On the Role of Canonicity in Knowledge Compilation

Guy Van den Broeck and Adnan Darwiche
Computer Science Department
University of California, Los Angeles
{guyvdb, darwiche}@cs.ucla.edu

Abstract

Knowledge compilation is a powerful reasoning
paradigm with many applications across Al and com-
puter science more broadly. We consider the problem
of bottom-up compilation of knowledge bases, which is
usually predicated on the existence of a polytime func-
tion for combining compilations using Boolean opera-
tors (usually called an Apply function). While such a
polytime Apply function is known to exist for certain
languages (e.g., OBDDs) and not exist for others (e.g.,
DNNFs), its existence for certain languages remains un-
known. Among the latter is the recently introduced lan-
guage of Sentential Decision Diagrams (SDDs): while
a polytime Apply function exists for SDDs, it was un-
known whether such a function exists for the important
subset of compressed SDDs which are canonical. We re-
solve this open question in this paper and consider some
of its theoretical and practical implications. Some of the
findings we report question the common wisdom on the
relationship between bottom-up compilation, language
canonicity and the complexity of the Apply function.

Introduction

Knowledge compilation is an area of research that has
a long tradition in Al; see Cadoli and Donini (1997).
Initially, work in this area took the form of searching
for tractable languages based on CNFs (e.g. Selman and
Kautz; del Val; Marquis (1991; 1994; 1995)). However,
the area took a different turn a decade ago with the pub-
lication of the “Knowledge Compilation Map” (Darwiche
and Marquis 2002). Since then, the work on knowledge
compilation became structured across three major dimen-
sions; see Darwiche (2014) for a recent survey: (1) iden-
tifying new tractable languages and placing them on the
map by characterizing their succinctness and the polytime
operations they support; (2) building compilers that map
propositional knowledge bases into tractable languages; and
(3) using these languages in various applications, such
as diagnosis (Elliott and Williams 2006; Huang and Dar-
wiche 2005; Barrett 2005; Siddiqi and Huang 2007), plan-
ning (Palacios et al. 2005; Huang 2006), probabilistic rea-
soning (Chavira, Darwiche, and Jaeger 2006; Chavira and
Darwiche 2008; Fierens et al. 2011), and statistical rela-
tional learning (Fierens et al. 2013). More recently, knowl-
edge compilation has greatly influenced the area of proba-

bilistic databases (Suciu et al. 2011; Jha and Suciu 2011;
Rekatsinas, Deshpande, and Getoor 2012; Beame et al.
2013) and became also increasingly influential in first-
order probabilistic inference (Van den Broeck et al. 2011;
Van den Broeck 2011; Van den Broeck 2013). Another area
of influence is in the learning of tractable probabilistic mod-
els (Lowd and Rooshenas 2013; Gens and Domingos 2013;
Kisa et al. 2014a), as knowledge compilation has formed
the basis of a number of recent approaches in this area of
research (ICML hosted the First International Workshop on
Learning Tractable Probabilistic Models (LTPM) in 2014).

One of the more recent introductions to the knowl-
edge compilation map is the Sentential Decision Diagram
(SDD) (Darwiche 2011). The SDD is a target language for
knowledge compilation. That is, once a propositional knowl-
edge base is compiled into an SDD, the SDD can be reused
to answer multiple hard queries efficiently (e.g., clausal en-
tailment or model counting). SDDs subsume Ordered Bi-
nary Decision Diagrams (OBDDs) (Bryant 1986) and come
with tighter size bounds (Darwiche 2011; Razgon 2013;
Oztok and Darwiche 2014), while still being equally power-
ful as far as their polytime support for classical queries (e.g.,
the ones in Darwiche and Marquis (2002)). Moreover, SDDs
are a specialization of d-DNNFs (Darwiche 2001), which
received much attention over the last decade. Even though
SDDs are less succinct than d-DNNFs, they can be compiled
bottom-up, just like OBDDs. For example, a clause can be
compiled by disjoining the SDDs corresponding to its liter-
als, and a CNF can be compiled by conjoining the SDDs cor-
responding to its clauses. This bottom-up compilation is im-
plemented using the Apply function, which combines two
SDDs using Boolean operators.! Bottom-up compilation
makes SDDs attractive for several Al applications, in partic-
ular for reasoning in probabilistic graphical models (Choi,
Kisa, and Darwiche 2013) and probabilistic programs, both
exact (Vlasselaer et al. 2014) and approximate (Renkens et
al. 2014), as well as tractable learning (Kisa et al. 2014a;
2014b). Bottom-up compilation can be critical when the
knowledge base to be compiled is constructed incrementally
(see the discussion in Pipatsrisawat and Darwiche (2008)).

'Apply originated in the OBDD literature (Bryant 1986).

1
/\
2 3
PN PN
BA] FEY Boa) picpom B A D¢
(a) An SDD (b) A vtree

Figure 1: An SDD and vtree for (AAB)V(BAC)V(CAD,).

An Open Problem and its Implications

According to common wisdom, a language supports bottom-
up compilation only if it supports a polytime Apply func-
tion. For example, OBDDs are known to support bottom-
up compilation and have traditionally been compiled this
way. In fact, the discovery of SDDs was mostly driven by
the need for bottom-up compilation, which was preceded by
the discovery of structured decomposability (Pipatsrisawat
and Darwiche 2008): a property that enables some Boolean
operations to be applied in polytime. SDDs satisfy this prop-
erty and stronger ones, leading to a polytime Apply func-
tion (Darwiche 2011). It was unknown, however, whether
this function existed for the important subset of compressed
SDDs which are canonical. This has been an open question
since SDDs were first introduced in (Darwiche 2011).

We resolve this open question in this paper, showing that
such an Apply function does not exist in general. We also
pursue some theoretical and practical implications of this re-
sult, on bottom-up compilation in particular. On the practical
side, we reveal an empirical finding that seems quite surpris-
ing: bottom-up compilation with compressed SDDs is much
more feasible practically than with uncompressed ones, even
though the latter supports a polytime Apply function while
the former does not. This finding questions common con-
victions on the relative importance of a polytime Apply in
contrast to canonicity as desirable properties for a language
that supports efficient bottom-up compilation. On the theo-
retical side, we show that some transformations (e.g., con-
ditioning) can blow up the size of compressed SDDs, while
they do not for uncompressed SDDs.

Technical Background

We will use the following notation for propositional logic.
Upper-case letters (e.g., X) denote propositional variables
and bold letters represent sets of variables (e.g., X). A literal
is a variable or its negation. A Boolean function f(X) maps
each instantiation x of variables X into T (true) or L (false).

The SDD Representation The SDD can be thought of
as a “data structure” for representing Boolean functions
since SDDs can be canonical and support a number of effi-
cient operations for constructing and manipulating Boolean
functions (Darwiche 2011; Xue, Choi, and Darwiche 2012;
Choi and Darwiche 2013).

Partitions SDDs are based on a new type of Boolean func-
tion decomposition, called partitions. Consider a Boolean
function f and suppose that we split its variables into two
disjoint sets, X and Y. We can always decompose the func-
tion f as

f= pl(X)Asl(Y)] Veeov [2(X) A s (Y],

where we require that the sub-functions p; (X) are mutually
exclusive, exhaustive, and consistent (non-false). This kind
of decomposition is called an (X, Y)-partition, and it al-
ways exists. The sub-functions p;(X) are called primes and
the sub-functions s;(Y) are called subs (Darwiche 2011).
For an example, consider the function: f = (A A B) V
(BAC)V (C A D). By splitting the function variables into
X = {A,B} and Y = {C, D}, we get the following de-
composition:

(AANBA T)V(DAABA _C)V(-BANCAD). (1)

S N T N~

prime sub prime sub prime sub

The primes are mutually exclusive, exhaustive and non-
false. This decomposition is represented by a decision SDD
node, which is depicted by a circle () as in Figure 1. The
above decomposition corresponds to the root decision node
in this figure. The children of a decision SDD node are de-
picted by paired boxes [p]s], called elements. The left box
of an element corresponds to a prime p, while the right box
corresponds to its sub s. In the graphical depiction of SDDs,
a prime p or sub s are either a constant, literal or pointer to a
decision SDD node. Constants and literals are called termi-
nal SDD nodes.

Compression An (X,Y)-partition is compressed when
its subs s;(Y) are distinct. Without the compression prop-
erty, a function can have many different (X,Y)-partitions.
However, for a function f and a particular split of the func-
tion variables into X and Y, there exists a unique com-
pressed (X,Y)-partition of function f. The (AB,CD)-
partition in (1) is compressed. Its function has another
(AB, CD)-partition, which is not compressed:

{(A/\Bv T),(—'A/\B,C),
(AN-B,DAC),(~AA-B,DAC)}. ()

An uncompressed (X,Y)-partition can be compressed by
merging all elements (p1, s), ..., (pn, s) that share the same
sub into one element (p1 V- - -Vpy,, s). Compressing (2) com-
bines the two last elements into ([AA—B]V[-AA-B], DA
C) = (=B, D AC), resulting in (1). This is the unique com-
pressed (AB, C'D)-partition of f. A compressed SDD is one
which contains only compressed partitions.

Vtree An SDD can be defined using a sequence of recur-
sive (X, Y)-partitions. To build an SDD, we need to deter-
mine which X and Y are used in every partition in the SDD.
This process is governed by a vtree: a full, binary tree, whose
leaves are labeled with the function variables; see Figures 1b
and 2. The root v of the vtree partitions variables into those
appearing in the left subtree (X) and those appearing in the
right subtree (Y). This implies an (X, Y)-partition [of the

A
AAA
N0 AN

2
Figure 2: Different vtrees over the variables A, B, C, and D.
The vtree on the left is right-linear.

Boolean function, leading to the root SDD node (we say in
this case that partition (3 is normalized for vtree node v). The
primes and subs of this partition are turned into SDDs, re-
cursively, using vtree nodes from the left and right subtrees.
The process continues until we reach variables or constants
(i.e., terminal SDD nodes). The vtree used to construct an
SDD can have a dramatic impact on the SDD, sometimes
leading to an exponential difference in the SDD size.

Two Forms of Canonicity Even though compressed
(X,Y)-partitions are unique for a fixed X and Y, we need
one of two additional properties for a compressed SDD to
be unique (i.e., canonical) given a vtree:

— Normalization: 1f an (X,Y)-partition 3 is normalized for
vtree node v, then the primes (subs) of 3 must be normal-
ized for the left (right) child of v—as opposed to a left
(right) descendant of v.

— Trimming: The SDD contains no (X,Y)-partitions of the
form {(Tv a)} or {(av T)7 (—|OZ, J—)}

For a Boolean function, and a fixed vtree, there is a unique
compressed, normalized SDD. There is also a unique com-
pressed, trimmed SDD (Darwiche 2011). Thus, both repre-
sentations are canonical, although trimmed SDDs tend to be
smaller. One can trim an SDD by replacing (X,Y)-partitions
of the form {(T, &)} or {(e, T), (—ex, L)} with . One can
normalize an SDD by adding intermediate partitions of the
same form. Since these translations are efficient, our theoret-
ical results will apply to both canonical representations. In
what follows, we will restrict our attention to compressed,
trimmed SDDs and refer to them as canonical SDDs.

SDDs and OBDDs OBDDs correspond precisely to SDDs
that are constructed using a special type of vtree, called a
right-linear vtree (Darwiche 2011); see Figure 2. The left
child of each inner node in these vtrees is a variable. With
right-linear vtrees, compressed, trimmed SDDs correspond
to reduced OBDDs, while compressed, normalized SDDs
correspond to oblivious OBDDs (Xue, Choi, and Darwiche
2012) (reduced and oblivious OBDDs are also canonical).
The size of an OBDD depends critically on the underly-
ing variable order. Similarly, the size of an SDD depends
critically on the vtree used (right-linear vtrees correspond
to variable orders). Vtree search algorithms can sometimes
find SDDs that are orders-of-magnitude more succinct than
OBDDs found by searching for variable orders (Choi and

[Query | Description [OBDD [SDD [d-DNNF |
CO consistency V4 V4 V
VA validity v v v
CE clausal entailment v v N4
M implicant check N v N4
EQ equivalence check Vv v ?
CT model counting V4 V4 v
SE sentential entailment Vv v o
ME model enumeration Vv Vv N4

Table 1: Analysis of supported queries, following Darwiche
and Marquis (2002). 1/ means that a polytime algorithm ex-
ists for the corresponding language/query, while o means
that no such algorithm exists unless P = N P.

Darwiche 2013). Such algorithms assume canonical SDDs,
allowing one to search the space of SDDs by searching the
space of vtrees instead.

Queries SDDs are a strict subset of deterministic, decom-
posable negation normal form (d-DNNF). They are actually
a strict subset of structured d-DNNF and, hence, support the
same polytime queries supported by structured d-DNNF (Pi-
patsrisawat and Darwiche 2008); see Table 1. We defer the
reader to Darwiche and Marquis (2002) for a detailed de-
scription of the queries typically considered in knowledge
compilation. This makes SDDs as powerful as OBDDs in
terms of their support for certain queries (e.g., clausal en-
tailment, model counting, and equivalence checking).

Bottom-up Construction SDDs are typically constructed
in a bottom-up fashion. For example, to construct an SDD
for the function f = (AAB)V (BAC)V (C AD), we
first retrieve terminal SDDs for the literals A, B, C, and
D. We then conjoin the terminal SDD for literal A with the
one for literal B, to obtain an SDD for the term A A B.
The process is repeated to obtain SDDs for the terms B A C'
and C' A D. The resulting SDDs are then disjoined to obtain
an SDD for the whole function. These operations are not
all efficient on structured d-DNNFs. However, SDDs satisfy
stronger properties than structured d-DNNFs, allowing one,
for example, to conjoin or disjoin two SDDs in polytime.
This bottom-up compilation is performed using the
Apply function. Algorithm 1 outlines an Apply function
that takes two SDDs « and 3, and a binary Boolean operator
o (e.g., A\, V, xor), and returns the SDD for o o 8 (Darwiche
2011).2 Line 13 optionally compresses each partition, in or-
der to return a compressed SDD. Without compression, this
algorithm has a time and space complexity of O(nm), where
n and m are the sizes of input SDDs. This comes at the ex-
pense of losing canonicity. Whether a polytime complexity
can be attained under compression was an open question.
There are several implications of this question. For ex-
ample, depending on the answer, one would know whether
certain transformations, such as conditioning and existential
quantification, can be supported in polytime on canonical
SDDs. Moreover, according to common wisdom, a nega-

2This code assumes that the SDD is normalized. The Apply for
trimmed SDDs is similar, although a bit more technically involved.

Algorithm 1 Apply(a, 3,0)

1: if o and 3 are constants or literals then
2: return oo f3 /] result is a constant or literal

3: else if Cache(c, 3,0) # nil then

4: return Cache(q,3,0) // has been computed before
5: else

6: y{}

7. for all elements (p;, s;) in « do

8: for all elements (g;, ;) in 8 do

9: pRApply(pi, ¢;, M)
10: if p is consistent then
11: s<2Apply(s;,rj,0)
12: add element (p, s) to v

13: (optionally) v +— Compress(y) /I compression
/I get unique decision node and return it
14: return Cache(a, f3,0)«UniqueD(y)

tive answer may preclude bottom-up compilation from be-
ing feasible on canonical SDDs. We answer this question
and explore its implications next.

Complexity of Apply on Canonical SDDs

The size of a decision node is the number of its elements, and
the size of an SDD is the sum of sizes attained by its decision
nodes. We now show that compression, given a fixed vtree,
may blow up the size of an SDD.

Theorem 1. There exists a class of Boolean functions
fm(X1,...,X.m) and corresponding vtrees T,, such that
fm has an SDD of size O(m?) wrt vtree T,,, yet the canon-
ical SDD of function f,, wrt vtree T,, has size Q(2™).

The proof is constructive, identifying a class of functions
fm with the given properties. The functions f%(X,Y, Z) =

Vi (AL ﬂ/j) AY;AX; have 2m-+1 variables. Of these,

Z is non-essential. Consider a vtree T, of the form

N
2 Z
N
X Y

where the sub-vtrees over variables X and Y are arbitrary.
We will now construct an uncompressed SDD for this func-
tion using vtree 7}, and whose size is O(m?). We will then
show that the compressed SDD for this function and vtree
has a size 2(2™).

The first step is to construct a partition of function f7
that respects the root vtree node, that is, an (XY,Z)-partition.

Consider

(Yi A X1, T),
(<Y1 A Y2 A Xa, T),

("Yl VAERIVAN _‘Ym—l A Ym /\Xm7—|—)7
(Yl A _'leJ—)a
(=Y1 AYa A—Xo, 1),

(Y1 A A=Yy 1 AYy A=Xp,, L),
(Y1 A AY, L)

which is equivalently written as

i—1
N -YinYin X, T |,
j=1

s

s
Il
_

1—1 m
N\ Y AYiA=X, L) pug [A YL

j=1 j=1

The size of this partition is 2m + 1, and hence linear in m.
It is uncompressed, because there are m elements that share
sub T and m+-1 elements that share sub _L. The subs already
respect the leaf vtree node labeled with variable Z.

In a second step, each prime above is written as a com-
pressed (X,Y)-partition that respects the left child of the

vtree root. Prime /\3;11 -Y; AY; A X, becomes

i—1
Xia /\ _'Yj A }/7 3 (_'XMJ-))

j=1
. i-1
prime A\;_; =Y A Y; A =X, becomes

i—1
_‘Xia _‘Y]/\}/Z 7(XﬂJ—)

Jj=1
and prime /\’_, —Y; becomes

m

T,/\ﬂ/j

j=1

The sizes of these partitions are bounded by 2.

Finally, we need to represent the above primes as SDDs
over variables X and the subs as SDDs over variables Y.
Since these primes and subs correspond to terms (i.e. con-
junctions of literals), each has a compact SDD represen-
tation, independent of the chosen sub-vtree over variables
X and Y. For example, we can choose a right-linear vtree
over variables X, and similarly for variables Y, leading to
an OBDD representation of each prime and sub, with a size
linear in m for each OBDD. The full SDD for function f
will then have a size which is O(m?). Recall that this SDD is
uncompressed as some of its decision nodes have elements
with equal subs.

The compressed SDD for this function and vtree is
unique. We now show that its size must be Q(2™). We

first observe that the unique, compressed (XY,Z)-partition
of function f, is

m i—1

VIAY|Avinx,T],

i=1 \j=1
m i—1 m
VIAY | Avin-xi|v |- L
i=1 \j=1 j=1

Its first prime is the function

m i—1

fP(X,Y) = \/ /\ -Y; | AY; A X,

i=1 \j=1

which we need to represent as an (X,Y)-partition to respect
left child of the vtree root. However, Xue, Choi, and Dar-
wiche (2012) proved the following.

Lemma 2. The compressed (X,Y)-partition of 2, (X,Y)
has 2™ elements.

This becomes clear when looking at the function f° af-
ter instantiating the X-variables. Each distinct x results in a
unique subfunction f2 (x,Y), and all states x are mutually
exclusive and exhaustive. Therefore,

{(x, f2(x,Y)) | x instantiates X}

is the unique, compressed (X,Y)-partition of function
? (X,Y), and it has 2™ elements. Hence, the compressed
SDD must have size 2(2™).
Theorem 1 has a number of implications, which are sum-
marized in Table 2; see also Darwiche and Marquis (2002).

Theorem 3. The results in Table 2 hold.

First, combining two canonical SDDs (e.g., using the con-
join or disjoin operator) may lead to a canonical SDD whose
size is exponential in the size of inputs. Hence, if we ac-
tivate compression in Algorithm 1, the algorithm may take
exponential time in the worst-case. Second, conditioning a
canonical SDD on a literal may exponentially increase its
size (assuming the result is also canonical). Third, forgetting
a variable (i.e., existentially quantifying it) from a canonical
SDD may exponentially increase its size (again, assuming
that the result is also canonical). The proof of this theorem
is in the Appendix.

Note that these theorems consider the same vtree for both
the compressed and uncompressed SDD. They do not per-
tain to the complexity of compression and Apply when the
vtree is allowed to change. In practice, dynamic vtree search
is performed in between conditioning and Apply, but not
during (vtree search itself calls Apply). Therefore, the set-
ting where the vtree does not change is more accurate to
describe the practical complexity of these operations.

These results may seem discouraging. However, we argue
next that, in practice, working with canonical SDDs is ac-
tually favorable despite the lack of polytime guarantees on
these transformations.

Our proof of Theorem 1 critically depends on the ability
of a vtree to split the variables into arbitrary sets X and Y.

&
Q
2
alga
. . Al =A
Notation Transformation wn | Own
CD conditioning V| e
FO forgetting ° °
SFO singleton forgetting | +/ .
ANC conjunction . .
ABC bounded conjunction | +/ .
vC disjunction B °
vBC bounded disjunction | +/ .
-C negation N

Table 2: Analysis of supported transformations, following
Darwiche and Marquis (2002). 1/ means “satisfies”; e means
“does not satisfy”. Satisfaction means the existence of a
polytime algorithm that implements the transformation.

In the Appendix, we define a class of bounded vtrees where
such splits are not possible. Moreover, we show that the sub-
set of SDDs for such vtrees do support polytime Apply
even under compression. Right-linear vtrees, which induce
an OBDD, are a special case.

Canonicity or a Polytime Apply?

One has two options when working with SDDs. The first
option is to work with uncompressed SDDs, which are not
canonical, but are supported by a polytime Apply function.
The second option is to work with compressed SDDs, which
are canonical but lose the advantage of a polytime Apply
function. The classical reason for seeking canonicity is that
it leads to a very efficient equivalence test, which takes con-
stant time (both compressed and uncompressed SDDs sup-
port a polytime equivalence test, but the one known for un-
compressed SDDs is not a constant time test). The classical
reason for seeking a polytime Apply function is to enable
bottom-up compilation, that is, compiling a knowledge base
(e.g., CNF or DNF) into an SDD by repeated application of
the Apply function to components of the knowledge base
(e.g., clauses or terms). If our goal is efficient bottom-up
compilation, one may expect that uncompressed SDDs pro-
vide a better alternative. However, our next empirical results
suggest otherwise. Our goal in this section is to shed some
light on this phenomena through some empirical evidence
and then an explanation.

We used the SDD package provided by the Automated
Reasoning Group at UCLA? in our experiments. The pack-
age works with compressed SDDs, but can be adjusted to
work with uncompressed SDDs as long as dynamic vtree
search is not invoked.* In our first experiment, we compiled
CNFs from the LGSynth89 benchmarks into the following
(all trimmed):’

— Compressed SDDs respecting an arbitrary vtree. Dynamic

3 Available at http://reasoning.cs.ucla.edu/sdd/

“Dynamic vtree search requires compressed SDDs as canonic-
ity reduces the search space over SDDs into one over vtrees.

SFor a comparison with OBDD, see Choi and Darwiche (2013).

Name Variables Clauses SDD Size Compilation Time
Compressed Compressed Uncompressed | Compressed Compressed Uncompressed
SDDs+s SDDs SDDs SDDs+s SDDs SDDs
C17 17 30 99 171 286 0.00 0.00 0.00
majority 14 35 123 193 384 0.00 0.00 0.00
bl 21 50 166 250 514 0.00 0.00 0.00
cml52a 20 49 149 3,139 18,400 0.01 0.01 0.02
cm8§2a 25 62 225 363 683 0.01 0.00 0.00
cmlSla 44 100 614 1,319 24,360 0.04 0.00 0.04
cm42a 48 110 394 823 276,437 0.03 0.00 0.10
cml38a 50 114 463 890 9,201,336 0.02 0.01 109.05
decod 41 122 471 810 1,212,302 0.04 0.01 1.40
tcon 65 136 596 1,327 618,947 0.05 0.00 0.33
parity 61 135 549 978 2,793 0.02 0.00 0.00
cmb 62 147 980 2,311 81,980 0.12 0.02 0.06
cml63a 68 157 886 1,793 21,202 0.06 0.00 0.02
pcle 66 156 785 1,366 n/a 0.07 0.01 n/a
x2 62 166 785 1,757 12,150,626 0.08 0.02 19.87
cm85a 77 176 1,015 2,098 19,657 0.08 0.01 0.03
cml62a 73 173 907 2,050 153,228 0.08 0.01 0.16
cm150a 84 202 1,603 5,805 17,265,164 0.16 0.06 60.37
pcler8 98 220 1,518 4,335 15,532,667 0.18 0.05 33.32
cu 94 235 1,466 5,789 n/a 0.19 0.10 n/a
pml 105 245 1,810 3,699 n/a 0.27 0.05 n/a
mux 73 240 1,825 6,517 n/a 0.19 0.09 n/a
cc 115 265 1,451 6,938 n/a 0.22 0.04 n/a
unreg 149 336 3,056 668,531 n/a 0.66 263.06 n/a
1dd 145 414 1,610 2,349 n/a 0.23 0.10 n/a
count 185 425 4,168 51,639 n/a 1.05 0.24 n/a
comp 197 475 2,212 4,500 205,105 0.24 0.01 0.22
fS1m 108 511 3,290 6,049 n/a 0.52 0.32 n/a
my_adder 212 612 2,793 4,408 35,754 0.24 0.02 0.04
cht 205 650 4,832 13,311 n/a 1.24 0.36 n/a

Table 3: LGSynth89 benchmarks
dynamic vtree search.

: SDD sizes and compilation times. Compressed SDDs+s refers to compressed SDDs with

vtree search is used to minimize the size of the SDD dur-

ing compilation, starting from a balanced vtree.

— Compressed SDDs respecting a fixed balanced vtree.

— Uncompressed SDDs respecting a fixed balanced vtree.

Table 3 shows the corresponding sizes and compilation

times. According to these results, uncompressed SDDs end
up several orders of magnitude larger than the compressed
ones, with or without dynamic vtree search. For the harder
problems, this translates to orders-of-magnitude increase in
compilation times. Often, we cannot even compile the input
without reduction (due to running out of 4GB of memory),
even on relatively easy benchmarks. For the easiest bench-
marks, dynamic vtree search is slower due to the overhead,
but yields smaller compilations. The benefit of vtree search
shows only in harder problems (e.g., “unreg”).

Next, we consider the harder set of ISCAS89 benchmarks.
Of the 17 ISCAS89 benchmarks that compile with com-
pressed SDDs, only one (s27) could be compiled with un-
compressed SDDs (others run out of memory). That bench-
mark has a compressed SDD+s size of 108, a compressed
SDD size of 315, and an uncompressed SDD size of 4,551.

These experiments clearly show the advantage of com-
pressed SDDs over uncompressed ones, even though the lat-

ter supports a polytime Apply function while the former
does not. This begs an explanation and we provide one next
that we back up by additional experimental results.

The benefit of compressed SDDs is canonicity, which
plays a critical role in the performance of the Apply func-
tion. Consider in particular Line 4 of Algorithm 1. The test
Cache(w, 8,0) # nil checks whether SDDs « and 3 have
been previously combined using the Boolean operator o.
Without canonicity, it is possible that we would have com-
bined some ' and 3’ using o, where SDD ¢« is equivalent
to, but distinct from SDD « (and similarly for 8’ and (). In
this case, the cache test would fail, causing Apply to re-
compute the same result again. Worse, the SDD returned by
2Apply(a, B, 0) may be distinct from the SDD returned by
Apply(cd/, ', 0), even though the two SDDs are equivalent.
This redundancy also happens when « is not equivalent to o’
(and similarly for 8 and 3), a o 3 is equivalent to o’ o 5/,
but the result returned by Apply(a, 3,0) is distinct from
the one returned by Apply(a/, §’,0).

Two observations are due here. First, this redundancy is
still under control when calling Apply only once: Apply
runs in O(nm) time, where n and m are the sizes of in-
put SDDs. However, this redundancy becomes problematic
when calling Apply multiple times (as in bottom-up com-

0.1

o

Frequency
Frequency

0.01

e
o

0.001 0.001
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Relative size

(a) Compressed SDDs

Relative size

(b) Uncompressed SDDs

Figure 3: Relative SDD size.

Frequency
o

Frequency
o

o
o
e
1=

0.001
0 003 006 009 012 0.15 0 003 006 009 0.12 0.15

Relative number of recursive applies

(b) Uncompressed SDDs

0.001

Relative number of recursive applies

(a) Compressed SDDs

Figure 4: Relative number of recursive Apply calls.

pilation), in which case quadratic performance is no longer
as attractive. For example, if we use Apply to combine k
SDDs of size n each, all we can say is that the output will be
of size O(n*). The second observation is that the previous
redundancy will not occur when working with compressed
SDDs due to canonicity: Two SDDs are equivalent iff they
are represented by the same structure in memory.

This analysis points to the following conclusion: While
Apply has a quadratic complexity on uncompressed SDDs,
it may have a worse average complexity than Apply on
compressed SDDs. Our next experiment is indeed directed
towards this hypothesis.

For all benchmarks in Table 3 that can be compiled with-
out vtree search, we intercept all non-trivial calls to Apply
(when |a| - |8| > 500) and report the size of the output
|ae o | divided by |a - |3|. For uncompressed SDDs, we
know that |a o 8| = O(Je| - |B]) and that these ratios are
therefore bounded above by some constant. For compressed
SDDs, however, Theorem 3 states that there exists no con-
stant bound.

Figure 3 shows the distribution of these ratios for the two
methods (note the log scale). The number of function calls
is 67,809 for compressed SDDs, vs. 1,626,591 for uncom-
pressed ones. The average ratio is 0.027 for compressed, vs.
0.101 for uncompressed. Contrasting the theoretical bounds,
compressed Apply incurs much smaller blowups than un-
compressed Apply. This is most clear for ratios in the range
[0.48,0.56], covering 30% of the uncompressed, but only
2% of the compressed calls.

The results are similar when looking at runtime for in-
dividual Apply calls, which we measure by the number
of recursive Apply calls r. Figure 4 reports these, again

This is due to the technique of unique nodes from OBDDs; see
UniqueD in Algorithm 1.

relative to |«| - |8]. The ratio r/(|e| - |8]) is on average
0.013 for compressed SDDs, vs. 0.034 for uncompressed
ones. These results corroborate our earlier analysis, sug-
gesting that canonicity is quite important for the perfor-
mance of bottom-up compilers as they make repeated calls
to the Apply function. In fact, this can be more important
than a polytime Apply, perhaps contrary to common wis-
dom which seems to emphasize the importance of polytime
Apply in effective bottom-up compilation (e.g., Pipatsri-
sawat and Darwiche (2008)).

Conclusions

We have shown that the Apply function on compressed
SDDs can take exponential time in the worst case, resolv-
ing a question that has been open since SDDs were first in-
troduced. We have also pursued some of the theoretical and
practical implications of this result. On the theoretical side,
we showed that it implies an exponential complexity for var-
ious transformations, such as conditioning and existential
quantification. On the practical side, we argued empirically
that working with compressed SDDs remains favorable, de-
spite the polytime complexity of the Apply function on un-
compressed SDDs. The canonicity of compressed SDDs, we
argued, is more valuable for bottom-up compilation than a
polytime Apply due to its role in facilitating caching and
dynamic vtree search. Our findings appear contrary to some
of the common wisdom on the relationship between bottom-
up compilation, canonicity and the complexity of the Apply
function.

Acknowledgments

We thank Arthur Choi, Doga Kisa, Umut Oztok, and Jessa
Bekker for helpful suggestions. This work was supported by
ONR grant #N00014-12-1-0423, NSF grants #IIS-1118122
and #I1S-0916161, and the Research Foundation-Flanders
(FWO-Vlaanderen). GVdB is also at KU Leuven, Belgium.

References

Barrett, A. 2005. Model compilation for real-time plan-
ning and diagnosis with feedback. In Proceedings of the
Nineteenth International Joint Conference on Artificial In-
telligence (IJCAI), 1195-1200.

Beame, P,; Li, J.; Roy, S.; and Suciu, D. 2013. Lower bounds
for exact model counting and applications in probabilistic
databases. In Proceedings of the 29th Conference on Uncer-
tainty in Artificial Intelligence (UAI), 52-61.

Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
C-35:677-691.

Cadoli, M., and Donini, F. M. 1997. A survey on knowledge
compilation. AI Communications 10:137-150.

Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artificial Intelligence
Journal 172(6-7):772-799.

Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compil-
ing relational bayesian networks for exact inference. Inter-
national Journal of Approximate Reasoning 42(1):4-20.

Choi, A., and Darwiche, A. 2013. Dynamic minimization
of sentential decision diagrams. In Proceedings of AAAL

Choi, A.; Kisa, D.; and Darwiche, A. 2013. Compiling
probabilistic graphical models using sentential decision dia-
grams. In Proceedings of ECSOQARU.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. JAIR 17:229-264.

Darwiche, A. 2001. On the tractability of counting theory
models and its application to belief revision and truth main-
tenance. Journal of Applied Non-Classical Logics 11(1-
2):11-34.

Darwiche, A. 2011. SDD: A new canonical representation
of propositional knowledge bases. In Proceedings of 1JCAI,
819-826.

Darwiche, A. 2014. Tractable knowledge representation
formalisms. In Lucas Bordeaux, Youssef Hamadi, P. K., ed.,
Tractability: Practical Approaches to Hard Problems. Cam-
bridge University Press. chapter 5.

del Val, A. 1994. Tractable databases: How to make proposi-
tional unit resolution complete through compilation. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), 551-561.
Morgan Kaufmann Publishers, Inc., San Mateo, California.

Elliott, P., and Williams, B. 2006. DNNF-based belief state
estimation. In Proceedings of AAAI.

Fierens, D.; Van den Broeck, G.; Thon, I.; Gutmann, B.; and
Raedt, L. D. 2011. Inference in probabilistic logic programs
using weighted CNF’s. In Proceedings of UAI, 211-220.

Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov,
D.; Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L.
2013. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of
Logic Programming.

Gens, R., and Domingos, P. 2013. Learning the structure of
sum-product networks. In ICML, 873-880.

Huang, J., and Darwiche, A. 2005. On compiling system
models for faster and more scalable diagnosis. In Proceed-
ings of the 20th National Conference on Artificial Intelli-
gence (AAAI), 300-306.

Huang, J. 2006. Combining knowledge compilation and
search for conformant probabilistic planning. In Proceed-
ings of the International Conference on Automated Planning

and Scheduling (ICAPS-06), 253262.

Jha, A., and Suciu, D. 2011. Knowledge compilation
meets database theory: Compiling queries to decision dia-
grams. In Proceedings of the 14th International Conference
on Database Theory (ICDT), 162—-173.

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014a. Probabilistic sentential decision diagrams. In Pro-
ceedings of KR.

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014b. Probabilistic sentential decision diagrams: Learn-
ing with massive logical constraints. In /ICML Workshop on
Learning Tractable Probabilistic Models (LTPM), Beijing,
China, June 2014.

Lowd, D., and Rooshenas, A. 2013. Learning Markov net-
works with arithmetic circuits. In AISTATS, 406-414.

Marquis, P. 1995. Knowledge compilation using theory
prime implicates. In Proc. International Joint Conference
on Artificial Intelligence (IJCAI), 837-843. Morgan Kauf-
mann Publishers, Inc., San Mateo, California.

Oztok, U., and Darwiche, A. 2014. On compiling cnf into
decision-dnnf. In Proceedings of CP.

Palacios, H.; Bonet, B.; Darwiche, A.; and Geftner, H. 2005.
Pruning conformant plans by counting models on compiled
d-DNNF representations. In Proceedings of the 15th Inter-
national Conference on Automated Planning and Schedul-

ing, 141-150.

Pipatsrisawat, K., and Darwiche, A. 2008. New compilation
languages based on structured decomposability. In Proceed-
ings of AAAI, 517-522.

Razgon, I. 2013. On OBDDs for CNFs of bounded
treewidth. CoRR abs/1308.3829.

Rekatsinas, T.; Deshpande, A.; and Getoor, L. 2012. Lo-
cal structure and determinism in probabilistic databases. In
ACM SIGMOD Conference.

Renkens, J.; Kimmig, A.; Van den Broeck, G.; and De Raedt,
L. 2014. Explanation-based approximate weighted model
counting for probabilistic logics. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence.

Selman, B., and Kautz, H. 1991. Knowledge compilation
using horn approximation. In Proceedings of AAAI. AAAL

Siddiqi, S., and Huang, J. 2007. Hierarchical diagnosis of
multiple faults. In Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

Suciu, D.; Olteanu, D.; Ré, C.; and Koch, C. 2011. Proba-
bilistic databases. Synthesis Lectures on Data Management
3(2):1-180.

Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.; and
De Raedt, L. 2011. Lifted Probabilistic Inference by First-
Order Knowledge Compilation. In Proceedings of 1JCAI,
2178-2185.

Van den Broeck, G. 2011. On the completeness of first-
order knowledge compilation for lifted probabilistic infer-
ence. In Advances in Neural Information Processing Sys-
tems 24 (NIPS),, 1386—1394.

Van den Broeck, G. 2013. Lifted Inference and Learning in
Statistical Relational Models. Ph.D. Dissertation, KU Leu-
ven.

Vlasselaer, J.; Renkens, J.; Van den Broeck, G.; and
De Raedt, L. 2014. Compiling probabilistic logic programs
into sentential decision diagrams. In Workshop on Proba-
bilistic Logic Programming (PLP).

Wernick, W. 1942. Complete sets of logical func-
tions. Transactions of the American Mathematical Society
51(1):117-132.

Xue, Y.; Choi, A.; and Darwiche, A. 2012. Basing decisions
on sentences in decision diagrams. In Proceedings of the
26th Conference on Artificial Intelligence (AAAI), 842—-849.

Complexity of Transformations

We now prove Theorem 3, stating that the results in Table 2
hold. We will first show the results for uncompressed SDDs,
and then prove the results for compressed SDDs.

For uncompressed SDDs, Darwiche (2011) showed sup-
port for ABC, VBC, and —C (see Algorithm 1). We show
support for uncompressed CD next.

Theorem 4. We can condition an uncompressed SDD on a
literal { in polynomial time by replacing £ by T and —f by
1. When removing all elements whose prime is equivalent
to L, the resulting sentence is an uncompressed SDD.

Proof. 1t is clear that the procedure transforms « into a sen-
tence that is logically equivalent to «|¢: the first step directly
follows the definition of conditioning, and the second step
maintains logical equivalence. We need to show next that the
result is syntactically an SDD, by showing that the primes
in its partitions are consistent, exhaustive, and mutually ex-
clusive. The second step enforces consistency of the primes.
Moreover, if the primes are exhaustive, thatis, p1 V- - -Vp,, =
T,thenpy[fV---Vppll = (p1V---Vp,)|l = T|¢ =T, and
the result of conditioning is also exhaustive. Finally, when
p; and p; are mutually exclusive, that is, p; A p; = L, then
pill A p;ill = (p; Apj)|¢ = L|¢ = L, and the conditioned
primes are also mutually exclusive. O

Support for SFO follows from the support for CD and
VBC. The negative results for FO, AC and vV C follow from
identical OBDD results in Darwiche and Marquis (2002),
and the fact that OBDDs are a special case of SDDs.

For compressed SDDs, the negative FO, AC and VC re-
sults also follow from OBDD results. It is also clear from
Algorithm 1 that negating a compressed SDD « by comput-
ing Apply(a, T,xor) does not cause any subs to become
equivalent. Therefore, negating a compressed SDD leads to
a compressed result, and compressed SDDs support —C.
The remaining results in Table 2, on CD, SFO, ABC and
VBC are discussed next.

Theorem 5. There exists a class of Boolean functions
f(Xq,...,X,,) and vtrees T,, for which the compressed
SDD has size O(n), yet the compressed SDD for the function
f(Xq, ..., X)) has size Q(2™) for some literal ¢.

Proof. Consider the function
XY, Z, W) =
n i—1
V A\ Y AV A (XA (WY Z) V(=X A Z))]
i=1j=1
and the vtree depicted in Figure Sa.
The root of the reduce SDD for f: is an (XY, ZW)-
partition that respects vtree node 1, consisting of elements
n i—1
USIA-YirYinx, wvz|,
i=1 j=1
i—1
N\ YiAYin=Xi, Zi| o,
j=1

1
/\
2 ZuU{Ww} 1
PN PN
X 'Y L X
(a) For conditioning (b) For forgetting

Figure 5: Vtree structures used in proofs

together with (/\;L:1 —-Y;, J_) to make it exhaustive. The

size of this partition is linear in n. It has the same primes
as the uncompressed SDD for f used in the proof of Theo-
rem 1, only now the partition is compressed, as all subs are
distinct.

The primes of this partition can be represented as com-
pressed (X,Y)-partitions, exactly as in the second step for
Theorem 1. The remaining primes and subs (over X, over
Y, and over Z U {IV}) are all simple conjunctions or dis-
junctions of literals that have a linear compressed SDD rep-
resentation for any vtree.

We have now obtained a polysize SDD. However, when
we condition this SDD on the literal W, all n subs of
the form W V Z; become equivalent to T. Their el-
ements need to be compressed into the single element

(\/?:1 /\;;11 =Y ANY; A X, T). Its prime is again the

function f?(X,Y) for which Lemma 2 states that the com-
pressed SDD wrt vtree node 2 has exponential size. O

Theorem 6. There is a class of Boolean functions
f(X1,...,X,) and vtrees T,, for which the compressed
SDD has size O(n), yet the compressed SDD for the Boolean
Sfunction (X1, ..., X)L has size Q(2"™) for some literal £.

Proof. Consider again the compressed SDD for fS that
was constructed in the proof of Theorem 5 for the vtree
in Figure 5a. Conjoining this SDD with the SDD for lit-
eral W makes the n subs of the form W V Z; equivalent
to WA (W V Z;) = W. Compressing these creates the

element <\/f:1 /\;;11 -Y; ANY A X, W), whose prime is

again f°(X,Y), which has no polysize compressed SDD
for vtree node 2. O

This already proves that Apply is worst-case exponential
when performing conjunctions on compressed SDDs. Given
that compressed SDDs support polytime negation, this result
generalizes to any binary Boolean operator o that is func-
tionally complete together with negation (Wernick 1942).
Support for these operators would allow us to do polytime
conjunction by combining o and negation. One such opera-
tor is disjunction, which is therefore also is worst-case ex-
ponential.

Suppose now that we can perform singleton forgetting in
polytime, which is defined as 3L.cv = («|L)V (c|-L). Then
given any two compressed SDDs 3 and + respecting the
same vtree I', we can obtain § V -y in polytime as follows.
Add a new variable L to vtree 7', as depicted in Figure 5b.

The compressed SDD « for the function (LA 3) V (=L A+y)
has the root partition {(L, 3), (=L, ~)}. Forgetting L from
« results in the compressed SDD for 8 V 7. Hence, if single
forgetting can be done in polytime, then bounded disjunction
can also be done in polytime. Since the latter is impossible,
the former is also impossible.

Bounded Vtrees

A bounded vtree is one for which the number of variables in
any left subtree is bounded. This includes right-linear vtrees
which give rise to OBDDs, since each left subtree contains
a single variable in this case. We now have the following.

Theorem 7. The time and space complexity of Algorithm 1,
with compression, is in O(nm), where n and m are the sizes
of its inputs, assuming that the input SDDs are compressed
and respect a bounded vtree.

The compression step of Algorithm 1 identifies elements
(pi,s) and (pj, s) that share sub s, and merges these ele-
ments into the element (p; V p;, s) by calling Apply recur-
sively to disjoin primes p; and p;. Since the vtree is bounded,
primes p; and p; must be over a bounded number of vari-
ables. Hence, the complexity of compression is bounded,
leading Apply to have the same complexity with or without
compression.

For example, in right-linear vtrees (i.e., OBDDs), primes
are literals over a single variable. Hence, all decision nodes
are of the form {(X, a), (—X, 3)}. On these, compression
occurs when o = [, resulting in the partition {(X V
-X,a)} = {(T,a)}, which trimming replaces by «. This
corresponds to the OBDD reduction rule that eliminates de-
cision nodes with isomorphic children (Bryant 1986).

Xue, Choi, and Darwiche (2012) showed a class of
Boolean functions whose OBDDs have exponential size
with respect to certain orders (right-linear vtrees), but which
have SDDs of linear size when the vtrees are not right-linear
(but have the same left-to-right variable order). The used
vtrees, however, were not bounded. It would be interesting
to see if a similar result can be obtained for bounded vtrees.

