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Abstract. One of the most successful approaches in automated plan-
ning is to use heuristic state-space search. A popular heuristic that is used
by a number of state-space planners is based on relaxing the planning
task by ignoring the delete effects of the actions. In several planning do-
mains, however, this relaxation produces rather weak estimates to guide
search effectively. We present a relaxation using (integer) linear program-
ming that respects delete effects but ignores action ordering, which in
a number of problems provides better distance estimates. Moreover, our
approach can be used as an admissible heuristic for optimal planning.

Keywords: Automated planning, improving admissible heuristics,
optimal relaxed planning

1 Introduction

Many heuristics that are used to guide heuristic state-space search planners are
based on constructing a relaxation of the original planning problem that is easier
to solve. The idea is to use the solution to the relaxed problem to guide search
for the solution to the original problem. A popular relaxation that has been
implemented by several planning systems, including UNPOP [17,18], HSP [4,5],
and FF [15], involves using relaxed actions in which the delete effects of the
original actions are ignored.

For example, FF estimates the distance between an intermediate state and
the goals by creating a planning graph [3] using relaxed actions. From this graph,
FF extracts in polynomial time a relaxed plan whose corresponding plan length
is used as an inadmissible, but effective, distance estimate. One can transform
this approach into an admissible heuristic by finding the optimal relaxed plan,
also referred to as h+ [14], but computing such a plan is NP-Complete [8]. In
order to extract the optimal relaxed plan one must extend the relaxed planning
graph to level off [3] so that all reachable actions can be considered.

Although ignoring delete effects turns out to be quite effective for many plan-
ning domains, there are some obvious weaknesses with FF’s relaxed plan heuris-
tic. For example, in a relaxed plan no atom changes more than once, if an
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atom becomes true it remains true as it is never deleted. However, in a plan
corresponding to the original problem an atom may be added and deleted sev-
eral times. In order to improve the quality of the relaxed plan we consider a
relaxation based on relaxed orderings.

In particular, we view a planning problem as a set of interacting network
flow problems. Given a planning domain where states are defined in terms of
n boolean or multi-valued state variables (i.e. fluents), we view each fluent as
a separate flow problem, where nodes correspond to the values of the fluent,
and arcs correspond to the transitions between these values. While network flow
problems are computationally easy, what makes this flow problem hard is that
the flows are “coupled” as actions can cause transitions in multiple fluents.

We set up an IP formulation where the variables correspond to the number
times each action is executed in the solution plan. The objective is to minimize
the number of actions, and the constraints ensure that each pre-condition is
supported. However, the constraints do not ensure that pre-conditions are sup-
ported in a correct ordering. Specifically, for pre-conditions that are deleted we
setup balance of flow constraints. That is, if there are m action instances in
the plan that cause a transition from value f of fluent c, then there must be
m action instances in the plan that cause a transition to value f of c. More-
over, for pre-conditions that are not deleted we simply require that they must
be supported.

The relaxation that we pursue in this paper is that we are not concerned
about the specific positions of where the actions occur in the plan. This can,
to some extent, be thought of as ignoring the ordering constraints that ensure
that the actions can be linearized into a feasible plan. An attractive aspect of our
formulation is that it is not dependent on the length of the plan. Previous integer
programming-based formulations for planning, such as [7,9,21], use a step-based
encoding. In a step-based encoding the idea is to set up a formulation for a given
plan length and increment it if no solution can be found. The problem with
such an encoding is that it may become impractically large, even for medium
sized planning tasks. In a step-based encoding, if l steps are needed to solve a
planning problem then l variables are introduced for each action, whereas in our
formulation we require only a single variable for each action.

The estimate on the number of actions in the solution plan, as computed by
our IP formulation, provides a lower bound on the optimal (minimum number of
actions) plan. However, since solving an IP formulation is known to be compu-
tationally intractable, we use the linear programming (LP) relaxation which can
be solved in polynomial time. We will see that this double relaxation is still com-
petitive with other admissible heuristics after we add non-standard and strong
valid inequalities to the formulation. In particular, We show that the value of
our LP-relaxation with added inequalities, gives very good distance estimates
and in some problem instances even provides the optimal distance estimate.

While the current paper focuses on admissible heuristics for optimal sequential
planning, the flow-based formulation can be easily extended to deal with more
general planning problems, including cost-based planning and over-subscription
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planning. In fact, a generalization of this heuristic leads to state-of-the-art
performance in oversubscription planning with non-uniform actions costs, goal
utilities as well as dependencies between goal utilities [2].

This paper is organized as follows. In Section 2 we describe our action se-
lection formulation and describe a number of helpful constraints that exploit
domain structure. Section 3 reports some experimental results and related work
is described in Section 4. In Section 5 we summarize our main conclusions and
describe some avenues for future work.

2 Action Selection Formulation

We find it useful to do the development of our relaxation in terms of multi-valued
fluents (of which the boolean fluents are a special case). As such, we will use the
SAS+ formalism [1] rather than the usual STRIPS/ADL one as the background
for our development. SAS+ is a planning formalism that defines actions by their
prevail-conditions and effects. Prevail-conditions describe which variables must
propagate a certain value during the execution of the action and effects describe
the pre- and post-conditions of the action.

To make the connection between planning and network flows more straight-
forward, we will restrict our attention to a subclass of SAS+ where each action
that has an post-condition on a fluent also has a pre-condition on that fluent.
We emphasize that this restriction is made for ease of exposition and can be
easily removed; indeed our work in [2] avoids making this restriction.

2.1 Notation

We define a SAS+ planning task as a tuple Π = 〈C, A, s0, s∗〉, where

– C = {c1, ..., cn} is a finite set of state variables, where each state variable c ∈
C has an associated domain Vc and an implicitly defined extended domain
V +

c = Vc ∪{u}, where u denotes the undefined value. For each state variable
c ∈ C, s[c] denotes the value of c in state s. The value of c is said to be defined
in state s if and only if s[c] �= u. The total state space S = Vc1 × ... × Vcn

and the partial state space S+ = V +
c1

× ... × V +
cn

are implicitly defined.
– A is a finite set of actions of the form 〈pre, post, prev〉, where pre denotes

the pre-conditions, post denotes the post-conditions, and prev denotes the
prevail-conditions. For each action a ∈ A, pre[c], post[c] and prev[c] denotes
the respective conditions on state variable c. The following two restrictions
are imposed on all actions: (1) Once the value of a state variable is defined,
it can never become undefined. Hence, for all c ∈ C, if pre[c] �= u then
pre[c] �= post[c] �= u; (2) A prevail- and post-condition of an action can
never define a value on the same state variable. Hence, for all c ∈ C, either
post[c] = u or prev[c] = u or both.

– s0 ∈ S denotes the initial state and s∗ ∈ S+ denotes the goal state. We say
that state s is satisfied by state t if and only if for all c ∈ C we have s[c] = u
or s[c] = t[c]. This implies that if s∗[c] = u for state variable c, then any
defined value f ∈ Vc satisfies the goal for c.



654 M. van den Briel et al.

While SAS+ planning allows the initial state, the goal state and the pre-conditions
of an action to be partial, we assume that s0 is a total state and that all precon-
ditions are defined for all state variables on which the action has post-conditions
(i.e. pre[c] = u if and only if post[c] = u). The assumption that s0 is a total state
is common practice in automated planning. However, the assumption that all pre-
conditions are defined is quite strong, therefore, we will briefly discuss a way to
relax this second assumption in Section 5.

An important construct that we use in our action selection formulation is the
so-called domain transition graph [13]. A domain transition graph is a graph
representation of a state variable and shows the possible ways in which values
can change. Specifically, the domain transition graph DTGc of state variable c
is a labeled directed graph with nodes for each value f ∈ Vc. DTGc contains a
labeled arc (f1, f2) if and only if there exists an action a with pre[c] = f1 and
post[c] = f2 or pre[c] = u and post[c] = f2. The arc is labeled by the set of
actions with corresponding pre- and post-conditions. For each arc (f1, f2) with
label a in DTGc we say that there is a transition from f1 to f2 and that action
a has an effect in c.

We use the following notation.

– DTGc = (Vc, Ec): is a directed domain transition graph for every c ∈ C
– Vc: is the set of possible values for each state variable c ∈ C
– Ec: is the set of possible transitions for each state variable c ∈ C
– V a

c ⊆ Vc represents the prevail condition of action a in c
– Ea

c ⊆ Ec represents the effect of action a in c
– AE

c := {a ∈ A : |Ea
c | > 0} represents the actions that have an effect in c,

and AE
c (e) represents the actions that have the effect e in c

– AV
c := {a ∈ A : |V a

c | > 0} represents the actions that have a prevail condition
in c, and AV

c (f) represents the actions that have the prevail condition f in c
– V +

c (f): to denote the in-arcs of node f in the domain transition graph Gc;
– V −

c (f): to denote the out-arcs of node f in the domain transition graph Gc;

Moreover, we define the composition of two state variables, which is related
to the parallel composition of automata [10], as follows.

Definition 1. (Composition) Given the domain transition graph of two state
variables c1, c2, the composition of DTGc1 and DTGc2 is the domain transition
graph DTGc1||c2 = (Vc1||c2 , Ec1||c2) where

– Vc1||c2 = Vc1 × Vc2

– ((f1, g1), (f2, g2)) ∈ Ec1||c2 if f1, f2 ∈ Vc1 , g1, g2 ∈ Vc2 and there exists an
action a ∈ A such that one of the following conditions hold.

• pre[c1] = f1, post[c1] = f2, and pre[c2] = g1, post[c2] = g2
• pre[c1] = f1, post[c1] = f2, and prev[c2] = g1, g1 = g2

• pre[c1] = f1, post[c1] = f2, and g1 = g2

We say that DTGc1||c2 is the composed domain transition graph of DTGc1 and
DTGc2.
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Example. Consider the set of actions A = {a, b, c, d} and set of state vari-
ables C = {c1, c2} whose domain transition graphs have Vc1 = {f1, f2, f3},
Vc2 = {g1, g2} as the possible values, and Ec1 = {(f1, f3), (f3, f2), (f2, f1)},
Ec2 = {(g1, g2), (g2, g1)} as the possible transitions as shown in Figure 1. More-
over, AE

c1
= {a, b, c}, AE

c2
= {b, d} are the actions that have an effect in c1 and

c2 respectively, and AV
c1

= ∅, AV
c2

= {a} are the actions that have a prevail
condition in c1 and c2 respectively. The effect and prevail condition of action
a are represented by Ea

c1
= (f1, f3) and V a

c2
= g1 respectively and the set of

in-arcs for node g1 is given by V +
c2

(g1) = {(g2, g1)}. Note that, since prevail con-
ditions do not change the value of a state variable, we do not consider them to
be transitions. The common actions in the composed domain transition graph,
that is, actions in AE

c1
∩ AE

c2
can only be executed simultaneously in the two

domain transition graphs. Hence, in the composition the two domain transition
graphs are synchronized on the common actions. The other actions, those in
AE

c1
\AE

c2
∪ AE

c2
\AE

c1
, are not subject to such a restriction and can be executed

whenever possible.

f3

f2

f1

g2

g1

b

c

d

DTGc1 DTGc2

a

b

f1,g2

f2,g1

f2,g2

f3,g1

f3,g2

f1,,g1

DTGc1 || c2

a

a

b

c

c

d

d

Fig. 1. Two domain transition graphs and their composition

2.2 Formulation

Our action selection formulation models each domain transition graph in the
planning domain as an appropriately defined network flow problem. Interactions
between the state variables, which are introduced by the pre-, post-, and prevail-
conditions of the actions, are modeled as side constraints on the network flow
problems. The variables in our formulation indicate how many times an action is
executed, and the constraints ensure that all the action pre-, post-, and prevail-
conditions must be respected. Because we ignore action ordering, we are solving
a relaxation on the original planning problem. Our relaxation, however, is quite
different from the more popular relaxation that ignores the delete effects of the
actions.

Variables. We define two types of variables. We create one variable for each
ground action and one for each state variable value. The action variables indicate
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how many times each action is executed and the variables representing state
variable values indicate which values are achieved at the end of the solution
plan. The variables are defined as follows.

– xa ∈ Z
+, for a ∈ A; xa ≥ 0 is equal to the number of times action a is

executed.
– yc,f ∈ {0, 1}, for c ∈ C, f ∈ Vc; yc,f is equal to 1 if the value f in state

variable c is achieved at the end of the solution plan, and 0 otherwise.

Objective function. The objective function that we use minimizes the number
of actions. Note, however, that we can deal with action costs by simply multi-
plying each action variable with a cost parameter ca. Goal utilities can be dealt
with by including the summation

∑
c∈C,f∈Vc:f=s∗[c] uc,fyc,f , where uc,f denotes

the utility parameter for each goal.

∑

a∈A

xa (1)

Constraints. We define three types of constraints. Goal constraints ensure that
the goals in the planning task are achieved. This is done by fixing the variables
corresponding to goal values to one. Effect implication constraints define the
network flow problems of the state variables. These constraints ensure that the
effect of each action (i.e. transition in the domain transition graph) is supported
by the effect of some other action. That is, one may execute an action that
deletes a certain value if and only if one executes an action that adds that
value. These constraints also ensure that all goals are supported. The prevail
condition implication constraints ensure that the prevail conditions of an action
must be supported by the effect of some other action. The M in these constraints
denotes a large constant and allows actions with prevail conditions to be executed
multiple times as long as their prevail condition is supported at least once. Note
that, the initial state automatically adds the values that are present in the initial
state.

– Goal constraints for all c ∈ C, f ∈ Vc: f = s∗[c]

yc,f = 1 (2)

– Effect implication constraints for all c ∈ C, f ∈ Vc

∑

e∈V +
c (f):b∈AE

c (e)

xb + 1{if f = s0[c]} =
∑

e∈V −
c (f):a∈AE

c (e)

xa + yc,f (3)

– Prevail condition implication constraints for all c ∈ C, f ∈ Vc: a ∈ AV
c (f)

∑

e∈V +
c (f):b∈AE

c (e)

xb + 1{if f = s0[c]} ≥ xa/M (4)
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One great advantage of this IP formulation over other step-based encodings
is its size. The action selection formulation requires only one variable per action,
whereas a step-based encoding requires one variable per action for each plan
step. In a step-based encoding, if l steps are needed to solve a planning problem
then l variables are introduced for each action.

Note that any feasible plan satisfies the above constraints. In a feasible plan
all goals are satisfied, which is expressed by the constraints (2). In addition,
in a feasible plan an action is executable if and only if its pre-conditions and
prevail conditions are supported, which is expressed by constraints (3) and (4).
Since any feasible will satisfy the constraints above, the formulation provides
a relaxation to the original planning problem. Hence, an optimal solution to
this formulation provides a bound (i.e. an admissible heuristic) on the optimal
solution of the original planning problem.

2.3 Adding Constraints by Exploiting Domain Structure

We can substantially improve the quality of LP-relaxation of the action selection
formulation by exploiting domain structure in the planning problem. In order
to automatically detect domain structure in a planning problem we use the so-
called causal graph [22]. The causal graph is defined as a directed graph with
nodes for each state variable and directed arcs from source variables to sink
variables if changes in the sink variable have conditions in the source variable.
In other words, there is an arc in the causal graph if there exists an action that
has an effect in the source variable and an effect or prevail condition in the source
variable. We differentiate between two types of arcs by creating an effect causal
graph and a prevail causal graph as follows ([16] use labeled arcs to make the
same distinction).

Definition 2. (Effect causal graph) Given a planning task Π = 〈C, A, s0, s∗〉,
the effect causal graph Geffect

Π = (V, Eeffect) is an undirected graph whose vertices
correspond to the state variables of the planning task. Geffect

Π contains an edge
(c1, c2) if and only if there exists an action a that has an effect in c1 and an
effect in c2.

Definition 3. (Prevail causal graph) Given a planning task Π = 〈C, A, s0, s∗〉,
the prevail causal graph Gprevail

Π = (V, Eprevail) is a directed graph whose nodes
correspond to the state variables of the planning task. GprevailΠ contains a di-
rected arc (c1, c2) if and only if there exists an action a that has a prevail con-
dition in c1 and an effect in c2.

By analyzing the effect causal graph, the prevail causal graph, and the domain
transition graphs of the state variables, we are able to tighten the constraints
of the integer programming formulation and improve the value of the corre-
sponding LP relaxation. In particular, we add constraints to our formulation if
certain (global) causal structure and (local) action substructures are present in
the causal graphs and domain transition graphs respectively.
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Example. The effect causal graph and prevail causal graph corresponding to
the example shown in Figure 1 is given by Figure 2. Since action b has an effect
in state variables c1 and c2 there is an edge (c1, c2) in Geffect

Π . Similarly, since
action a has an effect in c1 and a prevail condition in c2 there is an arc (c2, c1)
in Gprevail

Π .

c1 c2

GeffectG

c1 c2

GprevailG

Fig. 2. The effect causal graph and prevail causal graph corresponding to Figure 1

Type 1 Domain Structure Constraints. The first set of domain structure
constraints that we add to the action selection formulation deals with cycles
in the causal graph. Causal cycles are undesirable as they describe a two-way
dependency between state variables. That is, changes in a state variable c1 will
depend on conditions in a state variable c2, and vice versa. It is possible that
causal cycles involve more than two state variables, but we only consider 2-
cycles (i.e. cycles of length two). A causal 2-cycle may appear in the effect causal
graph and in the prevail causal graph. Note that, since the effect causal graph
is undirected, any edge in the effect causal graph corresponds to a 2-cycle.

For every 2-cycle involving state variables c1 and c2 we create the composition
DTGc1||c2 if the following conditions hold.

– For all a ∈ AE
c1

we have a ∈ (AE
c2

∪ AV
c2

)
– For all a ∈ AE

c2
we have a ∈ (AE

c1
∪ AV

c1
)

In other words, for every action a that has an effect in state variable c1 (c2)
we have that a has an effect or prevail condition in state variable c2 (c1). This
condition will restrict the composition to provide a complete synchronization of
the two domain transition graphs. Now, for each composed domain transition
graph that is created we define an appropriately defined network flow problem.
The corresponding constraints ensure that the two-way dependencies between
state variables c1 and c2 are respected.

– Type 1 domain constraints for all c1, c2 ∈ C such that DTGc1||c2 is defined
and f ∈ Vc1 , g ∈ Vc2

∑

e∈V +
c1||c2

(f,g):b∈AE
c1||c2

(e)

xb + 1{if f = s0[c1] ∧ g = s0[c2]} =

∑

e∈V −
c1||c2

(f,g):a∈AE
c1||c2

(e)

xa (5)

Example. In order to provide some intuition as to why these constraints are im-
portant and help improve the action selection formulation, consider the following
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scenario. Assume we are given the set of actions A = {a, b} and the set of state
variables C = {c1, c2}, such that Ea

c1
= (f1, f2), Ea

c2
= (g2, g3), Eb

c1
= (f2, f3),

and Eb
c2

= (g1, g2). The effect implication constraint (3) allows the effect of
action a support the effect of action b in c1, and it allows the effect of action b
support the effect of action a in c2. However, in the composed domain transition
graph, it is clear that neither action a or b can support each other. Hence, if
actions a and b are selected in the solution plan, then the solution plan must
include one or more other actions in order to satisfy the network flow constraints
in the composed domain transition graph.

f3

f2

f1

g3

g2

g1

f1,g2

f1,g3

f2,g1

f2,g2f2,g3

f3,g1

f3,g2

f3,g3

f1,,g1

b

a

a

b

b

a

DTGc1 DTGc2 DTGc1 || c2

Fig. 3. Actions a and b can both support each other in either DTGc1 and DTGc2 , but
not in DTGc1||c2

Type 2 Domain Structure Constraints. The second set of domain struc-
ture constraints that we add to the action selection formulation deals with the
structure given in Figure 4. That is, we have an arc (c1, c2) in the prevail causal
graph that is not in a 2-cycle. In addition, we have a pair of actions a and b
that have different prevail conditions in c1 and different effects in c2, such that
a supports b in c2.

Since actions a and b are mutex (action b deletes a post-condition of ac-
tion a) they cannot be executed in parallel. Therefore, in a solution plan we
must have that either a is executed before b, or that b is executed before
a. If the solution plan executes a before b, then the network flow problem
corresponding to state variable c1 must have flow out of f1. On the other
hand, if b is executed before a, then the network flow problem corresponding
to state variable c2 must have flow out of g3. These flow conditions may seem
rather obvious, they are ignored by the action selection formulation. There-
fore, we add the following constraints to our formulation to ensure that the
flow conditions with respect to the domain structure given in Figure 4
are satisfied.
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c1 c2

DTGc1 DTGc2GprevailG

g1

g2

g3

a

b

f1

f2

a

b

Fig. 4. Domain structure for type 2 domain structure constraints

– Type 2 domain constraints for all c1, c2 ∈ C such that (c1, c2) ∈ Eprevail,
(c2, c1) /∈ Eprevail and f1, f2 ∈ Vc1 , g1, g2, g3 ∈ Vc2 , e1 ∈ V +

c2
(g2), e2 ∈ V −

c2
(g2)

: a ∈ AE
c2

(e1), b ∈ AV
c2

(e2), g3 = head(e2)

xa + xb − 1 ≤
∑

e∈V −
c1 (f1):a′∈AE

c (e)

xa′ +
∑

e∈V −
c2 (g3):b′∈AE

c (e)

xb′ (6)

3 Experimental Results

In this section, we give a general idea of the distance estimates that both admis-
sible and inadmissible heuristics provide on a set of planning benchmarks from
the international planning competitions (IPCs). In particular, we will compare
the results of our action selection formulation (with and without the domain
structure constraints) with four distance estimates: (1) the admissible distance
estimate given by a step based formulation that is very similar to Lplan [9], (2)
the admissible distance estimate h+, which represents the length of the optimal
relaxed plan in which the delete effects of the actions are ignored [14], (3) the in-
admissible distance estimate hFF , which represents the relaxed plan heuristic of
the FF planner [15], and (4) the optimal distance estimate given by Satplanner
[19] using the -opt flag.

We use Logistics and Freecell from IPC2, Driverlog and Zenotravel from IPC3,
and TPP from IPC5. In addition, we included a few results on well known
Blocksworld problems. We focus on these domains mainly because we assume
that all pre-conditions are defined. There are several planning domains where
this assumption does not hold which limits our experimentation. In Section 5,
however, we briefly discuss how we can relax this assumption. All our tests were
performed on a 2.67GHz Linux machine with 1GB of memory using a 15 minute
timeout. The heuristics that use linear programming were solved using ILOG
CPLEX 10.1 [11], a commercial LP/IP solver.

Table 1 summarizes the results. The results represent the distance estimate in
terms of the number of actions from the initial state to the goals. LP and LP−

shows the results of our action selection formulation with and without the do-
main structure constraints respectively. Lplan shows the results of a formulation
that is very similar Lplan (the actual planner is not publicly available). They were
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Table 1. Distance estimates from the initial state to the goal (values shown shown in
bold equal the optimal distance). A dash ‘-’ indicates a timeout of 15 minutes, and a
star ‘∗’ indicates that the value was rounded to the nearest decimal.

Problem LP LP− Lplan h
+

h
F F Optimal

logistics4-0 20 16.0∗ 17 19 19 20
logistics4-1 19 14.0∗ 15 17 17 19
logistics4-2 15 10.0∗ 11 13 13 15
logistics5-1 17 12.0∗ 13 15 15 17
logistics5-2 8 6.0∗ 7 8 8 8
logistics6-1 14 10.0∗ 11 13 13 14
logistics6-9 24 18.0∗ 19 21 21 24
logistics12-0 42 32.0∗ 33 39 39 -
logistics15-1 67 54.0∗ - 63 66 -
freecell2-1 9 9 9 9 9 9
freecell2-2 8 8 8 8 8 8
freecell2-3 8 8 8 8 9 8
freecell2-4 8 8 8 8 9 8
freecell2-5 9 9 9 9 9 9
freecell3-5 12 12 13 13 14 -
freecell13-3 55 55 - - 95 -
freecell13-4 54 54 - - 94 -
freecell13-5 52 52 - - 94 -
driverlog1 7 3.0∗ 7 6 8 7
driverlog2 19 12.0∗ 13 14 15 19
driverlog3 11 8.0∗ 9 11 11 12
driverlog4 15.5∗ 11.0∗ 12 12 15 16
driverlog6 11 8.0∗ 9 10 10 11
driverlog7 13 11.0∗ 12 12 15 13
driverlog13 24 15.0∗ 16 21 26 -
driverlog19 96.6∗ 60.0∗ - 89 93 -
driverlog20 89.5∗ 60.0∗ - 84 106 -
zenotravel1 1 1 1 1 1 1
zenotravel2 6 3.0∗ 5 4 4 6
zenotravel3 6 4.0∗ 5 5 5 6
zenotravel4 8 5.0∗ 6 6 6 8
zenotravel5 11 8.0∗ 9 11 11 11
zenotravel6 11 8.0∗ 9 11 13 11
zenotravel13 24 18.0∗ 19 23 23 -
zenotravel19 66.2∗ 46.0∗ - 62 63 -
zenotravel20 68.3∗ 50.0∗ - - 69 -
tpp01 5 3.0∗ 5 4 4 5
tpp02 8 6.0∗ 7 7 7 8
tpp03 11 9.0∗ 10 10 10 11
tpp04 14 12.0∗ 13 13 13 14
tpp05 19 15.0∗ 17 17 17 19
tpp06 25 21.0∗ 23 21 21 -
tpp28 - 150.0∗ - - 88 -
tpp29 - - - - 104 -
tpp30 - 174.0∗ - - 101 -
bw-sussman 4 4 6 5 5 6
bw-12step 4 4 8 4 7 12
bw-large-a 12 12 12 12 12 12
bw-large-b 16 16 18 16 16 18
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obtained by running a step-based encoding that finds minimum length plans.
The values in this column represent the plan length at which the LP-relaxation
returns a feasible solution. h+ shows the length of the optimal relaxed plan and
hFF shows the length of FF’s extracted relaxed plan. Finally, Optimal shows
the results of Satplanner using the -opt flag, which returns the minimum length
plan. Note that, Satplanner does not solve a relaxation, but the actual planning
problem, so the values in this column represent the optimal distance estimate.

When comparing the results of LP with Lplan and h+, we see that in many
problem instances LP provides better distance estimates. However, there are
a few instances in the Freecell and Blocksworld domains in which both Lplan
and h+ provide better estimates. The action selection formulation does clearly
outperform both Lplan and h+ in terms of scalability and time to solve the LP-
relaxation. Lplan, generally takes the most time to solve each problem instance as
it spends time finding a solution on a plan length for which no feasible solution
exists. Both Lplan and h+ fail to solve several of the large instances within
the 15 minutes timeout. The LP-relaxation of the action selection formulation
typically solves all small and some medium sized problem instances in less than
one second, but the largest problem instances take several minutes to solve and
on the largest TPP problem instances it times out at 15 minutes.

When we compare the results of LP with hFF we are comparing the difference
between an admissible and an inadmissible heuristic. The heuristic computation
of FF’s relaxed plan is very fast as it solves most problem instances in a fraction
of a second. However, the distance estimate it provides is not admissible as it
can overestimate the minimum distance between two states (see for example,
driverlog7 and zenotravel6). The results that our action selection formulation
provides are admissible and thus can be used in an optimal search algorithm.
Moreover, in some problem instances the quality of our distance estimate is
outstanding. For example, in the Logistics, Driverlog, and Zenotravel domains,
the distance estimate given by LP equals the optimal distance in all problem
instances for which Satplanner found the optimal solution.

Finally, when comparing the results of LP with LP− we see that the domain
structure constraints help improve the value of the LP-relaxation in many prob-
lem instances except in instances in the Freecell and Blocksworld domains. Both
these domains seem to have domain structure that we have not captured yet in
our constraints. While this may seem like a problem, we rather take this as a
challenge, as we believe that more domain structure can be exploited.

4 Related Work

Admissible heuristics for optimal planning (such as, minimize the number of
actions in the solution plan or minimize the cost of the actions in the solution
plan) are very scarce and often provide poor distance estimates. On the other
hand, inadmissible heuristics are plentiful and have shown to be very effective in
solving automated planning problems. HSPr∗ [12] is one of the few approaches
that describes admissible heuristics for planning. HSPr∗ creates an appropriately
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defined shortest-path problem to estimate the distance between two states. Our
work differs from HSPr∗ as we use linear programming to solve a relaxation of
the original planning problem.

The use of linear programming as an admissible heuristic for optimal planning
was introduced by the Lplan planning system [9]. However, the idea was never
incorporated in other planning systems due to poor performance results. Lplan
sets up an IP formulation for step-based planning. Thus, when the LP-relaxation
of the IP has a solution for plan length l, but not for plan length l − 1, then
the minimum length plan must be at least l steps long. The drawbacks with
the LP-relaxation to a step-based encoding is that goal achievement can be
accumulated over different plan steps. In general, the quality of the LP-relaxation
of an IP formulation depends on how the problem is formulated ([21] describe
the importance of developing strong IP formulations in automated planning).

5 Conclusions

We described an integer programming formulation whose LP-relaxation can be
used as an admissible heuristic for optimal planning, including planning prob-
lems that involve costs and utilities. In fact, in ongoing work we have successfully
incorporated our LP-based heuristic in a search algorithm that solves oversub-
scription planning problems [2].

Our action selection formulation and the heuristic it provides differs in two
ways from other formulations that have been used in planning: (1) we do not
use a step based encoding, and so, do not have to deal with a bound on the plan
length in the IP formulation, and (2) we ignore action ordering, which provides
a rather different view on relaxed planning than the more popular approach that
ignores the delete effects of the actions.

The experimental results show that the action selection formulation oftentimes
provides better distance estimates than a step-based encoding that is similar
to Lplan [9]. It outperforms this step-encoding with respect to scalability and
solution time, making it a viable distance estimate for a heuristic state-space
planner. Moreover, in most problem instances it outperforms h+ [14], which
provides the optimal relaxed plan length when delete effects are ignored. Hence,
the relaxation based on ignoring action orderings seems to be stronger than the
relaxation based on ignoring delete effects.

Unlike most admissible heuristics that have been described in the planning
literature, we can use the action selection formulation to provide an admissible
distance estimate for various optimization problems in planning, including but
not limited to, minimizing the number of actions, minimizing the cost of actions,
maximizing the number of goals, and maximizing the goal utilities. There are
several interesting directions that we like to explore in future work.

First, we would like to relax the assumption that all preconditions are defined.
This would allow us to create a general action selection formulation and tackle a
much broader range of planning domains. We simply need to replace the current
action variables with variables that represent the action effects the action prevail
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conditions. In case an action has one or more undefined pre-conditions we create
one effect variable for each possible value that the pre-condition may take and
introduce an extra prevail variable as well. We have a preliminary implementa-
tion of this general action selection formulation [2], but have not yet extended
it with the domain structure constraints.

Second, it would be interesting to analyze planning domains more carefully
and see if there are more domain structures that we can exploit. We already have
encountered two domains, namely Freecell and Blocksworld, that may suggest
that other domain structures could be discovered.
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