
The Factored Shortest Path Problem
and Its Applications in Robotics

Zhi Wang, Liron Cohen, Sven Koenig, T. K. Satish Kumar
University of Southern California, Los Angeles, California 90089, USA

{zhiwang,lironcoh,skoenig}@usc.edu, tkskwork@gmail.com

Abstract

Many real-world combinatorial problems exhibit structure
in the way in which their variables interact. Such structure
can be exploited in the form of “factors” for representa-
tional as well as computational benefits. Factored represen-
tations are extensively used in probabilistic reasoning, con-
straint satisfaction, planning, and decision theory. In this pa-
per, we formulate the factored shortest path problem (FSPP)
on a collection of constraints interpreted as factors of a high-
dimensional map. We show that the FSPP is not only a gener-
alization of the regular shortest path problem but also partic-
ularly relevant to robotics. We develop factored-space heuris-
tics for A* and prove that they are admissible and consistent.
We provide experimental results on both random and hand-
crafted instances as well as on an example robotics domain to
show that A* with factored-space heuristics outperforms A*
with the Manhattan Distance heuristic in many cases.

Introduction

Real-world combinatorial problems exhibit structure. Algo-
rithms for solving combinatorial problems that exploit the
specific nature of interactions between variables are com-
putationally much more efficient than generic algorithms.
Examples include polynomial-time convex programming
solvers (Nesterov and Nemirovskii 1994), the polynomial-
time algorithm for 2-SAT (Aspvall, Plass, and Tarjan 1979),
and the Kalman filter (Kalman 1960).

Even when the structure of how variables interact is not
apparent, one can still exploit which variables interact with
each other, without heeding to the exact nature of these in-
teractions. Typically, each variable interacts with a limited
set of other variables and maintains “locality.” A set of in-
teracting variables is referred to as a “factor.” This kind
of structure has been exploited in almost all areas of Ar-
tificial Intelligence (AI). Popular examples include Belief
Networks in probabilistic reasoning (Cooper 1990), Markov
Random Fields in computer vision (Li 1994), constraint net-
works in constraint reasoning (Dechter 2003), causal graphs
in domain-independent planning (Brafman and Domshlak
2006; 2008), and factored Markov Decision Processes in
learning and decision theory (Boutilier, Dean, and Hanks
1999; Guestrin, Koller, and Parr 2002).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, not all aspects of structure have been fully ex-
ploited in some fundamental combinatorial problems. In
particular, the factored form of the well-known shortest path
problem is understudied despite its common occurrence in
robotics and other domains.

In this paper, we therefore formulate the factored short-
est path problem (FSPP) on a collection of constraints inter-
preted as factors of a high-dimensional map. We show that
the FSPP is not only a generalization of the regular short-
est path problem but also particularly relevant to robotics. In
fact, it arises frequently in configuration space planning and
path planning in the presence of obstacles.

Current state-of-the-art methods for high-dimensional
path planning in robotics are primarily sampling-based
methods. These include rapidly-exploring random trees
(LaValle and Kuffner 2001), probabilistic roadmaps
(Kavraki et al. 1996), and more recent algorithms such as
those in (Persson and Sharf 2014). Despite their success,
sampling-based methods are only probabilistically com-
plete, i.e., are complete only when the number of samples
approaches infinity. Moreover, they do not produce the same
results in different runs when randomization is used, which
is undesirable in many application domains. Deterministic
complete search methods address both drawbacks but are
not computationally viable unless they are guided by strong
heuristics.

In this paper, we show that the FSPP can model many
high-dimensional path-planning problems. To solve it, we
develop factored-space heuristics for A* and prove that they
are admissible and consistent. We provide experimental re-
sults on both random and hand-crafted instances as well
as on an example robotics domain to show that A* with
factored-space heuristics outperforms A* with the Manhat-
tan Distance heuristic in many cases. Our heuristics are pre-
sented mostly as a strawman technique for the purpose of
gaining interest among AI and robotics researchers to study
the FSPP more closely.

The Factored Shortest Path Problem

In this section, we formalize the FSPP based on the standard
formalization of constraint satisfaction problems (CSPs).
We then comment on why it is imperative for us to compare
it with other combinatorial problems for which efficient al-
gorithms that exploit structure have been developed.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

527

X2

X1

X2

X1

s′12

t′12

(a)

X2

X3

X2

X1

s′23

t′23

(b)

t

s

X1

X3

X2

(c)

Figure 1: Illustrates an FSPP formed with two factors. Factors (a)
and (b) are constraints C1(X1, X2) and C2(X2, X3), respectively.
The rows and columns indicate different domain values of the cor-
responding variable; and the shaded cells correspond to infeasible
assignments. (c) shows the implicit global constraint Ω = C1∧C2.
s and t denote the two feasible assignments in Ω between which a
shortest path is to be found. The dotted red line in (c) shows the
shortest path between them, which is not a simple combination of
the shortest paths between their projections onto the factors (a) and
(b).

X2

X1 X1

X2

s′12

t′12

(a)

X2

X3 X1

X2

s′23

t′23

(b)

X1

X3

X2

(c)

Figure 2: Illustrates an FSPP where a path between s and t does
not even exist in Ω but exists in each of its factors. Here, (a) and
(b) are the factors of (c).

A CSP is defined by a triplet 〈X ,D, C〉, where X =
{X1, X2, . . . , XN} is a set of N variables, D =
{D(X1), D(X2), . . . , D(XN)} is a set of N domains with
discrete values, and C = {C1, C2, . . . , CM} is a set of M
constraints. Each Ci consists of a subset S(Ci) of X and a
list of allowed assignments of values to these variables cho-
sen from their domains. In the CSP, the task is to find an
assignment of values to all variables in X such that all con-
straints are satisfied, i.e., allow the assignment.

In the FSPP, given the same triplet 〈X ,D, C〉, we are in-
terested in the global constraint Ω defined implicitly to be
C1 ∧ C2 ∧ . . . ∧ CM . Here, S(Ω) = S(C1) ∪ S(C2) ∪
. . .∪S(CM) = X , assuming that each variable in X appears
in at least one constraint. Given two satisfying assignments
s = 〈X1 = xs

1, X2 = xs
2, . . . , XN = xs

N 〉 and t = 〈X1 =
xt
1, X2 = xt

2, . . . , XN = xt
N 〉, where ∀i : xs

i , x
t
i ∈ D(Xi),

the goal is to find the shortest path from s to t in Ω. Assume
that the domain D(Xi) of each variable Xi is ordered as fol-
lows: D(Xi) = 〈di1 , di2 , . . . , di|D(Xi)|

〉. In the search space
defined by Ω, a state s1 corresponds to a satisfying assign-
ment of Ω, and a “move” operator from state s1 to state s2
changes the value of only one variable, say Xk, from dkl

to
dkl±1

, and is defined to be of unit cost.
It is worth noting that, given a triplet 〈X ,D, C〉, the FSPP

asks a different question than the CSP. While the task in the
CSP is to find a satisfying assignment, the task in the FSPP

is to find the shortest path between two given satisfying as-
signments. C1, C2, . . . , CM are interpreted as the factors of
the implicitly defined global constraint Ω, which in turn is
also interpreted as a 2N -neighbor map. Figure 1 shows two
constraints C1 and C2, the global constraint Ω, and an in-
stance of the FSPP.

While it is well known that the shortest path problem can
be solved in polynomial time, the size of Ω is typically ex-
ponential in N . The idea is to develop more efficient algo-
rithms for solving the FSPP that exploit the factored form of
Ω. Such algorithms are expected to exploit structure in the
variable-interaction graph, i.e., a graphical representation
of which variables interact with which other variables.

The variable-interaction graph, also known as the con-
straint network, is an undirected graph that represents each
variable as a vertex and the participation of two variables in
a common constraint as an edge. A plethora of combinato-
rial problems that are otherwise NP-hard can be solved us-
ing dynamic programming in time that is exponential only in
the treewidth of their variable-interaction graphs instead of
the total number of variables. Examples include bounded-
treewidth CSPs (Dalmau, Kolaitis, and Vardi 2002) and
polytrees in probabilistic reasoning (Pearl 1986).

Following the same line of thought, we would like to in-
terest AI and robotics researchers in developing efficient
algorithms for the FSPP that exploit the structure of the
variable-interaction graph. Such algorithms are expected to
enhance heuristic search with elements of dynamic program-
ming. Figure 1 shows that the shortest path in Ω may not be
a simple combination of shortest paths in the individual fac-
tors. Moreover, Figure 2 shows that there may be constraints
such that Ω does not admit a path from s to t, although paths
between the projections of s and t exist in the individual fac-
tors. In general, therefore, a search algorithm for the FSPP
has to exploit the structure of the variable-interaction graph
facing the challenges shown in Figures 1 and 2.

Related Work and Comparisons
Factored representations and abstractions have been ex-
ploited in planning (Knoblock 1994; Brafman and Domsh-
lak 2006; 2008). They have also been used to design causal-
graph-based heuristics in (Helmert 2004) and merge-and-
shrink abstractions in (Helmert et al. 2014). (Wehrle, Siev-
ers, and Helmert 2016) provides graph-based factorizations
of classical planning problems. (Fabre and Jezequel 2009;
Fabre et al. 2010) provide an automata calculus for fac-
tored planning, which is extended to Petri nets in (Jezequel,
Fabre, and Khomenko 2015). Message passing algorithms
have also been used for factored planning in (Jezequel and
Fabre 2015). Factored planning using decomposition trees is
done using an algorithm called dTreePlan in (Kelareva et al.
2007).

Unfortunately, none of the above methods are applica-
ble to the FSPP, because the logical connective between
the factors in the FSPP is an ∧ operation. For example,
consider two constraints C1(X1, X2) and C2(X1, X3) that
yield Ω = C1 ∧ C2. Suppose (X1 = d1, X2 = d2) and
(X1 = d1 + 1, X2 = d2) are both allowed by C1. Then
a move operator with precondition (X1 = d1) ∧ (X2 =

528

d2)∧C1(X1 = d1 +1, X2 = d2) and effect (X1 = d1 +1)
can be created. However, the FSPP is not amenable to rea-
soning with such move operators because, although transi-
tioning from (X1 = d1, X2 = d2) to (X1 = d1 + 1, X2 =
d2) is allowed in C1, it may not be allowed in Ω, be-
cause, while (X1 = d1, X3 = d3) may be allowed by C2,
(X1 = d1 + 1, X3 = d3) may not be.

In robotics, extending upon the work in (Amir and Engel-
hardt 2003), (Choi and Amir 2007) presents a factor-guided
motion planning algorithm for robotic arms. However, the
runtime of this algorithm is exponential in the number of ob-
stacle islands. Factored planning approaches therefore have
not been very successful in their applicability to robotics,
even though the FSPP potentially applies to robotics do-
mains.

In distributed and multi-agent settings, (Jezequel and
Fabre 2012) provides a version of A* for factored planning.
(Kvarnström 2011) uses partial-order forward-chaining for
loosely coupled agents. When interactions between agents
are limited, (Crosby, Rovatsos, and Petrick 2013) provides
an automated decomposition method.

In natural language processing, factored versions of A*
have been used for many tasks (Klein and Manning 2003;
Haghighi, DeNero, and Klein 2007). However, they have
been developed to exploit the factored representations of the
objective function. They do not address the factorization of
the search space itself as required in the FSPP.

Casting planning as constraint satisfaction (Do and
Kambhampati 2001) or satisfiability (Kautz 2006) is not di-
rectly related to the FSPP although we use the CSP frame-
work for its formalization. (Lozano-Pérez and Kaelbling
2014) uses CSPs to reason about geometric decisions in se-
quential manipulation planning problems, but we focus on
the shortest path problem instead.

Factored-Space Heuristics

In this section, we present a strawman technique for the
FSPP. Although this technique does not exploit the factor-
ization of the search space in the search framework, it ex-
ploits the factorization for providing heuristic guidance to
A*. Given two satisfying assignments s and t in Ω, the pri-
mary idea is to compute the shortest paths between their pro-
jections in each of the individual constraints (factors). The
lengths of these shortest paths are added up to yield a heuris-
tic estimate of the length of the shortest path between s and
t in Ω. Although this heuristic estimate is not admissible, a
simple modification to this strategy revives the admissibil-
ity and consistency required for A* producing shortest paths
without re-expansions.

Let us interpret any constraint C(Xi1 , Xi2 , . . . , Xik) as
a k-dimensional map of size |D(Xi1)| × |D(Xi2)| × · · · ×
|D(Xik)|. A satisfying assignment s1 is said to be adjacent
to a satisfying assignment s2 iff they differ in the value of
only one variable, say Xim , and s1 assigns diml

to Xim

and s2 assigns diml±1
to Xim . The cost of moving from s1

to s2 in C(Xi1 , Xi2 , . . . , Xik) is set to 1/γim . Here, γj is
the number of constraints in which Xj participates. We now
prove that this simple weighting of edges in the map inter-

pretation of each individual constraint (factor) leads to cu-
mulative heuristic estimates in Ω that are always admissible
and consistent.
Theorem 1. The factored-space heuristics are consistent.

Proof. Let Ω = C1 ∧ C2 ∧ · · · ∧ CM . In Ω, let a satisfying as-
signment t be the goal; and, for any satisfying assignment s, use
H(s) to denote the estimated cost of reaching the goal from s in
Ω. H(s) = 0 for any goal s. Consider two satisfying assignments
s1 and s2 that are adjacent. By definition, s1 and s2 differ in the
value of only one variable, say Xk. Let Xk participate in the con-
straints Cj1 , Cj2 , . . . , Cjγk

. It suffices to prove that the estimated
cost of reaching t from s1 in Ω is no greater than the unit cost in-
curred in Ω for moving from s1 to s2 plus the estimated cost of
reaching t from s2 in Ω, i.e., H(s1) ≤ 1 + H(s2). In each indi-
vidual constraint (factor) Ci of Ω, we use h(s, Ci) to denote the
length of the shortest path (with weighted edges) between the pro-
jections of s and t in Ci. By definition, H(s1) =

∑M

i=1
h(s1, Ci)

and H(s2) =
∑M

i=1
h(s2, Ci). Since s1 and s2 differ only in

the value of Xk, for each individual constraint (factor) Cw of
Ω in which Xk does not participate, h(s1, Cw) = h(s2, Cw).
Now, consider the constraints Cj1 , Cj2 , . . . , Cjγk

in which Xk

participates: In each of these constraints, say Cjr , h(s1, Cjr) ≤
1/γk + h(s2, Cjr), because h(s, Cjr) denotes the length of the
shortest path (an exact heuristic) between the projections of s and
t in Cjr and the cost of moving from s1 to s2 in Cjr is 1/γk.
Therefore,

∑γk

r=1
h(s1, Cjr) ≤ γk · 1/γk +

∑γk

r=1
h(s2, Cjr).

Hence,
∑M

i=1
h(s1, Ci) ≤ γk · 1/γk +

∑M

i=1
h(s2, Ci), and

H(s1) ≤ 1 +H(s2).

Corollary 2. The factored-space heuristics are admissible.

Proof. Theorem 1 shows that the factored-space heuristics are
consistent. Every consistent heuristic is admissible (Russell and
Norvig 2009).

Preliminary Experimental Results

In this section, we present experimental results for compar-
ing A* with factored-space heuristics against A* with the
Manhattan Distance heuristic. The experiments were run on
a MacBook Pro with a 2.5GHz quad-core Intel Core i7 pro-
cessor and 16GB RAM. We demonstrate that, although A*
with factored-space heuristics is only a strawman solution to
exploiting the factorization of a search space, it outperforms
the baseline A* with the Manhattan Distance heuristic. This
suggests that exploiting factorization further in the search
framework itself could lead to significantly better search al-
gorithms and results.

Table 1: Shows the performance of A* with factored-space heuris-
tics against A* with the Manhattan Distance heuristic for the snake
robot. The entries under the corresponding columns represent the
numbers of A* node expansions. Test 2 is the result for the FSPP
in Figure 3.

ID Map Size # Obstacles Manhattan Distance Factored-Space

1 5×10 9 13268 64
2 5×10 14 17978 4221
3 10×10 27 43430 9845

529

Table 2: Shows the performance of A* with factored-space heuristics against A* with the Manhattan Distance heuristic for random and
hand-crafted instances. The entries under the corresponding columns represent the numbers of A* node expansions along with running times.
Running times for computing factored-space heuristics (i.e., preprocessing for each high-dimensional map) are listed under “Preprocessing.”
The domain size of all variables is 10 in each instance, except in Test ID 3, where each variable has a domain size of 8. Test ID 3 is the result
for the FSPP in Figure 1.

ID # Variables # Constraints Arity of Each Constraint Manhattan Distance Factored-Space Preprocessing

1 3 2 2,2 367 (0.011s) 153 (0.004s) 0.001s
2 3 2 2,2 266 (0.008s) 144 (0.004s) 0.001s
3 3 2 2,2 167 (0.006s) 141 (0.004s) 0.001s
4 4 3 2,2,2 2635 (0.112s) 627 (0.029s) 0.002s
5 4 2 3,3 403 (0.018s) 118 (0.007s) 0.024s
6 5 4 2,2,2,2 604 (0.042s) 45 (0.004s) 0.003s
7 5 3 3,3,2 22345 (1.350s) 14675 (1.016s) 0.020s

headtail joint 2 joint 1

head joint 1 joint 2 tail

Figure 3: Illustrates the path-planning problem for a geometric
agent, i.e., a snake robot, on a 4-neighbor 2D grid map with ob-
stacles. The crosses specify the desired goal positions of the body
parts. The figure also illustrates a configuration that is not allowed,
because the segment intersects with an obstacle.

We performed experiments for two categories of prob-
lems. In the first category, we use a robotics domain. In this
domain, we are given a 4-neighbor 2D grid map with obsta-
cles; and we are required to move a geometric agent, instead
of a point agent, from a starting configuration to a goal con-
figuration. Our geometric agent of choice is a snake robot
illustrated in Figure 3. It has four body parts—a head, a tail,
and two joints—and a total of three segments between them.
Each body part can move independently within the confines
of the map in the horizontal or the vertical direction, but only
one body part can move at a time. No segments can shrink
or stretch beyond specified limits; the Manhattan Distance
between two adjacent body parts can only be 1, 2, or 3. Seg-
ments cannot bend, and no segments or body parts can in-
tersect with an obstacle. Body parts cannot occupy the same
location at the same time.

The search space for this problem can be decomposed into
three binary constraints, one for each pair of adjacent body
parts. Table 1 compares the efficiency of A* with factored-
space heuristics against A* with the Manhattan Distance
heuristic. Here, we observe that the former outperforms the
latter by more than an order of magnitude with respect to the
number of node expansions.

In the second category, we use both random and hand-
crafted instances. For a given number of variables, these in-
stances are created by varying the number of constraints and

the arity of each constraint. In generating the constraints, we
either (a) first make random choices for allowing or disal-
lowing combinations of values to the participating variables
and then tweak the constraints until Ω allows for a path be-
tween s and t, where s and t are chosen to be two satisfying
assignments such that the value of each variable is set to 0
for s and the largest value in its domain for t, or (b) handcraft
adversarial constraints, such as in Test ID 3.

Table 2 compares the efficiency of A* with factored-space
heuristics against A* with the Manhattan Distance heuris-
tic. Here, too, we observe that the former outperforms the
latter in many cases with respect to the number of node ex-
pansions as well as the running times (especially if one can
amortize preprocessing). These cases typically have con-
straints of low arity and are therefore highly factored. In-
deed, the performance of A* with factored-space heuristics
may increase with increasing degree of factorization. These
observations are important because there is no particular
exploitable structure to the nature of the constraints them-
selves, and only the variable-interaction graph is available
for exploitation. When the constraints (factors) have rela-
tively high arities, however, such as in Test ID 5, we ob-
serve that the preprocessing time for A* with factored-space
heuristics is high.

Conclusions and Future Work

In this paper, we formulated the FSSP on a collection of
constraints interpreted as factors of a high-dimensional map.
Our formalization uses the standard CSP framework but asks
a question different from solution extraction. We showed
that the FSPP is a generalization of the regular shortest
path problem and is particularly relevant to robotics. Fur-
thermore, we showed that the FSPP is not directly amenable
to existing approaches in factored planning or A* search for
factored objective functions. We developed a strawman tech-
nique for the FSPP using factored-space heuristics for A*.
We proved that these heuristics are admissible and consis-
tent. We provided experimental results on both random and
hand-crafted instances as well as a snake robot domain. In
future work, we are interested in exploiting the factorization
of a search space in the search framework itself, which could
lead to better search algorithms and results.

530

Acknowledgement

The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1724392, 1409987, and 1319966.

References

Amir, E., and Engelhardt, B. 2003. Factored planning. In Proceed-
ings of the International Joint Conference on Artificial Intelligence
(IJCAI), 929–935.
Aspvall, B.; Plass, M. F.; and Tarjan, R. E. 1979. A linear-time al-
gorithm for testing the truth of certain quantified Boolean formulas.
Information Processing Letters 8(3):121–123.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research 11(1):1–94.
Brafman, R. I., and Domshlak, C. 2006. Factored planning: How,
when, and when not. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), 809–814.
Brafman, R. I., and Domshlak, C. 2008. From one to many: Plan-
ning for loosely coupled multi-agent systems. In Proceedings of
the International Conference on Automated Planning and Schedul-
ing (ICAPS), 28–35.
Choi, J., and Amir, E. 2007. Factor-guided motion planning for a
robot arm. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 27–32.
Cooper, G. F. 1990. The computational complexity of probabilistic
inference using Bayesian belief networks. Artificial intelligence
42(2-3):393–405.
Crosby, M.; Rovatsos, M.; and Petrick, R. P. A. 2013. Automated
agent decomposition for classical planning. In Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS), 46–54.
Dalmau, V.; Kolaitis, P. G.; and Vardi, M. Y. 2002. Constraint satis-
faction, bounded treewidth, and finite-variable logics. In Proceed-
ings of the International Conference on Principles and Practice of
Constraint Programming (CP), 310–326.
Dechter, R. 2003. Constraint processing. Morgan Kaufmann.
Do, M. B., and Kambhampati, S. 2001. Planning as constraint
satisfaction: Solving the planning graph by compiling it into CSP.
Artificial Intelligence 132(2):151–182.
Fabre, E., and Jezequel, L. 2009. Distributed optimal planning:
an approach by weighted automata calculus. In Proceedings of the
IEEE Conference on Decision and Control (CDC), 211–216.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010. Cost-
optimal factored planning: Promises and pitfalls. In Proceedings of
the International Conference on Automated Planning and Schedul-
ing (ICAPS), 65–72.
Guestrin, C.; Koller, D.; and Parr, R. 2002. Multiagent planning
with factored MDPs. In Dietterich, T. G.; Becker, S.; and Ghahra-
mani, Z., eds., Advances in Neural Information Processing Systems
14. MIT Press. 1523–1530.
Haghighi, A.; DeNero, J.; and Klein, D. 2007. Approximate fac-
toring for A* search. In Proceedings of Human Language Tech-
nologies: the Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL-HLT), 412–419.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-shrink abstraction: A method for generating lower
bounds in factored state spaces. Journal of the ACM 61(3):16:1–
16:63.

Helmert, M. 2004. A planning heuristic based on causal graph
analysis. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), 161–170.
Jezequel, L., and Fabre, E. 2012. A#: a distributed version of A*
for factored planning. In Proceedings of the IEEE Conference on
Decision and Control (CDC), 7377–7382.
Jezequel, L., and Fabre, E. 2015. Factored cost-optimal plan-
ning using message passing algorithms. Fundamenta Informaticae
139(4):369–401.
Jezequel, L.; Fabre, E.; and Khomenko, V. 2015. Factored plan-
ning: From automata to Petri nets. ACM Transactions on Embed-
ded Computing Systems 14(2):26:1–26:25.
Kalman, R. E. 1960. A new approach to linear filtering and pre-
diction problems. Journal of Basic Engineering 82(1):35–45.
Kautz, H. 2006. Deconstructing planning as satisfiability. In
Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1524–1526.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on Robotics
and Automation 12(4):566–580.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007. Fac-
tored planning using decomposition trees. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
1942–1947.
Klein, D., and Manning, C. D. 2003. Factored A* search for mod-
els over sequences and trees. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 1246–1251.
Knoblock, C. A. 1994. Automatically generating abstractions for
planning. Artificial Intelligence 68(2):243–302.
Kvarnström, J. 2011. Planning for loosely coupled agents using
partial order forward-chaining. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), 138–
145.
LaValle, S. M., and Kuffner, Jr., J. J. 2001. Rapidly-exploring
random trees: Progress and prospects. In Donald, B. R.; Lynch,
K. M.; and Rus, D., eds., Algorithmic and Computational Robotics:
New Directions. A K Peters. 293–308.
Li, S. Z. 1994. Markov random field models in computer vision.
In Proceedings of the European Conference on Computer Vision
(ECCV), 361–370.
Lozano-Pérez, T., and Kaelbling, L. P. 2014. A constraint-based
method for solving sequential manipulation planning problems. In
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 3684–3691.
Nesterov, Y., and Nemirovskii, A. 1994. Interior-point polyno-
mial algorithms in convex programming. Society for Industrial and
Applied Mathematics.
Pearl, J. 1986. Fusion, propagation, and structuring in belief net-
works. Artificial Intelligence 29(3):241–288.
Persson, S. M., and Sharf, I. 2014. Sampling-based A* algorithm
for robot path-planning. The International Journal of Robotics Re-
search 33(13):1683–1708.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, 3rd edition.
Wehrle, M.; Sievers, S.; and Helmert, M. 2016. Graph-based fac-
torization of classical planning problems. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
3286–3292.

531

