
STUBBORN SETS FOR REDUCED
STATE SPACE GENERATION

Antti Valmari

Technical Research Centre of Finland
Computer Technology Laboratory

PO Box 201, SF-90571 OULU
FINLAND

Tel. int. +358 81 509 11t I

A B S T R A C T The "stubborn set" theory and method for generating reduced state
spaces is presented. The theory takes advantage of concurrency, or more generally, of the
lack of interaction between transitions, captured by the notion of stubborn sets. The basic
method preserves all terminal states and the existence of nontermination. A more advanced
version suited to the analysis of properties of reactive systems is developed. It is shown how
the method can be used to detect violations of invariant properties. The method preserves the
liveness (in Petri net sense) of transitions, and livelocks which cannot be exited. A modifi-
cation of the method is given which preserves the language generated by the system. The
theory is developed in an abstract variable/transition framework and adapted to elementary
Petri nets, place/transition nets with infinite capacity of places, and coloured Petri nets.

Keywords system verification, analysis of behaviour of nets

CONTENTS
0. INTRODUCTION ... +1

1. THEORY OF STUBBORN SETS .. +2
1.1 Variable/Transition Systems ... +3

1.1.1 Formal Definition of V/T-Systems +3
1.1.2 Connections of Variables and Transitions +5

1.2 Semistubborn Sets of Transitions +7
1.3 Stubborn Sets of Transitions ... +10
1.4 Reduced State Space Generation +10
1.5 The "Ignoring" Problem ... +12
1.6 Stubborn Sets and Reactive Systems +14

2. STUBBORN SETS OF PETRI NETS .. +17
2.1 Stubborn Sets of Elementary Nets +17
2.2 Stubborn Sets of Place/Transition Nets +18
2.3 Stubborn Sets of Coloured Petri Nets +20

3. STUBBORN SETS AND EQUIVALENT MARKINGS +21

4. CONCLUSION ... +22

ACKNOWLEDGEMENTS .. +23

REFERENCES .. +24

1 The original version of this paper was written while the author was visiting Telecom Australia Research
Laboratories, 770 Blackburn Road, Clayton, Victoria 3168, AUSTRALIA.

492

0. INTRODUCTION
Reachability analysis (or state space generation) is a widely used method for analysing
concurrent systems, even though it has serious performance problems. Significant increases
in the performance of state space generation would have great practical value. Unfortunately,
the number of states of even moderate systems is often astronomical. As we cannot expect
an astronomical number of states to be generated in a reasonable time no matter how fast an
algorithm we have, it seems that the performance problems cannot be solved without reducing
the number of states that are generated.

In this paper a theory is presented facilitating reduction of the number of states without
modifying the answers of certain (many) analysis questions. The theory takes advantage of
concurrency. Concurrency offers much potential for state space reduction, as demonstrated
by the following example. The system of n non-interacting processes each executing k steps
sequentially before stopping has (k+ 1)~ states. This is exponential in the number of processes.
It seems, however, intuitively clear that not all of those states are really needed. Since the
processes do not interact, the end result of their execution is independent of their order of
execution. Furthermore, allprojections of the global state of the system to each of the processes
are found if we execute the processes in any order. One might thus claim that sufficient
information for the analysis of the system is achieved by simulating the processes in one
arbitrarily chosen order. Simulation in one order generates only nk+l states, which is linear
in n and k.

The n-process example above is oversimplified, because it ignores the fact that processes do
interact in practice. Two questions arise:

• How can we take advantage of situations where processes do not interact without losing
the consequences of their interaction?

• What properties of the system under analysis are preserved during state space reduction?

The theory developed in this paper answers the first question through the notion of stubborn
sets. Roughly speaking, a stubborn set is a set of transitions closed with respect to mutual
interactions; all transitions interfering with the transitions in the set belong to the set. The
notion is dynamic, that is, which sets are stubborn depends on the current state. In the stubborn
set state space reduction method a stubborn set is computed at every state (strictly speaking,
at every state with enabled transitions), and only the enabled transitions in it are used when
next states are generated.

A partial answer to the second question will be given by a set of theorems, which guarantee
that all terminal states (that is, states with no enabled transitions) and nontermination are
preserved by the method. Furthermore, there is a version of the method which preserves
livelocks (defined as unintended cyclic terminal strong components of the state space),
liveness of transitions (in the Petri net sense of the word) and facilitates the detection of
violations of invariant properties, expressed as fact transitions. The method can be adapted
to preserve the language generated by a system, where a symbol is associated to some (but
not necessarily all) transitions and transitions write their symbols when they occur.

The stubbom set method is applicable to several models of concurrency. The notion "stubborn
set" captures interaction relationships between transitions. Different concurrency models
express information about transition interactions in different (and sometimes non-transparent)
ways, and there is often more than one way to utilise this information in the definition of
stubbom sets. Therefore it is better not to tie the theory to a particular established formalism,
but to develop it in a general framework, from which it can be easily adapted to other for-
malisms. We develop the theory in the framework of variable~transition systems, apply it to

493

elementary and place/transition nets, and sketch two different applications to coloured Petri
nets. As mentioned in the conclusions, the notion of variable/transition systems proved
advantageous also when implementing the method.

The stubbom set theory was first introduced in [Valmari 88a], where the theory was developed
directly for place/transition nets without capacity constraints. The paper also describes a
linear algorithm for finding good (but not necessarily optimum) stubborn sets. The first
attempt at developing the theory in a more general setting was [Valmari 88b], but the theory
developed there is not well suited to Petri nets. The paper describes a quadratic algorithm for
finding stubborn sets which produces optimum (in a certain sense) stubborn sets in many
concurrency formalisms, including low level nets. Valmari's Ph.D. thesis [Valmari 88c]
supplements the material in the papers mentioned and compares the stubbom set theory to
some earlier attempts of utilising concurrency in state space reduction, including the classic
static virtual coarsening of atomic actions (see [Pnueli 86]) and two methods by Overman
[Overman 81]. [Valmari 89a] develops what is called in this paper the weak stubbom set
theory of systems which are intended to terminate, and applies it to shared variable
multi-process programs and elementary Petri nets.

The stubborn set method as developed in the above mentioned papers is suitable for analysing
termination-oriented properties, that is, deadlocks, states corresponding to successful
termination, and failure of termination. A certain kind of fairness problem (called ignoring
in this paper) prevents the use of the method to analyse properties which are not directly
related to termination. In this paper, after developing the basic stubborn set method, we
present a solution to the ignoring problem. The solution renders possible the use of the
stubbom set method to analyse liveness of transitions (in the Petri net sense of the word),
livelocks, invariant properties (expressed as fact transitions) and the language generated by
the system. To make the solution practical, an algorithm is described which can be embedded
to reduced state space generation to ensure that ignoring is absent.

Another new result in this paper is the distinction of the weak and strong variants of the
stubbom set theory. The weak theory generally leads to better state space reduction results.
On the other hand, the implementation of the strong stubborn set theory is easier. For instance,
the ignoring elimination algorithm given in this paper works with strong stubbom sets only.

This paper was originally published as a Petri Net Conference paper [Valmari 89b]. Changes
were made to this version, most significantly the addition of Corollary 1.32 (livelock analysis)
and Theorem 1.34 (language preservation). More recent development goes beyond this paper.
There is now a stubborn set method which accepts a collection of linear temporal logic
formulas (which are not allowed to use the "next state" operator), and preserves the truth
values of them [Valmari 90]. There is also a version which preserves the "failure set
semantics" [Brookes & 84] of systems.

Chapter 1 presents the theory in the variable/transition framework, and Chapter 2 demon-
strates how it may be applied to Petri nets. A specific question of interest concerning Petri
nets is how the stubborn set method relates to other Petri net state space reduction methods.
Chapter 3 compares the stubborn set method to Jensen's equivalent marking method (see
[Jensen 87]) with the aid of an example.

1. THEORY OF STUBBORN SETS
In this chapter we develop the stubbom set state space reduction method in the varia-
ble~transition system (v/t-system, for short) framework. V/T-systems resemble Petri nets, but
the concepts of token andplace have been replaced by the concept of variable. V/T-systems
are defined in Section 1.1. The first key concept of the theory, namely the concept of semi-
stubborn set of transitions is developed in Section 1.2. Stubborn sets are defined in Section
1.3. Section 1.4 gives the stubbom set reduced state space generation algorithm and shows

494

that it preserves all terminal states and the existence of nontermination. Section 1.5 discusses
the ignoring problem which arises when stubbom sets are used to analyse properties not
directly related to termination, and shows how it can be avoided if the strong version of the
stubborn set theory is used. In Section 1.6 we take advantage of the solution to the ignoring
problem and discuss the verification of various properties not directly related to termination.

1.1 Variable/Transition Systems

1.1.1 Formal Definition of V/T-Systems
Variable/transition systems (v/t-systems) can be thought of as abstractions of shared variable
multi-process programs, where the concept of the location of the control of a process has
been deprived of its special significance and is replaced by an ordinary variable. People
working in temporal logic use quite similar models (see e.g. [Manna & 81], [Pnueli 86]), and
so do Back and Kurki-Suonio in their joint action research [Back & 87]. V/T-systems can
also be thought of as abstractions of Petri nets, where places and tokens have been replaced
by variables and their values (one should note, however, that the abstraction is valid for
interleaving semantics only). The formal definition of v/t-systems is as follows.

Definition 1.1 A variable~transition system (v/t-system, for short) is a five-tuple (V,T,
type,next,SSo), where

• V is a finite set of elements called variables

• T is a finite set of elements called transitions

• type is a function assigning a set called type to each variable, and

• the definition of next and sso is deferred for a moment. []

Variables may be interpreted as programming language variables, program counters, message
queues, or Petri net places. The type of a variable is a set, the elements of which are called
values. A type may be interpreted as the type of a programming language variable, as the set
of locations in a process where its control may reside, as the set of message sequences that
may be stored in a message queue, as the set of numbers denoting the number of tokens in a
place/transition net place, as the set of multisets denoting the contents of a high level net
place, or something else, depending on the intended interpretation of the variable. The
interpretation of transitions will be discussed in a moment.

Without loss of generality we assume that V is ordered. We can now complete the definition
of v/t-systems and define the concept of state.

Definition 1.1, continued

• The Cartesian product of the types of the variables is called the set of syntactic states and
is denoted by $. Elements of S are called states.

• next: $ x T ---) $ u {undefined}, where undefined is a symbol not in $. That is, next is a
partial function from states and transitions to states, next is called the next state function.

• sso e $ is a distinguished state called the initial state. []

Examples of states are the states of a concurrent program and the markings of a Petri net.
The value of variable v at state s is denoted by s(v). We denote the initial state by sso instead
of the perhaps more familiar So since we want to use the latter symbol when sequences of
states are discussed. The following definition gives the terms and notation associated with
the occurrences of transitions.

495

Definition 1.2

• Transition t is enabled at state s, denoted by en(s,t), if and only if next(s,t) ~ undefined.
Otherwise t is disabled. The predicate "next(s,t) ~ undefined" is called the enabling
condition of t.

• I f next(s,t) = s" where s" e $, we say that t may occur at s resulting in s'. We also use the
notation s -t--> s'. []

An occurrence of a transition changes the state of the system. Transitions can be interpreted
as atomic actions in a shared variable multi-process program, or as transitions of a Petri net,
etc. Some concepts related to occurrence sequences, and the reachability relation between
states are defined as follows.

Definition 1.3 Let n _> o, s, s', so sne s , and t~ t, e T.

• The sequence ~ = So -tl---> sl -t2--~ ... -&--> sn, where si_l -ti---> si for i e { 1 n} is called
an occurrence sequence. The length of ff is n and is denoted by lcl. The f i rs t state and last
state of ~ are so and s, and are denoted by f s (c) and ls(cO, respectively.

• s - -~s ' ¢:~ 3 t e T : s - t - - - > s ' .

• s" is reachable f r o m s, denoted by s --->* s', if and only if there is an occurrence sequence
o such thatfs(c) = s and Is(o) = s'. (That is, "-->*" is the reflexive and transitive closure
of"-->".) []

The initial state and the next state function of a v/t-system define a labelled directed graph
in a natural way:

Definition 1.4 The labelled directed graph (W,E,T) where

• W = { s e $ 1 S S o ~ * S }

• E = { (s,t,s') e W × T x W I s -t--> s' }

is called the state space of v/t-system (V,T, type,next,SSo). []

Assuming that two or more transitions cannot occur simultaneously, every possible finite or
infinite execution of a v/t-system corresponds to a finite or infinite path in its state space.
Execution models where only one transition can occur at a time are called interleaving models.
The state space captures the interleaving semantics of v/t-systems.

We need to talk about the maximal strongly connected components (or strong components,
for short) of the state space. Furthermore, we divide the strong components to terminal and
nonterminal and to cyclic and acyclic ones.

Definition 1.5

• State s is a terminal state, if and only if no transition is enabled at s.

• C c_ W is a strong component , if and only if there is s e C such that C = {s' e W I s --->* s'
A S t ""->* S}.

• Strong component C is nonterminal, if and only if 3 s e C: q s" ~ C: s --~ s'. Otherwise C
is terminal.

• Strong component C is cyclic, if and only if 9 (s,t,s') e E: s e C ^ s' e C. Otherwise C is
acyclic. []

An acyclic strong component contains exactly one state, but a cyclic one may contain one
or more. Terminal states correspond to terminal acyclic strong components.

496

1.1.2 Connections of Variables and Transitions
So far we have not defined any notion of "connection" or "arc" between variables and
transitions. That is, the next state function of a transition may be thought of as referring to
every variable. In this section we define several notions that facilitate talking about different
types of connections between variables and transitions, and help structure the next state
function in a certain way.

The next definition assigns to each transition a test set, a write set, a read set and a connection
set, the last one being the union of the other three. Informally, the test set is intended to
represent the set of variables the transition refers to in its enabling condition. We do not,
however, define it as the set of variables that the transition refers to in its enabling condition.
Rather, we define it as a given set that must have a certain property; namely the property that
if the variables in it assume equal values at two states, and the transition is enabled at one of
the states, it is also enabled at the other. Clearly any set that has this property can be enlarged
without violating the property. Therefore test sets can be defined in any convenient way, as
long as they contain enough variables for the key property of test sets to be satisfied.

The reason for building this flexibility into the definition is that with shared variable
multi-process programs it may be very difficult to compute the smallest possible legal test
set. Consider a guarded programming language command with guard (x ~ x). The guard is
equivalent to £ a l n e , so the reference to x in it is in a sense fake. It turns out that the empty
set is a legal test set for the corresponding transition. However, it may be very difficult to
distinguish between such fake references and true references. It is often easier to define that
the test set is comprised of all variables appearing in the guard, plus the program counter of
the process in question. This may lead to larger test sets than absolutely necessary, but
promotes practicality.

Similar comments also hold for the write set and the read set. The write set of a transition is
intended to contain (at least) the variables, the values of which the transition can modify
when it occurs. That is, the values of variables outside the write set are not modified when
the transition occurs. The read set is intended to contain (at least) the variables, the values
of which are used by the transition when it determines the new values it assigns to (some)
variables in its write set. To prevent the definition of the write set from interfering with the
definition of the read set, the latter is made a bit complicated; it states that if a transition can
occur in two states where the values of the variables in its read set agree, then for every
variable the value of which is actually changed by either occurrence, the new value will be
the same in both cases.

Definition 1.6 Let (V,T, type,next,SSo) be a v/t-system and let t • T.

• X c_ V has the test set property w.r.t, t if and only if for all states s and s':

en(s,t) ^ V v • X: s'(v) = s(v) ~ en(s',t)

• X c V has the write set property w.r.t, t if and only if for all states s and s':

s -t--> s" ~ V v ~ X: s'(v) = s(v)

• X c_ V has the read set property w.r.t, t if and only if for all states sl, s'l, sz and s'z:

s 1 - t o s" 1 A S2 --t---> S'~ ^ V V • X: St(V) = S2(V) =:>
V v • V: s'~(v) = s 'z(v) v (s ' l (v) = s~(v) ^ s'2(v) = s2(v)) []

From now on we assume that a unique test set of t satisfying the test set property is assigned
to every transition t, and similarly a write set and a read set. The sets are denoted by test(t),
wr(t) and rd(t). We also define the connection set of t by conn(t) = test(t) u wr(t) u rd(t).

497

The following definition allows us to look at the connections from the variables' point of
view, and to talk about the connections of a set of variables or transitions.

Definition 1.7 Let v be a variable, X c V or X c T, and cset be any of test, wr, rd and conn.

• cset(v) = {t e T I v e cset(t)}

• cse t (X)= t_) cset(x) []
x e X

It is often the case that one can decide that a transition is disabled without knowing the values
of all variables, or even the values of all the variables in its test set. For instance, a transition
of a place/transition net is certainly disabled if it has an empty input place, independent of
the markings of the other places. The stubbom set state space reduction theory takes advantage
of this fact. This motivates the following definition.

Definition 1.8 Transition t is enabled with respect to a set of variables U c V at state s,
denoted by en(s,t,U), if and only if

3 s" e S: en(s',t) ^ V v e U: s'(v) = s(v) []

The following properties of en are quite obvious:

en(s,t ,U) ~ --1 en(s,t)

en(s,t ,U) ^ U" c_ U ~ en(s,t,U')

en(s,t) ¢=~ en(s,t, test(t)) ¢:~ V U c_ V: en(s,t,U)

The stubborn set theory takes advantage of knowledge of transitions that can make a given
transition enabled or disabled with respect to certain variables. In a place/transition net, for
instance, assuming that there is an arc from place p to transition t but not vice versa, then
only the transitions that increase the number of tokens in p can make t enabled with respect
to {p}, and only the transitions that decrease the number of tokens in p can make t disabled
with respect to {p}.

Definition 1.9 Let t e T and U c_ V.

• X c wr(test(t)) has the write up set property w.r.t, t and U if and only if for all states s and
s' and transitions t':

s -t'--> s' A --1 en(s,t ,U) ^ t" ~ X ~ -7 en(s',t,U)

• X ~ wr(test(t)) has the write down set property w.r.t, t and U if and only if for all states s
and s' and transitions t':

s -t'--> s" ^ en(s,t ,U) A t" ~ X ~ en(s',t ,U) []

The use of wr(test(t)) instead of the set of all transitions in Definition 1.9 is sound, because
the transitions not in wr(test(t)) cannot make t enabled or disabled. From now on we assume
that a unique write up set denoted by wrup(t ,U) and a unique write down set denoted by
wrdn(t ,U) is attached to every t e T and U c_ V.

The final definition in this section is motivated by the fact that the enabling conditions of
transitions can often be represented as conjunctions of conditions concerning small sets of
variables. For instance, assuming that there are no capacity constraints, a place/transition net
transition is enabled if and only if all its input places contain a sufficient number of tokens.
This is the conjunction of the requirements that each individual place contains enough tokens.

Definition 1.10 Let n > 1. {VI V~} is a separation of the enabling condition of transition
t, denoted by sep(t;V~ V~), if and only if

• V 1 U . . . U V, = test(t)

498

• V i n V j = O i f i g j , and

• k/s e $: (en(s,t, V1) ^ . . . ^ en(s,t,V,) = en(s,t)) []

For simplicity, we will often talk of separations of transitions, when meaning separations of
their enabling conditions. A separation always exists, because sep(t;test(t)) holds for every
transition t. Because en(s,t) implies en(s,t ,U) for every U ~ V, sep(t;V1 V,) implies

en(s,t, VO ^ . . . ^ en(s,t ,V.) ¢~ en(s,t).

1.2 Semistubborn Sets of Transitions
A semistubbom set is a set of transitions satisfying a certain condition depending on the state.
For the stubborn set state space reduction method to be practical, semistubbom sets should
be defined statically, that is, in a way facilitating their computation using information about
one state only. The following theorem plays a key role in the stubborn set theory, as it allows
the permutation of occurrence sequences so that the permuted ones start with a transition
belonging to a semistubborn set. It will make it possible to limit to a (certain kind of)
semistubbom set when generating successors of the state. In this section we work backwards
and define semistubbom sets so that the theorem can be proven.

T h e o r e m 1.11 Let Ts c_ T be semistubbom at state so, and let an occurrence sequence 6 be
given as below, where tl t._l ~ Ts and t. ~ T,:

6 = So -t~---) sa -t2----) . . . - t . _ l - -) s._l -t .---> s .

There is an occurrence sequence 6' as below, with the property that s'._~ = s.:

o ' = s o -t.----> s ' 0 -t~---> s'~ -t2---> . . . - t . _ l - -) s'._l []

Assuming that we are only interested in the states succeeding a future occurrence of a transition
belonging to a semistubbom set, the theorem guarantees that we do not lose such states e v e n
if we restrict our attention to the semistubbom set when generating successors of the current
state. The relation between (~ and (~' can be illustrated graphically:

So -q- -* sl -t2----)... -tn_2---> S._ 2 -t,_~--) S..~
I I

P P

s'o -t~---> s'x - t2 - - - -) . . . - t . . 2 " - ") $,-2 - - t ~ . ~ S, = S ,-1

We now proceed to define semistubbom sets such that Theorem 1.11 can be proven. To
guarantee the existence of ~', we should establish three things:

(1) that t, is enabled at So,

(2) that ti is enabled at s'~_~ for i = 1 n - l , and

(3) that s',_l = s, (the existence of s~.~ is guaranteed by (1) and (2)).

Perhaps the most straightforward way to guarantee (1) would be to require that a semistubbom
set contains only enabled transitions. It is the case, however, that to get a useful definition
of semistubbom sets, we have to accept the presence of disabled transitions. Thus we should
prevent a disabled transition from being the t, of 6. This can be achieved by guaranteeing
that a disabled transition cannot be enabled as a consequence of occurrences of transitions
not belonging to T,. The following condition is sufficient:

t E T, ^ --, en(s,t) ~ q U ~ V: ~ en(s,t ,U) A wrup(t ,U) c T,

499

That is, if t is disabled at s, there is a subset of variables U so that t is not enabled at s with
respect to U, and all transitions that can make t enabled with respect to U belong to 7",. The
condition guarantees that we have at least the following figure:

So - t ~ - ~ S 1 - - t 2 - -~ . . . - - tn.2--> Sn. 2 - - t n . l - -~ Sn. 1
I I

S¢O S n

As an intermediate step in establishing (2) and (3) we state a requirement guaranteeing that
t, is enabled at st ,s~_2. It is sufficient to consider enabled transitions only since t, is already
guaranteed to be enabled at So. By the definition of 6, t, is also enabled at s~_l. There are two
possibilities: we may either prevent an enabled transition from becoming disabled, or we
may prevent it from becoming enabled again after becoming disabled. The following
requirement is sufficient:

t e T, ^ en(s, t) :=~ 3 V I Vm: sep(t;Vl Vm) ^
(V j = I m: wrdn(t ,Vj) c T, v wrup(t ,Vj) ~ Ts)

That is, a separation of the enabling condition of t is given, and for each set V~ of the separation,
either no transition outside 7", can make t disabled with respect to Vi, or no transition outside
T, can make t enabled with respect to V.. Let i ~ {0 n-1 }. In the former case en(si,t , ,V,)
holds, because t, is enabled at so. In the ~atter case, because en(s,_l,t~,Vj) is true, we conclude
en(si,t,,Vs). Thus at s,., t, is enabled with respect to every set in its separation, which implies
by the definition of separation that t, is enabled. The figure now looks like this:

S o --t l--- ') S 1 --t2----> . . . --tn.2----> Sn. 2 - - t n . l " -) S n . 1
I I I I

S to S t l . . . Stn.2 S n

The final step is to require that the enabled transitions in a semistubbom set accord left the
transitions not in the set in the sense of the following definition.

Definition 1.12 Transition t accords left transition t', denoted by t Z t', if and only if for
every state s, s', sl and S'l:

s - t - -~ s" ^ s -t'---~ s~ - t--~ s'~ ~ s' - t ' - -~ s' 1 []

This definition can be illustrated graphically:

s -t'---~ s~ s -f---~ s~
l I I I
t t ~ t t
$ $ $ $
S t S t Srl - - t v - -) S t l

The requirement t ~ 7", ^ en(s , t) ~ V t" ~ 7",: t Z t" completes the figure:

so -tl--~ s~ -t2---> ... -t~_2---> s,~2 - t ,~ -o s,.t
I 1 I 1

s'0 -tl---> s'l -t2--¢ ... -t~.2---> s'~.2 -t~_l--~ s~

Putting the parts together, we have the following definition of semistubbom sets:

,500

Definit ion 1.13 A set of transitions T, c_ T is semistubborn in weak sense at state s, if and
only if for every t ~ 7",

(1) -~en(s,t) ~ 3 U c V: ~en(s , t ,U) A wrup(t,U) c_T,

(2) en(s,t) ~ ~/ t' ~ T~: t Z t" ^ -q V~ Vm: sep(t;Vl Vm) A
(~ ' j=l m: wrdn(t,Vj) c T, v wrup(t,Vj) c T,) []

In the derivation above, when ensuring that t, is enabled at si to s,.2, we allowed an enabled
transition belonging to a semistubborn set being disabled by the transitions not in the set,
provided that it cannot be enabled again by them. When developing decision procedures for
liveness etc. in Section t.5 we will discuss an algorithm which has a stricter requirement,
namely that an enabled transition belonging to a semistubbom set cannot be disabled by the
transitions not in the set. Unfortunately, strengthening the requirement removes some
possibilities of optimizing semistubbom sets, and is thereby likely to lead to larger semi-
stubborn sets and less state space reduction. Therefore we have chosen to develop two versions
of the stubborn set theory, weak (leading to better state space reduction results) and strong
(easier to implement, decision procedures for more properties), leaving the tradeoff between
them to the implementer of the stubborn set method. When we do not specify which theory
is used, the discussion is valid for both.

In conclusion, the difference between the weak and the strong theory is that in the latter
enabled transitions belonging to a semistubborn set cannot be disabled by transitions outside
the set. We will show in a moment that in the strong theory the relation "Z" can be replaced
by a simpler, more symmetric relation "<--->" which is defined as follows:

Definit ion 1.14 Transition t accords with transition t', denoted by t <---> t', if and only if for
every state s, s' and sa there is a state S'a such that

s -t---> s' ^ s -t'---> s~ ~ s' -t'---> s'l ^ sl -t--> s'l []

The definition is symmetric with respect to t and t'. A graphical illustration of the definition
is,

s -t'--> sl
I
t +

s'

s - t ' - -> sl
I I
t t
$ $
s ' - t ' - -> s'l

According with is equivalent to the conjunction of according left and the requirement that t'
cannot disable t. Therefore, in the strong theory it can replace according left in part (2) of the
definition of semistubbom sets. The requirement that enabled transitions in a semistubbom
set cannot be disabled by transitions not in the set is then automatically satisfied. The resulting
strong definition of semistubbom sets is:

Definit ion 1.15 A set of transitions Ts c_ T is semistubborn in strong sense at state s, if and
only if for every t ~ T~

(1) ~en (s , t) ~ q Uc_ V: ~en (s , t ,U) A wrup(t,U) c_ Ts

(2) en(s,t) ~ k~ t" ~ T~: t ~-> t" []

Although Definitions 1.13 and 1.15 are not equivalent, Theorem 1.11 is valid independent
of which one is used.

Semistubbom sets remain semistubbom when transitions outside them occur, thus justifying
the name stubborn:

T h e o r e m 1.16 If T, is semistubbom at state s and s -t'---> s', where t' ~ Ts, then T, is semi-
stubborn at s'. []

501

Proof Let t e T,. If t is disabled at s, (1) of Definition 1.13 or 1.15 is valid and remains valid for t when g
occurs. If t is enabled at s and remains enabled when t' occurs, then (2) remains valid for t in both theories,
as the right hand side of (2) is independent of the state. In the strong theory t cannot be disabled by the
occurrence of t'. In the weak theory (Definition 1.13), if t is disabled by the occurrence of t', then by (2) at
g there is Vj such that -~ en(s',t,V~) and wrup(t, Vj) ~ T,. Therefore (1) holds for t at s'. []

In both theories, at every state, there are at least two semistubbom sets of transitions, namely
the empty set, and the set of all transitions T.

1.3 Stubborn Sets of Transitions
Theorem 1.11 allows the permutation of execution sequences in a certain way, provided that
a transition belonging to a semistubbom set is going to occur in the future. However, there
is no guarantee of such an occurrence. Quite the contrary: the empty set is always semi-
stubbom. In this section the definition of semistubbom sets is augmented by a requirement
which guarantees that there is an enabled transition in the set at least until a transition
belonging to the set occurs.

Definition 1.17 A set of transitions 7", c T is stubborn in weak sense at state s, if and only
if T, is semistubbom in weak sense at s, and there is a transition t ~ T, such that

en(s,t) ^ wrdn(t,test(t)) c T,

Transitions with the above property are called key transitions. []

In the strong theory the definition of stubborn sets is simpler, because transitions outside a
strong semistubbom set cannot disable transitions in the set.

Definition 1.18 A set of transitions T, c T is stubborn in strong sense at state s, if and only
if 7", is semistubbom in strong sense at s, and T, contains an enabled transition. Enabled
transitions in T, are called key transitions. []

According to the definitions, in both theories, a stubbom set contains at least one key
transition, and key transitions are enabled, remain enabled and retain the key transition
property at least until a transition belonging to the stubborn set occurs. Adding Theorem 1.16
to this gives the following result:

Theorem 1.19 If T~ is stubbom at state s and s -t'---> s', where t' ~ 7",, then T~ is stubborn
at s'. []

At every state at least T is semistubbom, and the key transition property is trivially satisfied
for every enabled transition if T~ = T. Therefore:

Theo rem 1.20 There are no stubborn sets if there are no enabled transitions. At least T is
stubbom if there is an enabled transition. []

1.4 Reduced State Space Generation

In ordinary state space generation, for every encountered state all the transitions which are
enabled in it are found and used to generate the immediate successors of the state. The act
of doing this is sometimes called expanding the state. Expanding a state without enabled
transitions amounts to doing nothing, so we limit the consideration to states with enabled
transitions.

Algori thm 1.21 Reduced state space generation is the following modification of state space
generation. When expanding a state with enabled transitions, instead of using all enabled
transitions for generating immediate successor states, a stubborn set is found and only the
enabled transitions in it are used. []

502

Because the set of all transitions, T, is stubbom if and only if there is an enabled transition,
ordinary state space generation is a special case of reduced state space generation. However,
always using T as.the stubborn set leads to no reduction in the size of the state space. The
intention is to use stubborn sets which contain less enabled transitions than T. This is often
possible, as there are often many stubborn sets in a state.

Perhaps surprisingly, always choosing the stubborn set with as few enabled transitions as
possible does not necessarily lead to maximal state space reduction results, as shown in
[Valmari 88c]. It is not entirely clear what is the best way of choosing stubborn sets. Fur-
thermore, we will encounter decision procedures which state some constraints to stubborn
set selection. Fortunately, as long as the constraints are obeyed, the stubborn set selection
does not affect the correctness of the analysis results. It affects only the amount of state space
reduction achievable. This leaves the implementer of reduced state space generation room
to choose the (constrained) stubborn sets in whatever convenient way, making a tradeoff
between better reduction results and the ease of implementation. [Valmari 88a,b] contain a
linear algorithm which produces "good" strong stubbom sets. In this paper we do not go
further into the details of stubborn set selection, but in the (temporary?) absence of better
sources refer to [Valmari 88a,b,c].

The notation used in the context of the reduced state spaces resulting from reduced state
space generation is given below.

Definition 1.22 Let a rule be given specifying a unique stubbom set T~ for each s ~ $.

• t is stubborn-enabled at s, denoted by en(s,t), if and only if en(s,t) and t ~ T,.

• s - t -~ s' if and only if s -t---~ s' and t e Tr

• s --> s" ¢:~ q t ~ T~: s -t---> s ' .

• s -key---> s' ¢~ 3 t ~ T,: s -t--> s' and t is a key transition of Tr

• "-->*" is the reflexive and transitive closure of "--->". "-key--->*" is the reflexive and
transitive closure of "-key-->".

• The reduced state space is the labelled directed graph (_~,/~,T), where

W= {s ~ $ I ss0 -->* s}

E = {(s,t,s') ~ W x T x W I s -t---> s' }

• The key space is the labelled directed graph (_W_,EK, T), where

E r = { (s,t,s') ~ W x T x W I s -t---> s' ^ t is a key transition of T, } []

The key space is a subset of the reduced state space which, in turn, is a subset of the ordinary
state space in the sense that W c_ W and Ex c E c E. In the strong theory all enabled transitions
belonging to a stubborn set are its key transitions, and the key space is thus the same as the
reduced state space.

The correctness of systems which are intended to terminate is often defined as consisting of
two components: the system must terminate, and it must produce the fight results upon
termination. If the results produced by the system are considered as part of its state, then the
latter requirement reduces to the requirement that the state of the system upon termination
must satisfy certain properties. For instance, if we are analysing a protocol and request for
one message transmission only, we expect the protocol to terminate, and we expect to see
the transmitted message being available at the receiver side upon termination.

503

The fol lowing two theorems show that the s tubbom set method preserves all terminal states,
and the possibility o f nontenninarion. Furthermore, for every occurrence sequence leading
to termination, the stubborn set method preserves a sequence which is a permutation o f the
former. In this sense the stubborn set method preserves everything essential regarding the
verification o f systems which are intended to terminate. The theorems are valid in both the
strong a n d t h e weak theory, and they are independent o f how s tubbom sets are found.

T h e o r e m 1.23

(1) I f s ~ W and s is a terminal state, then s ~ W and s is a terminal state o f W. Furthermore,
if 6 is an occurrence sequence f rom sso to s, then the reduced state space contains a
permutat ion o f 6 leading f rom sso to s.

(2) I f s is a terminal state o f W, then s e W and s is a terminal state (of W). []

Proof (1) Let a be an occurrence sequence from sso to s. For i = 0 to 161 we construct sl, ~ and al such that
fs(.~.) = sso, ls(.~) = si =fs(61), ts(oi) = s, ~ belongs to the reduced state space, t~1 = i and lall = I~1-i. Choose
so = sso, G0 = t~ and lIo is the empty occurrence sequence starting at s0. Now let i > 0. Because lalal > 0, si.1
has an enabled transition. Let T~. 1 be the stubborn set used at s~_i. By Theorem 1.20 T~.I is not stubborn in s.
By Theorem 1.19 6i.1 contains at least one occurrence of a transition in Ti.~. Let ti be the transition corre-
sponding to the first such occurrence. By Theorem 1.11 there are s~ and 6~ such that s~.~ -t~--¢ s~,fs(6i) = s~,
ls(6i) = s, and It~il = lai.ll-1. Because t i~ Ti.~, sl E W. ~ is ~.~ with the occurrence of ti added to its end.
is a permutation of 6 belonging to the reduced state space and leading from SSo to s. That s is a terminal state
of W follows from E ~ E.

(2) s E W because W ~ W. s is terminal in W because otherwise Algorithm 1.21 would have chosen a stubborn
set T, at s and T, contains an enabled transition by Definitions 1.17 and 1.18. []

T h e o r e m 1.24 There is an infinite occurrence sequence in the reduced state space if and
only if there is an infinite occurrence sequence in the ordinary state space. []

Proof The "only if" part is obvious, as W ~ W and E ~ E. To prove the "if" part we construct for arbitrary
n an occurrence sequence of length n belonging to the reduced state space using an argument resembling
the one used in the proof of the previous theorem. Because T is finite, KSnig's Lemma (see e.g. [Reisig 85]
p. 141) gives then an inf'mite occurrence sequence in the reduced state space.

If there is an infinite occurrence sequence, then there is an inf'mite occurrence sequence starting at SSo. Le t
t~ be a prefix of such a sequence such that It~l = n. Let s~, IZ, 6~ and T~ be defined as in the proof of the previous
theorem, with the exception that now la~l > lal-i and s is not defined. The difference to the proof of the
previous theorem arises from the fact that there is now no guarantee that a transition belonging to Ti.~ occurs
in 6~.1. In such a case, let ti be a key transition of T~.t. By the definition of key transitions, t~ is enabled at the
end state of t~.~. Let 6'i. ~ be ~i.~ with the occurrence of t~ added to its end. If a transition belonging to T~. t
does occur in ~i.~,let 6'~_~ = oi-~. Theorem 1.11 can now be applied to o'~.~, and the proof continues as before. []

1.5 The "Ignoring" Problem
In the previous section we showed that the stubborn set method preserves sufficient infor-
marion for the verification o f systems which are intended to terminate. However , it is often
the case that the system under analysis is not intended to terminate. Such a system is sometimes
called a r e a c t i v e s y s t e m . Theorems 1.23 and 1.24 are o f course valid for reactive systems,
too, guaranteeing among other things that all deadlocks (that is, unintended terminal states)
are preserved by the s tubbom set method. On the other hand, there are important properties
which are not preserved by the stubborn set method as presented so far.

In the p roof o f Theorem 1.24 we constructed f rom a given occurrence sequence an occurrence
sequence belonging to the reduced state space. Each construction step consumed either one
or zero transition occurrences f rom the original sequence in the sense o f moving it f rom t~.~
to _tZ. The no consumpt ion case arose when a key transition was added towards the end o f
t~i_~, because then the key transition was the only one belonging to both T~_~ and o~i.~, and was
consequently the one m o v e d to ~ . Assuming that key transitions are added only a finite
number o f times, the reduced state space contains a permutation o f some finite extension of

504

the original occurrence sequence. There is, however, no guarantee that key transitions may
be added in a way that leads to an end. If the adding of key transitions never ends, the first
unconsumed transition of the original sequence is ignored in the sense of the following
definition.

Definition 1.25 Transition t is ignored in state s, if and only if en(s,t) and ~/ s' ~ $:
(s -key--+* s' ~ -~ en(s',t)). t is ignored, if it is ignored in some s ~ W. []

Ignoring may limit seriously the coverage of the stubborn set method. For instance, if the
system under analysis contains one process running in a loop and not interacting with the
rest of the system, the stubborn set method may traverse once around the loop and then stop,
leaving most of the behaviour of the system uninvestigated. This is cunning behaviour if one
is interested in terminal states only, because the existence of such a loop guarantees that there
are no terminal states. On the other hand, it is very undesirable behaviour when analysing
reactive systems. In the remainder of this section we develop algorithms for detecting and
eliminating ignoring. In Section 1.6 we show that many important system properties can be
decided using the reduced state space when ignoring has been eliminated.

Assume t is ignored at s and tk is a key transition at s. By Definitions 1.17 and 1.18 tk remains
enabled when t occurs. Then by the definitions of according left and according with t remains
enabled when tk occurs. As a consequence, t is ignored in the resulting state, too. Repeating
the argument reveals that t is enabled and ignored in every state reachable from s in the key
space. If the key space is finite, which is the case at least if the ordinary state space is t-mite,
then it must contain a terminal strong component C such that t is enabled but not stubborn-
enabled at its every state. Let s ~ C. Because t is enabled at s there is a stubborn set at s. Thus
s has a child in the key space and C is cyclic. On the other hand, if the key space contains a
terminal strong component such that t is enabled at one of its states but not stubbom-enabled
at any of its states, then t is obviously ignored in s. This gives the following theorem, and a
corresponding algorithm for detecting ignoring.

Theorem 1.26 Assume the state space of the system is finite. Transition t is ignored if and
only if the key space contains a terminal strong component C such that q s ~ C" en(s,t) ^
~ / s ~ C" ~ en(s,t). I f C exists, it is cyclic, and t is enabled in its every state. []

Algorithm 1.27 Assume the state space of the system is finite. Find the terminal strong
components of the key space. For each of them, choose an arbitrary state and compute the
set of transitions enabled in it. Subtract from this the set of all transitions which are
stubborn-enabled in the component; this set is easily obtainable as it is the set of the transitions
labelling the edges of the strong component. The union of the results of the subtractions for
each terminal strong component is the set of ignored transitions. []

Strong components can be found in time linear in the number of states and edges in the key
space using Tarjan's algorithm, described in [Aho & 74 Chapter 5]. Recognizing the terminal
strong components is not difficult, because Tarjan's algorithm finds the strong components
in depth first order. Tarjan's algorithm produces the set of states of each strong component,
making it easy to compute the set of transitions labelling the output edges of the states.
Therefore ignoring can be detected very cheaply, in linear time in the size of the reduced
state space.

Detecting ignoring gives information about the coverage of the analysis and makes it possible
to repeat the analysis with a modified stubborn set find algorithm, thereby forcing different
branches of the state space to be investigated. However, this falls short from what we wish
to achieve. In the strong theory of stubbom sets the key space is the same as the reduced state
space. Together with some nice properties of Tarjan's algorithm, this fact enables cheap
detection and remedy of ignoring at analysis time, leading to a reduced state space where
ignoring does not occur.

505

Algorithm 1.28 Assume the state space of the system is finite, and the strong stubborn set
definition is used. Generate the reduced state space in depth-first order and apply Tarjan's
algorithm along with the generation. Attach an initially empty set of transitions Tx to each
state generated. Tarjan's algorithm's stack of found nodes not belonging to a completed
strong component will get extra short cut links as described below; therefore we rename it
T-list. These links are used only for ignoring detection, and affect Tarjan's algorithm in no
way.

Whenever a terminal strong component C is found, compute T,, the set of transitions used
in it as shown soon. Let sc denote the current state, and T, the set of enabled transitions in so.
There are ignored transitions in the current branch of the reduced state space if and only if
T,-T~ ~ ~ . Mark the component ready as required by Tarjan's algorithm and backtrack from
it only if there are no ignored transitions. If there are ignored transitions, add T, to the Tx of
s~, and create a short cut link from the current top of the T-list to s~ (note that the states
belonging to C are the states above and including s~ in the T-list). Then choose a new stubborn
set such that at least one of its key transitions is ignored, that is, in Te-T~, and continue
depth-first analysis.

The set of used transitions is computed by traversing the T-list from top to and including so,
using short cut links where available. During the traversal, for states not adjacent to a short
cut link, add their sets of stubborn-enabled transitions to T~. For states adjacent to the tail but
not to the head of a short cut link add nothing to T~, and for states adjacent to the head of a
short cut link add their Tx to Tr (Note that the Tx sets and the short cut links are used at most
once, and before the corresponding states are popped from the T-list by Tarjan's
algorithm.) []

The new edges introduced to the reduced state space by this algorithm do not confuse Tarjan's
algorithm, as they are introduced just before Tarjan's algorithm would become aware of their
non-existence. The short cut links and the T~ sets are used for speeding up the computation
of the set of ignored transitions, taking advantage of the previously computed T, sets. Because
of them, each state's set of stubborn-enabled transitions is computed at most once. Short cut
links are used at most once. The remaining operations related to ignoring detection are done
once for every ignoring recovery, and every ignoring recovery introduces at least one new
edge to the reduced state space. Thus the cost of this algorithm is at most proportional to the
size of the (final) reduced state space multiplied by the number of transitions in the v/t-system.

1.6 Stubborn Sets and Reactive Systems
Let us return to the argument in the proof of Theorem 1.24. Assuming that ignoring does not
occur, it is always possible to select key transitions in such a way that as i grows, a~ eventually
contains an occurrence of a transition belonging to T~. Continuing the procedure, the transition
occurrences belonging to the original occurrence sequence are eventually all consumed,
justifying the following theorem:

Theorem 1.29 Assume ignoring does not occur. Let ~ be a finite occurrence sequence starting
at s, where s e W. There are s" ~ W, a finite extension of a called c ' leading from s to s', and
a permutation of a ' called ff leading from s to s' and belonging to the reduced state space.
Each transition occurrence in ff either has a corresponding transition occurrence in t~, or is
the occurrence of a key transition. []

This theorem has corollaries which are important regarding the analysis and verification of
reactive systems.

Corollary 1.30 If ignoring does not occur, a transition occurs in the reduced state space if
and only if it occurs in the ordinary state space. []

506

This corollary allows the use of the well known Petri net fact technique (see e.g. [Reisig 85]
p. 56) for verifying invariant properties with the stubbom set method, provided that ignoring
is eliminated. A fact is a transition t whose enabling condition E(s) = en(s,t) is expected to
be never satisfied. That is, ~ E is intended to be an invariant property. The generation of the
current branch of the state space may be quitted when an enabled fact is found. The quitting
causes the state violating the fact appear as a terminal state in the reduced state space, thus
confusing the ignoring elimination algorithm (Algorithm 1.28). Because of this, if invariant
properties are violated, it is guaranteed only that at least one violation is found. Furthermore,
other analyses (terminal state detection etc.) are guaranteed to produce correct results only
if there are no violations of invariant properties. As a consequence, some errors of the system
under analysis are not necessarily reported, if there is a violated invariant. This is often
sufficient, because the violation of the invariant is reported, and the remaining errors will be
found after the error causing the violation of the invafiant is fixed.

There is also a way to restore the ignoring elimination algorithm. This is done by not taking
fact violation terminal states into account when checking in the algorithm whether a strong
component is terminal. Key transitions leading from a state s to a fact violation terminal state
cannot any more be considered key transitions in s. If the weak definition of stubborn sets is
used, this may lead to the need of finding and using a new stubbom set in s to ensure that at
every state with transitions which are enabled but not stubbom-enabled, there is a key
transition leading to a proper successor state.

Transition t is live in the Petri net sense of the word, if and only if for every s ~ W there is
an occurrence sequence starting at s and containing an occurrence of t. We can say that t is
live in the reduced state space if and only if for every s ~ W there is an occurrence sequence
starting at s, belonging to the reduced state space and containing an occurrence of t.

Corol lary 1.31 If ignoring does not occur, a transition is live (in the Petri net sense of the
word) if and only if it is live in the reduced state space. That is, if ignoring does not occur,
stubborn set state space reduction preserves liveness. []

P r o o f A s s u m e t is live. Let s ~ IV. Take an occurrence sequence ~ starting at s and ending with the occurrence
of t. By Theorem 1.29 the reduced state space contains a permutation of an extension of ~ starting at s.
Therefore it contains an occurrence sequence starting at s and containing the occurrence of t. t is thus live
in the reduced state space. Assume now that t is not live. There is then a state s such that t is disabled in
every state reachable from s. Take an occurrence sequence ~ from SSo to s. By Theorem 1.29 there is a state
s" ~ IV such that s' is reachable from s. t is disabled in every state reachable from s', thus it cannot occur in
any occurrence sequence starting at s" in the reduced state space. As a consequence, t is not live in the reduced
state space. []

A livelock can be thought of as a mode of operation where the system is doing something
but what it is doing is unproductive. We can distinguish between two kinds of livelocks:
those which can be exited, and those which cannot. The latter correspond to cyclic terminal
strong components C of the state space of the system such that the set of transitions occurring
at the states of C is not what is expected. The following corollary shows that such livelocks
are preserved by the reduced state space generation method if ignoring does not occur.

Corol lary 1.32 Assume the state space of the system is finite and ignoring does not occur.

(1) Let C c Wbe a terminal strong component. There is a terminal strong component C in
the reduced state space such thatC ~ C and for every transition t, if and only if 3 s, s' e C:
s -t---> s', then 3 s, ~ ~ C: s -t___.~ s'.

(2) L e t C _ Wbe a terminal strong component of the reduced state space. There is a terminal
strong component C such that C _c C and for every transition t, if and only if 3 ~, ~" E C:
s -t . .~ s', then 3 s, s' ~ C: s -t---> s'. []

507

Proof (1) Let s e C and ff be an execution sequence from sso to s. Every state reachable from s belongs to
C. Consider the s' the existence of which is implied by Theorem 1.29. s" e C and s' e W. Let C be a terminal
strong component of the reduced state space such that 3 s e C: s" ---~* ~. We see that C ~ C. Now, let s be
any element of C and let s,, s', e C and t e T such that sl - t ~ s',. Because C is a strong component, s ~ *
s~ -t--4 s',. By Theorem 1.29 there are ~, ~'~ e W such that sl -t---~ s'~. ~,, ~'l e C, because s e C and C is a
terminal strong component of the reduced state space. Now let s,, ~'1 e C such that s, -t---~ s'l. sl, s'~ e C
and s~ -t--4 ~', because C ~ C and E ~ E.

(2) Choose s e C. Let C be a terminal strong component of the ordinary state space such that 3 s e C: s ~ *
s. As above, Theorem 1.29 implies that there is s ' e ~ n C such that s ---~* ~" and s --~* s'. Thus ~' e C, and
because C is a strong component in the reduced state space, we get s" ---~* s. Therefore s, s and s" belong to
the same strong component of the ordinary state space, that is, to C. We conclude C ~ C. The claim "for
every transition t, if and only if 3 s, s' e C: s -t._~_~ s', then 3 s, s" e C: s -t---r s " is proven as above. []

It is known that the s tubbom set method as presented so far does not preserve livelocks which
can be exited. The stubborn set method can be modified to cover the analysis o f such livelocks,
too, but it is beyond the scope of this paper.

The last result in this chapter is about preserving the language generated by a system. We
assume that some, but not necessarily all transitions of the system have been given a symbol
f rom some alphabet. Then the language generated by the system is the set o f strings generated
by the occurrence sequences o f the system.

Defini t ion 1.33 Let Z be a set of symbols. Let (V,T, type~ext,sso) be a v/t-system and a be
a function f rom T to E* such that V t e T: Ic~(t)l _< 1. Let o = s0-tl--~ ... -t~---~ s~.

• t e Tis visible, if and only if It~(t)l = 1. Otherwise t is invisible. The set o f visible transitions
is denoted by Tv.

° The word generated by ~ is the string o~(t,)tx(t2)...a(&).

• The language generated by (V,T, type,next,SSo) with E and ¢t is the set o f words generated
by all finite occurrence sequences o f (V,T, type,next,sso) starting at SSo. []

Assuming that the selection o f stubborn sets is constrained in a certain way and ignoring does
not occur, the s tubbom set method preserves the language generated by the system.

T h e o r e m 1.34 Assume that ignoring does not occur, and the stubborn sets used by Algori thm
1.21 satisfy the fol lowing for every stubborn set T, used at state s with an enabled transition:

(q t e T ~ n T v : e n (s , t)) ~ Tvc_T~.

I f there is an occurrence sequence t~ starting at SSo generating the word x, then there is an
occurrence sequence ~ in the reduced state space starting at sso and generating x, and vice
versa. []

Proof The "vice versa"-part is obvious. Regarding the other part, consider the t~ of Theorem 1.29. We prove
that in the construction of cr the order of occurrences of visible transitions does not change, implying that t~
has a prefix generating x. Consider again the argument in the proof of Theorem t.24. Each construction step
moves a transition occurrence from o-'~., to ~. If the transition is invisible, moving it does not change the
order of occurrences of visible transitions. Assume now the moved transition t is visible. It is obviously
enabled at si., = ls(.~.,) and belongs to Ti.,, where T~4 is the stubborn set used at si.,. By the assumption of
the theorem we get Tv ~ T~.,. The moved transition is the fh'st of those in o"i. , which belong to T;~, thus it is
the first of those in o~., which belong to Tv. As a result, moving it does not change the order of occurrences
of visible transitions. []

In conclusion, if the strong definition o f stubborn sets is used, Algor i thm 1.28 can be used
to eliminate ignoring. When ignoring is eliminated, the stubborn set method preserves liveness
in the Petri net sense o f the word, and can be used to check invariant properties, Furthermore,
it preserves livelocks defined as unintended terminal cyclic strong components . Assuming
an extra constraint on the selection o f s tubbom sets the method preserves the language
generated by the system.

508

2. STUBBORN SETS OF PETRI NETS
In this chapter the theory of Chapter 1 is applied to three different classes of Petri nets by
adapting the definitions of stubborn sets (Definitions 1.17 and 1.18). The classes are ele-
mentary nets (see [Rozenberg & 86] or [Thiagarajan 87] for definition), place/transition nets
with finite capacity of places ([Reisig 85] or [Reisig 87]), and coloured Petri nets ([Jensen
871).

Since we have used the symbols s, s', s~ to denote states, we denote Petri net places by
symbols starting withp, to avoid confusion. We continue to use the predicate en for denoting
that a transition is enabled. Otherwise in this chapter we use familiar Petri net notation where
convenient, such as ot and t- for the sets of the input and output places of transition t,
respectively. In particular, markings (the Petri net equivalent of states) are denoted by the
usual M, even when they are used mixed with variable/transition system notation. That is,
we write, for instance, nex t (M, t) = M ' .

2.1 Stubborn Sets of Elementary Nets
An elementary Petri net system as defined in [Rozenberg & 86] or [Thiagarajan 87] can be
thought of as a variable/transition system where places correspond to variables, transitions
correspond to transitions, markings correspond to states and the initial marking corresponds
to the initial state. The type of each variable is {0,t 1, representing the corresponding place
being empty or marked, respectively. The topology of the net defines the next state function
in an obvious way:

nex t (M, t) = unde f ined , if and only if 3 p e ot: M(p) = 0 v 3 p e t.: M(p) = 1

otherwise nex t (M, t) = M', where
V p ~ . t : M ' (p) = O ^ V p , ~ t . : M ' (p) = l A V p ~ . t u t . : M ' (p) = M (p)

Because of the form of the enabling condition of an elementary net transition, it has a sep-
aration (see Definition 1.10) consisting of single places:

sep(t; {Pl } {p,}), if test(t) = {Pl ,P.}

The most natural choices for the test, write and read sets of transition t satisfying Definition
1.6 and the corresponding connection set are

if "t n to = O: test(t) = wr(t) = conn(t) = . t u t . A rd(t) = 0

if -t n t° ~: O: test(t) = wr(t) = rd(t) = conn(t) = 0

To keep our formulas simpler, from now on we assume that for all transitions t, °t n t° = O.
(That is, we ban s ide p laces .) This is not an essential restriction, since transitions not satisfying
this are never enabled.

Transition t is enabled with respect to a subset of places P' in the sense of Definition 1.8 if
and only if

V p • P ' n ° t : M(p) = 1 ̂ V p e P" n t.: M(p) = 0

A possible choice for write up and write down sets of transition t (see Definition 1.9) is

wrup(t ,P ') = °(P" n ° t) u (P" n t°)°

wrdn(t¢P') = (P ' n .t)° u .(P" r~ t .)

Every elementary net transition accords left (Definition 1.12) every other elementary net
transition, as can be verified by algebraic manipulation based on the definitions. We can write
weak definitions of semistubbom and stubborn sets of elementary net transitions (see
Definitions 1.13 and 1.17):

509

Definition 2.1 Subset of transitions T, of an elementary Petri net is semistubborn in the weak
sense at marking M, if and only if for every t e T,

~en(M, t) ~ 3 p • . t :M(p)=OAopc_T~ v 3 p • t . :M(p)= l Ap°C_T s

en(M,t) ~ V p • o t u t . : . p c T , v p . c T,

T, is stubborn in the weak sense at M, if and only if it is semistubbom in the weak sense at
M, and

3 t • T~: en(M,t) A ('t)" U "(t') C_ T~ []

Strong definitions of semistubbom and stubbom sets (see Definitions 1.15 and 1.18) have
the following form:

Definition 2.2 Subset of transitions T, of an elementary Petri net is semistubborn in the
strong sense at marking M, if and only if for every t • T,

~en(M, t) ~ 3 p • ot:M(p)=O^opc_T~ v 3 p • t . :M(p)= lAp°C_T~

en(M,t) =~ (°t). u .(to) c T,

T, is stubborn in the strong sense at M, if and only if it is semistubbom in the strong sense
atM, and

3 t • T,: en(M,t) []

2.2 Stubborn Sets of Place/Transition Nets

The interpretation of place/transition nets (as defined in [Reisig 85] or [Reisig 87], for
instance) as variable/transition systems follows the same guidelines as the interpretation of
elementary nets. Since places may now contain more than one token, the type of the variable
corresponding to place p is {0 K(p)} where K(p) is the capacity of p, or {0 } if the
capacity of p is infinite. The next state function is defined by the transition rule of pla-
ce/transition nets as follows. Let W(x,y) be the weight of the arc from place or transition x to
transition or place y, or 0, if there is no arc.

en(M,t) ¢:~ V p • P: W(p,t) < M(p) < K(p)-W(&p)

en(M,t) ~ next(M,t) = M', where V p • P: M'(p) = M(p)-W(p,t)+W(t~o)

As with elementary nets, sep(t; {Pl },..-,{P,}) holds for every transition t if test(t) = {Pl
p.}.
Let us denote the set of places with finite capacity by PK- Test, read, write and connection
sets may be defined as below:

test(t) = °t u (t° c7 Pr)

wr(t) = rd(t) = {p • e I W(p,t) ~ W(t~o)}

conn(t) = °t u t°

Enabling with respect to a set of places can be defined as the restriction of the enabling
condition to the set of places in question.

The definitions of smallest possible write down and write up sets of general place/transition
nets are quite complicated, and thus so are also the definitions of (semi)stubborn sets. For
simplicity, in the remainder of this section we assume that the capacity ofeachplace is infinite.
If stubborn sets of place/transition nets with capacity constraints are needed, one can use the
general ideas of this paper to derive the necessary definitions.

510

With the assumption of the absence of capacity limitations, write up and write down sets
with respect to individual places may be defined as follows:

wrup(t,{p}) = {t' e TI W(t'~o) > W(p,t') < W(p,t)}

wrdn(t,{p}) = {t" e TI W(p,t') > W(t'~o) < W(p,t)}

Theorem 2.3 Let t and t' be transitions of a place/transition net where the capacity of each
place is infinite, t / t', if and only if

V p e P: W(t;p) > min(W(p,t), W(p,t'), W(t" #)) []

Proof "if" part: Assume that M - t -~ M' and M -t'--~ MI -t--~ M'I; we have to prove that M" -f---~ M'~. By
the assumption, for allp e P, (1) Mfp) > W(p,t), (2) Mfp) > W(p,t'), and (3) M(p)-W(p,t')+W(t':) >_ W(p,t).
Also M~ (p) = M(p)-Wfp,t)+W(t~). If W(t,p) _ Wfp,t), then M ~) > Mfp) > W(p,t') by (2). If W(t,p) > Wfp,t'),
then M (p) >-_ W(t:) >- W fp,~ by (1). If W(t~p) > W(t'~o), then M (p) > Mfp)-Wfp,t)+W(f ,a) >_ W(p,~ by (3);
Thus f is enabled at M. M -f---~ M ~, since the net result of the occurrence of two place/transition net
transitions in sequence is independent of their order of occurrence.
"only if" part: Assume that there is a placep so that W(t~) < rain(Wfp,t), Wfp,t'), W(f~o)). Consider marking
M where M~) = W~,t)+W(p,t')-W(t~)-l, and the marking of the remaining places p is M(p') = max(
W(p',t), W(p ,t'), W(p ,t')-W(t' ~')+W(p',t)). M(p) is well defined, because W(t,p) < W(p,t) implies M(p) >
Wfp,t') > 0. There are M, M1 and M' 1 so that M -t--~ M" and M -f---~ M~ -t--4 M ~, as can be verified by
algebraic manipulation based on the assumption about W(t,p). However, t" is not enabled at M" because
ofp. []

Using the above definitions and Theorem 2.3, we get the following definitions:

Definition 2.4 Subset of transitions T, of a place/transition net with infinite capacity of places
is semistubborn in the weak sense at marking M, if and only if for every t e T,

en(M,t) ~ q p e P: M(p) < W(p,t) ^ V t' ~ T~: W(p,t') > min(W(t'~o), W(p,t))

en(M,t) ~ V p e P: (V t' ~ 1",: min(W(t~), W(t'~o)) >_ min(W(p,t), W(p,t')) v
V t' ~ 7",: min(W(t~o), W(p,t')) > min(W(p,t), W(t'¢~)))

T, is stubborn in the weak sense at M, if and only if it is semistubbom in the weak sense at
M, and

3 t e T~: en(M,t) ^ V t p ~ Ts: V p e P: W(t'~p) > min(W(p,t'), W(p,t)) []

Definition 2.5 Subset of transitions T, of a place/transition net with infmite capacity of places
is semistubborn in the strong sense at marking M, if and only if for every t e T,

en(M,t) ~ 3 p e P: M(p) < W(p,t) ^ V t" ~. 1",: W(p,t') > min(W(t'~o), W(p,t))

en(M,t) ~ V p e P: V t" ~ T,: min(W(t,p), W(t'~o)) >min(W(p,t), Wfp,t'))

T, is stubborn in the strong sense at M, if and only if it is semistubbom in the strong sense
arM, and

q t e T,: en(M,t) []

It is interesting to compare Definition 2.4 to Definitions 2.1 and 2.3 of [Valmari 88a], as both
define semistubbom and stubborn sets of place/transition net transitions, and both assume
that there are no capacity constraints. The definitions in [Valmari 88a] were derived directly
for place/transition nets, using heuristics to develop different strategies for establishing
conditions guaranteeing Theorem 1.11, and using algebraic manipulations to find the
corresponding definition. The definitions in [Valmari 88a] are not intuitive, and, as a matter
of fact, not equivalent to Definition 2.4. This is because stubborn set theory aims at finding
a sufficient and statically computable condition for guaranteeing Theorem 1.11, and different
approaches may lead to slightly different results.

511

2.3 Stubborn Sets of Coloured Petri Nets
Coloured Petri nets are a high level net class defined in [Jensen 87]. Tokens of a coloured
Petri net may have an identity ("colour"). Transitions may have different occurrence modes
(they, too, are called "colours"), and the tokens the transition consumes from its input places
and produces for its output places may be defined by arbitrary functions from occurrence
colours to multisets of token colours.

There are basically two approaches to interpreting coloured Petri nets as variable/transition
systems, one concentrating to the places of the coloured net as such, the other to the places
of the corresponding unfolded net. In the first approach each place is thought of as a single
variable the type of which is defined so that it covers all the multisets of tokens that may be
stored in the place. Each occurrence colour of each transition is thought of as a unique
transition. Test, write, write down etc. sets and stubborn sets are defined putting the available
information of the relationships between transitions and places to as good use as conveniently
possible. For instance, an easy but crude way of defining the test, read, write and connection
sets of transitions is to define test(t) = wr(t) = rd(t) = conn(t) = .t u t. for each transition t.
The observation that for a particular transition t and placep the functions defining the tokens
consumed from and produced for p by t are equal, can be taken advantage of by removing p
from wr(t), because then t only tests the presence of some tokens inp without modifying the
contents of p. An easy definition of write up and write down sets would be wrup(tJ ~') =
wrdn(t,P') = wr(test(t) n P') for each transition t and set of places P'. With these definitions,
the weak and strong definition of semistubbom sets agree and lead to the following simple
definition (originally [Valmari 88b]):

A set of transitions T s c T is semistubborn at marking M, if and only if for every t ~ T,

en(M,t) ~ 3 P" c_ test(t): --1 en(M,t,P') A wr(e ') ~ Ts

en (g , t) ~ conn(wr(t)) u wr(conn(t)) c_ T,

The definition of stubbom sets adds the requirement of the presence of an enabled transition
in the set to this. This definition is quite simple, but it leads to unnecessarily large stubborn
sets and thus does not give the best possible state space reduction results. Better reduction
results are achieved if the information of the relationships between places and transitions is
utilised more carefully.

In the other interpretation approach each place is thought of as consisting of several variables,
each corresponding to one possible token colour. That is, the coloured Petri net is interpreted
as being only a concise description of the corresponding unfolded place/transition net. Then
the definitions of stubborn sets of place/transition nets are used. This approach does not imply
that the unfolding should be actually done; rather, it states merely that the algorithm finding
stubbom sets should interpret the coloured Petri net as if it were a condensed description of
the corresponding unfolded place/transition net. The advantage of this approach over the first
interpretation is that better reduction results may be achieved, but the disadvantage is that
algorithms searching stubbom sets become more complicated and consume more time. At
the time of writing it is an open research problem as to whether using this interpretation
allows stubborn sets of coloured Petri net transitions to be computed with effort proportional
to the size of the coloured Petri net rather than proportional to the size of the corresponding
unfolded place/transition net.

In conclusion, the best interpretation of coloured Petri nets as v/t-systems depends on the
available information on what there may be in arc functions and transition guards. The ideas
of this section should be applicable to most other high level net classes, too, including
Genrich's predicate/transition nets [Genrich 87] and Numerical Petri Nets [Wheeler 85].

512

3. STUBBORN SETS AND EQUIVALENT MARKINGS
In this chapter we compare with the aid of an example, the stubborn set state space reduction
method with Jensen's equivalent marking method as defined in [Jensen 87]. The example is
a data base system originally presented by Genrich and Lautenbach+ We use the version in
[Jensen 87] p. 269. It consists of n > 2 data base managers, which modify the data base and
send and receive messages to each other to ensure that they have the same idea about the
contents of the data base. The model concentrates on the message exchange. In particular,
the modification operations are not modelled.

Initially all managers are in inactive state. Then one of them, any one, modifies his data base.
This is modelled by transition "update and send messages" which reserves the data base for
that manager and sends a message to every other manager. Then all the other managers
concurrently perform a two step sequence, where the first step corresponds to the reception
of the message, and the second step corresponds to the sending of +an acknowledgement.
When all acknowledgements are available, the manager who started the game reads them,
releases the data base so that the other managers can modify it if they wish, and returns to
the inactive state.

The state space of the data base system has a symmetrical structure which makes it easy to
compute its size when no reduction method, the stubborn set method, the equivalent marking
method or both are used. The ordinary state space (no reduction method used) is as in the
figure below, where usm/is the occurrence of transition "update and send messages" with
occurrence colour i, ra~ is the occurrence of transition "receive acknowledgements" with
occurrence colour i, rm/+ is the occurrence of transition "receive message" with occurrence
colour "j receives from i ~', sa!~ is the occurrence of transition "send acknowledgement" with
occurrence colour"j sends to i , cube/is a subspace resembling an n - 1 dimensional hypercube
(see the example below), and in/and outl are the input and output states of cube/, cube1 for
n=3 is shown in the following page.

. J

I I I
I I !
I c u b e l ! c u b e z ! • + • I c u b e r , I

I I I I
I I I

_ I _ I

1"

An n- 1 dimensional hypercube with edges of length 2 has 3 "1 vertices and 2(n- 1)3 ".2 edges.
Therefore the state space of the example contains n3"1+1 vertices and 2n(n-1)3"%2n edges.

When the stubbom set state space reduction method is used and stubbom sets are computed
as if from the unfolded place/transition net corresponding to the coloured Petri net repre-
senting the data base system (see Section 2.3), the stubborn set method takes advantage of
the fact that the receive message - - send acknowledgement sequences of different managers
are concurrent with each other. Therefore it simulates only one path through each cube/. This

rml,2

rlnl,3

513

is true independent of whether the weak or strong definition of stubborn sets is used. It is,
however, required that the stubborn sets used are not larger than necessary. Under these
assumptions, the numbers of vertices and edges are 2n2-n+l and 2n 2.

In this example, the equivalent marking method takes advantage of the fact that the system
is symmetric with respect to the data base managers. That is, it is not necessary to know the
identity of the manager that is at a given state; it is sufficient to know only the number of
managers at each state. Therefore only one of cube/is generated. Furthermore, within each
cube/only the states (1",k,1) are generated, wherej is the number of managers which have not
yet received the message, k is the number of managers which have received the message but
have not acknowledged it, l is the number of managers which have acknowledged their
message, andj+k+l = n-1. There are thus (1/21n2+(1/2)n+l vertices. A bit more complicated
analysis reveals that the number of edges is n -n+2.

Finally, when both reduction methods are used at the same time, only one of cubei and only
one path through it are generated. Therefore the number of vertices and edges are both 2n.
These results are summarized in the following table, where we have included only the most
significant term of each formula:

no reduction
stubborn sets

equivalent markings

both

vertices

n y -]
2n 2
1 2
i n
2n

edges

2n23 n-2
2n 2

n 2

2n

In this example, the size of the state space is exponential in n if neither reduction method is
used, quadratic in n if either reduction method is used, and linear in n if both are used at the
same time. From this, one should not conclude that the stubborn set method and the equivalent
marking method are roughly equally strong, but that they are incomparable, that they take
advantage of different aspects of the system under analysis. The equivalent marking method
works well when there is a suitable symmetry available; the stubborn set method works well
when there is concurrency. In this example there are both, thus it is advantageous to use both
reduction methods.

4. C O N C L U S I O N

In this paper we have developed a general state space reduction theory and applied it to both
low level and high level Petri nets. From the implementer's point of view the theory is very
flexible. Several sets in the theory can be enlarged at will without invalidating the theorems

514

in this paper, including write down and write up sets. Therefore the implementer may choose
how carefully the relationships between transitions are captured by the definition of stubborn
sets. More detailed definitions give better state space reduction results, but if the ease of
implementation is preferred, the use of crude definitions is perfectly legal.

There are two versions of the theory: strong and weak. With both versions, the reduced state
space contains every terminal state of the system under analysis, and facilitates the detection
of nontermination. This information is sufficient to verify the total correctness of systems
which are intended to terminate. If nontermination occurs, a certain kind of fairness problem
called ignoring can take place and limit the coverage of the analysis of reactive systems.
Ignoring can be cheaply detected from the reduced state space. If the strong theory is used,
ignoring can be eliminated altogether without undue cost using the algorithm given in the
paper. If ignoring does not occur or is eliminated, reduced state space generation can be used
to decide the liveness of transitions (in the Petri net sense of the word), to detect livelocks
(defined as unintended terminal cyclic strong components of the state space) and to check
invariant properties. Furthermore, with a small modification the stubborn set method can be
forced to preserve the language generated by attaching a symbol to some (but not to all)
transitions. The preserving of linear temporal logic formulas is discussed in [Valmari 90],
and also the failure set semantics [Brookes & 84] of systems can be preserved.

We compared the stubborn set method to Jensen's equivalent marking method through an
example. The conclusion was that both methods are capable of giving good reduction results
(the size of the state space reduced from exponential to quadratic in system size with either
method in the example), but they are incomparable in the sense that they take advantage of
different aspects of the system under analysis. In the example the use of both methods at the
same time led to even better results (linear).

As reported before [Valmari 88a], there is a test implementation which uses the strong form
of the definitions and makes a very crude analysis of the relationship between transitions. A
more serious attempt of applying the stubborn set method is currently being conducted by
Telecom Australia. It is developing a protocol engineering tool called Toms [Wheeler & 90].
Among other features, it can generate ordinary and reduced state spaces using the strong
stubborn set method. It contains an ignoring elimination algorithm resembling Algorithm
1.28. Furthermore, it contains the language preserving and the failure set semantics preserving
stubbom set methods.

The state space generator tool of Toms has been divided to two modules, one embodying
knowledge about state space generation and the various stubborn set methods, the other
corresponding to the semantics of the concurrency model which is used to represent the
systems under analysis. The idea is that the tool can be adapted to various concurrency
formalisms by changing the latter module. The modules communicate with each other at the
level of variable/transition systems. The above mentioned state space generation algorithms
have been implemented, and at the time of writing there is a concurrency model module for
place/transition systems without capacity constraints. Another for a certain version of
Numerical Petri Nets [Wheeler 85] is partially implemented. In the initial speed tests a

47 P/T-system version of the 100 philosopher system (=10 states) was analysed in 20 minutes
CPU on a Sun 3/60, with the result of generating 29 702 states using the basic strong stubborn
set method [Wheeler & 90].

ACKNOWLEDGEMENTS
As many of the ideas of this paper have been developed during my Ph.D. thesis work, I would like to thank
here my supervisor, referees and opponents of the thesis, namely Professor Kurki-Suonio of Tampere
University of Technology and Drs Eike Best, Pekka Orponen and Joachim Parrow. Later the comments by
Geoff Wheeler of Telecom Australia have been very valuable. The quality of this paper has improved also
by the comments by the unknown referees of the Tenth Petri Net Conference, and after it by the two referees
of this volume. I wrote the Petri Net Conference version of this paper [Valmari 89b] while I was visiting

515

Telecom Australia Research Laboratories supported by Telecom Australia. That the visit was possible and
I had the chance to do this work is largely due to Jonathan Billington. The Technical Research Centre of
Finland (VTT) and the TechnologyDevelopment Centre of Finland (Tekes) have supported this work through
its all stages, including the period in Australia.

REFERENCES
[Aho & 74] Aho, A. V., Hopcroft, J. E. & Ullman, J. D.: The Design and Analysis of ComputerAlgorithras.

Addison-Wesley 1974. 470 p.
[Back & 87] Back, R. J. R. & Kurki-Suonio, R.: Distributed Cooperation with Action Systems. ACM

Transactions on Programming Languages and Systems, Vol 10, No. 4 1988, pp. 513-554.
[Brauer & 87] Brauer, W., Reisig, W. & Rozenberg, G. (ed.): Petri Nets: Central Models and Their

Properties. Advances in Petri Nets 1986, Part L Proceedings of an Advanced Course, Bad Honnef,
September 1986. Lecture Notes in Computer Science 254, Springer 1987. 480 p.

[Brookes & 84] Brookes, S. D., Hoare, C. A. R. & Roscoe, A. W.: A Theory of Communicating Seque~dial
Processes. Journal of the ACM 31 (3) t984, pp. 560-599.

[Genrich 87] Genrich, H.: Predicate/Transition Nets. In: [Brauer & 87], pp. 207-247.
[Jensen 87] Jensen, K.: Coloured Petri Nets. In: [Brauer & 87], pp. 248-299.
[Manna & 81] Manna, Z. & Pnueli, A.: The Temporal Framework for Concurrent Programs. In: Boyer, R.

S. & Moore, J. S. (ed.): The Correctness Problem in Computer Science. Academic Press 1981, pp.
215-274.

[Overman 81] Overman, W. T.: Verification of Concurrent Systems: Function and Timing. Ph.D. Disser-
tation, University of California Los Angeles 1981, 174 p.

[Pnueli 86] Pnueli, A.: Applications of Temporal Logic to the Specification and Verification of Reactive
Systems: A Survey of Current Trends. In: Current Trends in Concurrency, Lecture Notes in Computer
Science 224; Springer 1986 pp. 510-584.

[Reisig 85] Reisig, W.: Petri Nets, an Introduction. Springer 1985. 161 p.
[Reisig 87] Reisig, W.: Place/Transition Systems. In: [Brauer & 87] pp. 117-141.
[Rozenberg & 86] Rozenberg, G. & Thiagarajan, P. S.: Petri Nets: Basic Notions, Structure, Behaviour.

In: Current Trends in Concurrency, Lecture Notes in Computer Science 224, Springer 1986 pp.
585-668.

[Thiagarajan 87] Thiagarajan, P. S.: Elementary Net Systems. In: [Brauer & 87] pp. 26-59.
[Valmari 88a] Valmari, A.: Error Detection By Reduced Reachabitity Graph Generation. Proceedings of

the Ninth European Workshop on Application and Theory of PelriNets, Venice, Italy t988 pp. 95-112.
[Valmari 88b] Valmari, A.: Heuristics for Lazy State Generation Speeds up Analysis of Concurrent Systems.

Proceedings of the Finnish Artificial Intelligence Symposium STEP-88, Helsinki 1988. Volume 2 pp.
640-650.

[Valmari 88e] Valmari, A.: State Space Generation: Efficiency and Practicality. Ph.D. Thesis, Tampere
University of Technology Publications 55, Tampere 1988. 169 p.

[Valmari 89a] Valmari, A.: Eliminating Redundant lnterleavings during Conctu~rent Program Verification.
Proceedings of Parallel Architectures and Languages Europe '89 Vol. 2, Lecture Notes in Computer
Science 366, Springer 1989 pp. 89-103.

[Valmari 89b] Valmari, A.: Stubborn Sets for Reduced State Space Generation. Proceedings of the Tenth
International Conference on Application and Theory of Petri Nets, Bonn, West Germany 1989 Vol.
2 pp. 1-22.

[Vaimari 90] Valmari, A.: A Stubborn Attack on State Explosion, t5 p. In: Kurshan, R. & Clarke, E. M.
(ed.): Proceedings of the Workshop on Computer-Aided Verification, DIMACS Technical Report
90-31, June 1990, Volume I.

[Wheeler 85] Wheeler, G. R.: Numerical Petri Nets - - A Definition. Telecom Australia Research Lab-
oratories Report 7780, 1985, 42 p.

[Wheeler & 90] Wheeler, G. R., Valmari, A. & Billington, J.: Baby Toras Eats Philosophers but Thinks
about Solitaire. Proceedings of the Fifth Australian Software Engineering Conference, Sydney, NSW,
Australia, 1990 pp. 283-288.

