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Abstract In many network applications, one searches for a connected subset
of vertices that exhibits other desirable properties. To this end, this paper
studies the connected subgraph polytope of a graph, which is the convex hull
of subsets of vertices that induce a connected subgraph. Much of our work is
devoted to the study of two nontrivial classes of valid inequalities. The first
are the a, b-separator inequalities, which have been successfully used to enforce
connectivity in previous computational studies. The second are the indegree
inequalities, which have previously been shown to induce all nontrivial facets
for trees. We determine the precise conditions under which these inequali-
ties induce facets and when each class fully describes the connected subgraph
polytope. Both classes of inequalities can be separated in polynomial time
and admit compact extended formulations. However, while the a, b-separator
inequalities can be lifted in linear time, it is NP-hard to lift the indegree in-
equalities.

Keywords connected subgraph polytope · maximum-weight connected
subgraph · connectivity constraints · prize-collecting Steiner tree · contiguity

1 Introduction

In many clustering and network analysis applications, one searches for a con-
nected subset of vertices that exhibits other desirable properties. To this end,
this paper studies the connected subgraph polytope of a graph, which is the con-
vex hull of subsets of vertices that induce a connected subgraph. This serves as
a basic model of connectivity which can provide insights into more constrained
problems.
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In this paper, we consider a simple graph G = (V,E). The neighborhood of
a vertex v is denoted N(v) := {w ∈ V | {v, w} ∈ E}. Typically, we let n = |V |
and m = |E|. For convenience, consider zero-vertex and one-vertex graphs to
be connected.

Definition 1 The connected subgraph polytope of a graph G = (V,E) on n
vertices is

P(G) := conv
{
xS ∈ {0, 1}n | G[S] is connected

}
,

where xS denotes the characteristic vector of S ⊆ V .

This requirement of induced connectivity is common in a variety of applica-
tions: the construction of virtual backbones for wireless sensor networks [5,10],
cluster detection in social network analysis [20,26] and bioinformatics [3,4,9],
forest harvesting [6], political districting [14], energy distribution [18], and
computer vision [7, 25]. It also appears in resource scheduling problems when
enforcing “contiguous ones” in a binary decision vector (here, G is a path
graph). For an excellent introduction to modeling induced connectivity con-
straints in integer programs, consult [6] and the references therein.

It is important to distinguish these connectivity constraints from those
encountered in other network design problems. Many times, one is tasked
with choosing edges to meet some vertex- or edge-connectivity requirements
among a set of vertices. For example, in the Steiner tree problem one is tasked
with choosing a minimum-cost subset of edges to connect a subset of specified
terminal vertices. There are other network design problems in which edges
are chosen to meet some edge-connectivity or vertex-connectivity constraints
for the entire vertex set. For many of these problems, there are thorough
polyhedral studies [23].

However, the connected subgraph polytope is not nearly as well-studied.
One can find integer programming formulations for induced connectivity [1,2]
and for the related prize-collecting Steiner tree problem [18, 19], but these
papers work in a higher-dimensional space and the work is focused more on
developing a branch-and-cut algorithm and demonstrating that the approach
is effective.

In contrast, this paper is devoted to developing a thorough understanding
of the facial structure of the connected subgraph polytope in the original space
of variables. This is motivated, in part, by recent computational successes [5,
6, 12] that rely on vertex variables and a, b-separator inequalities to impose
connectivity constraints.

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1.

Here, a and b are nonadjacent vertices and C ⊆ V \ {a, b} is an a, b-separator,
i.e., there is no path from a to b in G− C.

This focus on vertex variables has proven useful in a variety of contexts.
Carvajal et al. [6] handle forest planning instances two to three times as large
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as previous studies. Buchanan et al. [5] solve, in ten seconds, more instances of
the minimum connected dominating set problem than any previous approach
could solve in an hour. Fischetti et al. [12] solve, in seconds, benchmark in-
stances of Steiner tree problems that were never solved by previous approaches
“even after days of computation.” Despite these significant computational im-
provements, fundamental questions about induced connectivity polyhedra re-
main unanswered. For example, when do the a, b-separator inequalities induce
facets? We answer this and many other questions about the a, b-separator
inequalities.

We also consider a class of valid inequalities called indegree inequalities.
These inequalities are interesting because they have been shown to induce all
nontrivial facets of P(G) when G is a tree [17]. So far as we know, no one
has studied them for arbitrary graphs. They are defined as follows. A vector
d ∈ Rn is said to be an indegree vector if for some orientation of G the indegree
of each vertex v is dv. For each indegree vector d of G, there is a corresponding
indegree inequality.

(indegree inequality)
∑
i∈V

(1− di)xi ≤ 1.

It turns out that these inequalities are valid for arbitrary graphs and can
induce facets even when G is not a tree.

There can be exponentially many a, b-separator and indegree inequalities.
Often, this leads researchers to develop branch-and-cut algorithms that rely on
(hopefully) efficient separation algorithms. For this reason, it is important to
study the separation problems associated with these two classes of inequalities.
The separation problem for the a, b-separator inequalities can be solved in
polynomial time by a standard reduction to the maximum flow problem (as
noted by, e.g., [12]). We show that the separation problem for the indegree
inequalities can be solved in linear time.

Another popular approach to handle a large number of inequalities in the
original space of variables is to search for small extended formulations. We
provide positive results on this front, showing that the feasible regions defined
by the separator and indegree inequalities admit polynomial-size extended
formulations. Indeed, in the case of indegree inequalities, there is a linear-size
extended formulation. Thus, for any tree G, there is a linear-size extended
formulation for P(G), even though P(G) has 2n−1 + n facets [17].

Lifting is important when studying the connected subgraph polytope P(G)
if one wants to generate facets of P(G) from subgraphs of G. We show that
the lifting problem associated with the a, b-separator inequalities can be solved
in linear time. However, we show that this is not expected to be the case for
the indegree inequalities. In fact, it is strongly NP-hard even in very restricted
classes of graphs.

Another natural question is—When do these classes of inequalities fully de-
scribe P(G)? As mentioned earlier, the indegree inequalities have been shown
to induce all nontrivial facets for trees [17]. We generalize this result, showing
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that the indegree inequalities induce all facets of P(G) (aside from nonnega-
tivity bounds) if and only if G is a forest. We also show that the a, b-separator
inequalities induce all nontrivial facets of P(G) if and only if G has no in-
dependent set of three vertices. These analytical results suggest that indegree
inequalities may be useful for sparse, treelike graphs, and separator inequalities
may be useful for very dense graphs.

1.1 Our contributions

In Section 2, we study some fundamental properties of P(G), including its di-
mension and when the trivial 0-1 bounds induce facets. We also show that all
facets of P(G) can be derived from its components polytopes and vice versa.
In many cases, this simplifies our analysis, as we can suppose that G is con-
nected. Many of our proofs rely on lifting arguments, so we also provide some
background information about lifting. We also show that any facet-defining
inequality of P(G) has at most α(G) positive coefficients, where α(G) is the
independence number of G. This will prove useful later.

In Section 3, we study the a, b-separator inequalities. We show that an a, b-
separator inequality induces a facet if and only if the separator is a minimal
a, b-separator. We then show that one can lift a vertex into a separator inequal-
ity in linear time. While there are exponentially many (facet-defining) separa-
tor inequalities, we provide a compact extended formulation for a separator-
based relaxation Q(G). We show that Q(G) and P(G) coincide precisely when
the graph has no independent set of three vertices, i.e., α(G) ≤ 2.

In Section 4, we study the indegree inequalities. We show that they are
valid for arbitrary graphs. Moreover, they are facet-defining if and only if the
oriented graph D satisfies the property that if there is a directed s-t walk, then
it is unique. (In particular, D should be acyclic.) We show that lifting a vertex
into a given indegree inequality is NP-hard. Then we provide a linear-time
algorithm to separate indegree inequalities and a linear-size extended formu-
lation for an indegree-based relaxation Q′(G). Generalizing results of [17], we
show that Q′(G) and P(G) coincide precisely when G is a forest.

1.2 Preliminaries and related work

The connected subgraph polytope P(G) of a graph G has close connections
with the maximum-weight connected subgraph (MWCS) problem. Indeed,
P(G) is essentially the feasible region for the MWCS problem.

Problem: Maximum-Weight Connected Subgraph (MWCS).
Input: a graph G = (V,E), a weight wi (possibly negative) for each i ∈ V .
Output: a maximum-weight subset S ⊆ V such that G[S] is connected.

Here, the weight of a subset S ⊆ V of vertices is w(S) =
∑
i∈S wi.
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The MWCS problem is NP-hard, even in planar graphs of maximum degree
three with all weights either +1 or −1 [16]. This suggests that P(G) must be
“complicated” even in very restricted classes of graphs.

We use the following lemma throughout the paper. It is rather simple, but
since we use it so often it is stated explicitly.

Lemma 1 (folklore) Let ax ≤ b and cx ≤ d be valid inequalities for a full-
dimensional polyhedron P such that (a, b) and (c, d) are not scalar multiples
of each other. Then, the aggregated inequality (a+ c)x ≤ (b+d) cannot induce
a facet of P .

For any other notation or necessary background knowledge on polyhedral
theory and graph theory, consult [8, 21,24].

2 Fundamental Properties of the Connected Subgraph Polytope

In this section, we describe fundamental properties of P(G), including when
the 0-1 bounds induce facets. Lifting arguments are a primary tool used in this
paper’s proofs, so we also provide some background information about lifting.

2.1 Trivial facets

Proposition 1 (dimension; 0-1 facets) The connected subgraph polytope
P(G) of a graph G = (V,E) is full-dimensional. Moreover, for each i ∈ V ,

1. xi ≥ 0 induces a facet, and
2. xi ≤ 1 induces a facet if and only if G is connected.

Proof The usual n+1 affinely independent points 0 and ei, i = 1, . . . , n suffice
to show full dimension. The points 0 and ej , j 6= i show that xi ≥ 0 induces
a facet. When G is connected, consider the vertices i = v1, v2, . . . , vn in a
depth-first traversal ordering starting from i. Then the n affinely independent
points

∑k
j=1 evj for k = 1, . . . , n show that xi ≤ 1 induces a facet. When G is

not connected, then consider a vertex j that belongs to a different component
of G than i. Then the valid inequalities xi+xj ≤ 1 and −xj ≤ 0 imply xi ≤ 1,
meaning that, by Lemma 1, xi ≤ 1 cannot induce a facet. ut
Lemma 2 Consider a facet-defining inequality

∑
i∈V πixi ≤ π0 of P(G).

Then π0 ≥ 0. Further, the inequality is (a scalar multiple of) some nonnega-
tivity bound −xj ≤ 0 if and only if π0 = 0.

Proof As the empty set is assumed to induce a connected subgraph, π0 ≥ 0.
The ‘only if’ direction is trivial.

Now, suppose that π0 = 0. Then πi ≤ 0 for each vertex i ∈ V (since the
trivial graphs are asssumed to be connected). Further suppose that at least
two coefficients are negative, say πu and πv. Then

∑
i∈V πixi ≤ 0 is implied

by the valid inequalities πuxu ≤ 0 and
∑
i∈V \{u} πixi ≤ 0. These two new

inequalities are distinct, so Lemma 1 shows that
∑
i∈V πixi ≤ 0 cannot be

facet-defining. ut



6 Y. Wang, et al.

2.2 Generating facets from components

Lemma 3 Consider a graph G = (V,E) and a valid inequality
∑
i∈V πixi ≤

π0 for P(G). If S ⊆ V , then
∑
i∈S πixi ≤ π0 is valid for P(G[S]).

Proof Suppose that D ⊆ S is connected in G[S]. Then, D is also connected in
G, so ∑

i∈S
πix

D
i =

∑
i∈V

πix
D
i ≤ π0.

This concludes the proof. ut

Proposition 1 shows that the facets of P(G) depend on whether G is con-
nected. We expound upon this in the following theorem, showing that P(G)
is determined by its components’ connected subgraph polytopes.

Theorem 1 Let {Gj = (Vj , Ej)}j be the (connected) components of a graph
G = (V,E) and consider π ∈ Rn and π0 > 0. The following are equivalent.

1. For each Gj, the inequality
∑
i∈Vj

πixi ≤ π0 induces a facet of P(Gj).

2. The inequality
∑
i∈V πixi ≤ π0 induces a facet of P(G).

Proof Suppose that, for each Gj , the inequality
∑
i∈Vj

πixi ≤ π0 induces a

facet of P(Gj). Then any subset D of vertices that induces a connected sub-
graph of G must belong to a single component of G, say Gk. So,∑

j

∑
i∈Vj

πix
D
i =

∑
i∈Vk

πix
D
i ≤ π0,

and thus
∑
j

∑
i∈Vj

πixi ≤ π0 is valid for P(G). Moreover, it is not an implicit

equality of P(G), since 0 ∈P(G) but 0 does not satisfy it at equality. Then
because

∑
i∈Vj

πixi ≤ π0 induces a facet of P(Gj), there exist |Vj | affinely

independent vectors xD
q
j , q = 1, . . . , |Vj | satisfying

∑
i∈Vj

πix
Dq

j

i = π0. Add

an adequate number of zero components so that xD
q
j ∈P(G). Then, each Dq

j

satisfies ∑
j

∑
i∈Vj

πix
Dq

j

i =
∑
i∈Vj

πix
Dq

j

i = π0.

The total number of such vectors xD
q
j is

∑
j |Vj | = dim(P(G)) and the vectors

are affinely independent, so
∑
j

∑
i∈Vj

πixi ≤ π0 induces a facet of P(G).

Now suppose
∑
j

∑
i∈Vj

πixi ≤ π0 induces a facet of P(G). Then, by

Lemma 3,
∑
i∈Vj

πixi ≤ π0 is valid for P(Gj). Moreover, it is not an implicit

equality of P(Gj), since 0 ∈ P(Gj) but 0 does not satisfy it at equality.
Since it induces a facet of P(G) there is a set of n affinely independent vectors

xDq ∈P(G), q = 1, . . . , n, each satisfying
∑
j

∑
i∈Vj

πix
Dq

i = π0. Each vertex
subset Dq must belong to a single component of G, say Vj , in which case
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i∈Vj

πix
Dq

i = π0. It can be argued that Nj := {q | Dq ⊆ Vj} has cardinality

|Vj | and that the vectors xDq , q ∈ Nj are affinely independent, implying that∑
i∈Vj

πixi ≤ π0 induces a facet of P(Gj). ut

The inequalities below are the so-called clique inequalities discussed by [6]
in the context of induced connectivity.

Corollary 1 If U ⊆ V contains exactly one vertex from each connected com-
ponent of G, then the inequality

∑
i∈U xi ≤ 1 induces a facet of P(G).

Proof Let the components of G be {Gj = (Vj , Ej)}j . By Proposition 1, for
any i ∈ U ∩ Vj , the inequality xi ≤ 1 induces a facet of P(Gj). Then, by
Theorem 1,

∑
i∈U xi ≤ 1 induces a facet of P(G). ut

Corollary 2 For a graph G = (V,E) and an independent set S ⊆ V , the
inequality

∑
i∈S xi ≤ 1 induces a facet of P(G[S]).

Proof Directly from Corollary 1. ut

2.3 Basics of lifting

Corollary 2 shows that we can easily generate the facet-defining inequality∑
i∈S xi ≤ 1 for P(G[S]), where S is an independent set. However, we want

facet-defining inequalities for P(G), and this inequality is perhaps not even
valid for P(G). Loosely speaking, lifting is the procedure whereby this or
other seed inequalities are altered so that they induce facets of P(G).

Proposition 2 (Lifting zero-valued variables, Prop. 1.1 on pp. 261
of [21]) Suppose that F ⊆ {0, 1}n, F δ = F ∩ {x ∈ {0, 1}n | x1 = δ} for some
δ ∈ {0, 1}, and

∑n
i=2 πixi ≤ π0 induces a facet of conv(F 0). If F 1 6= ∅, then

(π0 − ζ)x1 +

n∑
i=2

πixi ≤ π0 (1)

induces a facet of conv(F ), where ζ = max{
∑n
i=2 πixi | x ∈ F 1}.

We can rewrite this lifting proposition specifically in terms of the connected
subgraph polytope. It is somewhat simplified since our lifting problem is always
feasible.

Corollary 3 (Lifting zero-valued variables for P(G)) Suppose the in-
equality

∑
i∈V \{v} πixi ≤ π0 induces a facet of P(G− v), then the inequality

(π0 − ζ)xv +
∑

i∈V \{v}

πixi ≤ π0

induces a facet of P(G), where

ζ = max
S⊆V

 ∑
i∈V \{v}

πix
S
i

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .
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This lifting principle provides a way to generate facets for P(G) from facets
of its subgraphs’ polytopes. A key idea is that this can be applied sequentially
based on some lifting order. This machinery is vital for our proofs.

Lemma 4 (Bounds on lifting) Suppose
∑
i∈V \{v} πixi ≤ π0 induces a facet

of P(G − v) and that π0 > 0. Then, when lifting in v, the objective ζ of the
lifting problem satisfies:

1. if v is isolated, then ζ = 0;
2. if v is not isolated, then π0 ≤ ζ ≤ |N(v)|π0.

Proof If vertex v is isolated in the graph G = (V,E), then the only feasible
solution is {v}, in which case ζ = 0. So, from now on we will suppose that
N(v) 6= ∅.

Consider an optimal solution D ⊆ V to the lifting problem. Here, v ∈ D
and G[D] is connected. Suppose N(v) = {u1, . . . , us}. Partition D′ := D \ {v}
into s (some possibly empty) subsets as follows. Let D1 denote the set of
vertices in D′ connected to u1 by some path of G[D′]. Then for p = 2, . . . , s,
let Dp denote the vertices of D′ \ (D1 ∪ · · · ∪Dp−1) that are connected to up
by some path in G[D′]. Each G[Dp] is a connected subgraph of G − v, so by
the validity of the seed inequality,∑

i∈V
πix

Dp

i =
∑
i∈Dp

πi ≤ π0,

implying that

ζ =
∑

i∈V \{v}

πix
D
i

=

s∑
p=1

∑
i∈Dp

πi

+
∑

i∈V \D

πix
D
i

≤ sπ0 + 0

= |N(v)|π0.

Now we show that ζ ≥ π0 when N(v) 6= ∅. Pick u ∈ N(v). Let G′ = (V ′, E′)
be the connected component of G − v that includes u. Then, by Theorem 1,∑
i∈V ′ πixi ≤ π0 induces a facet of P(G′). Moreover, there must be at least

one connected vertex subset D ⊆ V ′ containing u for which
∑
i∈V ′ πix

D
i = π0,

since otherwise the inequality could not induce a facet. Then, G[D ∪ {v}] is
connected and D has weight π0, so ζ ≥ π0. ut

2.4 The number of positive coefficients in a facet-defining inequality

Lemma 5 Suppose that
∑
i∈V πixi ≤ π0 is valid for P(G). If vertices u and

v are adjacent and πv ≥ 0, then the following inequality is also valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0.
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Proof Suppose that G[S] is connected, and consider the following two cases.

– If u ∈ S, then S′ = S ∪ {v} is also connected, so

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i

=(πu + πv)x
S′

u + 0xS
′

v +
∑

i∈V \{u,v}

πix
S′

i =
∑
i∈V

πix
S′

i ≤ π0.

– If u /∈ S, then since xSu = 0 and 0xSv ≤ πvxSv , we have

(πu + πv)x
S
u + 0xSv +

∑
i∈V \{u,v}

πix
S
i ≤

∑
i∈V

πix
S
i ≤ π0.

Thus, the inequality is valid in both cases, and is valid in general. ut

Lemma 6 In a facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G), no pair of

adjacent vertices can have positive coefficients.

Proof Suppose that adjacent vertices u and v have positive coefficients. Then,
by Lemma 5, the following inequalities are valid.

(πu + πv)xu + 0xv +
∑

i∈V \{u,v}

πixi ≤ π0;

0xu + (πu + πv)xv +
∑

i∈V \{u,v}

πixi ≤ π0.

These inequalities imply
∑
i∈V πixi ≤ π0. To wit, multiply the first inequality

by β := πu/(πu + πv), multiply the second by 1− β, and add these scaled in-
equalities together. Moreover, the three inequalities are distinct. So, by Lemma
1,
∑
i∈V πixi ≤ π0 cannot induce a facet. ut

Recall that the independence number α(G) of a graph G is the size of its
largest independent set.

Proposition 3 There is a facet-defining inequality of P(G) with α(G) posi-
tive coefficients. None have more.

Proof Let S be a maximum independent set of G. The first claim follows
by lifting the inequality

∑
i∈S xi ≤ 1, which induces a facet of P(G[S]) by

Corollary 2. The second claim follows by Lemma 6. ut

We show that the 0-1 bounds, on their own, provide an α(G) polyhedral
approximation of P(G).

Proposition 4 The inclusions P(G) ⊆ [0, 1]n ⊆ α(G)P(G) hold and are
sharp.
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Proof The first inclusion is trivial. Consider x∗ ∈ [0, 1]n and a facet-defining
inequality

∑
i∈V πixi ≤ π0 of P(G). Let S = {i ∈ V | πi > 0}. If |S| = 0,

then π0 = 0, since otherwise no feasible point could satisfy it at equality. By
Lemma 2, the inequality must be a nonnegativity bound πjxj ≤ 0, in which
case ∑

i∈V
πix
∗
i = πjx

∗
j ≤ 0 = α(G)π0.

Now suppose |S| ≥ 1, so π0 > 0. Then, by Lemma 6, S must be an independent
set. For each vertex i ∈ S, we have πi ≤ π0 and x∗i ≤ 1, so

∑
i∈V

πix
∗
i ≤

∑
i∈S

πix
∗
i ≤ |S|π0 ≤ α(G)π0.

Thus x∗ ∈ α(G)P(G). The inclusions are sharp for any complete graph Kn.
ut

3 Separator Inequalities

In this section, we study the separator inequalities. We show that, assuming
the graph is connected, the a, b-separator inequality

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1

induces a facet of P(G) if and only if C is a minimal a, b-separator. The prob-
lem of lifting a vertex into an a, b-separator inequality is shown to be linear-
time solvable. Also, the separation problem for these inequalities is polynomial-
time solvable, meaning that we can optimize over the linear programming
relaxation Q(G) for P(G) in polynomial time via the ellipsoid method [15].

Q(G) := {x ∈ [0, 1]n | x satisfies all separator inequalities} .

We also provide a compact extended formulation for Q(G) based on flows, so
we need not rely on the ellipsoid method to optimize over Q(G).

A natural question to ask is—when is formulation Q(G) tight, i.e., P(G) =
Q(G)? We show that this is the case precisely when the graph has no inde-
pendent set of three vertices, i.e., α(G) ≤ 2. This result is interesting, in part,
because there can be exponentially many inequalities defining Q(G) even when
α(G) = 2. An example is shown in Figure 1, where the vertices within each
rectangle form a clique. A minimal a, b-separator can be created by choosing,
for each i, one vertex from {ci, di}. The number of such separators is 2n/2−1.
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a b

c1

c2

c3

cn
2
−1

d1

d2

d3

dn
2
−1

Fig. 1 A graph G with α(G) = 2, but many minimal a, b-separators. Vertices within a
rectangle form a clique.

3.1 Separator facets

We provide a good characterization for when the separator inequalities induce
facets. Recall that an a, b-separator is said to be minimal if no proper subset
of it is an a, b-separator.

Theorem 2 (a, b-separator facets) Consider a connected graph G = (V,E);
distinct, nonadjacent vertices a and b; and a vertex subset C ⊆ V \{a, b}. Then,
the inequality

xa + xb −
∑
i∈C

xi ≤ 1 (2)

induces a facet of P(G) if and only if C is a minimal a, b-separator.

Proof ( =⇒ ) Suppose that C is not an a, b-separator. Then there exists a
path from a to b in G−C. Let P be the set of vertices in the path (including
a and b). Then G[P ] is connected, but

xPa + xPb −
∑
i∈C

xPi = xPa + xPb = 2 > 1,

so xa + xb −
∑
i∈C xi ≤ 1 is not valid. This shows that C is an a, b-separator.

Now suppose C is not a minimal a, b-separator. Then there exists c ∈ C such
that C \{c} is an a, b-separator. Then, by Lemma 1, the two valid inequalities
−xc ≤ 0 and xa+xb−

∑
i∈C\{c} xi ≤ 1 show that inequality (2) cannot induce

a facet. This shows that C is a minimal a, b-separator.

(⇐= ) Suppose that C is a minimal a, b-separator and define

A := {v ∈ V | v and a belong to the same component of G− C}
B := {v ∈ V | v and b belong to the same component of G− C}
D := V \ (A ∪B ∪ C).
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Claim 1: xa +xb ≤ 1 induces a facet of P(G[A∪B]). Because C is an a, b-
separator, A and B are disjoint. Further, each of G[A] and G[B] is connected,
so by Corollary 1, xa + xb ≤ 1 induces a facet of P(G[A ∪B]).

Claim 2: xa + xb −
∑
i∈C xi ≤ 1 induces a facet of P(G[A ∪ B ∪ C]).

Suppose C = {v1, . . . , vk} and let C0 := ∅, Cj := {v1, . . . , vj}, and Gj :=
G[A∪B∪Cj ]. We use induction to show that, for j = 0, 1, . . . , k, the inequality
xa + xb −

∑
i∈Cj

xi ≤ 1 induces a facet of P(Gj). When j = 0, the statement
is true as above. Assume the statement holds for some 0 ≤ j < k. We show
that it also holds for j + 1. Define

ζ := max
S⊆A∪B∪Cj+1

xSa + xSb −
∑
i∈Cj

xSi

∣∣∣∣∣∣ xSvj+1
= 1 and G[S] is connected

 .

On one hand, for any x ∈ [0, 1]n,

xa + xb −
∑
i∈Cj

xi ≤ xa + xb ≤ 2,

so ζ ≤ 2. Also, because C is a minimal separator of a and b, there is a path
from a to b in G[(V \ C) ∪ {vj+1})]. Let U be the set of vertices in this path.
Then xU is feasible for the lifting problem, and

xUa + xUb −
∑
i∈Cj

xUi = xUa + xUb = 2,

so ζ ≥ 2. This implies that ζ = 2, and by the lifting principle, the inequality

(1− ζ)xvj+1 + xa + xb −
∑
i∈Cj

xi = xa + xb −
∑

i∈Cj+1

xi ≤ 1

induces a facet of P(Gj+1), so the statement is true for j + 1 and in general.
Thus, xa + xb −

∑
i∈C xi ≤ 1 induces a facet of P(Gk) = P(G[A ∪B ∪ C]).

Claim 3: xa + xb −
∑
i∈C xi ≤ 1 induces a facet of P(G). For any u ∈ D,

let σ(u) be the length of a shortest path from u to (a vertex of) C. Note that
C is nonempty by assumption that G is connected, so σ(u) is well-defined,
i.e., 0 < σ(u) < ∞,∀u ∈ D. Order D = {u1, . . . , ur} such that σ(us) ≤
σ(ut),∀s ≤ t, e.g., by breadth-first search. Let D0 = ∅, Dj = {u1, . . . , uj},
and Hj = G[(V \D)∪Dj ]. We use induction to show that, for j = 0, 1, . . . , r,
the inequality xa + xb −

∑
i∈C xi ≤ 1 induces a facet of P(Hj). When j = 0,

we already know that xa + xb −
∑
i∈C xi ≤ 1 induces a facet of P(H0). So,

assume the statement holds for some 0 ≤ j < r, and show that it also holds
for j+ 1. By the induction assumption, xa +xb−

∑
i∈C xi ≤ 1 induces a facet

of P(Hj). Define

ζ := max
S⊆V (Hj+1)

{
xSa + xSb −

∑
i∈C

xSi

∣∣∣∣∣ xSuj+1
= 1 and G[S] is connected

}
.
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Consider a feasible solution S ⊆ V (Hj+1) to the lifting problem. On one hand,
if xSa + xSb −

∑
i∈C x

S
i > 1, then both a and b belong to S. But, for G[S] to be

connected, there must exist q ∈ C ∩ S. So

xSa + xSb −
∑
i∈C

xSi ≤ xSa + xSb − xSq = 1,

which is a contradiction. This shows ζ ≤ 1. Now we show the reverse inequality.
Let U1 be the set of vertices in a shortest path from uj+1 to C in G and suppose
q ∈ C is the other endpoint in the path. Then U1 ∩ C = {q}, since otherwise
U1 is not a shortest path. Further, since C is a minimal a, b-separator, there
is a path from a to b in G[(V \ C) ∪ {q}]. Let U2 be the set of vertices in
this path, and let U = U1 ∪ U2. Then G[U ] is connected, a, b, uj+1, q ∈ U and
U ∩ C = {q}, so xU is feasible for the lifting problem and

xUa + xUb −
∑
i∈C

xUi = xUa + xUb − xUq = 1,

so ζ ≥ 1. Thus ζ = 1, and by the lifting principle, the inequality xa + xb −∑
i∈C xi ≤ 1 induces a facet of P(Hj+1). So, the statement is true for j + 1

and in general. Thus inequality (2) induces a facet of P(Hr) = P(G). ut

3.2 Lifting separator inequalities in linear time

Suppose that we have a facet-defining a, b-separator inequality xa + xb −∑
i∈C xi ≤ 1 for P(G − v), and that we want to lift in vertex v so that the

inequality induces a facet of P(G). Consider the following algorithm, recalling
that the coefficient for variable xv will be πv = π0 − ζ = 1− ζ.

1. let A := {i ∈ V | i and a belong to the same component of G− C};
2. let B := {i ∈ V | i and b belong to the same component of G− C};
3. if N(v) = ∅, then return ζ = 0;
4. if A 6= B, then return ζ = 1;
5. if A = B, then return ζ = 2.

Theorem 3 The above algorithm (optimally) lifts vertex v into a given a, b-
separator inequality in linear time.

Proof Since we can construct sets A and B in linear time via breadth-first
search, the algorithm runs in linear time. If N(v) = ∅, then ζ = 0 by Lemma 4,
so the algorithm is correct. So suppose N(v) 6= ∅, and consider two cases.

In the first case, suppose that v ∈ A and v ∈ B. Thus A = B. Further, A
is connected with weight 2 and contains v, so ζ ≥ 2. The reverse inequality is
easy to see, so ζ = 2, and the algorithm is correct.

In the second case, suppose that v /∈ A or v /∈ B. Thus C is an a, b-separator
for G, so A 6= B and ζ ≤ 1. The inequality ζ ≥ 1 follows by Lemma 4, so
ζ = 1, and the algorithm is correct. ut
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3.3 A compact extended formulation for the separator-based relaxation

Again, consider a simple graph G = (V,E). Denote by E the set of all di-
rected edges (u, v) and (v, u) whose undirected counterparts {u, v} belong to
E. Denote by E the set of possible directed edges that do not belong to E . The
polytope F (G) is is the set of all (x, f) satisfying the following constraints.

−xi +
∑

j∈N(i)

fabij ≤ 0, ∀i ∈ V, ∀ab ∈ E (3)

xa + xb −

 ∑
j∈N(a)

fabaj −
∑

j∈N(a)

fabja

 ≤ 1, ∀ab ∈ E (4)

∑
j∈N(i)

fabji −
∑

j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}, ∀ab ∈ E (5)

0 ≤ fabij ≤ 1, ∀ij ∈ E , ∀ab ∈ E (6)

0 ≤ xi ≤ 1, ∀i ∈ V. (7)

We argue that F (G) is an extended formulation for Q(G).

Lemma 7 projx(F (G)) ⊆ Q(G).

Proof Let (x, f) ∈ F (G). Consider arbitrary ab ∈ E and an a, b-separator
C ⊆ V \ {a, b}. Let A be the set of vertices reachable from a in G−C, and let
R = V \ (A ∪ C). For convenience, define fabij = 0 if ij ∈ E . Then,

xa + xb − 1 ≤
∑
j∈V

fabaj −
∑
j∈V

fabja

=
∑

i∈A∪C

∑
j∈V

fabij −
∑
j∈V

fabji


=

∑
i∈A∪C

∑
j∈A∪C

(
fabij − fabji

)
+
∑

i∈A∪C

∑
j∈R

(
fabij − fabji

)
=

∑
i∈A∪C

∑
j∈R

(
fabij − fabji

)
=
∑
i∈C

∑
j∈R

(
fabij − fabji

)
≤
∑
i∈C

∑
j∈R

fabij

≤
∑
i∈C

∑
j∈V

fabij

≤
∑
i∈C

xi.
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Thus, xa + xb −
∑
i∈C xi ≤ 1 and 0 ≤ x ≤ 1, so x ∈ Q(G). ut

Lemma 8 Q(G) ⊆ projx(F (G)).

Proof Given x ∈ Q(G), we are to show that there exists an f such that (x, f) ∈
F (G). Consider an arbitrary ab ∈ E and the maximum a, b-flow problem in
graph G = (V, E) such that each node i has capacity xi. We can write this
node-capacitated maximum flow problem as a linear program.

F ∗ = max
∑

j∈N(a)

fabaj

s.t.
∑

j∈N(i)

fabij ≤ xi, ∀i ∈ V∑
j∈N(i)

fabji −
∑

j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}

0 ≤ fabij ≤ 1, ∀ij ∈ E
fabia = 0, ∀ia ∈ E .

Let fab be an optimal flow. By Ford and Fulkerson [13], F ∗ab is equal to the
capacity of the a, b−separator C∗ with minimum capacity, i.e.,

F ∗ab = min
C

{∑
i∈C

xi

∣∣∣∣∣ C is an a, b-separator

}
.

Since x satisfies all a, b-separator inequalities (by assumption that x ∈ Q(G)),
for any a.b-separator C, we have F ∗ab ≥

∑
i∈C xi ≥ xa + xb − 1. Therefore fab

satisfies the constraints (3)–(6) that define F (G) for this particular choice of
a and b. Repeat this procedure for every ab ∈ E to construct f . Then, clearly
(x, f) ∈ F (G). ut

Theorem 4 The separator-based relaxation Q(G) for P(G) admits an ex-
tended formulation of size O(n2(m+ n)). Indeed, projx(F (G)) = Q(G).

Proof The equality projx(F (G)) = Q(G) holds by Lemmata 7 and 8, and the
size is easy to see. ut

3.4 When the separator-based relaxation is tight

This subsection is devoted to proving the following theorem.

Theorem 5 The equality P(G) = Q(G) holds if and only if α(G) ≤ 2.

As a consequence of Theorem 5 and the ability to optimize over Q(G) in
polynomial time, we have the following corollary.

Corollary 4 If α(G) ≤ 2, then the MWCS problem is polynomial-time solv-
able.



16 Y. Wang, et al.

One direction of the proof of Theorem 5 is easier and is shown first.

Lemma 9 If P(G) = Q(G), then α(G) ≤ 2.

Proof By the contrapositive. Suppose that G has an independent set S of three
vertices. By Proposition 3, there is a facet-defining inequality of P(G) that
has three positive coefficients, but this is not true for Q(G). Each of P(G)
and Q(G) has a unique half-space representation (up to scalar multiples) since
they are full-dimensional, but we have seen that the facets of Q(G) and P(G)
are different, so P(G) 6= Q(G). ut

The other direction of the proof is more complicated and requires a couple
lemmata.

Lemma 10 Suppose that
∑
i∈V πixi ≤ π0 induces a facet of P(G). If πu and

πv are its only positive coefficients, then πu = πv = π0.

Proof Since G[{u}] and G[{v}] are connected, this implies that πu ≤ π0 and
πv ≤ π0. If πu + πv ≤ π0, then any 0-1 solution x∗ ∈ P(G) satisfying the
inequality at equality must have x∗u = x∗v = 1, implying that the face of
P(G) where

∑
i∈V πixi = π0 has dimension at most n− 2, meaning that the

inequality cannot induce a facet. Thus, we will assume that πu + πv > π0.
We claim that S := {i ∈ V | πi < 0} is a u, v-separator. Suppose not, then

there exists a path from u to v in G[V \ S]. Let P be the set vertices in the
path. This implies that

∑
i∈V πix

P
i = πu + πv > π0, which contradicts the

validity of
∑
i∈V πixi ≤ π0.

For contradiction purposes, suppose that at least one of πu and πv is less
than π0. Without loss of generality, suppose that πu < π0. Now, let S′ ⊆ S be
a minimal u, v-separator, and define

πmax := max{πi | i ∈ S′}

ε :=
1

2
min{−πmax, π0 − πu}.

Note that πmax < 0 and π0 − πu > 0, so ε > 0. Also, πu + ε < π0, and for
every i ∈ S′, we have πi + ε < 0. Further, let

R = V \ (S′ ∪ {u, v}).

Then consider the following inequalities.

(πu + ε)xu + πvxv +
∑
i∈S′

(πi − ε)xi +
∑
i∈R

πixi ≤ π0 (8)

(πu − ε)xu + πvxv +
∑
i∈S′

(πi + ε)xi +
∑
i∈R

πixi ≤ π0. (9)

If these inequalities were valid, then they would imply
∑
i∈V πixi ≤ π0, thus

showing (by Lemma 1) that
∑
i∈V πixi ≤ π0 cannot induce a facet, a contra-

diction. The rest of the proof is devoted to showing that inequalities (8) and
(9) are indeed valid when πu < π0.
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Consider D ⊆ V such that G[D] is connected. There are two cases. In the
first case, |D ∩ {u, v}| ≤ 1. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v} and
πi − ε < πi + ε < 0 for any i ∈ S′,

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v

≤ max{πu + ε, πv} ≤ π0.

The same logic shows that inequality (9) is valid when |D ∩ {u, v}| ≤ 1.
In the second case, |D ∩ {u, v}| = 2. Since S′ is a u, v-separator and both

u and v belong to D, there exists w ∈ D ∩ S′. Then, since πi ≤ 0 for any
i ∈ R ⊆ V \ {u, v}, we have

(πu + ε)xDu + πvx
D
v +

∑
i∈S′

(πi − ε)xDi +
∑
i∈R

πix
D
i

≤ (πu + ε)xDu + πvx
D
v + (πw − ε)xDw +

∑
i∈S′\{w}

πix
D
i +

∑
i∈R

πix
D
i

= πux
D
u + πvx

D
v +

∑
i∈V \{u,v}

πix
D
i

=
∑
i∈V

πix
D
i ≤ π0.

Thus, inequality (8) is valid when |D ∩ {u, v}| = 2.
Finally, we show that inequality (9) is valid when |D ∩ {u, v}| = 2. Since

u and v belong to D and G[D] is connected, there is a path from u to v in
G[D]. Moreover, at least one of these u-v paths crosses only one vertex, say
w, from S′ ∩D. This holds by minimality of S′. Let P be the set of vertices
in this particular u-v path. Then, since πi ≤ 0 for any i ∈ R ⊆ V \ {u, v}, and
πi + ε < 0 for any i ∈ S′, we have

(πu − ε)xDu + πvx
D
v +

∑
i∈S′

(πi + ε)xDi +
∑
i∈R

πix
D
i

= (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈S′\{w}

(πi + ε)xDi +
∑
i∈R

πix
D
i

≤ (πu − ε)xDu + πvx
D
v + (πw + ε)xDw +

∑
i∈R∩P

πix
D
i

= πux
P
u + πvx

P
v + πwx

P
w +

∑
i∈R∩P

πix
P
i

=
∑
i∈V

πix
P
i ≤ π0.

ut

Lemma 11 If a facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G) has exactly

two positive coefficients, then it is a separator inequality.
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Proof Let the positive coefficients be πa and πb. By Lemma 10, πa = πb = π0.
Define

C = {i ∈ V | πi = −π0}
S = {i ∈ V | − π0 < πi < 0}
R = {i ∈ V | πi < −π0}.

We claim that R = ∅. If not, there is a vertex v ∈ R, and the following
inequality is valid.

−π0xv +
∑

i∈V \{v}

πixi ≤ π0. (10)

Indeed, suppose that D ⊆ V induces a connected subgraph. If v ∈ D, then

−π0xDv +
∑

i∈V \{v}

πDi xi ≤ −π0 + πa + πb = π0;

and if v /∈ D, then

−π0xDv +
∑

i∈V \{v}

πix
D
i =

∑
i∈V

πix
D
i ≤ π0.

This shows that inequality (10) is valid. But, by Lemma 1, inequality (10) and
the valid inequality (πv + π0)xv ≤ 0 show that

∑
i∈V πixi ≤ π0 cannot induce

a facet, a contradiction. Hence R = ∅.
Thus, we can write the facet-defining inequality as

π0xa + π0xb −
∑
i∈C

π0xi +
∑
i∈S

πixi ≤ π0. (11)

Now see that C ∪ S must be an a, b-separator. If not, then there is a path
P from a to b in G[V \ (C ∪ S)], yielding the contradiction that

2π0 = πa + πb =
∑
i∈V

πix
P
i ≤ π0.

If S = ∅, then inequality (11) is an a, b-separator inequality, as desired. So
suppose that S 6= ∅ and consider the following subsets of vertices.

A = {v ∈ V | v and a belong to the same component of G[V \ (C ∪ S)]}
B = {v ∈ V | v and b belong to the same component of G[V \ (C ∪ S)]}
SA = {s ∈ S | N(s) ∩A 6= ∅}
SB = {s ∈ S | N(s) ∩B 6= ∅}.

We argue that SA ∩ SB = ∅. Otherwise, for any vertex v ∈ SA ∩ SB , the set
D := A ∪B ∪ {v} is connected, so

2π0 + πv =
∑
i∈V

πix
D
i ≤ π0.
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This implies that πv ≤ −π0, which contradicts that v ∈ S. Thus, the three
sets SA, SB , and S \ (SA ∪ SB) partition S.

We claim that SA ∪ SB 6= ∅. For contradiction purposes, suppose that
SA = SB = ∅. Then C is an a, b-separator, so π0xa + π0xb −

∑
i∈C π0xi ≤ π0

is valid, and, for i ∈ S, the inequality πixi ≤ 0 is valid. Then, by Lemma 1,
inequality (11) cannot induce a facet. Thus SA ∪ SB 6= ∅.

Now, choose an ε > 0 such that πi + ε ≤ 0 for each i ∈ SA ∪ SB . We
will show that inequality (12) below is valid; the proof for inequality (13) is
similar. ∑

i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi + ε)xi +
∑
i∈SB

(πi − ε)xi ≤ π0 (12)

∑
i∈V \(SA∪SB)

πixi +
∑
i∈SA

(πi − ε)xi +
∑
i∈SB

(πi + ε)xi ≤ π0. (13)

Suppose that D ⊆ V induces a connected subgraph. If a /∈ D or b /∈ D,
then inequality (12) obviously holds, so suppose a, b ∈ D. Now, if D ∩ C 6= ∅,
then ∑

i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤ π0xDa + π0x
D
b −

∑
i∈C

π0x
D
i ≤ π0.

Now suppose D∩C = ∅. Consider a shortest path from a to b in G[D] measured
in terms of the number of vertices used from S∩D. Let P be the vertices along
this path. Note that |P ∩ SA| = |P ∩ SB | = 1, so∑

i∈V \(SA∪SB)

πix
D
i +

∑
i∈SA

(πi + ε)xDi +
∑
i∈SB

(πi − ε)xDi

≤
∑

i∈V \(SA∪SB)

πix
P
i +

∑
i∈SA

(πi + ε)xPi +
∑
i∈SB

(πi − ε)xPi

=
∑
i∈V

πix
P
i ≤ π0.

So, in both cases, inequality (12) is valid.
Thus inequalities (12) and (13) are valid. But, by Lemma 1, this contradicts

that inequality (11) induces a facet. So, S = ∅, and inequality (11) is (a scalar
multiple of) an a, b-separator inequality. ut

Lemma 12 If α(G) ≤ 2, then P(G) = Q(G).

Proof Consider an arbitrary facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G).

Let S = {i ∈ V | πi > 0}. By Proposition 3, |S| ≤ α(G) ≤ 2. Consider the
following three cases. In each case, we show that the inequality (or a scalar
multiple thereof) is already in the description of Q(G).
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In the first case, suppose |S| = 0. Recall that π0 ≥ 0 by Lemma 2. Then,
since no variable has a positive coefficient, π0 cannot be positive, since other-
wise no point in P(G) could satisfy the inequality at equality. Thus π0 = 0.
Then, by Lemma 2, the inequality is a (scalar multiple of a) nonnegativity
bound.

In the second case, |S| = 1, and suppose S = {j}. Then, π0 ≥ πj > 0,
since G[{j}] is connected. Further, π0 = πj , since otherwise no point in P(G)
satisfies the inequality at equality. Now, the inequality πjxj ≤ π0 is valid,
and 0xj +

∑
i∈V \{j} πixi ≤ 0 is valid since πi ≤ 0 for every i ∈ V \ {j}. If

πi = 0 for every i ∈ V \ {j}, then
∑
i∈V πixi ≤ π0 is a scalar multiple of

xj ≤ 1, as desired. Otherwise, there is vertex k ∈ V \ {j} with πk < 0. Then
the inequality 0xj +

∑
i∈V \{j} πixi ≤ 0 discussed previously is not the 0x ≤ 0

inequality, and it, along with πjxj ≤ πj implies
∑
i∈V πixi ≤ π0, so by Lemma

1, the inequality
∑
i∈V πixi ≤ π0 cannot induce a facet, a contradiction.

In the third and final case, |S| = 2. Then, by Lemma 11, the facet-defining
inequality is a separator inequality.

Thus, in every case, the facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G)

is already a part of the description of Q(G). Thus Q(G) ⊆P(G). The reverse
inclusion holds since Q(G) is a relaxation for P(G), so P(G) = Q(G). ut

4 Indegree Inequalities

In this section, we study the indegree inequalities. For a graph G = (V,E), a
vector d ∈ Rn is said to be an indegree vector if for some orientation D = (V,A)
of G the indegree of each vertex v is dv. For each indegree vector d of G, there
is a corresponding indegree inequality.

(indegree inequality)
∑
i∈V

(1− di)xi ≤ 1. (14)

The indegree inequalities are interesting because of the following theorem.

Theorem 6 (Theorem 3.6 of [17]) If G = (V,E) is a tree, then the follow-
ing equality holds.

P(G) =
{
x ∈ Rn+

∣∣ x satisfies all indegree inequalities
}
. (15)

Moreover, each of the indegree inequalities induces a facet when G is a tree.

Lemma 13 The indegree inequalities are valid for P(G) for arbitrary G.

Proof The proof for arbitrary G is the same as for trees [17]. Suppose that
S ⊆ V induces a connected subgraph. This implies that the number of edges
with both endpoints in S is at least |S| − 1. Hence, for any indegree vector d,
we have

∑
i∈S di ≥ |S| − 1, implying that∑

i∈V
(1− di)xSi = |S| −

∑
i∈S

di ≤ |S|+ (1− |S|) = 1.

ut
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We note that the indegree inequalities can be facet-defining, even when the
graph G has undirected cycles. For example, consider the 4-vertex cycle graph

C4 = ([4], {{1, 2}, {2, 3}, {3, 4}, {1, 4}}) .

If we orient the edges away from vertices 1 and 3, we get the facet-defining
indegree inequality x1−x2 +x3−x4 ≤ 1. However, if we orient the edges into
a directed cycle, then we get the inequality 0x1 + 0x2 + 0x3 + 0x4 ≤ 1 which
is not facet-defining. If we orient the edges away from vertex 1 and towards
vertex 3, then we get the inequality x1 + 0x2−x3 + 0x4 ≤ 1, which is also not
facet-defining. This is illustrated in Figure 2. Later we will provide the exact

1

2

4

3 1

2

4

3 1

2

4

3

Fig. 2 Orientations of C4. The leftmost orientation leads to a facet; the others do not.

conditions for an indegree inequality to induce a facet. We also show that the
separation problem for these inequalities is polynomial-time solvable. In fact,
we can find a most-violated inequality in linear time.

Consider the polyhedron Q′(G) defined by the indegree inequalities and
nonnegativity bounds. It is a relaxation for P(G) by Lemma 13.

Q′(G) :=
{
x ∈ Rn+

∣∣ x satisfies all indegree inequalities
}

We provide a linear-size extended formulation F ′(G) for Q′(G), so we need
not rely on the ellipsoid method to optimize over it. We also show that the
equality P(G) = Q′(G) holds if and only if G is a forest.

4.1 Indegree facets

In the following, a subset of vertices is said to be tight for an inequality if its
characteristic vector satisfies it at equality.

Lemma 14 Suppose that S ⊆ V induces a connected subgraph of G. Then, S
is tight for an indegree inequality if and only if

1. S induces a tree in G; and
2. each edge of E having exactly one endpoint in S is oriented out of S.

Proof ( ⇐= ) Since S induces a tree in G, the number of edges with both
endpoints in S is |S| − 1. Hence these edges contribute |S| − 1 to the sum
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i∈S di. The edges with one endpoint in S do not contribute to this sum, as

they are oriented away from S. Thus
∑
i∈S di = |S| − 1, meaning that∑

i∈V
(1− di)xSi =

∑
i∈S

(1− di) = |S| − (|S| − 1) = 1.

( =⇒ ) It is straightforward to show that if G[S] is not a tree, or if one of
the edges is directed towards S, then the quantity

∑
i∈V (1− di)xSi is at most

zero, in which case S cannot be tight.

Lemma 15 If there are two directed s-t walks in the orientation D = (V,A)
of G, then the corresponding indegree inequality does not induce a facet of
P(G).

Proof For the indegree inequality to induce a facet, there must be a tight
set S, containing t, such that G[S] is connected. We argue that the vertices
along the two s-t walks must belong to S. Suppose not, then not all edges
with one endpoint in S point away from S, so, by Lemma 14, S is not a tight
set, a contradiction. Thus all vertices along these two s-t walks belong to S.
However, this shows that S does not induce a tree in G, which, by Lemma
14, contradicts that S is a tight set. Thus no such S exists, and the indegree
inequality cannot induce a facet.

As a consequence of Lemma 15, if D has a directed cycle, then the corre-
sponding indegree inequality cannot induce a facet.

Theorem 7 The indegree inequality corresponding to an orientation D =
(V,A) of G induces a facet of P(G) if and only if for every u, v ∈ V there is
at most one directed u-v walk in D.

Proof The ‘only if’ direction of the proof follows by Lemma 15. To show the ‘if’
direction, consider an orientation D = (V,A) of G satisfying the assumptions.
In this case, D is acyclic, so there exists a topological ordering of its vertices.
We prove that the inequality is facet-defining by lifting in the vertices according
to the topological ordering. We will start with the seed inequality xw ≤ 1,
where w is the first vertex in the topological ordering. We claim that each
time a vertex v is lifted into the inequality, the lifting problem objective ζv is
dv, meaning that πv = π0 − dv = 1 − dv, in which case the resulting facet-
defining inequality is the desired indegree inequality.

For each vertex v, let

Dv := {v} ∪ {u ∈ V | there is a directed u-v path in D}.

We use induction on the position of the vertex in the topological ordering.
If v is first in the topological ordering, we have our seed inequality xv ≤ 1.
Now suppose that v is not first in the topological ordering. Note that each u ∈
Dv \ {v} is earlier than v in the topological ordering and G[Dv] is connected,
so Dv is feasible when lifting in v. We argue that G[Dv] is a tree. If it is
not the case, there is an undirected cycle subgraph (V ′, E′) of G[Dv]. Let a
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and b be the first and the last vertices of V ′, respectively, in the topological
ordering. Then there are two directed a-b paths in the orientation of (V ′, E′),
hence there are at least two directed a-b paths in D, which contradicts the
assumption. Now, since G[Dv] is a tree and by the induction assumption that
πu = π0 − ζu = 1− du for vertices u prior to v in the topological ordering, we
have ∑

u∈Dv\{v}

πu =
∑

u∈Dv\{v}

(1− du) = (|Dv| − 1)− (|E(G[Dv])| − dv) = dv.

So ζv ≥ dv. Meanwhile, by Lemma 4, ζv ≤ dv, so ζv = dv as desired. ut

It is natural to ask—Given a graph, does any indegree inequality induce
a facet of its connected subgraph polytope? In other words, does the graph
admit an orientation satisfying the conditions of Theorem 7? We will call this
problem Multitree Orientation.

Problem: Multitree Orientation.
Input: a simple graph G = (V,E).
Question: Is there an orientation of G in which, for every s, t ∈ V , there is
at most one (directed) s-t walk?

We have been unable to find a good characterization for when there is a
facet-defining indegree inequality. The following theorem explains why.

Theorem 8 (Eppstein [11]) Multitree Orientation is NP-complete.

Corollary 5 Given a graph G = (V,E), it is NP-complete to determine
whether there is a facet-defining indegree inequality of P(G).

Proof Follows immediately from Theorems 7 and 8. ut

In contrast, the same problem for the separator inequalities is easy. There
is a facet-defining separator inequality if and only if the graph is not complete.

4.2 Lifting indegree inequalities is NP-hard

One may wonder how difficult it is to generate a facet-defining inequality
for P(G) via a specified lifting order. In this subsection, we show that this
problem is hard even when the seed inequality is a facet-defining indegree
inequality.

Theorem 9 Lifting a vertex into an indegree inequality is strongly NP-hard.
This holds even when the graph is bipartite and 2-degenerate.

Proof The reduction is from 3OCC-3SAT, a special case of 3SAT in which
each variable appears at most three times and each literal appears at most
twice. This remains NP-complete; cf. Theorem 16.5 of [22]. Let the instance
Φ =

∧m
j=1(c1j ∨c2j ∨c3j ) of 3OCC-3SAT be defined over variables x1, . . . , xn. We
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Fig. 3 Variable gadget (left) and clause gadget (right)

construct a graph G and a (facet-defining) indegree inequality for P(G − v)
for which the lifting problem for v has objective 2n + m if and only if Φ is
satisfiable.

For each variable xi and for each clause cj in the 3OCC-3SAT instance,
construct a gadget, as shown in Figure 3. Connect the gadgets as follows. Con-
nect each literal xi(xi) from a clause gadget (denoted by, say, c1j in Figure 3) to

either a literal x1i or to x2i (x1i or x2i ) from the corresponding variable gadget.
Because each literal appears in at most two clauses, we can suppose that no
pair of clause vertices are connected to the same variable gadget literal. This
is illustrated in Figure 4. Finally, add a new vertex v and connect it to every
clause vertex of the type ckj and to all vertices of the type y1i , y2i , y1i , and

y2i . Since the number of vertices of G is only 12n + 6m + 1 the reduction is
polynomial.

First see that G is bipartite, with partitions A and B:

A = {v} ∪

(
n⋃
i=1

{li, ri, bi, ti, x1i , x2i , x1i , x2i }

)
∪

 m⋃
j=1

{d1j , d2j , d3j}

 ;

B =

(
n⋃
i=1

{y1i , y2i , y1i , y2i }

)
∪

 m⋃
j=1

{c1j , c2j , c3j}

 .

Now we show G is 2-degenerate. Suppose not; then there is a subgraph H
of G in which all vertices have degree at least three. Then H cannot contain
a vertex of the type dkj , li, ri, ti, or bi, since these vertices have degree at most
two in G. Now, if those vertices do not belong to H, then H cannot contain
a vertex of the type y1i , y

2
i , y

1
i , y

2
i , or ckj . This implies that V (H) ⊆ {v} ∪(⋃n

i=1{x1i , x2i , x
1
i , x

2
i }
)
, meaning that V (H) is independent, but this contradicts

that H has minimum degree at least three.
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Fig. 4 The construction of the graph G − v when given 3OCC-3SAT instance Φ = (x1 ∨
x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Consider the indegree inequality (16) for G−v that is obtained by orienting
the edges from A \ {v} to B. It induces a facet of P(G− v) by Theorem 7.∑

i∈A\{v}

xi −
∑
i∈B

2xi ≤ 1. (16)

Now, consider the problem of lifting v into inequality (16), i.e., solving for

ζ := max
S⊆V

 ∑
i∈A\{v}

xSi −
∑
i∈B

2xSi

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .

Claim 1: There is an optimal solution D ⊆ V to the lifting problem that
satisfies:

– for each i, either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D, but not both; and
– for each j, exactly one of c1j , c

2
j , and c3j belongs to D.

If an optimal solution D ⊆ V to the lifting problem does not fit these criteria,
it can be modified so that it does. Recognize that v ∈ D and consider the
following cases.

1. Three or more of {y1i , y2i , y1i , y2i } belong to D. Without loss of generality,
suppose that {y2i , y1i , y2i } ⊆ D, thus we can assume that x2i ∈ D. Then
D′ = D \ {y2i , x2i } is connected, contains v, and has a larger weight than
D, a contradiction.
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2. Two of {y1i , y2i , y1i , y2i } belong to D. If either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D,
then Claim 1 is satisfied. Otherwise, without loss of generality, suppose
that y1i and y1i belong to D. Then ti cannot belong to D by connectivity.
We can assume that x1i belongs to D. Now, D′ = D ∪ {y2i , ti} \ {x1i , y1i } is
connected, contains v, and has the same weight.

3. One of {y1i , y2i , y1i , y2i } belongs to D. Without loss of generality, suppose
that y1i belongs to D. Then D′ = D ∪ {y2i , ti, ri} is connected, contains v,
and has the same weight.

4. None of {y1i , y2i , y1i , y2i } belong to D. Then D′ = D ∪ {y1i , y2i , ti, bi, li, ri} is
connected, contains v, and has the same weight.

5. Two or more of {c1j , c2j , c3j} belong to D. Without loss of generality, suppose

that c1j , c
2
j ∈ D. We can assume that d1j , d

2
j , d

3
j ∈ D, and that c1j has a

neighbor, say w ∈ A, from a variable gadget and w also belongs to D.
Then D′ = D \ {c1j , d2j , w} is connected, contains v, and has the same
weight.

6. None of {c1j , c2j , c3j} belong to D. Then D′ = D ∪ {c1j , d1j , d2j} is connected,
contains v, and has the same weight.

These steps can be applied repeatedly until D satisfies the claim.
Claim 2: ζ ≤ 2n + m. Consider an optimal solution D ⊆ V to the lifting

problem that satisfies Claim 1. See that any weight +1 vertex in D must have
a weight −2 neighbor in D. There are 2n+m vertices of weight −2 in D and
each has three weight +1 neighbors in G. So,

ζ =
∑

i∈A\{v}

xDi −
∑
i∈B

2xDi

=
∑

i∈A\{v}

xDi − 2(2n+m)

≤ 3(2n+m)− 2(2n+m) = 2n+m.

Claim 3: If Φ is satisfiable, then ζ ≥ 2n+m. Given a satisfying assignment
x∗ for Φ, construct a solution D to the lifting problem as follows.

– For each i: if x∗i = 1, choose y1i and y2i ; otherwise, select y1i and y2i . Note
that this is, in a sense, the opposite of the satisfying assignment.

– For each j: the satisfying assignment makes clause j evaluate to true by
some literal, say ckj ; choose vertex ckj and also the neighboring vertex from
the variable gadget.

– Add v and all positive-weight vertices that neighbor a previously chosen
vertex.

This solution D is feasible, since all negative-weight vertices are adjacent
to v, and their positive-weight neighbors were chosen. One negative-weight
vertex was chosen from each clause gadget, and two negative-weight ver-
tices were selected from each variable gadget. So, there are 2n + m vertices
of negative weight in D. Each of these negative-weight vertices has three
positive-weight neighbors. All that remains is to demonstrate that no two
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negative-weight vertices of D share a neighbor of positive weight. The proof
of this is straightforward but tedious, so we omit it. Thus D has weight
(2n+m)(−2 + 3(1)) = 2n+m.

Claim 4: If ζ ≥ 2n+m, then Φ is satisfiable. Consider an optimal solution
D ⊆ V that satisfies Claim 1 and has weight at least 2n+m. Then,

– for each i, either {y1i , y2i } ⊆ D or {y1i , y2i } ⊆ D, but not both; and
– for each j, exactly one of c1j , c

2
j , and c3j belongs to D.

The following assignment x∗ will be shown to satisfy Φ. For each i: if
{y1i , y2i } ⊆ D, then set x∗i = 0; otherwise, set x∗i = 1. Then ζ = 2n + m by
Claim 2, and this equality holds if and only if no two negative-weight vertices
in D have a common neighbor (of positive weight).

We argue that, for each j, x∗ makes clause j evaluate to true. Let ckj be

the vertex from clause j that belongs to D. Suppose that the neighbor of ckj
from the variable gadget is

– xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1i and y2i belong
to D and thus x∗i = 1, which satisfies clause j.

– xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1i and y2i belong
to D and thus x∗i = 0, which satisfies clause j.

So x∗ is a satisfying assignment.
By Claims 2, 3, and 4, the lifting problem for v has objective 2n + m

if and only Φ is satisfiable. Then, since 3OCC-3SAT is NP-hard and since
the reduction is polynomial, the problem of lifting vertex v into the indegree
inequality (16) is NP-hard. ut

4.3 Separating indegree inequalities in linear time

Given x∗ ∈ Rn, consider the following separation algorithm for the indegree
inequalities.

1. For each edge {u, v} ∈ E do
– If x∗u > x∗v then orient edge {u, v} as (u, v).
– Else orient it as (v, u).

2. Let d be the indegree vector obtained from orientation in step 1.
3. If

∑
i∈V (1− di)x∗i > 1 then return the inequality

∑
i∈V (1− di)xi ≤ 1.

4. Else certify that x∗ satisfies all indegree inequalities.

Theorem 10 The above algorithm solves the separation problem for the in-
degree inequalities in linear time. In fact, it finds a most-violated inequality.

Proof Clearly the algorithm runs in time O(n + m), so we must only prove
correctness. Let d denote the set of all indegree vectors. Consider the set of
all orientations of G satisfying the property that if {u, v} ∈ E and x∗u > x∗v
then edge {u, v} is oriented as (u, v). Let d∗ denote the set of corresponding
indegree vectors. The indegree vector returned by the algorithm belongs to d∗,
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and we argue that any indegree vector from d∗ corresponds to a most-violated
inequality (if any exist). For an indegree vector d ∈ d, define

f(d) :=
∑
i∈V

(1− di)x∗i .

The problem of finding a most-violated inequality is that of finding d ∈ d
that maximizes f(d). Consider d′ ∈ d \ d∗. By definition of d∗ this means
the orientation corresponding to d′ has an oriented edge (v, u) with x∗u > x∗v.
Consider the indegree vector d′′ obtained by flipping this edge’s orientation to
(u, v). Then, d′′v = d′v + 1 and d′′u = d′u − 1, so

f(d′) = −x∗u + x∗v + f(d′′) < f(d′′).

So, d′ is suboptimal. It is easy to see that any two indegree vectors d1, d2 ∈ d∗

satisfy f(d1) = f(d2). Thus, any indegree vector from d∗ is optimal. ut

4.4 A linear-size extended formulation for the indegree-based relaxation

We propose an extended formulation for the indegree-based relaxation. Denote
by F ′(G) the set of (x, y) ∈ Rn+m satisfying

ye − xv ≤ 0 and ye − xu ≤ 0, ∀e = {u, v} ∈ E (17)∑
i∈V

xi −
∑
e∈E

ye ≤ 1 (18)

xi ≥ 0, ∀i ∈ V. (19)

Theorem 11 The polyhedron Q′(G) defined by the indegree inequalities and
nonnegativity bounds admits a size O(m+ n) extended formulation.

Proof The polyhedron F ′(G) clearly has size O(m+n), so we must only show
projx(F ′(G)) = Q′(G).

To show Q′(G) ⊆ projx(F ′(G)), consider x ∈ Q′(G). For each edge e =
{u, v} ∈ E, let ye = min{xu, xv}. We claim that (x, y) ∈ F ′(G). Clearly,
(x, y) satisfies the constraints (17) and (19). Consider the indegree vector d
obtained by orienting the edges as in the separation algorithm. In this case,∑
{u,v}∈E min{xu, xv} =

∑
i∈V dixi. So,∑

e∈E
ye =

∑
{u,v}∈E

min{xu, xv} =
∑
i∈V

dixi ≥
∑
i∈V

xi − 1,

where the last inequality holds since x satisfies all indegree inequalities. This
shows that (x, y) satisfies constraint (18), and thus (x, y) ∈ F ′(G).

To show projx(F ′(G)) ⊆ Q′(G), consider (x, y) ∈ F ′(G). Construct an
alternative point (x, y′) where, for each edge e, we have y′e = min{xu, xv}.
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Clearly (x, y′) ∈ F ′(G) as well. To show x ∈ Q′(G), consider an arbitrary
indegree vector d, and see that∑

i∈V
(1− di)xi =

∑
i∈V

xi −
∑
i∈V

dixi

≤
∑
i∈V

xi −
∑

{u,v}∈E

min{xu, xv}

=
∑
i∈V

xi −
∑
e∈E

y′e ≤ 1.

The inequality holds because
∑
{u,v}∈E min{xu, xv} ≤

∑
i∈V dixi for any in-

degree vector d. Thus, x satisfies all indegree inequalities and is nonnegative
by (19), so x ∈ Q′(G). ut

4.5 When the indegree-based relaxation is tight

Theorem 12 The equality P(G) = Q′(G) holds if and only if G is a forest.

Proof The ‘if’ direction follows from Theorems 1 and 6. To prove the ‘only
if’ direction, suppose that G is not a forest. Then G has an undirected cycle
subgraph (V ′, E′). Let v ∈ V ′ be one of the cycle’s vertices. Pick a subset
U ⊂ V of vertices, containing v, that contains exactly one vertex from each
component of G. Then, by Corollary 1, the inequality

∑
i∈U xi ≤ 1 induces

a facet of P(G). However, we argue that this inequality is not an indegree
inequality. If it were, then there is an indegree vector d satisfying dv = 0 and
di = 1 for each i ∈ V ′, hence∑

i∈V ′

di = dv +
∑

i∈V ′\{v}

di = 0 + (|V ′| − 1).

However, the oriented edges from E′ contribute |E′| indegrees among V ′, i.e.,∑
i∈V ′ di ≥ |E′| = |V ′|. Each of P(G) and Q′(G) has a unique half-space

representation (up to scalar multiples) since they are full-dimensional, but we
have seen that the facets of Q′(G) and P(G) are different, so P(G) 6= Q′(G).

ut

5 Conclusion

In this paper, we provide foundational knowledge about the connected sub-
graph polytope P(G). We study two classes of valid inequalities called sepa-
rator inequalities and indegree inequalities, which have been previously shown
to be computationally useful and theoretically interesting. We determine when
these inequalities induce facets, when they fully describe the connected sub-
graph polytope, how to separate them in polynomial time, and how to craft
polynomial-size extended formulations. We also show that it is NP-hard to lift
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the indegree inequalities, but this can be done in linear time for the separator
inequalities.

As we have seen, the separator-based relaxation Q(G) coincides with P(G)
when the graph has no independent set of three vertices, a class of very dense
graphs. On the other hand, the indegree inequalities give a perfect description
for forests—a class of sparse graphs. It is an interesting question as to how
these two classes of inequalities should be used for computational purposes.
For example, it may make sense to rely on separator inequalities for dense
graphs, and to use the indegree inequalities for sparse graphs1. Or, perhaps
they should both be used, since the proposition below shows that neither class
of inequalities dominates the other. This is an interesting question for future
work.

Proposition 5 The separator and indegree relaxations are incomparable.

Proof Define Q(G) and Q′(G) as before. On one hand, the claw graph K1,3 is a
tree, hence Q′(K1,3) = P(K1,3) by Theorem 6; however, Q(K1,3) 6= P(K1,3)
by Theorem 5 and α(K1,3) = 3. Thus, in general, Q(G) 6⊆ Q′(G).

On the other hand, the diamond graph K4 − e has α(K4 − e) = 2, hence
Q(K4− e) = P(K4− e) by Theorem 5. Let {a, b} = e. The sole a, b-separator
inequality is facet-defining for P(K4− e), but it is not an indegree inequality
(nor is it a 1-bound), hence Q′(K4 − e) 6= P(K4 − e). Thus, in general,
Q′(G) 6⊆ Q(G). ut
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