new
nodes are expanded in the ith iteration, the total number of node expansionsin the dth (last) iteration is

T4b4+b2 4+ = 1)/ -D=p'A-n)™t (! >1).

Since BFIDA* only expands nodes whose f-cost is less than or equal to d (the optimal upper bound) in the last
iteration and never regenerates (or reexpands) a node in the same iteration for undirected graphs, it follows that the
number of nodes expanded by BFIDA* in the last iteration is N, which is the same as the number of nodes expanded
by A*, disregarding ties. Thus, we have b?(1— 1/b)~1 = N.

The total number of nodes expanded by BFIDA* is

d
D Atb+ b =b"+ 20"+ 3P4 db
=1
' =b'(1+267 1+ 3072+ +dbt )

<b(1+207 4372+ bt )

=bl(1-1/b)?
=N1-1/b~t ('1-1/b)"t=N)
=O(N).

According to this analysis, the time complexity of BFIDA* is determined by the last iteration. Thus asymptatically
speaking, BFIDA* expands as many nodes as A*. Since A* is optimal with respect to the number of node expan-
sions[3], BFIDA* must be asymptotically optimal in the samerespect. O

In directed graphs, we cannot guarantee (in general) that all duplicates will be eliminated, unless all generated
nodes are stored in memory (since the graph may not have any locality). But using layered duplicate detection, we can
bound the number of duplicates by storing enough layersthat the ratio between f* and the number of stored layersisa
constant. Thislets us prove that BFIDA* is also asymptotically optimal with respect to the number of nodes expanded
in directed graphs.

Theorem 5. BFIDA* is asymptotically optimal with respect to the number of node expansions in directed graphs, if
(1) the depth of the shallowest goal is bounded by the number of stored layers times a constant factor and (2) ' new
nodes are expanded in the ith iteration, where b is a constant greater than one.

Proof. If the depth of the shallowest goal is bounded by the number of stored layers times a constant factor, then
according to Theorem 2, the maximum number of times a node can be regenerated (or reexpanded) is bounded by the
same constant factor. Similarly, the number of nodes expanded by BFIDA* in the last iteration is also bounded by the
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Fig. 3. Size of layer asfunction of search depth, in search graph generated by frontier-BFBnB for Korf’s most difficult 15-puzzle instance (No. 88).

number of nodes expanded by A* times the same constant factor. In other words, BFIDA* expands, asymptoticaly, as
many nodes as A* in the last iteration. Since the last iteration determines the time complexity of BFIDA* (see proof
of Theorem 4), and A* is optimal with respect to the number of node expansions, Theorem 5 follows. O

4.2. Tiebreaking

The optimality of A* with respect to the number of node expansions, and the asymptotic optimality of DFIDA*
and BFIDA*, hold when the effect of tie breaking is not considered. One algorithm may expand more or fewer nodes
than another, depending on how it breaksties.

In graphs with unit edge costs, tie breaking is very important because there are typically many nodes with the same
f-cost asthe least-cost goal hode. Because the search can terminate as soon as an optimal solution is found, the order
in which tie nodes are considered can have a significant effect on both running time and memory use. It iswell known
that A* performswell using atie-breaking rule that expands nodes with the same f-cost in order of least 4-cost, since
such nodes are typically closer to the goal. Similarly, DFIDA* performs well using node ordering [24], a strategy in
which a depth-first traversal branches on least-cost successor nodes first, and, when successor nodes have the same
f-cost, expands nodes in order of least #-cost. Node ordering can significantly reduce the number of nodes visited in
the last iteration of DFIDA*, which isimportant since the last iteration dominates the running time of the algorithm.

Unfortunately, BFIDA* has limited ability to use atie-breaking strategy to improve performance. Commitment to
breadth-first traversal means that it must expand all nodes with an f-cost less than or equal to the hypothetical upper
bound, in every layer of the breadth-first search graph until the layer that immediately precedes the layer containing
the least-cost goal node. Only in this layer can BFIDA* |leverage some tie-breaking benefit by node ordering, since
breadth-first search can terminate as soon as a goal node is generated. But since layers that are close to the goal tend
to be small due to the strength of the heuristic (see Fig. 3), thisform of tie breaking has very limited benefit. In fact,
BFIDA* suffers from almost worst-case tie-breaking performance, since it expands aimost all nodes with an optimal
f-cost. Even random tie-breaking in best-first search can perform much better than worst-case tie-breaking.

Although BFBNB can also suffer from worst-case tie breaking, it does not necessarily do so. When BFBnB uses an
upper bound that corresponds to an actual solution found by an approximate search algorithm, and if the cost of the
solution path found by the approximate search a gorithm happensto be optimal, then BFBnB only expands nodeswith
an f-cost that is strictly lessthan the optimal solution cost. In this case, BFBnB achieves perfect tie-breaking and does
not expand any node with an optimal f-cost. But if the upper bound corresponds to a sub-optimal solution, or if itis
a hypothetical upper bound generated by iterative deepening, then BFBnB has worst-case tie-breaking performance.

5. Computational results

We now present test results that show the advantages of breadth-first heuristic search. The test results are for the
Fifteen Puzzle, the 4-pegs Towers of Hanoi problem, and STRIPS planning in several different domains. For each
problem, we begin by discussing relevant implementation details, and then present computational results.
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5.1. Fifteen Puzzle

The Fifteen Puzzle is a standard benchmark for evaluating search algorithms, and was used by Korf to evaluate
the performance of DFIDA* [13]. We use it to compare the performance of BFIDA* to the best-first alternatives of
frontier-A* and sparse-memory A*.

Implementation  For the Fifteen Puzzle, our implementation of BFIDA* uses frontier-BFBNB, as described in Sec-
tion 3.2. For this problem (and for other problems with an undirected search graph and low branching factor), frontier
search is easy to implement and provides the most memory-efficient implementation of BFBnB. Instead of storing
the previous layer of nodes in memory in order to check for duplicates, as in layered duplicate detection, frontier
search stores used-operator bits in each open node in order to block regeneration of nodes in the previous layer. This
saves space since anode can be removed from memory as soon asit is expanded. Unlike frontier-A*, frontier-BFBnB
can aso prune any node from the Open list that has an f-cost greater than an upper bound. In BFIDA*, the up-
per bound is created by iterative deepening. For divide-and-conquer solution reconstruction, our implementation of
frontier-BFBNB uses relay nodes and saves arelay layer at about the 3/4 depth of the search graph.

To ensure fair comparison, we used the same relay node technique in implementing frontier-A* and sparse-memory
A* asin frontier-BFBnB. In our implementation of sparse-memory A*, the Open list is pruned using an upper bound
that corresponds to an approximate solution found by weighted A*, with the heuristic weighted by 1.2.

Results We tested BFIDA* on the same 100 instances of the Fifteen Puzzle used as atest set by Korf [13]. We used
Manhattan distance as the heuristic. Table 1 shows results for the ten most difficult instances. BFIDA* solves all 100
instances using no more than 1.3 gigabytes of memory. Given 4 gigabytes of memory, neither frontier-A* nor sparse-
memory A* can solve more than 96 instances; the instances they cannot solve are numbers 17, 60, 82, and 88. For the
96 solvable instances, frontier-A* stores an average of 4.15 times more nodes than BFIDA*, and sparse-memory A*
stores an average of 2.74 times more nodes. But since a breadth-first approach allows a smaller node data structure,
the memory savings are actually greater. The memory used by frontier-A* and sparse-memory A* is6.2 and 4.1 times
greater, respectively, than that used by BFIDA*, averaged over these 96 solvable instances.

Based on the number of nodes that need to be expanded to solve these Fifteen Puzzle instances, A* would need 16
times more memory than BFIDA* just to store the Closed list, and it typically needs even more memory to store the
Open list. Of course, BFIDA* must reexpand some nodes due to iterative deepening and divide-and-conquer solution
reconstruction. But as can be seen from Table 1, this increase in the number of node expansions is dominated by the

Table 1
Performance of BFIDA* (using the Manhattan distance heuristic) on the 10 most difficult instances of Korf's
100 random instances of the Fifteen Puzzle [13]

# Len Stored Last iter Prev iters Sol Reconst
17 66 16,584,444 218,977,081 60,096,047 94,283
49 59 21,177,925 243,790,912 101,531,263 377,910
53 64 12,753,096 177,244,033 47,192,566 109,254
56 55 13,066,308 141,157,391 67,716,057 27,529
59 57 13,974,753 158,913,130 69,947,124 40,469
60 66 56,422,199 767,584,679 211,192,399 27,807
66 61 21,435,302 275,076,045 93,017,396 44,823
82 62 46,132,337 549,557,759 215,694,244 356,986
88 65 77,547,650 999,442,569 360,978,147 161,730
92 57 12,591,419 151,699,572 61,733,319 438,877

Columns show the instance number (#); solution length (Len); peak number of nodes stored (Stored); number of
node expansions in the last iteration (Last iter); total number of node expansionsin all previous iterations (Prev
iters); and number of node expansions during solution reconstruction (Sol Reconst).

1 A nodein frontier-A* or sparse-memory A* is about 50% larger than a node in breadth-first search because breadth-first search does not need
to store the g-cost for each node, and a circular buffer implementation of the Open list simplifies the node data structure by exploiting the fact that
once anode isinserted into the Open ligt, its priority never changes.
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number of nodes expanded by BFIDA* in its last iteration, which is the same as the number of nodes that would
be expanded by A* (if it expands all ties). The additional node expansions due to iterative deepening and solution
reconstruction range from only 27% to 48% of thistotal, in solving these Fifteen Puzzle instances.

Fig. 3 shows the size of each layer of the search graph in breadth-first heuristic search for Korf’s most difficult
instance of the Fifteen Puzzle. Note that the largest layers are in the middle of the search graph, and middle layers are
orders of magnitude larger than other layers, especialy layersnear the start or goal node. (The y-axisislogarithmically
scaled.) Thisillustrates why we use a layer at about the 3/4 depth of the search space as the relay layer, instead of
amiddle layer. Because arelay layer is not saved until well past the midpoint of the search, and the frontier is much
smaller at the 3/4 depth, storing arelay layer there has no effect on the peak memory requirements of the algorithm.
This is an advantage of breadth-first heuristic search. By contrast, in best-first search (and uninformed breadth-first
search), the size of the frontier continuesto increase with the depth of the search, and storing intermediate nodes (e.g.,
arelay layer) inevitably increases peak memory reguirements.

Effect of heuristic We have conjectured that the primary reason breadth-first heuristic search is more memory-
efficient than best-first heuristic search is that its frontier is smaller. The intuitive explanation we offered is that a
best-first frontier is more “stretched-out” toward the goal by the heuristic, as illustrated in Fig. 1. This conjecture
suggests that the advantage of breadth-first over best-first heuristic search could increase with a more informative
heuristic.

To test this, we compared the performance of breadth-first and best-first heuristic search in solving the Fifteen
Puzzle, using three increasingly informative heuristics. In addition to the Manhattan distance heuristic, we used the
linear-conflicts heuristic [8] and a disjoint pattern database heuristic [17].2 Because sparse-memory A* outperforms
frontier-A* in solving the Fifteen Puzzle, we used sparse-memory A* as the best-first search agorithm in our com-
parison.

Table 2 shows the number of nodes stored by sparse-memory A* when it prunes the Open list using an optimal
upper bound, compared to the number of nodes stored by BFIDA*, for each of the three heuristics.® Of the two
columns shown for sparse-memory A*, the column labeled Tie-breaking shows the number of nodes stored by sparse-
memory A* when the algorithm stops as soon as an optimal solution is found. (Note that our implementation of
sparse-memory A* employs the tie-breaking rule of “most recently generated”. This tie-breaking rule performs well

Table2

Comparison of the peak number of nodes stored by sparse-memory A* and BFIDA* using three different heuristics,
averaged over the 91 easiest instances of Korf’s 100 random instances of the Fifteen Puzzle. (These are the instances
that can be solved by sparse-memory A* using 4 GB of RAM, when all ties are expanded.)

Heuristic function Sparse-memory A* BFIDA*
Tie-breaking All ties

Manhattan distance 11,296,799 (6.0x) 17,473,487 (9.2x) 1,891,547

Linear conflicts 2,407,332 (5.7x) 4,052,643 (9.5%) 424,739

Disjoint database 31,602 (5.8x) 64,151 (11.9x) 5414

For sparse-memory A*, the number of nodes stored when the goal node is expanded for the first time (which usually
terminates the search) and when all nodes with f-cost less than or equal to the optimal solution length have been
expanded, are shown in the columns labeled Tie-breaking and All ties, respectively.

2 Inthe disjoint pattern database, one pattern includestiles 1, 4, 5, 8, 9, 12, 13, and the other pattern includestiles 2, 3, 6, 7, 10, 11, 14, 15. Both
ignore the blank.

3 It may seem surprising that the relative number of nodes stored by sparse-memory A* compared to BFIDA* is greater in Table 2 than reported
in an earlier paragraph, even though sparse-memory A* uses an optimal upper bound for the results reported in Table 2, and a possibly sub-optimal
upper bound computed by weighted A* for the previous results. The reason for thisis that the optimal upper bound is hypothetical, for comparison
to BFIDA*; therefore, sparse-memory A* can only prune open nodes with an f-cost strictly greater than this upper bound. Because the upper
bound computed by weighted A* corresponds to an actual solution, sparse-memory A* can prune any open node with an f-cost equal to or greater
than the upper bound. In practice, weighted A* often finds an optimal solution for the Fifteen Puzzle (although there is no guarantee that it is
optimal). When it does, sparse-memory A* enjoys perfect tie-breaking. For the results reported in Table 2, sparse-memory A* does not have this
advantage, even though its upper bound is optimal.
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due to low overhead.) The column labeled All ties shows the number of nodes stored when every node with an f-
cost less than or equal to the optimal upper bound is expanded. Also shown, in parentheses, is the factor by which
sparse-memory A* stores more nodes than BFIDA*, using the same heuristic.

Although the numbers under the column labeled Tie-breaking do not suggest that a more informative heuristic has
an effect on the relative size of the frontiers, this result is affected by the tie-breaking strategy of sparse-memory A*,
which reduces the number of nodes expanded by sparse-memory A* relative to the number of nodes expanded by
BFIDA*. Sparse-memory A* may expand many fewer nodes than BFIDA* due to better tie-breaking. The numbers
under the column labeled All ties are not affected by tie-breaking because when sparse-memory A* expands*“all ties’,
it expands the same nodes as BFIDA*. As a result, the difference in the number of stored nodes in the column All
ties reflects the relative size of the frontiers, independent of the effect of tie-breaking. The numbers under this column
do suggest that with a more informative heuristic, the size of the best-first frontier relative to the size of the breadth-
first frontier increases. Although the effect is minor and far from conclusive, it lends some additional support to our
conjecture that a search heuristic can affect not only the shape, but the relative size of the frontiers.

No matter which heuristic is used, the results clearly show that breadth-first heuristic search has a significant
advantage over best-first heuristic search. Nevertheless, BFIDA* is still not as effective a search algorithm as DFIDA*
in solving the Fifteen Puzzle. DFIDA* expands many more nodes than BFIDA*, of course, since it cannot eliminate
duplicates. (The number of nodes expanded by DFIDA* in solving the 100 random instances of the Fifteen Puzzle is
given by Korf [13].) Even though DFIDA* expands more nodes, it still runs much faster than BFIDA* in solving the
Fifteen Puzzle, due to lower node-generation overhead and the fact that the number of duplicate paths grows rather
slowly with the depth of the search, for this problem. For the other test problems we consider in this paper, and for
many other graph-search problems, DFIDA* |oses its advantage.

5.2. 4-peg Towers of Hanoi

The 4-peg Towers of Hanoi problem has been used as a benchmark in recent research on heuristic search [6,16,31].
The Towers of Hanoi problem consists of at least three pegs and a set of disks of different sizes. The task isto move
al disksto agoal peg, subject to the constraints that only the top disk on any peg can be moved at atime, and alarger
disk can never be placed on top of a smaller disk. For the well-known 3-peg problem, there is a ssmple deterministic
algorithm that generates a provably optimal solution for moving »n disks initially stacked on one peg to a goal peg
within 2"~ steps. For the 4-peg Towers of Hanoi problem [11], there is a deterministic algorithm that moves all disks
from an initial peg to a goa peg, and a conjecture that it finds the fewest number of moves [7,25]. However, the
conjecture remains unproven. Thus, systematic search is currently the only way to find a provably optimal solution,
or to verify the conjecture for a given number of disks.

The state-space graph of the (4-peg) Towers of Hanoi problem contains many small cycles, which cause the number
of paths from the start state to any other state in the graph to increase exponentially with the depth of the search.
Because a depth-first search algorithm, such as DFIDA*, does not detect multiple paths to a state, it will generate
many nodes representing the same state and perform very poorly. An efficient algorithm for this problem must prevent
duplicate nodes. Previously, the best heuristic-search algorithm for solving this problem was frontier-A* [6].

The state-of-the-art heuristic for the 4-peg Towers of Hanoi problem uses digjoint pattern databases in which all
disks are divided into two nonoverlapping groups and a pattern database is built for each group. Since each pattern
database only counts moves of disks within its own group, the number of moves stored in two separate pattern data-
bases can be added to get an admissible heuristic. For the Towers of Hanoi problem, the most accurate heuristic is
based on dividing disks into one large group that yields the largest pattern database that fitsin memory, and one small
group that contains the remaining disks [6].

Results For the 4-peg Towers of Hanoi problem, an exact upper bound can be found by the deterministic algorithm
that is conjectured (though not known) to be optimal [7,25]. Given this upper bound, there is no need to perform iter-
ative deepening, and we used frontier-BFBnB to solve the 4-peg Towers of Hanoi problem for 17, 18, and 19 disks,
assuming the standard start state of all disks stacked on an initial peg. To guide the search, we used a digjoint pattern
database heuristic that included a 16-disk pattern database that was reduced in size by afactor of 16 using a compres-
sion technique described in [6]. Table 3 compares the performance of frontier-A* and frontier-BFBnB. The results
clearly show that a breadth-first frontier is smaller than a best-first frontier. To the best of our knowledge, frontier-
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BFBNB isthe most memory-efficient algorithm for this problem and no other algorithm can solve the 19-disk problem
within 2 gigabytes of memory, using the same heuristic.

Frontier-BFBnB has another important advantage over frontier-A*. The digoint pattern database heuristic used
by both search algorithms is compressed using a lossy compression method that makes the heuristic inconsistent,
although it is admissible [6]. When the heuristic is not consistent, frontier-A* is not guaranteed to find an optimal
solution [19]. One of the reasons frontier-A* expands fewer nodes than frontier-BFBnB for this problem is that
frontier-A* sometimes expands a node when its g-value is sub-optimal, due to the inconsistent heuristic, and once
frontier search closes a node, it cannot reopen it. Because sub-optimal g-values are propagated through the search
space, some hodes on the frontier have higher f-values than they should, and the search algorithm stops before they
are expanded, which can lead to a sub-optimal solution. Unlike frontier-A*, frontier-BFBNB is guaranteed to find an
optimal solution when the heuristic is admissible but not consistent, asin this case.

Effect of heuristic  To further investigate the effect of a heuristic on the relative size of best-first and breadth-first
frontiers for the 4-peg Towers of Hanoi problem, we compared the performance of frontier-A* and frontier-BFBnB
using seven increasingly informative digoint pattern-database heuristics. All of the pattern-database heuristics are
uncompressed, and thus, consistent. Table 4 compares the peak humber of nodes stored by frontier-A* and frontier-
BFBNB. Our implementation of frontier-A* employsthe tie-breaking rule of “most recently generated”. Although the
effect of tie-breaking on the performance of frontier-A* is insignificant in this domain, we still rely on the column
labeled All ties when comparing the two algorithms, because it guarantees that both algorithms expand the same set
of nodes.

As before, the results clearly show that breadth-first heuristic search requires significantly less memory than best-
first search, using the same heuristic. In comparing different heuristics, Table 4 shows that the size of the best-first
frontier relative to the size of the breadth-first frontier does not increase monotonically with a more informative
heuristic. For example, it decreases from 3.6 times to 3.3 times when the disjoint pattern-database heuristic changes

Table3
Comparison of frontier-A* and frontier-BFBNB in solving the standard start state of the 4-peg Towers of Hanoi
problem with 17, 18, and 19 disks, using a digjoint pattern-database heuristic that includes a compressed 16-disk

pattern database
Disks Len Frontier-A* Frontier-BFBnB

Stored Exp Stored Exp
17 193 2,126,885 10,398,240 390,844 11,628,818
18 225 25,987,984 202,577,805 6,987,695 211,993,782
19 257 > 128,000,000 > 1,193,543,025 55,241,327 1,824,533,083

Columns show the number of disks (Disks); solution length (Len); peak number of nodes stored (Stored); and number
of node expansions (Exp). The > symbol indicates that frontier-A* ran out of memory before solving the problem.

Table4
Comparison of the number of nodes stored by frontier-A* and frontier-BFBNB in solving the standard start state of
the 4-peg Towers of Hanoi problem with 16 disks, using 7 different disjoint pattern-database heuristics

Heuristic Frontier-A* Frontier-BFBnB
Tie-breaking All ties

9-7 99,837,997 (2.3x) 105,343,542 (2.5%) 42,727,371
10-6 87,903,443 (2.9%) 91,878,927 (3.0x) 30,139,563
11-5 53,038,629 (2.8x) 56,690,926 (3.0x) 19,004,260
12-4 27,029,117 (3.3x) 29,713,012 (3.6x) 8,252,322
13-3 10,495,998 (3.0x) 11,485,231 (3.3x) 3,471,915
14-2 3,109,621 (3.0x) 3,205,198 (3.1x) 1,027,344
15-1 679,287 (5.0x) 729,739 (5.4x) 135,155

The factor by which frontier-A* stores more nodes than frontier-BFBnB using the same heuristic function is shown
in parentheses. For frontier-A*, the number of nodes stored when the goal node is expanded for the first time (which
usually terminates the search) and when all nodes with f-cost less than or equal to the optimal solution length have
been expanded, are shown in the columns labeled Tie-breaking and Al ties, respectively.
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from a 12-4 partition to a more informative 13-3 partition. Possibly, this is due to random variation in the state-space
graph of the 4-peg Towers of Hanoi problem, since only a single problem instance is solved for each heuristic. If we
focus on heuristics that differ significantly in terms of accuracy, we observe the expected trend. For example, if we
only consider the least informative heuristic (9-7 partition), the most informative heuristic (15-1 partition), and the
heuristic that lies in the middle (12-4 partition), we observe that a more informative heuristic increases the size of
the best-first frontier relative to the breadth-first frontier. This provides additional evidence that a more informative
heuristic gives breadth-first heuristic search a greater relative advantage over best-first search. But it also shows that
there is no guarantee thiswill happen. Even if it happens for a set of problem instances on average, it may not happen
for aparticular problem instance.

5.3. Domain-independent STRIPS planning

Over the past several years, the effectiveness of heuristic search for domain-independent STRIPS planning has be-
come widely-recognized. Both A* and DFIDA* are used to find optimal plans, guided by an admissible heuristic [10],
and weighted A* is used to find approximate plans for difficult planning problems, guided by an informative, though
usually non-admissible, heuristic [2]. Heuristic-search planners have performed very well in the biennial International
Planning Competition that is hosted at the Artificial Intelligence Planning and Scheduling Conference series[20]. The
problems used in the competition provide a good test set for comparing graph-search algorithms since they giverise
to avariety of search graphs with different kinds of structure, and memory is alimiting factor in solving many of the
problems.

We tested the performance of breadth-first heuristic search in solving problem instances from eight unit-cost plan-
ning domains used in previous competitions. One of the domains (gripper) isfrom the 1998 competition, three (blocks,
elevator, and logistics) are from the 2000 competition, and the other four (satellite, driverlog, depots, and freecell) are
from the 2002 competition. For a description of the planning domains, see [20].

Implementation  For domain-independent STRIPS planning, breadth-first heuristic search has an important advan-
tage over best-first heuristic search when divide-and-conquer solution reconstruction is used to reduce memory
requirements: it ismuch easier toimplement. Implementing frontier-A* or sparse-memory A* for domain-independent
STRIPS planning poses serious difficulties. First, implementing used-operator bits in a domain-independent way can
increase node size substantially, since every possible operator instantiation must be considered. In addition, when
STRIPS operators are only conditionally reversible, used-operator bits are difficult to implement because it isimpos-
sibleto determine reversibility in advance. (Recall that when frontier-A* expands anode, it sets a used-operator bit in
each successor node that prevents it from regenerating the just-expanded node, where the operator for which the bit is
set is the reverse of the operator that generated the node.) Finally, for STRIPS planning problems that correspond to
directed graphs, implementing dummy nodes (asin frontier-A*) or predecessor counting (asin sparse-memory A*) is
challenging because of the difficulty of identifying all predecessors of anode, especially since the number of potential
predecessors is exponential in the size of the Add list of an operator, and all operators must be considered.

By contrast, implementing breadth-first branch-and-bound search using layered duplicate detection is straightfor-
ward. With layered duplicated detection, thereisno need for used-operator bits, dummy nodes or predecessor counters.
The algorithm simply stores one or more previous layers and checks for duplicates. In the experiments reported here,
we stored a single previous layer to check for duplicates. Four of the eight domains (logistics, blocks, gripper, and
elevator) have undirected search graphs* for which a single previous layer is guaranteed to detect all duplicates. The
other four domains have directed search graphs for which graph locality is not easy to determine. We found empiri-
caly that storing a single previous layer is sufficient to eliminate almost all duplicates in the satellite, driverlog, and
depotsdomains. In the freecell domain, storing asingle previous layer eliminates most duplicates but till allows many
to be generated.

Given the difficulty of implementing frontier-A* or sparse-memory A* for domain-independent planning, we com-
pared breadth-first heuristic search to A* and DFIDA*. In this comparison, al of the search algorithms perform
regression planning, which involves searching backward from the goal to the start state. We used the HSPr planning

4 Whether the search graph is directed or undirected sometimes depends on whether forward or regression planning is performed. We assume
regression planning.
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system of Bonet and Geffner [1] as afoundation for implementing our algorithms. (We made some changesto improve
the performance of itsimplementation of A*.) Since we give timing results for these planning problems, we note that
the experiments were conducted on a Pentium IV 2.4 GHz processor with 2 gigabytes of RAM.

Results Table 5 compares the performance of A* to BFBnB, where BFBnB uses layered duplicate detection and an
upper bound computed by an approximate search algorithm called divide-and-conquer beam search [28]. The problem
instancesin Table 5 are the largest that A* can solve in each domain. Both algorithms use the max-pair heuristic [10].
The results show that BFBnB expands more nodes than A*, but uses significantly less memory.

For al of the planning problems except gripper-7, the divide-and-conquer beam search algorithm used to compute
an upper bound finds a solution that turns out to be optimal. Thisiswhy there are relatively more node expansions for
BFBNB, compared to A*, for gripper-7; its upper bound is not optimal. (For freecell-3, there are relatively more node
expansions despite an optimal upper bound because storing a single previous layer of the graph does not eliminate all
duplicates.) Note that the number of node expansions and the running time reported for BFBnB in the table includes
the node expansions and running time of the approximate search algorithm.

Table 6 compares the performance of Haslum's implementation of DFIDA* to BFIDA*. Haslum's implementation
uses atransposition tableto eliminate some duplicates, as described in his paper [10]. The probleminstancesin Table 6
are easier than those in Table 5 because DFIDA* cannot solve many instances that even A* can solve. The reason we

Table5
Comparison of A* and BFBnB with |ayered duplicate detection on STRIPS planning problems
Instance Len A* BFBnB

Stored Exp Secs Stored Exp Secs
logistics-6 25 364,758 254,072 5 115,141 301,173 5
blocks-14 38 735,905 252,161 13 79,649 258,098 12
gripper-7 47 10,092,451 10,088,369 149 3,417,064 20,908,118 333
satellite-6 20 3,269,703 2,423,288 178 1,663,286 2,644,616 185
elevator-11 37 3,893,277 3,884,960 181 982,838 3,972,828 188
driverlog-10 17 17,901,481 3,874,617 255 2,413,461 4,071,392 210
depots-7 21 21,026,728 7,761,605 372 5,266,323 8,084,389 326
freecell-3 18 5,992,428 2,693,167 212 3,015,483 5,997,287 425

Both algorithms use the max-pair heuristic function. Columns show optimal solution length (Len); peak number of nodes stored (Stored); number
of node expansions (Exp); and running time in CPU seconds (Secs).

Table 6
Comparison of DFIDA* (with transposition table) and BFIDA* in solving STRIPS planning problems
Instance Len DFIDA* BFIDA*

Stored Exp Secs Stored Exp Secs
logistics-4 20 2,289 45,194,644 622 1,730 16,077 1
logistics-5 27 - - - 37,548 504,712 6
blocks-12 34 5,015 180,305 50 6,354 34,687 2
blocks-14 38 94,011 51,577,732 19,901 224,058 1,324,320 44
gripper-2 17 1,380 6,368,202 121 741 10,375 <1
gripper-6 41 - - - 742,988 35,705,971 389
satellite-3 11 682 22,033 1 1,855 4,001 <1
satellite-4 17 - - - 70,298 303,608 8
driverlog-7 13 42,148 4,304,450 450 193,979 422,475 13
driverlog-10 17 - - - 4,960,572 16,849,713 620
depots-2 15 2,073 227,289 31 1,923 8,139 1
depots-3 27 - - - 4,841,706 21,233,622 504
freecell-2 14 68,415 42,500,257 34,674 162,215 545,716 35
freecell-3 18 - - - 3,015,483 10,154,249 720

Columns show optimal solution length (Len); peak number of nodes stored (Stored); number of node expansions (Exp); and running time in CPU
seconds (Secs). No results are shown for DFIDA* when it could not solve the problem after 12 hours of CPU time.
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compared A* to BFBNnB in Table 5, and DFIDA* to BFIDA* in Table 6, is that the former pair of algorithms do not
use iterative deepening and the latter do.

As Table 6 shows, DFIDA* performs much worse than BFIDA* due to excessive node regenerations. Because the
successor generation and heuristic evaluation functions for STRIPS planning are expensive to compute, node regen-
eration is particularly expensive for these search problems. The results clearly illustrate that for Planning Competition
problems, effective duplicate detection is essential for good performance. We mentioned before that saving one pre-
vious layer does not eliminate al duplicates in the freecell domain. Nevertheless, Table 6 shows that it eliminates
enough duplicates so that the problem can be solved efficiently; by contrast, DFIDA* with transposition tables is
unable to solve freecell-3 because too many duplicates are generated.

Effect of heuristic To help evaluate the effect of the heuristic on the relative size of breadth-first and best-first
frontiers in STRIPS planning, we implemented a max-triple heuristic. This is similar to the max-pair heuristic used
for the previous results except that it considers the interaction of three atomsinstead of two, which makes the heuristic
more informative [10]. Table 7 compares the peak number of nodes stored by A* and BFIDA* using the two different
heuristics. Theimplementation of A* employsatie-breaking rulethat favors nodeswith the least additive heuristic [2].
As before, we rely on the column labeled All ties in comparing the algorithms, since it removes the effect of tie-
breaking by guaranteeing that both algorithms expand the same set of nodes. Averaged over all problem instances, A*
stores 4.8 times more nodes than BFIDA* using the max-pair heuristic, and 6.4 times more nodes than BFIDA* using
the max-triple heuristic. This provides additional evidence that a more informative heuristic increasesthe relative size
of the best-first frontier compared to a breadth-first frontier. As the table shows, this effect is problem-dependent. For
some problem instances, the more informative heuristic makes little or no difference, or even slightly decreases the
advantage of breadth-first search relative to best-first search.

Table 8 compares the peak number of frontier (i.e., open) nodes stored by A* and BFIDA* using the same two
heuristics. By isolating the effect of the heuristic on the size of the frontiers, these results more unambiguously
support the conclusion that a more informative heuristic increases the relative size of a best-first frontier compared
to a breadth-first frontier. Interestingly, the peak size of a best-first frontier can sometimes increase with a more
informative heuristic, although the total number of node expansions is smaller. For the elevator-11 problem, Table 8
shows that the best-first frontier using the max-triple heuristic is bigger than the best-first frontier using the max-pair
heuristic, even though the former heuristic expands fewer nodes (as shown in Table 7).

Table7
Comparison of number of nodes stored by A* and BFIDA* on STRIPS planning problems using the max-pair and the max-triple heuristic functions
Instance Heuristic A* BFIDA*
Tie-breaking All ties
logistics-6 Max-Pair 364,758 (2.9x) 448,233 (3.5%) 126,484
Max-Triple 148,552 (4.0x) 207,011 (5.6%) 36,695
blocks-14 Max-Pair 735,905 (3.2x) 2,407,851 (20.6x) 228,020
Max-Triple 81,192 (3.3x) 249,499 (10.1x) 24,758
gripper-7 Max-Pair 10,092,451 (3.6x) 10,092,513 (3.6x) 2,792,791
Max-Triple 10,080,141 (3.6x) 10,085,793 (3.6%) 2,792,791
satellite-6 Max-Pair 3,269,703 (1.7x) 4,008,807 (2.1x) 1,953,396
Max-Triple 1,456,457 (1.8x) 2,152,917 (2.6x) 832,114
elevator-11 Max-Pair 3,893,277 (4.0x) 3,896,505 (4.0%) 977,554
Max-Triple 3,855,073 (3.9x%) 3,883,736 (4.0x) 977,554
driverlog-10 Max-Pair 17,901,481 (2.9%) 45,011,158 (7.3%) 6,161,424
Max-Triple 1,472,868 (2.9%) 4,160,620 (8.2x) 509,685
depots-7 Max-Pair 21,026,728 (2.0x) 39,961,845 (3.7%) 10,719,221
Max-Triple 828,537 (4.3x) 1,830,282 (9.6x) 190,896
freecell-3 Max-Pair 5,992,428 (2.0x) 11,121,762 (3.7%) 3,015,483
Max-Triple 463,697 (2.5x%) 1,411,058 (7.6x) 184,797

The factor by which A* stores more nodes than BFIDA* using the same heuristic function is shown in parentheses. For A*, the number of nodes
stored when the goal node is expanded for the first time (which usually terminates the search) and when all nodes with f-cost less than or equal to
the optimal solution length have been expanded, are shown in the columns |abeled Tie-breaking and All ties, respectively.
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Table 8
Comparison of peak number of frontier nodes stored by A* and BFIDA* on STRIPS planning problems using the max-pair and the max-triple
heuristic functions

Instance Heuristic A* frontier BFIDA*
Tie-breaking All ties frontier
logistics-6 Max-Pair 111,476 (1.8x) 121,478 (2.0x) 60,421
Max-Triple 65,489 (3.1x) 82,595 (4.0x) 20,878
blocks-14 Max-Pair 483,798 (2.8x) 1,602,887 (9.2%) 174,179
Max-Triple 53,504 (2.8x) 167,696 (8.9%) 18,828
gripper-7 Max-Pair 1,750,319 (1.0x) 1,750,319 (1.0x) 1,750,319
Max-Triple 1,750,319 (2.0x) 1,750,319 (2.0x) 1,750,319
satellite-6 Max-Pair 1,015,478 (1.1x) 1,038,757 (1.1x) 941,496
Max-Triple 633,730 (1.3x) 785,213 (1.6x) 502,811
elevator-11 Max-Pair 471,962 (1.0x) 471,962 (1.0x) 463,566
Max-Triple 526,720 (1.1x) 526,720 (1.1x) 463,566
driverlog-10 Max-Pair 14,059,434 (2.9%) 34,685,980 (7.1%) 4,854,223
Max-Triple 1,191,440 (2.8x) 3,322,892 (7.7x) 429,216
depots-7 Max-Pair 13,366,827 (1.9%) 24,328,038 (3.4x) 7,128,263
Max-Triple 607,928 (4.0x) 1,291,554 (8.6x) 150,619
freecell-3 Max-Pair 3,303,587 (1.7x) 5,259,939 (2.7x) 1,935,546
Max-Triple 344,689 (2.2x) 959,777 (6.2x) 155,157

The factor by which A* stores more frontier nodes than BFIDA* using the same heuristic function is shown in parentheses. For A*, the number of
frontier nodes stored when the goal node is expanded for the first time (which usually terminates the search) and when all nodes with f-cost less
than or equal to the optimal solution length have been expanded, are shown in the columns labeled Tie-breaking and Al ties, respectively.

Altogether, these results provide compelling evidence of the effect of search strategy and heuristic on frontier size,
and thus, on memory requirements. Frontier size may be influenced by other factors, especially by graph structure,
and it is difficult to make completely general statements about the efficiency of graph search when graphs can have
so many different kinds of structure. Nevertheless, our results show that breadth-first heuristic search can have a
significant advantage over best-first heuristic search.

6. Extensions

We briefly consider two important extensions of breadth-first heuristic search. The details of these extensions are
left for future work.

6.1. Non-uniform edge costs

The approach developed in this paper is restricted to search problems with uniform edge costs. Breadth-first search
iswell-suited for problemswith uniform edge costs because it ensuresthat thefirst timeanodeis generated, an optimal
path to it has been found. For problems with non-uniform edge costs, Dijkstra’s single-source shortest-path algorithm
can ensure that thefirst time anodeis expanded, an optimal path to it has been found. But Dijkstra's algorithm expands
nodes in order of least g-cost, instead of in breadth-first order. The breadth-first algorithms developed in this paper
can be generalized in two different ways to solve problems with non-uniform edge costs. One keeps the breadth-first
search strategy, and the other adopts the search strategy of Dijkstra’s algorithm. An advantage of keeping the breadth-
first strategy is that the same layered approach to duplicate detection can be used. A disadvantage is that the same
node will need to be reexpanded every time alower-cost path to it is found.

An alternative to breadth-first branch-and-bound search is a version of Dijkstra's algorithm in which nodes are
expanded in order of least g-cost, but an admissible heuristic is used to prune the search space. Such an algorithm
could be called Dijkstra’s (or uniform-cost) branch-and-bound search, and it could be combined with frontier search
or sparse-memory graph search. An advantage of this approach is that it makes it possible to guarantee that each node
is expanded at most once. A disadvantage is that it is not obvious how to divide the search graph into layers for the
purpose of layered duplicate detection. One possibility is to group al nodes with the same g-cost in the same layer.
Thiswill work well if there are not too many distinct edge costs in the graph, e.g., all edge costs are from a small set
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of integers. For graphs with many distinct edge costs, such as graphs with real-valued edge costs, this approach could
result in layersthat are too small. An aternativeisto group nodeswith similar g-costsin the same layer. For example,
alayer could contain all nodes whose g-costs are within a certain range. The details of this extension are beyond the
scope of this paper and will be addressed in future work. (For an example of a class of graph-search problems with
non-uniform edge costs for which a search strategy similar to breadth-first heuristic search is very effective, see[27].)

6.2. Memory limitations

The approach developed in this paper can significantly reduce the memory regquirements of search, while ensuring
duplicate detection. But its memory requirements are not bounded, and it is still possible to run out of memory if the
number of nodesin any layer becomes too large.

If the largest layer (or adjacent layers) in the breadth-first search graph does not fit in memory, one way to handle
thisfollowsfrom the recognition that breadth-first search isvery closely-related to beam search. Instead of considering
al nodes in a layer, a beam-search variant of breadth-first branch-and-bound search considers the most promising
nodesin alayer until memory isfull (or reaches a predetermined bound). At that point, the algorithm recovers memory
by pruning the least-promising nodes (i.e., the nodes with the highest f-cost) from the Open list. Then it continuesthe
search. Aside from pruning the | east-promising open nodes when memory isfull, thisalgorithm isidentical to BFBnB
with layered duplicate detection. The difference from traditional beam search is that divide-and-conquer solution
reconstruction is used to reduce memory requirements. This difference allows a beam search algorithm to use amuch
larger beam width in order to improve performance. It also allows an initial, sub-optimal solution to be improved
when the search algorithm recursively solves subproblems during divide-and-conguer solution reconstruction. Further
details of this agorithm and computational results are described in a separate paper [28]. It can be considered a
form of breadth-first heuristic search that finds approximate solutions. An implementation of this approximate search
agorithm was used to compute upper bounds for STRIPS planning problemsin the results reported in Section 5.3.

A drawback of beam search is that it is not guaranteed to find an optimal solution; in some cases, it may not find
any solution. This drawback may be overcome by alowing the beam search algorithm to backtrack to the points at
which it could not generate all nodes in a layer, and continue the search from there. This idea can be used to create a
complete beam search algorithm [30].

Another way to handle memory limitations is to use external memory such as disk storage. When a layer of the
search graph becomes too large to fit in internal memory, nodes can be stored on disk. There has been some recent
work on how to use disk storage efficiently in heuristic search. Zhou and Hansen [29] describe an approach called
structured duplicate detection and successfully combine it with BFIDA*. Korf [16] and Edelkamp et al. [5] describe
another approach called delayed duplicate detection.

7. Conclusion

Best-first search istraditionally considered more efficient than breadth-first search because it minimizesthe number
of node expansions. The contribution of this paper is to show that when a reduced-memory approach to graph search
is adopted that stores only (or primarily) the search frontier, and relies on a divide-and-conquer method of solution
reconstruction, a breadth-first approach has several advantages over best-first search.

The primary advantage isthat a breadth-first frontier can be smaller than a best-first frontier, requiring less memory
to prevent regeneration of closed nodes. This allows a more memory-efficient search that still guarantees duplicate
detection. But this is not the only advantage. In breadth-first search of a graph with uniform edge costs, the f-cost
of a node is guaranteed to be optimal as soon as the node is generated; in frontier-BFBNB search, this allows the
Open list to be pruned using an upper bound, and it means that frontier-BFBnB search only requires an admissible
heuristic, not a consistent heuristic, in order to find an optimal solution. This gives frontier-BFBnB an advantage over
frontier-A*. The breadth-first approach also allows a different strategy of duplicate detection which we call layered
duplicate detection. Although this method of duplicate detection may not be as memory-efficient as frontier search,
it is easier to implement and can be applied to problems for which frontier search is impractical. A drawback of
breadth-first heuristic search isthat it can result in worst-case tie-breaking. However, computational results show that
its advantages outweigh this disadvantage.
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The breadth-first heuristic search algorithms described in this paper include a memory-efficient implementation
of breadth-first branch-and-bound search and a breadth-first iterative-deepening A* algorithm that is based on it.
Computational results show that these algorithms outperform frontier-A* and sparse-memory A* in solving the Fifteen
Puzzle; they outperform frontier-A* and all other search algorithms in solving the 4-peg Towers of Hanoi problem;
and they outperform A* and DFIDA* in solving STRIPS planning problems.

The breadth-first heuristic search algorithms devel oped in this paper make the limiting assumption that all operators
have uniform cost. In future work, we will show how to relax this assumption and extend this approach to search
problems in which operators have non-uniform and possibly real-valued costs.
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