
Occupation Measure Heuristics for Probabilistic Planning

Felipe Trevizan, Sylvie Thiébaux and Patrik Haslum
Data61, CSIRO and Research School of Computer Science, ANU

Canberra, ACT, Australia
first.last@anu.edu.au

Abstract

For the past 25 years, heuristic search has been used to
solve domain-independent probabilistic planning problems,
but with heuristics that determinise the problem and ignore
precious probabilistic information. To remedy this situation,
we explore the use of occupation measures, which represent
the expected number of times a given action will be executed
in a given state of a policy. By relaxing the well-known linear
program that computes them, we derive occupation measure
heuristics – the first admissible heuristics for stochastic short-
est path problems (SSPs) taking probabilities into account.
We show that these heuristics can also be obtained by ex-
tending recent operator-counting heuristic formulations used
in deterministic planning. Since the heuristics are formulated
as linear programs over occupation measures, they can easily
be extended to more complex probabilistic planning models,
such as constrained SSPs (C-SSPs). Moreover, their formu-
lation can be tightly integrated into i-dual, a recent LP-based
heuristic search algorithm for (constrained) SSPs, resulting
in a novel probabilistic planning approach in which policy
update and heuristic computation work in unison. Our exper-
iments in several domains demonstrate the benefits of these
new heuristics and approach.

Introduction
Over the past two decades, heuristic search has established
itself as the method of choice for optimal deterministic plan-
ning. This is in large part thanks to the strong focus on devel-
oping domain-independent admissible heuristics, of which
there is now a large supply to choose from – see e.g. works
on delete-relaxation (Bonet and Geffner 2001), critical path
(Haslum and Geffner 2000), abstraction (Helmert, Haslum,
and Hoffmann 2007), landmark (Helmert and Domshlak
2009), operator-counting (van den Briel et al. 2007, Pom-
merening et al. 2014), and potential heuristics (Pommeren-
ing et al. 2015).

Heuristic search also has the potential to be a power-
ful approach for optimally solving probabilistic planning
problems, such as stochastic shortest path problems (SSPs),
constrained SSPs, and other SSP variants (Mausam and
Kolobov 2012). Many search algorithms have been devel-
oped for this purpose, including (L)TRDP (Barto, Bradtke,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Singh 1995, Bonet and Geffner 2003), LAO* (Hansen
and Zilberstein 2001), FRET (Kolobov et al. 2011, Stein-
metz, Hoffmann, and Buffet 2016), and i-dual (Trevizan et
al. 2016). However, in contrast to the situation in determinis-
tic planning, the success of these algorithms has been limited
by the lack of effective domain-independent heuristics ded-
icated to the probabilistic planning setting. Existing heuris-
tics simply determinise the problem and fall back on well-
established deterministic planning heuristics, failing to ex-
ploit valuable information about the probabilities of action
outcomes. As far as we are aware, in over two decades of ex-
istence of heuristic search algorithms for probabilistic plan-
ning, no one has developed admissible heuristics that ac-
count for the tradeoff between probabilities and action costs.

To fill this major gap, this paper introduces occupation
measure heuristics – the first domain-independent admissi-
ble heuristics for probabilistic planning that reason about
probabilities.1 An occupation measure is the probabilistic
counterpart of an operator count: it represents the expected
number of times a given action will be executed in a given
state of a policy before the goal is reached. The concept
traces back to the dual linear program formulation of SSPs
(D’Epenoux 1963), which solves SSPs by optimising the
policy occupation measures (this contrasts with the more
common primal LP formulation where the variables being
optimised represent the expected cost to reach the goal). Oc-
cupation measure heuristics can therefore be obtained by re-
laxing the dual LP. We formulate one such relaxation, the
projection occupation measure heuristic (hpom), by project-
ing the dual LP onto individual state variables and enforc-
ing the consistency of the projections’ occupation measures.
Our experiments show that iLAO* and LRTDP guided by
this heuristic often explore significantly fewer nodes than
when guided by deterministic planning heuristics.

Similarly to operator-counting heuristics used in the de-
terministic setting (Pommerening et al. 2014), occupation
measure heuristics are formulated as linear programs whose
variables are occupation measures. We further relate the two
types of heuristics by establishing that hroc, the net-change

1Our statement applies to SSPs and not to probabilistic confor-
mant planning or MaxProb type problems for which such heuristics
exist, see e.g. (Little, Aberdeen, and Thiébaux 2005, Bryce, Kamb-
hampati, and Smith 2006, Little and Thiébaux 2006, Domshlak and
Hoffmann 2007, E.-Martı́n, Rodrı́guez-Moreno, and Smith 2014).

heuristic for the all-outcomes determinisation of the SSP,
augmented with additional constraints enforcing the respec-
tive probabilities of the outcomes of each given operator,
fits into the occupation measure heuristic framework and is
dominated by hpom. This new heuristic hroc has the merit of
requiring substantially fewer LP variables than hpom in typi-
cal cases, and results in faster run-times and better scalabil-
ity than deterministic heuristics in several domains.

One of the strengths of occupation measure heuristics is
that they can easily be extended to incorporate additional
constraints, such as the bounds on expected costs featured
in constrained stochastic shortest paths problems (C-SSPs)
(Altman 1999, Dolgov and Durfee 2005). In a C-SSP, ac-
tions are associated with multiple cost functions (fuel, time,
etc), one of which is designated as the primary, and the
others as secondary costs, and one seeks a stochastic pol-
icy optimising the expected primary cost, subject to bounds
on the expected secondary costs. We describe hc-pom (resp.
hc-roc), an extension of hpom (resp. hroc) that incorporates
such bounds, and use it to guide i-dual, the state of the art
heuristic search algorithm for C-SSPs (Trevizan et al. 2016).
We find that hc-pom and hc-roc provide stronger guidance, as
the heuristics are aware not only of probabilities, but also of
the requirements regarding all the secondary costs.

Finally, one of the most intriguing advantages of occupa-
tion measure heuristics is that they can be computed at once
for multiple states, using the same set of linear constraints.
Thus, their formulation can directly be incorporated into the
LP solved by i-dual to update the policy at each iteration.
This leads to i2-dual, a brand new type of heuristic search
method for C-SSPs where the heuristic computation is lazy,
reusable across multiple parts of the search space, and works
in unison with the policy update. We find that i2-dual out-
performs i-dual in coverage, time and number of nodes ex-
panded, regardless of the heuristic used by the latter.

To summarise, this paper makes contributions that open
up new avenues of research for probabilistic planning: (1)
the first heuristics for SSPs and C-SSPs which exploit prob-
abilistic information, (2) a study of their relationship with
the operator-counting heuristics used in the deterministic
setting, and (3) a new approach to solving C-SSPs which
integrates heuristic computation with policy update.

Background: SSPs
We start with some background about stochastic shortest
paths problems, which we represent using a probabilistic
variant of SAS+. We then follow with a description of rel-
evant solution methods for SSPs, including the dual linear
program formulation which optimises occupation measures.
Probabilistic SAS+. A probabilistic SAS+ task is a tuple
〈V,A, s0, s?, C〉. V is a finite set of state variables, and each
variable v has a finite domain Dv . A partial state (or valua-
tion) is a function s on a subset Vs of V , such that s[v] ∈ Dv

for v ∈ Vs and v = ⊥ otherwise. If Vs = V , we say that s
is a state. s0 is the initial state and s? is a partial state repre-
senting the goal. Given two partial states s and s′, we write
s′ ⊆ s when s′[v] = s[v] for all v ∈ Vs′ .

The result of applying a (partial) valuation e in state s is

the state res(s, e) such that res(s, e)[v] = e[v] if e[v] 6= ⊥
and res(s, e)[v] = s[v] otherwise. A is a finite set of prob-
abilistic actions. Each a ∈ A consists of a precondition
pre(a) represented by a partial valuation over V , a set eff(a)
of effects, each of which is a partial valuation over V , and a
probability distribution Pra(·) over effects e ∈ eff(a) repre-
senting the probability of res(s, e) being the state resulting
from applying a in s. Finally, C(a) ∈ R∗+ is the immediate
cost of applying a.
Stochastic Shortest Path Problem. A probabilistic
SAS+ task is a factored representation of a Stochastic Short-
est Path problem (SSP) (Bertsekas and Tsitsiklis 1991). A
SSP is a tuple S = 〈S, s0,G,A, P, C〉 in which S is the finite
set of states, s0 ∈ S is the initial state, G ⊆ S is the non-
empty set of goal states, A is the finite set of actions, A(s)
is the subset of actions applicable in state s, P (s′|s, a) rep-
resents the probability that s′ ∈ S is reached after applying
action a ∈ A(s) in state s, and C(a) ∈ R∗+ is the immediate
cost of applying action a. A solution for the SSP is a deter-
ministic stationary policy π : S 7→ A such that π(s) ∈ A(s)
is the action to be applied in state s. An optimal policy min-
imises the total expected cost of reaching G from s0.
Corresponding SSP. The correspondence between SSPs
and their probabilistic SAS+ representation is straightfor-
ward: a probabilistic SAS+ task 〈V,A, s0, s?, C〉 defines an
SSP 〈S, s0,G,A, P, C〉 where S = ×v∈V Dv , G = {s ∈
S|s? ⊆ s}, A(s) = {a ∈ A|pre(a) ⊆ s}, and Pr(s′|s, a) =∑

e∈eff(a) s.t. s′=res(s,e) Pra(e).

Dead ends. In this paper, we assume for simplicity that
s0 6∈ G and that the goal is always reachable, i.e., that
there are no dead ends.2 However, our experiments feature
problems with dead ends and relax this assumption using
the fixed-cost penalty formulation of dead ends (Kolobov,
Mausam, and Weld 2012). More principled treatments of
dead ends along the lines of (Kolobov, Mausam, and Weld
2012, Teichteil-Königsbuch 2012) are also possible.
Primal Linear Program. It is well-known that SSPs can
be solved using linear programming. The most common for-
mulation is the primal LP formulation which optimises the
policy value function. In this formulation, the variables rep-
resent the total expected cost V (s) of reaching the goal from
a given state s, and their optimal value V ∗ is defined by the
Bellman equation (1957):

V ∗(s) = min
a∈A(s)

∑
s′∈S

P (s′|s, a)(C(a) + V ∗(s′)) (1)

for s 6∈ G and V ∗(s) = 0 for s ∈ G. An optimal policy π∗
can be extracted from V ∗ by replacing min by argmin in the
Bellman equation.
Dual Linear Program. Somewhat less well-known in the
field of AI is the dual LP formulation of SSPs (D’Epenoux
1963, Altman 1999). In this formulation, shown in (LP 1),
the variables are the policy’s occupation measures xs,a and

2This assumption and our strictly positive cost function is
equivalent to assuming that there is at least one proper policy and
that all improper policies have infinite cost.

represent the expected number of times action a ∈ A(s) will
be executed in state s.

min
x

∑
s∈S,a∈A(s)

xs,aC(a) s.t. (C1) – (C6) (LP 1)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C1)
out(s0)− in(s0) = 1 (C2)∑
sg∈G

in(sg) = 1 (C3)

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C4)

in(s) =
∑

s′∈S,a∈A(s′)

xs′,aP (s|s′, a) ∀s ∈ S (C5)

out(s) =
∑

a∈A(s)

xs,a ∀s ∈ S \ G (C6)

This dual formulation can be interpreted as a probabilistic
flow problem, where xs,a describes the flow leaving state s
via action a. The objective function captures the minimisa-
tion of the total expected cost to reach the goal (sink) from
the initial state (source). Constraints (C2) and (C3) define,
respectively, the source (initial state s0) and the sinks (goal
states). For any other state, the flow conservation princi-
ple applies, i.e., the flow reaching s must leave s (C4). Fi-
nally, constraints (C5) and (C6) define expected flow enter-
ing and leaving state s, respectively. The optimal solution x∗
of (LP 1) can be converted into an optimal policy π∗(s) = a
where a ∈ A(s) is the only action such that x∗s,a 6= 0.
Heuristic Search. Linear programming explores the en-
tire state space at once. In contrast, Heuristic search al-
gorithms for SSPs such as (i)LAO*, LRTDP, and i-dual
(Hansen and Zilberstein 2001, Bonet and Geffner 2003, Tre-
vizan et al. 2016) start from the factored problem represen-
tation (e.g., as a probabilistic SAS+ task), and incremen-
tally generate parts of the search space, guided by admis-
sible heuristics that estimate the expected cost to reach the
goal from each newly generated state (fringe state).
Primal Determinisation Heuristics. Admissible esti-
mates used by these algorithms are typically obtained by
relaxing the value function V ∗ in two steps. Firstly, the
problem is determinised: this amounts to replacing the ex-
pectation in the Bellman equation (1) with the minimimum
over the successor states. This transformation is called the
all-outcomes determinisation (Jimenez, Coles, and Smith
2006). Secondly, since the resulting deterministic planning
problem is still PSPACE-complete, it is further relaxed into
an admissible deterministic planning heuristic computable
in polynomial time, such as h-max or lm-cut (Bonet and
Geffner 2001, Helmert and Domshlak 2009). Both the all-
outcomes determinisation and these heuristics are typically
computed from the factored problem representation.3

3In particular, the all-outcomes determinisation of the proba-
bilistic SAS+ task is the deterministic SAS+ task with identical set
of variables, initial state, and goal, but whose actions are split into
one deterministic action α per probabilistic action a ∈ A and ef-
fect e ∈ eff(a), such that pre(α) = pre(a), eff(α) = {e}, and
C(α) = C(a).

Unfortunately, these relaxations of V ∗ do not take proba-
bilities into account, foregoing valuable information. Yet, in
25 years, it has not been clear how to do better. Whilst it is
in principle possible to relax the primal formulation without
completely sacrificing probabilities (we do this below), this
results in heuristics that are not much more informative than
the state of the art, albeit more costly to compute. One of the
main contributions of this paper is to achieve informative
and efficient heuristics that take probabilities into account
by moving from the primal to the dual framework.

Occupation Measure Heuristics for SSPs
Similarly to operator-counting heuristics in deterministic
planning, occupation measure heuristics for an SSP S for-
malise constraints over real variables xs,a ≥ 0 for each state
s ∈ S\G and action a ∈ A(s), which must be satisfied by ev-
ery policy π for S when setting xs,a to π’s occupation mea-
sures. The heuristic then optimises the objective of (LP 1)
under those constraints.

In this section, we describe one such heuristic, the Pro-
jection Occupation Measure heuristic hpom, which we ob-
tain by relaxing the dual LP. The key idea is to project the
SSP and the dual LP constraints onto individual state vari-
ables, and ensure consistency across projections by tying the
projection occupation measures together to enforce that the
expected number of times a given action is executed is equal
in all projections.

More formally, the projection of a probabilistic SAS+

task 〈V,A, s0, s?, C〉 over the state variable v ∈ V is the
probabilistic SAS+ task in which all states and partial valu-
ations are restricted to the variable v. For this work, we inter-
pret this projection as the SSP Sv (Definition 1). To ensure
we correctly synchronise across projections, this SSP has an
extra action ag leading to an absorbing state g as soon as v
reaches its goal value.
Definition 1 (Projection of an SSP). Given a probabilis-
tic SAS+ task 〈V,A, s0, s?, C〉 and v ∈ V , its projection
from s onto v is the SSP Sv,s = 〈Dv ∪ {g}, s[v], {g},A ∪
{ag}, P, C ′〉 where C ′(ag) = 0 and C ′(a) = C(a) for all
a ∈ A, and

P (d′|d, a)=



∑
e∈eff(a) s.t.

e[v]=d′

Pra(e) if d 6=d′, a∈A, pre(a)[v]∈{d,⊥}

∑
e∈eff(a) s.t.
e[v]∈{d,⊥}

Pra(e) if d=d′, a∈A, pre(a)[v]∈{d,⊥}

1 if d′ = g, a = ag, s?[v] ∈ {d,⊥}
0 otherwise

for all d ∈ Dv , d′ ∈ Dv ∪{g} and a ∈ A∪{ag}. If the state
s is omitted, then s = s0.

Given a policy π for S, let the augmented policy π′ be
π′(s) = ag for all s ∈ G and π′(s) = π(s) otherwise. It
is easy to see that π′ is executable in any projection of S.
However, notice that, while π is stationary over S, π′ might
be non-stationary over Sv . This is because, a given state d ∈
Dv of Sv might be visited more than once and, at each visit,
a different action could be executed depending on the values
of the variables V \ {v} that are hidden from Sv .

Given v ∈ V , let Cv,s represent the flow constraints (C1) –
(C6) of the dual formulation of Sv,s. Each occupation mea-
sure of Sv,s is xv,sd,a, for d ∈ Dv and a ∈ A ∪ {ag}, and
represents the expected number of times a is executed in the
state d of Sv,s. To tie these projection occupation measures
and constraints together into a single LP, we add the follow-
ing tying constraints.
Definition 2 (Tying constraints). The set of tying con-
straints for state s, denoted as Tyings, is∑

di∈Dvi

xvi,sdi,a
=
∑

dj∈Dvj

x
vj ,s
dj ,a

, ∀ vi ∈ V, vj ∈ V, a ∈ A

Any policy that is feasible for the SSP is feasible for all pro-
jections and satisfies the tying constraints. These constraints
ensure that policies for each projection agree on the expected
number of times each action is executed. This synchronisa-
tion, however, does not enforce that the actions applied and
the states reached at each step need to be consistent across
projections. The combination of tying and projection con-
straints results in the following heuristic.
Definition 3 (Projection occupation measure heuristic).
Given a probabilistic SAS+ task 〈V,A, s0, s?, C〉 the pro-
jection occupation measure heuristic hpom at state s is the
solution of the following LP:

hpom(s) = min
∑

d∈Dv,a∈A

xv,sd,aC(a)
∣∣∣ Tyings,Cv′,s ∀v′ ∈ V,

for any variable v ∈ V .
Notice that, because of the constraints Tyings, the value of
hpom(s) is the same regardless of which v ∈ V is used in the
objective function.
Theorem 1 (Admissibility of hpom). For all states s of the
given probabilistic SAS+ task, hpom(s) ≤ V ∗(s).
The proof of Theorem 1 can be found in appendix. The proof
focuses on the relationship between the optimal occupation
measures x∗ of S and the LP defining hpom. In particular, we
show that the occupation measures resulting from projecting
x∗ onto the variables v, satisfy the constraints of this LP.
This implies that the objective value hpom of this LP, is less
than or equal to the objective value V ∗ of the dual LP for S.

Note that we could in principle use simpler means to ob-
tain an admissible heuristic estimate taking probabilities into
account. We could, for instance, optimally solve (e.g., using
the dual or primal LP) each of the projections of S over state
variables whose goal value is defined, and take the maxi-
mum of their objective values:

hpmax(s) = maxv∈V s.t. s?[v]6=⊥ V
∗,v(s)

where V ∗,v(s) is the optimal value function for Sv,s. How-
ever, this estimate is quite loose as it considers that the vari-
ables v are independent in S and its solution corresponds
to a deterministic stationary policy for a single projection.
In contrast, the solution found by hpom represents a set of
stochastic non-stationary policies which are valid for all pro-
jections. As our experiments show, the extra representational
power of hpom allows it to be a much more informed heuris-
tic. Unlike hpmax, hpom can only be expressed in the dual
framework, since the primal formulation lacks the ability to
count action occurrences.

Relationship with Operator Counting
Occupation measure heuristics are powerful, but introduce a
fair number of LP variables, of the order of |A|×

∑
v∈V |Dv|.

While this power will be useful for more complex planning
tasks dealt with later in the paper, a heuristic not based on
projections can obtain similar results to hpom using a differ-
ent LP with

∑
a∈A |eff(a)| variables which, for most plan-

ning tasks, will be much smaller. This new LP exploits the
fact that occupation measure heuristics can be seen as the
probabilistic counterpart of the operator-counting heuristics
introduced in classical deterministic planning, e.g., the net
change heuristic (Pommerening et al. 2014). In the deter-
ministic setting, operator-counting heuristics formalise con-
straints over integer variables Ya ≥ 0 for each action a,
which must be satisfied by every plan π for the problem
when setting Ya to the number of times a is executed in π.
These heuristics optimise

∑
a∈A YaC(a) and, for efficiency

reasons, consider the LP relaxation of these constraints.
We call our probabilistic version of the operator-counting

heuristic the Regrouped Operator-Counting Heuristic hroc.
The idea behind hroc is to enrich the formulation of the net
change heuristic for the all-outcomes determinisation of the
problem, with constraints that regroup operator counts rep-
resenting the effects of the same action, and which enforce
the relationship between their respective probabilities.

When applied to the all-outcomes determinisation of a
given probabilistic SAS+ task, the net change heuristic has
a variable Ya,e for each effect e of an action a, which rep-
resents the number of times a is executed and e occurs. For
each possible state variable assignment (or atom) v = d ∈
Dv , this heuristic distinguishes between 4 disjoint classes of
action/effect pairs, depending on whether they always pro-
duce (AP), sometimes produce (SP), always consume (AC)
or sometimes consume (SC) the atom:
• APv=d = {(a, e) | e[v] = d, pre(a)[v] = d′ 6= d}
• SPv=d = {(a, e) | e[v] = d, pre(a)[v] = ⊥}
• ACv=d = {(a, e) | e[v] = d′ 6= d, pre(a)[v] = d}
• SCv=d = {(a, e) | e[v] = d′ 6= d, pre(a)[v] = ⊥}

The heuristic is called “net change” in reference to the
change of truth value of an atom from a state to another,
where a change of 1 means that the atom becomes true, 0 that
it is unchanged, and -1 that it becomes false. The possible net
change that a variable can accumulate from a state s where
s[v] = d to the goal s? is:

pncs→s?
v=d =


{0, 1} if s?[v] = ⊥ and s[v] 6= d
{−1, 0} if s?[v] = ⊥ and s[v] = d
{1} if s?[v] = d and s[v] 6= d
{−1} if s?[v] = d′ and s[v] = d 6= d′

{0} otherwise

With these notations, given v ∈ V, d ∈ Dv , and a state s,
the net change constraints Nv,d,s are:∑

(a,e)∈APv=d

Ya,e −
∑

(a,e)∈ACv=d

Ya,e +
∑

(a,e)∈SPv=d

Ya,e≥min pncs→s?
v=d (C7)

∑
(a,e)∈APv=d

Ya,e −
∑

(a,e)∈ACv=d

Ya,e −
∑

(a,e)∈SCv=d

Ya,e≤max pncs→s?
v=d (C8)

In order to recover the information about the probabilistic
effects of each action lost by the all-outcomes determinisa-
tion (a necessary step to compute Nv,d,s), our heuristic hroc

uses the following set of constraints:
Definition 4 (Regrouping constraints). The set of regroup-
ing constraints, denoted as Regroup, is
Pra(e1)Ya,e2 = Pra(e2)Ya,e1 ∀ a ∈ A, {e1, e2}∈eff(a).
These constraints enforce that the expected number of times
outcome e1 of action a occurs is proportional with a factor
Pra(e1)/Pra(e2) to the expected number of times any other
outcome e2 of the same action occurs. Therefore, not only
the probability of each effect is recovered, but also the effect
dependency i.e., e1>0 implies ei>0 for all ei∈eff(a).

The heuristic hroc is presented in Definition 5. Theorem 2
shows that hpom dominates hroc; therefore hroc is admissible.
Definition 5 (Regrouped operator-counting heuristic).
Given a probabilistic SAS+ task, the regrouped operator-
counting heuristic hroc at state s is the solution of the LP:

hroc(s) = min
Y

∑
a,e

Ya,eC(a) | Regroup,Nv,d,s ∀v∈V, d∈Dv

Theorem 2 (hpom dominates hroc). For all state s of the
given probabilistic SAS+ task, hroc(s) ≤ hpom(s).
The proof of Theorem 2 is in the appendix and it consists
in constructing a feasible solution for the LP solved by hroc

based on the optimal solution of the LP solved by hpom and
showing that both solutions have the same cost.

Similarly to the operator-counting heuristics (including
hroc), our projection occupation measure heuristic can also
be augmented with constraints that represent other state-of-
the-art heuristics, e.g., disjunctive action landmarks (Pom-
merening et al. 2014). This transformation of operator-
counting constraints to projection occupation measure con-
straints is formalized by Corollary 3 of Theorem 2.
Corollary 3. Any operator-counting constraint over the
variables Ya,e for hroc can be translated to a constraint for
hpom by replacing Ya,e with Pra(e)

∑
d∈Dv

xv,sd,a.

Proof. By the regrouping constraints, Ya,e′ equals
Ya,e Pra(e

′)/Pra(e) thus
∑

e′∈eff(a)Ya,e′ = Ya,e/Pra(e)

for all e∈eff(a). Moreover,
∑

e′∈eff(a)Ya,e′ is the expected
number of times that action a is executed and it is equivalent
to
∑

d∈Dv
xv,sd,a for hpom for any v ∈ V .

More Background: C-SSPs
One of the strengths of occupation measure heuristics is that
they are well-suited to solving more complex probabilis-
tic planning problems allowing objectives and additional
constraints that can be formulated in terms of occupation
measures. In the rest of the paper, we extend occupation
measure heuristics to Constrained SSPs (C-SSPs) (Altman
1999), which are a general model for planning uncertainty
under multiple competing objectives. These objectives are
captured by multiple cost functions, one of which is opti-
mised while constraining the others. For example, a C-SSP
allows the minimisation of the policy’s expected fuel con-
sumption while keeping the expected time to the goal and
the risk of failure below acceptable thresholds.

Constrained SSPs and Probabilistic SAS+ tasks. A
C-SSP C =〈S, s0,G,A, P, ~C, ~u〉 is an SSP whose cost func-
tion is replaced by a vector of n + 1 cost functions ~C =
[C0, . . . , Cn] (Cj : A → R∗+ for all j) and a vector of n
bounds ~u = [u1, . . . , un] (uj > 0 for all j). We refer to C0

as the primary cost and to the other elements of the cost vec-
tor as the secondary costs. An optimal solution for a C-SSP
is a stochastic policy π : S 7→ A×[0, 1], which minimises the
expected primary cost C0 to reach the goal G from the initial
state s0, subject to the expected values of the secondary cost
Cj being upper bounded by uj for j ∈ {1, . . . , n}. Whereas
for SSPs there always exists an optimal deterministic pol-
icy, stochastic policies are needed to optimally account for
trade-offs between the various cost functions. Nevertheless,
the complexity of optimally solving C-SSPs remains poly-
nomial in the size of the C-SSP (Dolgov and Durfee 2005).
Naturally, a C-SSP can be compactly represented by a con-
strained probabilistic SAS+ task, i.e. a probabilistic SAS+

task whose cost function has been replaced with the corre-
sponding vectors of cost functions and upper bounds.
Dual LP formulation of C-SSPs. From the definition of
C-SSPs, it follows that they can be solved by the dual LP
formulation of SSPs (LP 1), by replacing C with C0 in the
objective function and adding the following constraint (C9):∑

s∈S,a∈A(s)

xs,aCj(a) ≤ uj ∀j ∈ {1, . . . , n} (C9)

Note that attempting to encode these constraints into the pri-
mal LP would lead to a nonlinear program involving bilin-
ear constraints. In contrast, the dual program for C-SSP re-
mains linear, but unlike in the SSP case, returns a potentially
stochastic policy given by π∗(a, s) = x∗s,a/out(s).
Heuristic Search for C-SSPs. The main computational
burden with the dual LP is that it requires encoding and
exploring all states reachable from s0. I-dual is a heuristic
search algorithm for C-SSPs which alleviates this issue (Tre-
vizan et al. 2016). It explores incrementally larger partial
problems starting from s0, using a set of artificial goal states
Ĝ to represent unexplored areas of the occupation measure
space. When first reached, these artificial goal states incur
terminal costs given by a vector ~H = [H0, . . . ,Hn] of ad-
missible heuristic functions, where Hj underestimates the
expected cost Cj of reaching G. At each iteration, i-dual
expands the fringe states FR that are reachable under cur-
rent best policy. This leads to a new partial problem, i.e.
a C-SSP with terminal costs Ĉ = 〈Ŝ, s0, Ĝ, Â, P, ~C, ~u, ~H〉,
where Ĝ = F∪ (G∩ Ŝ), i.e., the union of all fringe states (F)
and goals seen so far. The current best policy is updated by
solving Ĉ using the dual LP formulation of C-SSPs, slightly
extended to account for terminal costs:

min
x

∑
s∈Ŝ,a∈Â(s)

xs,aC0(s, a) +
∑
sg∈Ĝ

in(sg)H0(sg)

s.t. (C1) – (C6), (C9) – (C10) (LP 2)∑
s∈Ŝ,a∈Â(s)

xs,aCj(s, a) +
∑
sg∈Ĝ

in(sg)Hj(sg) ≤ uj
∀j ∈ {1, . . . , n} (C10)

I-dual terminates when all fringe states reachable under the
current best policy are goal states of the original C-SSP C,
i.e., when FR ⊆ G. If all heuristics are admissible, the re-
sulting policy is the optimal stochastic policy for C.

Trevizan et al. (2016) tested i-dual with primal determin-
isation heuristics Hj (such as h-max or lm-cut) for a re-
laxation of C that ignores the constraints and optimises Cj .
That is, Hj(s) is an admissible heuristic for the regular SSP
〈S, s,G,A, P, Cj〉. Unfortunately, such individual heuristic
Hj have low accuracy: not only they assume that probabili-
ties are irrelevant, but also that the various cost functions do
not interact. For instance a heuristic estimating expected fuel
consumption may believe that very little fuel is needed be-
cause it completely disregards constraints on expected travel
time. As we show below, occupation measure heuristics en-
able us to remedy both issues.

Occupation measures Heuristics for C-SSPs
Since bounds on expected secondary costs can be expressed
by means of linear constraints over occupation measures,
extending occupation measures heuristics to include these
bounds is straightforward. The resulting heuristics account
for probabilities and for the dependence between cost func-
tions, and are suitable for constrained probabilistic SAS+

tasks representing C-SSPs. Below we define such a heuris-
tic, hc-pom, which extends hpom to constrained problems. We
also define a constrained formulation of hroc, and prove the
admissibility of the two heuristics.
Definition 6 (Constrained projection occupation measure
and regrouped operator-counting heuristics). Given a
constrained probabilistic SAS+ task 〈V,A, s0, s?, ~C, ~u〉, the
constrained projection occupation measure heuristic hc-pom

at state s is the solution of the following LPs:

hc-pom(s)=min
∑

d∈Dv,a∈A

xv,sd,aC0(a)
∣∣∣CostUB,Tyings,Cv′,s ∀v′∈V

for any variable v ∈ V , where CostUB is the constraint set:∑
d∈Dv,a∈A

xv,sd,aCj(a) ≤ uj ∀j ∈ {1, . . . , n}.

The constrained regrouped operator-counting heuristic
hc-roc at state s is the solution of the following LP:

hc-roc(s) = min
∑

a∈A,e∈eff(a)

Ya,eC0(a)

s.t. CostUB′,Regroup,Nv,d,s ∀v ∈ V, d ∈ Dv

where CostUB′ is the constraint set:∑
a∈Ae∈eff(a)

Ya,eCj(a) ≤ uj ∀j ∈ {1, . . . , n}

Theorem 4 (Admissibility of hc-pom and hc-roc; dominance
of hc-pom). For all states s of the given constrained proba-
bilistic SAS+ task, hc-roc(s) ≤ hc-pom(s) ≤ V ∗(s).

The admissibility proof follows from the admissibility of
hpom (Theorem 1) and hroc (Theorem 2), and the fact that,

for all a ∈ A,
∑

d∈Dv
xv,sd,a and

∑
a∈A,e∈eff(a) Ya,e are both

lower bounds on the expected number of times action a is
executed in state s. The dominance proof follows from the
dominance of hpom (Theorem 2) and from Corollary 3.

Using these heuristics in conjunction with i-dual is
straightforward: we call i-dual with the heuristic vector ~H
such that Hj is hc-pom or hc-roc for the constrained SAS+

probabilistic task 〈V,A, s0, s?, [Cj , C1, . . . , Cn], ~u〉. That is,
to compute the heuristic for a given cost function Cj , we
substitute Cj for the primary cost C0 of the problem in Def-
inition 6. As our experiments show, i-dual equipped with
such ~H often explores substantially fewer states to find an
optimal stochastic policy than with primal determinisation
heuristics.

Heuristics hc-pom and hc-roc account for the constraints in
an admissible way, but use the cost bounds uj regardless
of whether the artificial goal state s is s0 or is reached far
down the policy. In principle, we would like to make these
heuristics tighter by keeping track of the expected costs gj
incurred before reaching an artificial goal state of the policy
under consideration (analogously to the function g of A*),
and using uj−gj as the bounds in place of uj in the CostUB
and CostUB’ constraints. However, this seems at first glance
impossible to do, since gj is policy dependent, and the policy
update step of i-dual (in which the heuristics we are seeking
to compute are used) explores the entire (infinite) stochastic
policy space for the current partial problem at once.

Our final contribution, in the next section, is i2-dual, a
variant of i-dual which achieves this by integrating the com-
putation of the hc-pom heuristic and the policy update into
a single LP. This LP explores the policy space while si-
multaneously performing lazy heuristic computation. It also
reuses parts of heuristic computations corresponding to dif-
ferent projections across the state and policy space. As far
as we are aware, this constitutes a significant departure from
existing approaches in the literature.

Heuristic Computation Within Policy Update

In a nutshell, our LP integrating the heuristic computation
within policy update is the union of the dual LP solved by
i-dual (LP 2) and the LP solved to compute hc-pom (Defini-
tion 6) at the reachable fringe states – albeit with the tighter
cost upper bounds. Since the reachable fringe states and their
probability of being reached are dependent on the policy be-
ing computed, the key challenge is to link these two LPs by
passing the correct probability flow to the hc-pom computa-
tion, without explicit reference to each individual reachable
fringe state. We achieve this as follows.

Firstly, we generalise the set of flow constraints Cv,s for
the projections onto v to not depend on s for initial state, but
instead, to use a probability distribution pv0 over initial states.
Formally, given v ∈ V , let pv0 be a probability distribution
over Dv ∪ {g}, then the flow constraints Cv,pv

0 represents
the dual formulation constraints for Sv,pv

0 (i.e., the projected
SSP with probabilistic initial state) and is defined as:

xvd,a ≥ 0 ∀d ∈ Dv, a ∈ A (C11)

outv(d)− inv(d) = pv0(d) ∀d ∈ Dv (C12)
inv(g) = 1 (C13)

inv(d) =
∑

d′∈Dv,a∈A∪{ag}

xvd′,aP (d|d′, a) ∀d ∈ Dv ∪ {g} (C14)

outv(d) =
∑

a∈A∪{ag}

xvd,a ∀d ∈ Dv (C15)

As expected, Cv,s is the special case of Cv,pv
0 for pv0(s[v]) =

1. Moreover, the probabilistic initial state pv0 allows us to
redirect towards the heuristic computation the total proba-
bility mass of all reachable fringe states, including the goal
probability mass via pv0(g). This leads to the following com-
bined LP, where as before, v ∈ V is any state variable:

min
x

∑
s∈Ŝ,a∈Â(s)

xs,aC0(a) +
∑

d∈Dv,a∈A

xvd,aC0(a) s.t. (C16) – (C25)
(LP 3)

xs,a ≥ 0 ∀s ∈ Ŝ, a ∈ Â(s) (C16)
out(s0)− in(s0) = 1 (C17)

out(s)− in(s) = 0 ∀s ∈ Ŝ \ Ĝ (C18)

in(s) =
∑

s′∈Ŝ,a∈Â(s′)

xs′,aP (s|s′, a) ∀s ∈ Ŝ (C19)

out(s) =
∑

a∈Â(s)

xs,a ∀s ∈ Ŝ \ Ĝ (C20)

∑
s∈Ŝ,a∈Â(s)

xs,aCj(a) +
∑

d∈Dv,a∈A

xvd,aCj(a) ≤ ui ∀j ∈ {1, . . . , n}
(C21)

pv
′

0 (g) =
∑

sg∈Ŝ∩G

in(sg) ∀v′ ∈ V (C22)

pv
′

0 (d) =
∑

sf∈F,sf [v′]=d

in(sf) ∀v′ ∈ V, d ∈ Dv′ (C23)

∑
di∈Dvi

xvid,a =
∑

dj∈Dvj

x
vj
d,a ∀vi, vj ∈ V, a ∈ A (C24)

and constraints Cv′,pv′
0 ∀v′ ∈ V (C25)

The second sum in the objective function estimates the ex-
pected primary costs of reachable fringe states, and is equiv-
alent to

∑
sg∈Ĝ in(sg)H0(sg) when H0 is hc-pom with the

tighter secondary cost bounds uj − gj . (C16) – (C20) repre-
sent the dual constraints formulation for a regular SSP with
the sink constraint omitted. (C21) are the secondary cost
constraints where the second summation is obtained using
the computed heuristics, similarly to the objective function.
(C22) – (C23) define the probabilistic initial state of each
projection as the probability mass of reaching, respectively,
the goal of the original problem and fringe states satisfying
v′ = d. (C24) is the set of tying constraints (Definition 2)
written using the projection occupation measure variables

xvi and xvj that don’t depend on a state s. (C25) represents
each of the projections of the problem onto v′ using pv

′

0 as
probabilistic initial state. Lastly, the sink constraint equiv-
alent to (C3) is enforced by (C13) of each projection. For-
mally, since pv0 is a probability distribution, (C13) is equiva-
lent to

∑
sg∈Ŝ∩G in(sg) +

∑
sf∈F in(sf) = 1 by (C22) and

(C23) for each Cv′,pv′
0 .

The key insight for this integrated version i2-dual, is that
pv0 , for each v, is not fixed, instead, it’s a set of free variables
that the LP solver is optimizing. Moreover, pv0 bridges two
LPs: the LP solving the current C-SSP and the LP computing
the heuristics; therefore, a change in any of the variables in
one of these LPs is propagated to the other. The result is a
completely new approach where policy update and heuristic
computation work in unison, without one driving the other.

Note that it is not possible to integrate hc-roc with i-dual
while remaining in the LP framework. This is because
operator-counting variables only represent actions (and their
outcomes) whereas the occupation measure variables also
represent the state. It is this feature that enables occupation
measure formulations to compute the heuristic for multiple
states at once using the same set of constraints. Formally,
an integration of hc-roc to i-dual requires s to be a free vari-
able to be optimised; this in turn means that pncs→s?

v=d can
no longer be a constant and that integer variables must be
introduced to capture the case statements in its definition.

Empirical Evaluation
In this section we empirically evaluate our new heuristics
for SSPs and C-SSPs, and our new planner i2-dual. All our
results represent the average over 30 runs of each combina-
tion of planner and heuristic. We enforce a 30-minutes and
4-Gb cut-off for all experiments. Due to space limitations, a
comprehensive description of domains and the full table of
results for each domain is in the appendix.

Stochastic Shortest Path Problems
For SSPs, we compare our new heuristics hroc and hpom

against (i) the determinisation-based heuristics hmax, hlmc

and net change heuristic hnet, and (ii) the trivial max-
projection heuristic hpmax. We use LRTDP and iLAO* as
the search algorithms for this comparison. For completeness,
the appendix also reports results when i-dual and i2-dual are
used, but we do not consider them further in this subsection
since they are not designed for ordinary SSPs and perform
poorly as expected. We consider the following domains:

Blocks World (IPPC’08). Extension of the well-known
deterministic blocks world domain in which the actions
pick-up and put-on-block might fail with probability 0.25.
Moreover, three new probabilistic actions allow towers of
two blocks to be manipulated: pick-tower, put-tower-on-
block, and put-tower-down.

Exploding blocks world (IPPC’08). Extension of the de-
terministic blocks world domain in which blocks can ex-
plode and destroy other blocks or the table. Once a block
or the table is destroyed, nothing can be placed on them, and

LRTDP iLAO
hmax hlmc hnet hroc hpom hmax hlmc hnet hroc hpom

B
lo

ck
s

W
or

ld

8 3 0 26 30 30 2 30 30 30 30
8 28 0 30 30 30 30 30 30 30 30
8 2 0 12 30 29 2 30 30 30 30

10 0 0 0 30 18 0 0 1 30 30
10 0 0 0 30 0 0 0 0 30 30
12 0 0 0 0 0 0 0 0 30 5

Pa
rc

Pr
in

te
r

F,4,2 30 30 30 30 30 4 30 30 30 30
F,4,3 30 30 30 30 30 0 30 30 30 30
F,5,2 0 30 0 30 0 2 16 0 30 0
F,5,3 0 30 0 30 0 0 0 0 30 0
T,4,2 0 0 0 1 0 1 30 30 30 0
T,4,3 0 0 0 0 0 0 30 30 30 0
T,5,1 0 0 0 0 0 0 0 0 30 0

E
xp

lo
di

ng
B

W

7 30 30 30 30 30 30 30 30 30 30
8 30 30 0 30 0 0 0 0 3 0
9 30 30 0 30 30 30 30 0 30 30

10 30 30 0 30 0 23 4 0 11 1
11 0 0 0 0 0 12 6 0 16 0
12 0 0 0 0 0 24 15 0 26 0
15 0 0 0 0 0 28 12 0 23 0

Tr
ia

g.
Ti

re 3 30 30 30 30 30 30 30 30 30 30
4 30 30 30 30 30 30 30 30 30 30
5 30 24 0 30 0 0 0 0 4 0
6 0 0 0 30 0 0 0 0 0 0

Table 1: Coverage for selected SSP problems. Best plan-
ner (i.e., fastest planner to obtain the best coverage) in bold.
Dead-end variant of the hroc and hpom used in the gray cells.
Parameters: number of blocks for blocks world; (has repair
action,s,c) for parc printer; and IPPC’08 problem number
for exploding blocks world and triangle tire world.

destroyed blocks cannot be moved; therefore, problems in
this domain can have unavoidable dead ends.

Triangle Tire World (IPPC’08). This domain represents
a car that has to travel between locations in order to reach a
goal location from its initial location. When the car moves
between locations, a flat tire happens with probability 0.5
and the car becomes unable to move if both the car and the
location do not have a spare tire. Problems in this domain
are generated to have avoidable dead ends.

Probabilistic Parc Printer. Probabilistic extension of the
sequential Parc Printer domain from IPC in which s sheets
need to be printed on a modular printer. The printer has c
unreliable components in which a sheet can jam with proba-
bility 0.1 making the component unavailable and requiring a
new exemplar of this sheet to be printed. The unavailability
of components creates avoidable dead ends. Also, a high-
cost repair action that removes all jams and restores avail-
ability of all components can be available.

Table 1 presents coverage results for a subset of the prob-
lems solved and the following is a summary of our findings
from the experiments in appendix:

Does taking probability into account in the heuristic
help? To answer this question, we compare the perfor-
mance of hnet against hroc since the only difference between

them is that hroc takes probability into account through the
regrouping constraints. For blocks world, tire world and parc
printer, planners using hroc obtained a speed up w.r.t. to
hnet between 2x-56x, 1.3x-10x, and 1.1x-14x, respectively.
Moreover, planners using hroc were able to scale up to larger
problems than when using hnet: 10 blocks vs 8 blocks for
blocks world, 5 vs 4 sheets for parc printer, and problem #5
vs #4 for tire world. For exploding blocks world, there was
no statistically significant difference between hroc and hnet.

Is hpom better than hroc? No. For all the problems con-
sidered, a planner using hroc outperforms the same planner
using hpom in both runtime and scalability. Moreover, this
difference is statistically relevant, specially for the runtime:
planners using hroc are up to 25x, 8x, 46x and 34x faster than
the same planner using hpom for blocks world, tire world,
parc printer and exploding blocks world, respectively. This
runtime difference is because hpom and hroc returned the
same heuristic values for the considered problems and the
LPs solved by hpom have considerably more variables than
the LPs solved by hroc. The difference between the number
of states explored by a planner using hpom and hroc is statis-
tically insignificant which also illustrate this point.

How do hpom and hroc compare to the state-of-the-art?
For blocks world, planners using hpom and hroc are the only
ones that scale up to problems with 10 blocks and the best
performance overall is obtained by iLAO* with hroc. For
parc printer, hroc outperforms all other heuristics and hlmc

outperforms hpom for the planners considered. The best per-
formance in this domain alternates between LRTDP with
hroc and iLAO* with hroc. For tire world LRTDP with hmax

is the best planner closely followed by LRTDP with hroc as
the problem size increases up to problem #5. LRTDP with
hroc is the only planner that can handle problem #6. A simi-
lar trend happens for iLAO* with hmax and hroc. For i-dual,
hroc is always better than hmax.

Except in exploding blocks world, hpom and hroc expand
much fewer states, e.g., up to 48x less than hmax and 10x less
than hnet in parc printer, 5x times less than hlmc in blocks
world. For exploding blocks world, planners using hnet, hroc

and hpom perform poorly as they do not detect dead ends
as early as hmax and hlmc. This advantage of hmax and hlmc

is due to two reasons: (i) a state s has zero probability of
reaching the goal iff it is a dead end in the all-outcomes
determinisation, thus hmax and hlmc are aware of dead ends
even though they ignore probabilities; and (ii) for this do-
main, the dead ends are reached when a precondition of an
action that potentially leads to the goal becomes false, thus
hmax and hlmc can easily find the dead ends since they prop-
agate the actions preconditions. To illustrate these points,
we augmented hroc and hpom with hmax as a dead-end de-
tector. Formally, hroc

de (s) equals the dead-end penalty if hmax

reports that s is a dead end and hroc(s) otherwise (similarly
for hpom

de). The results for hroc
de and hpom

de corroborate the above
explanation because of the large increase in performance
when compared against hroc and hpom, respectively. More-
over, planners using hmax and hroc

de perform similarly and the
best heuristic for a given problem alternates between them:
hmax is better in 4 problems, hroc

de is better in 3 problems, and

i-dual
i2-dual

hmax hlmc-m hroc hc-roc hpom hc-pom
Se

ar
ch

an
d

R
es

cu
e

4, 0.50, 3 30 30 30 30 30 30 30
4, 0.50, 4 29 30 30 30 29 30 30
4, 0.75, 3 26 30 29 29 28 28 30
4, 0.75, 4 0 4 1 1 1 1 7
5, 0.50, 3 30 30 30 30 30 30 30
5, 0.50, 4 5 9 9 9 9 9 14
5, 0.75, 3 19 28 23 23 20 21 28
5, 0.75, 4 0 2 2 2 1 1 6

Pa
rc

Pr
in

te
r

0, 1 30 30 30 30 25 28 30
0,∞ 30 30 30 30 30 30 30

0.1, 1 0 0 0 30 0 27 30
0.1,∞ 0 0 0 30 0 30 30
0.2, 1 0 0 0 0 0 0 30
0.2,∞ 0 0 0 0 0 0 30

Table 2: Coverage for selected C-SSP problems. Best plan-
ner (i.e., fastest planner to obtain the best coverage) in bold.
For the parc printer problems shown, s = 4, c = 3 and no
repair action is available. Parameters: (n, r, d) for search and
rescue; and (f, u) upper bounds for parc printer.

the difference is statistically insignificant for 2 problems.

Constrained SSPs
For C-SSPs, we compare i2-dual against i-dual using as
heuristic vector ~H =[h, . . . , h] for h equal to: (i) the SSP
heuristics hmax, hroc and hpom; and (ii) the cost-constrained
heuristics hc-roc and hc-pom. We also consider the heuristic
vector [hlmc, hmax, . . . , hmax], i.e., hlmc for C0 and hmax for
the other cost functions; we refer to this heuristic vector as
hlmc-m. The planners are evaluated in two domains:
Search and rescue. Domain from (Trevizan et al. 2016)
in which a robot has to navigate an n × n grid and its goal
is to find a survivor and bring her to a safe location as fast
as possible. The constraint is to keep the expected fuel con-
sumption under a certain threshold. The location of one sur-
vivor is known a priori; however, some other locations (se-
lected at random) have 0.05, 0.1, or 0.2 probability of also
having another survivor. Thus, the planner has to trade off
fuel, exploration of unknown survivors, and time to rescue.
The other parameters of a problem are: d, the distance to the
known survivor; and r, the density of potential survivors.
Constrained Parc Printer. Extension of the probabilistic
parc printer domain in which the expected number of jams is
upper-bounded by f . Also, the expected number of times the
reliable finisher component can be used is upper-bounded
by u. When this threshold is reached, only a more expensive
and potentially unreliable finisher component is available.

Table 2 presents coverage results for a subset of the prob-
lems solved and the following is a summary of our findings
from the experiments in appendix:
Does the constraints in the heuristics help? Yes. Com-
paring hroc against hc-roc and hpom against hc-pom, we ob-
served a small improvement in coverage and no statistically
relevant speed up for the search and rescue domain. For the
parc printer domain, the improvement in coverage is signif-

icant: hc-pom obtained at least 63% in 22 problems in which
hpom has 0% coverage; and hc-roc obtained 100% coverage
in 16 problems in which hroc has 0% coverage.

Is i2-dual better than i-dual using hc-pom? Yes and, in
both domains, i2-dual is the best overall planner. For the
search and rescue domain, i2-dual obtained the best cover-
age in all the problems, tying with hlmc-m in the small and
medium problems at 100% and solving up to 3 times more
instances than hlmc-m for the larger problems. Regarding run-
time, there is no statistically significant difference between
i2-dual and hlmc-m for the problems in which both obtained
the same coverage. For the constrained parc printer domain,
i2-dual outperforms all other planners in both coverage and
runtime: it obtained coverage between 30% and 100% in 13
problems that no other planner was able to solve and up to
34x speed up w.r.t. the second best planner.

Conclusion
In this paper, we have presented what we believe to be the
first domain-independent admissible heuristics specifically
designed to exploit the interactions between probabilities
and action costs found in SSPs and C-SSPs. We have shown
that they perform well across a range of domains and search
algorithms, and that handling probabilities in heuristics of-
ten pays. Previous heuristics exploiting outcome probabili-
ties have only considered MaxProb type problems, and used
the planning graph data structure which can yield poor esti-
mates when policies are cyclic (Little and Thiébaux 2006).
One area of future work is to improve the accuracy of our
heuristics by augmenting their formulation with merges and
disjunctive action landmarks (and other operator counting
constraints), as was done in the deterministic setting by
Bonet and van den Briel (2014).

We have established a bridge between the more general
occupation measure constraints and the operator counting
constraints used in deterministic planning (Pommerening et
al. 2014). Future work should settle the question of whether
the hpom and hroc heuristics are equivalent. We have not, so
far, found a single counter-example to this, but have only
managed to prove equivalence in the absence of “sometimes
consumers/producers”. In the deterministic setting, Pom-
merening et al. (2015) have established the equivalence of
the net change heuristics and projection heuristics under op-
timal general cost partitioning. However, it is not obvious to
us how to adapt their proof to our setting where optimal cost
partitioning is replaced with tying constraints.

Finally, we have introduced i2-dual, a new state of the
art method for C-SSPs in which policy update and heuristic
computation are fully synergistic. We believe that the prin-
ciples behind i2-dual can be replicated to incorporate path-
dependent heuristics into other algorithms.

Acknowledgements
This research was funded by AFOSR grant FA2386-15-1-
4015. We thank the anonymous reviewers for their construc-
tive and helpful comments.

References
Altman, E. 1999. Constrained Markov Decision Processes,
volume 7. CRC Press.
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to act using real-time dynamic programming. Artif. Intell.
72(1-2):81–138.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1991. An Analysis of
Stochastic Shortest Path Problems. Mathematics of Oper-
ations Research 16(3):580–595.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2):5–33.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: improv-
ing the convergence of real-time dynamic programming. In
Proc. Int. Conf. on Automated Planning and Scheduling.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Proc.
Int. Conf. on Automated Planning and Scheduling.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Se-
quential monte carlo in probabilistic planning reachability
heuristics. In Proc. Int. Conf. on Automated Planning and
Scheduling, 233–242.
D’Epenoux, F. 1963. A probabilistic production and inven-
tory problem. Management Science 10:98–108.
Dolgov, D. A., and Durfee, E. H. 2005. Stationary determin-
istic policies for constrained mdps with multiple rewards,
costs, and discount factors. In Proc. Int. Joint Conf. on Arti-
ficial Intelligence.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. J. Artif. Intell. Res. (JAIR) 30:565–620.
E.-Martı́n, Y.; Rodrı́guez-Moreno, M. D.; and Smith, D. E.
2014. Progressive heuristic search for probabilistic planning
based on interaction estimates. Expert Systems 31(5):421–
436.
Hansen, E. A., and Zilberstein, S. 2001. LAO: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1):35–62.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. Int. Conf. of Artificial Intelligence
Planning Systems, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. Int. Conf. on Automated Planning and Scheduling.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In Proc. Int. Conf. on Automated Planning and Scheduling,
176–183.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in
probabilistic domains using a deterministic numeric plan-
ner. In Proc. Workshop of the UK Planning and Scheduling
Special Interest Group.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path

mdps. In Proc. Int. Conf. on Automated Planning and
Scheduling.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory
of goal-oriented mdps with dead ends. In Proc. Conf. on
Uncertainty in Artificial Intelligence (UAI).
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A
probabilistic temporal planner. In Proc. of National Confer-
ence on Artificial Intelligence (AAAI), 1181–1186.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic
planning in the graphplan framework. In Proc. Int. Conf. on
Automated Planning and Scheduling.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes. Morgan & Claypool.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. Lp-based heuristics for cost-optimal planning. In
Proc. Int. Conf. on Automated Planning and Scheduling.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proc. of National Conference on Artificial Intelli-
gence (AAAI), 3335–3341.
Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Revis-
iting goal probability analysis in probabilistic planning. In
Proc. Int. Conf. on Automated Planning and Scheduling.
Teichteil-Königsbuch, F. 2012. Stochastic safest and short-
est path problems. In Proc. AAAI Conf. on Artificial Intelli-
gence.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams,
B. C. 2016. Heuristic search in dual space for constrained
stochastic shortest path problems. In Proc. Int. Conf. on Au-
tomated Planning and Scheduling.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An lp-based heuristic for optimal planning. In Int.
Conf. on Principles and Practice of Constraint Program-
ming.

A Experiments

A.1 Domains
Probabilistic Blocks World. This domain is an extension of the well-known blocks world in which the actions pick-
up and put-on-block might fail with probability 0.25. When these actions fail, the target block is dropped on the table.
The action pick-up-from-table also fails with probability 0.25, in which case nothing happens, i.e., the target block
remains on the table. Three actions allow towers of two blocks to be manipulated: pick-tower, put-tower-on-block,
and put-tower-down. While put-tower-down deterministically puts the tower still assembled on the table, the other two
actions are probabilistic and fail with probability 0.9. The current state is not changed when pick-tower fails and put-
tower-on-block fails by dropping the tower on the table (the dropped tower remains built). We consider the problems
from the IPPC’08 finals and the IPPC’06 warm-up since the latter provides a smoother transition between small and
large instances. We will refer to the probabilistic blocks worlds as blocks world.

Exploding Blocks World. This domain is a probabilistic extension of the deterministic blocks world from IPPC’08
in which blocks can explode and destroy other blocks or the table. Once a block or the table is destroyed, nothing can
be placed on them, and destroyed blocks cannot be moved; therefore, problems in this domain can have unavoidable
dead ends. All actions have the same effects as in their deterministic blocks world counterpart and put-down and put-
on-block have the probabilistic side effect of detonating the block being held and destroying the table or the block
below with probability 0.4 and 0.1, respectively. When a block detonates, it destroys the object below it and it cannot
detonate again (i.e., it is safe to move it). We use the fixed version of this domain that forbids a block to be placed on
top of itself.

Triangle Tire World. This IPPC’08 domain represents a car that has to travel between locations in order to reach a
goal location from its initial location. The roads are represented as directed graph in the shape of a triangle and, every
time the car moves between locations, a flat tire happens with probability 0.5. Some locations have a spare tire and in
these locations the car can deterministically replace its flat tire by a new one. When the car has a flat tire, it cannot
change its location; therefore the car can get stuck in locations that do not have a spare tire (dead ends).

Probabilistic Parc Printer. This domain is a probabilistic variant of the sequential Parc Printer IPC domain used in
conjunction with IPC problems P01-P09. In Problem Ps, s ∈ {1, . . . , 9} sheets need to be printed at minimal cost on a
modular printer1. A number c ∈ {0, . . . , 5} of the printer’s components are unreliable:2 when processing a sheet, they
jam with probability 0.1, which results in the component becoming unavailable and a new exemplar of this sheet being
printed from scratch. The unavailability of these components creates avoidable dead-ends. Optionally, an additional
component3 can jam in away that would create an unavoidable dead-end, if it wasn’t for the existence of a repair
action. This action costs 10001 and removes all jams and restores availability of all components at once. In the C-SSP
version, there are constraints limiting the expected number of jams to f ∈ {0, 0.1, . . . , 1}, and the expected number of
times the Finisher-1-Stack-Letter action can be used to u ∈ {0, 1, . . . , s}, forcing the more expensive and potentially
unreliable Finisher-2 to be used after the threshold is reached.

Search and Rescue. This constrained SSP domain introduced in Trevizan et al. (2016) is a vehicle navigation prob-
lem in an n × n grid where the goal is to find one survivor, board her on the vehicle and bring her to safety. The

1The problems and domain, including action costs, are identical to the IPC ones, except for the probabilistic effects and one small change: to
increase redundancy, the Finisher2-Stack-Letter stacks the sheet in Finisher1 Tray instead of Finisher2 Tray

2These are BlackFeeder-RSRC, EndCap-RSRC, HtmOverBlack-RSRC, HtmOverColor-RSRC, and Finisher2-RSRC.
3ColorFeeder-RSRC

main cost function C0 is time and the secondary cost function C1 is fuel consumption; therefore, the optimal solution
for the problems in this domain minimize the time to rescue a survivor while keeping the expected fuel consumption
under a certain threshold (the vehicle fuel autonomy). The time for moving from a location to an adjacent one depends
on the load of the vehicle (higher if a survivor has boarded) and changes with the speed of the vehicle which can be
slow, normal, or fast. The fuel consumption increases with load and speed, and some of the more demanding moves
(e.g., moving fast with survivor boarded) can fail with a small probability. The location of one survivor at Hamming
distance d ∈ {1, . . . , 4} is known a priori; whereas the presence or absence of a survivor at each other location can
be known or unknown, and in the latter case, has an initial probability in the range low (5%), medium (10%) and
high (20%). The presence or absence of a survivor is revealed by a coin flip when visiting the location, and remains
known thereafter; therefore, this domain is a perfect-sensing constrained POMDP encoded as C-SSP. We used random
problem instances with a density r ∈ {25%, 50%, 75%} of locations with initially unknown survivor presence.

A.2 Methodology
For the blocks worlds, exploding blocks world and triangle tire world, we solve their IPPC instances 30 times using
different random seeds to initialize the planners to account for the stochastic nature of the problems. Since the parc
printer generator is deterministic, i.e., a given value of parameters uniquely defines a problem, we follow the same
approach of solving each problem 30 times. For the search and rescue domain, we generate 30 different random
instances for each parametrization of the problem and solve each instance only once; this allows us to account for both
the stochastic nature of the problem generator and the generated problems.

The memory and runtime cut-off enforced for each planner is 30 minutes and 4 Gb for all problem except the
problem #6 of the triangle tire world in which the cut-off is 48 hours and 12 Gb. We use Gurobi 6.5 as LP solver and
all experiments are conducted in a Linux cluster of 6-cores AMD Opteron 4334 running at 3.1GHz. All planners are
single threaded and Gurobi is also limited to run in a single thread.

All the results are reported as “X (Y) [Z]” where X is the coverage (that is, how many instances out of 30 the
planner was able to find the optimal solution), Y is the average cpu-time (and its 95% confidence interval) in seconds,
and Z is the average number of states (and its 95% confidence interval) visited by the planner. Both the cpu-time Y
and number of visited states Z only take into consideration the instances in which the optimal solution was found. For
each problem, the planners with largest coverage have their X value highlighted and within those planners, the one
with fastest cpu-time has its Y highlighted and the planner that visits the less states has its Z value highlighted.

For C-SSPs all heuristic vector ~H are of the form [h, . . . , h] for h equal to hmax, hroc, hpom, hc-roc and hc-pom,
thus, we address these heuristics simply by h. The only exception is hlmc-m that represents the heuristics vector
[hlmc, hmax, . . . , hmax], i.e., hlmc for C0 and hmax for the other cost functions.

A.3 Results
Blocks World. The results are presented in Table 1. All the problems in Table 1 are from IPPC’06. The problems
with 4 blocks from IPPC’06 and 5 blocks from IPPC’08 are omitted since all planners obtained 100% coverage in a
few seconds (similarly to the 6-blocks problem presented). For the other problems not reported in Table 1, all planners
obtained 0% coverage.

Triangle Tire World. The results are presented in Table 2. For problem #6 the runtime and memory cutoff were
extended to 48 hours and 12 Gb. For this problem, LRTDP using hmax (the best planner up to problem #5) ran out of
memory after 5.1 ± 0.2 hours and explored 49.2 ± 0.1 million states. LRTDP using hroc and hroc

de was able to solve
problem #6 and explored only 1.4± 0.1 million states.

B
lo

ck
s

W
or

ld
–

SS
P

Pr
ob

le
m

id
40

06
15

93
4

20
75

2
23

17
1

24
96

7
25

24
1

14
26

2
19

47
5

19
84

8
N

um
.B

lo
ck

s
6

6
6

8
8

8
10

10
12

lr
td

p(
h

m
ax

)
30

(4
.6
±

0.
1)

[9
15

5
±

5]

30
(6

.1
±

0.
1)

[9
24

3
±

0]

30
(6

.6
±

0.
2)

[9
24

3
±

0]

3
(1

54
7.

9
±

28
1.

0)
[9

22
27

3
±

0]

28
(1

58
7.

1
±

54
.9

)
[9

22
20

4
±

3]

2
(1

56
2.

5
±

73
.8

)
[9

22
27

2
±

0]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

lr
td

p(
h

lm
c)

30
(1

4.
9
±

0.
5)

[5
83

5
±

73
]

30
(2

5.
1
±

0.
8)

[8
20

2
±

45
]

30
(2

7.
0
±

0.
8)

[8
73

2
±

26
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

lr
td

p(
h

ne
t)

30
(4

.5
±

0.
1)

[6
14

9
±

72
]

30
(6

.2
±

0.
2)

[8
17

1
±

35
]

30
(7

.2
±

0.
3)

[8
66

0
±

17
]

26
(1

57
4.

1
±

67
.8

)
[8

87
32

0
±

47
8]

30
(9

94
.2
±

52
.1

)
[6

23
94

0
±

37
05

]

12
(1

57
7.

1
±

12
7.

4)
[9

14
28

7
±

21
6]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

lr
td

p(
h

ro
c)

30
(0

.7
±

0.
0)

[1
29
±

18
]

30
(1

.0
±

0.
1)

[4
76
±

73
]

30
(2

.0
±

0.
1)

[1
65

1
±

73
]

30
(5

2.
6
±

3.
6)

[2
30

24
±

12
17

]

30
(4

1.
3
±

2.
0)

[1
88

61
±

75
1]

30
(4

0.
5
±

6.
2)

[1
84

69
±

26
84
]

30
(6

1.
8
±

7.
6)

[1
55

26
±

20
38

]

30
(2

36
.3
±

39
.1

)
[5

75
19
±

81
94

]

0 (–
)

[–
]

lr
td

p(
h

po
m

)
30

(2
.1
±

0.
3)

[1
22
±

23
]

30
(4

.9
±

0.
8)

[3
78
±

73
]

30
(1

8.
9
±

1.
1)

[1
66

1
±

52
]

30
(8

43
.7
±

49
.3

)
[2

04
37
±

99
8]

30
(7

57
.8
±

39
.0

)
[1

84
66
±

69
0]

29
(8

14
.8
±

11
6.

8)
[2

02
62
±

28
73
]

18
(1

34
9.

5
±

15
9.

0)
[1

11
85
±

13
71

]

0 (–
)

[–
]

0 (–
)

[–
]

ila
o(
h

m
ax

)
30

(3
.3
±

0.
1)

[3
89

9
±

8]

30
(7

.0
±

0.
3)

[6
31

2
±

8]

30
(8

.0
±

0.
2)

[7
23

7
±

9]

2
(1

62
2.

5
±

33
1.

4)
[7

71
86

6
±

17
63
]

30
(7

89
.3
±

32
.4

)
[3

48
93

0
±

27
2]

2
(1

64
5.

1
±

16
5.

9)
[8

14
37

3
±

53
7]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

ila
o(
h

lm
c)

30
(2

.6
±

0.
1)

[8
94
±

5]

30
(5

.4
±

0.
1)

[1
59

4
±

5]

30
(8

.6
±

0.
2)

[2
52

2
±

43
]

30
(1

21
9.

9
±

55
.8

)
[1

14
29

5
±

61
17
]

30
(2

97
.9
±

24
.5

)
[3

06
34
±

24
40

]

30
(1

11
3.

0
±

72
.7

)
[9

36
14
±

55
63
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

ila
o(
h

ne
t)

30
(1

.6
±

0.
0)

[1
04

4
±

3]

30
(2

.8
±

0.
1)

[1
87

1
±

5]

30
(3

.7
±

0.
1)

[2
59

5
±

7]

30
(2

55
.5
±

11
.1

)
[1

02
62

2
±

14
2]

30
(5

9.
7
±

2.
5)

[2
56

51
±

47
]

30
(1

93
.0
±

8.
7)

[8
16

82
±

22
9]

1
(1

77
6.

0
±

in
f)

[5
19

12
1
±

in
f]

0 (–
)

[–
]

0 (–
)

[–
]

ila
o(
h

ro
c)

30
(0

.6
±

0.
0)

[6
5
±

2]

30
(0

.7
±

0.
0)

[8
8
±

6]

30
(1

.1
±

0.
0)

[4
28
±

10
]

30
(6

.8
±

0.
4)

[2
02

0
±

10
5]

30
(4

.1
±

0.
1)

[1
11

4
±

13
]

30
(3

.4
±

0.
4)

[8
46
±

14
8]

30
(8

.0
±

0.
5)

[8
21
±

64
]

30
(1

1.
1
±

1.
6)

[1
83

6
±

29
5]

30
(1

47
.4
±

15
.8

)
[1

34
25
±

15
61
]

ila
o(
h

po
m

)
30

(1
.5
±

0.
1)

[6
2
±

3]

30
(1

.7
±

0.
1)

[8
5
±

6]

30
(6

.0
±

0.
2)

[4
63
±

11
]

30
(8

8.
0
±

4.
7)

[1
83

0
±

73
]

30
(5

5.
3
±

2.
6)

[1
13

3
±

18
]

30
(4

3.
5
±

7.
1)

[8
66
±

14
6]

30
(1

29
.1
±

14
.1

)
[8

74
±

86
]

30
(2

11
.0
±

23
.1

)
[1

46
4
±

14
6]

5
(1

23
0.

0
±

24
0.

0)
[3

98
1
±

11
58

]

i-
du

al
(h

m
ax

)
30

(8
.8
±

0.
3)

[3
29

1
±

4]

30
(2

8.
5
±

1.
1)

[5
34

9
±

3]

30
(3

2.
3
±

1.
5)

[5
78

9
±

2]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

i-
du

al
(h

lm
c)

30
(2

.4
±

0.
1)

[7
89
±

7]

30
(5

.2
±

0.
1)

[1
33

7
±

4]

30
(8

.2
±

0.
3)

[2
08

5
±

28
]

0 (–
)

[–
]

30
(3

91
.8
±

48
.0

)
[2

52
43
±

20
13

]

1
(1

75
0.

0
±

in
f)

[5
49

63
±

in
f]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

i-
du

al
(h

ne
t)

30
(1

.4
±

0.
0)

[8
93
±

3]

30
(3

.1
±

0.
1)

[1
56

8
±

4]

30
(4

.2
±

0.
2)

[2
15

6
±

18
]

0 (–
)

[–
]

30
(1

49
.0
±

8.
1)

[2
14

15
±

23
]

3
(1

64
0.

0
±

30
7.

2)
[6

70
02
±

54
]

0 (–
)

[–
]

0 (–
)

[–
]

0 (–
)

[–
]

i-
du

al
(h

ro
c)

30
(0

.7
±

0.
0)

[1
21
±

3]

30
(0

.8
±

0.
0)

[2
26
±

6]

30
(1

.1
±

0.
0)

[5
10
±

13
]

30
(6

.4
±

0.
3)

[2
02

3
±

83
]

30
(4

.8
±

0.
2)

[1
48

0
±

42
]

30
(5

.0
±

0.
2)

[1
53

2
±

22
]

30
(1

7.
0
±

1.
3)

[3
38

3
±

20
2]

30
(2

2.
7
±

1.
2)

[4
55

9
±

13
9]

30
(3

41
.7
±

31
.1

)
[2

61
76
±

11
28
]

i-
du

al
(h

po
m

)
30

(2
.0
±

0.
1)

[1
22
±

2]

30
(3

.2
±

0.
2)

[2
31
±

5]

30
(6

.5
±

0.
3)

[5
29
±

10
]

30
(8

7.
9
±

4.
4)

[2
04

1
±

91
]

30
(6

4.
3
±

4.
6)

[1
48

6
±

46
]

30
(6

8.
4
±

3.
3)

[1
55

9
±

22
]

30
(3

82
.0
±

34
.3

)
[3

28
3
±

22
9]

30
(5

49
.3
±

36
.4

)
[4

47
1
±

15
5]

0 (–
)

[–
]

i2
-d

ua
l

30
(1

.2
±

0.
1)

[7
5
±

7]

30
(1

.9
±

0.
2)

[1
51
±

15
]

30
(3

.2
±

0.
2)

[5
04
±

15
]

30
(1

5.
6
±

1.
2)

[1
71

2
±

81
]

30
(1

4.
7
±

0.
8)

[1
32

8
±

52
]

30
(1

9.
8
±

1.
3)

[1
28

3
±

47
]

30
(2

8.
2
±

2.
4)

[1
95

3
±

16
2]

30
(6

0.
5
±

3.
7)

[2
58

2
±

10
2]

30
(2

69
.8
±

15
.8

)
[7

67
1
±

52
8]

Ta
bl

e
1:

R
es

ul
ts

ar
e

re
po

rt
ed

as
“X

(Y
)

[Z
]”

w
he

re
X

is
th

e
co

ve
ra

ge
,Y

an
d
Z

ar
e

th
e

av
er

ag
e

(a
nd

95
%

co
nf

.i
nt

er
va

l)
fo

r
th

e
cp

u-
tim

e
an

d
nu

m
be

ro
fs

ta
te

s
vi

si
te

d,
re

sp
ec

tiv
el

y.
B

es
tv

al
ue

s
fo

re
ac

h
pr

ob
le

m
is

hi
gh

lig
ht

ed
.

Triangle Tire World – SSP
Planner 3 4 5 6

lrtdp(hmax)
30

(1.0 ± 0.0)
[18845 ± 448]

30
(29.1 ± 1.0)

[310819 ± 8293]

30
(1138.2 ± 19.4)

[5039987 ± 132819]

0
(–)
[–]

lrtdp(hlmc)
30

(1.9 ± 0.1)
[18845 ± 448]

30
(54.5 ± 1.5)

[310819 ± 8293]

24
(1653.4 ± 35.9)

[4976306 ± 155947]

0
(–)
[–]

lrtdp(hpmax)
30

(2.5 ± 0.1)
[18400 ± 122]

30
(63.7 ± 2.8)

[300274 ± 2757]

1
(1593.0 ± inf)
[4886354 ± inf]

0
(–)
[–]

lrtdp(hnet)
30

(3.9 ± 0.1)
[18400 ± 122]

30
(96.3 ± 3.3)

[300274 ± 2757]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc)
30

(2.9 ± 0.1)
[7512 ± 74]

30
(47.3 ± 1.9)
[84867 ± 710]

30
(1247.0 ± 45.8)

[1070160 ± 10502]

30
(74099.1 ± 1017.9)
[14700898 ± 165934]

lrtdp(hpom)
30

(13.4 ± 0.7)
[7512 ± 74]

30
(410.3 ± 23.4)
[84867 ± 710]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc
de)

30
(2.8 ± 0.1)
[7777 ± 100]

30
(48.4 ± 1.4)
[87017 ± 720]

30
(1251.8 ± 41.0)

[1057085 ± 10142]

30
(72758.0 ± 841.3)

[14312152 ± 146164]

lrtdp(hpom
de)

30
(12.5 ± 0.6)
[7777 ± 100]

30
(345.9 ± 13.3)
[87017 ± 720]

0
(–)
[–]

0
(–)
[–]

ilao(hmax)
30

(1.7 ± 0.1)
[6627 ± 39]

30
(70.2 ± 2.3)

[112270 ± 639]

0
(–)
[–]

0
(–)
[–]

ilao(hlmc)
30

(2.2 ± 0.1)
[6627 ± 39]

30
(84.2 ± 2.5)

[112270 ± 639]

0
(–)
[–]

0
(–)
[–]

ilao(hpmax)
30

(3.1 ± 0.2)
[8290 ± 42]

30
(107.1 ± 4.9)
[141212 ± 637]

0
(–)
[–]

0
(–)
[–]

ilao(hnet)
30

(3.6 ± 0.1)
[8290 ± 42]

30
(121.3 ± 4.3)
[141212 ± 637]

0
(–)
[–]

0
(–)
[–]

ilao(hroc)
30

(2.6 ± 0.1)
[4463 ± 25]

30
(72.0 ± 2.9)
[55578 ± 407]

1
(1780.0 ± inf)
[797926 ± inf]

0
(–)
[–]

ilao(hpom)
30

(9.3 ± 0.6)
[4463 ± 25]

30
(298.4 ± 17.9)
[55578 ± 407]

0
(–)
[–]

0
(–)
[–]

ilao(hroc
de)

30
(2.4 ± 0.1)
[4019 ± 30]

30
(58.4 ± 1.8)
[49980 ± 402]

4
(1697.2 ± 121.0)
[728580 ± 22713]

0
(–)
[–]

ilao(hpom
de)

30
(7.5 ± 0.4)
[4019 ± 30]

30
(238.5 ± 11.9)
[49980 ± 402]

0
(–)
[–]

0
(–)
[–]

i-dual(hmax)
30

(3.6 ± 0.1)
[5540 ± 12]

30
(630.4 ± 45.6)
[94203 ± 163]

0
(–)
[–]

0
(–)
[–]

i-dual(hlmc)
30

(3.8 ± 0.1)
[5540 ± 12]

30
(646.5 ± 29.2)
[94203 ± 163]

0
(–)
[–]

0
(–)
[–]

i-dual(hpmax)
30

(7.2 ± 0.4)
[6711 ± 19]

30
(1392.4 ± 76.4)
[116080 ± 171]

0
(–)
[–]

0
(–)
[–]

i-dual(hnet)
30

(6.5 ± 0.4)
[6711 ± 19]

30
(1289.1 ± 61.4)
[116080 ± 171]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc)
30

(2.6 ± 0.1)
[3379 ± 15]

30
(127.9 ± 9.6)
[39278 ± 71]

0
(–)
[–]

0
(–)
[–]

i-dual(hpom)
30

(8.1 ± 0.5)
[3379 ± 15]

30
(312.8 ± 15.6)
[39278 ± 71]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc
de)

30
(2.7 ± 0.1)
[3379 ± 15]

30
(138.3 ± 8.6)
[39278 ± 71]

0
(–)
[–]

0
(–)
[–]

i-dual(hpom
de)

30
(7.8 ± 0.3)
[3379 ± 15]

30
(306.2 ± 17.6)
[39278 ± 71]

0
(–)
[–]

0
(–)
[–]

i2-dual
30

(14.3 ± 0.5)
[5897 ± 24]

3
(1710.2 ± 123.6)
[71107 ± 833]

0
(–)
[–]

0
(–)
[–]

i2-dual(de)
30

(12.3 ± 0.4)
[4243 ± 17]

13
(1441.6 ± 140.5)
[48583 ± 274]

0
(–)
[–]

0
(–)
[–]

Table 2: For problem #6, the runtime and memory cutoff were extended to 48 hours and 12 Gb.

Probabilistic Parc Printer. The results are presented in Tables 3 and 4 for problems without and with the repair
action, respectively. Problems with 1 to 3 sheets are omitted because planners obtained 100% coverage in just a few
seconds. For Table 4, all planners have 0% coverage for the problems with 5 sheets and more than 1 unreliable compo-
nent.

Exploding Blocks World. The results for the problems #3-#10 and #11-#15 are presented in Tables 5 and 6, respec-
tively. Problems #1, #2, and #6 are omitted because all planners obtained 100% coverage in few seconds. All planners
had 0% coverage for problems #13 and #14.

Search and Rescue. The results are presented in Table 7. For each problem, we constraint the maximum usage of fuel
to be d0.5fsspe where fssp is the expected fuel used by the optimal policy without the fuel constraint (i.e., the optimal
SSP policy that only optimizes the time). Only problems in which the fuel constraint can be satisfied are considered.

Constrained Probabilistic Parc Printer. The results are presented in Tables 8 to 11. i-dual using hmax, hlmc-m and
hpom are able to find the optimal policies only for the problems in which no (expected) jam is allowed (i.e., the upper
bound on f is 0). Such problems can be solved using an expensive but simple policy which consists in printing all
sheets using the color printing components of the printer, rather than differentiating between sheets that really require
color printing and those that can be printed in black and white.

Probabilistic Parc Printer – No Repair Action – SSP
sheets (s) 4 5
unr. comp. (c) 1 2 3 1 2 3

lrtdp(hmax)
30

(111.9± 2.0)
[588232± 52]

30
(721.9± 10.3)
[1627883± 113]

30
(1105.4± 19.3)
[2594878± 1659]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hlmc)
30

(39.2± 1.0)
[67626± 1410]

30
(70.3± 2.0)

[115697± 3052]

30
(109.0± 2.2)

[177589± 4383]

30
(543.0± 18.9)

[705680± 16084]

30
(949.4± 24.6)

[1201385± 34277]

30
(1473.5± 43.6)

[1844481± 49657]

lrtdp(hnet)
30

(42.4± 1.2)
[90387± 1313]

30
(244.3± 5.1)

[366604± 3703]

30
(372.0± 6.3)

[541452± 7037]

30
(638.6± 17.3)

[980367± 15045]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc)
30

(13.6± 0.5)
[31675± 703]

30
(20.2± 0.6)

[41784± 1305]

30
(25.4± 0.7)

[53182± 2030]

30
(170.9± 6.5)

[310789± 7010]

30
(244.6± 11.1)

[407339± 12202]

30
(311.6± 12.3)

[505102± 18865]

lrtdp(hpom)
30

(693.4± 29.2)
[31699± 705]

30
(924.4± 44.5)
[41811± 1309]

30
(1158.9± 56.3)
[52995± 2035]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hmax)
30

(500.5± 59.5)
[536964± 37890]

4
(1064.8± 708.7)

[1122916± 488274]

0
(–)
[–]

5
(713.1± 575.1)

[1967318± 1241330]

2
(782.1± 601.6)

[2210028± 1052384]

0
(–)
[–]

ilao(hlmc)
30

(56.1± 3.1)
[37854± 1675]

30
(112.1± 5.4)
[58048± 2339]

30
(205.3± 4.4)
[99985± 1367]

30
(743.0± 47.2)

[366846± 17319]

16
(1656.8± 82.2)
[602596± 23631]

0
(–)
[–]

ilao(hnet)
30

(72.1± 1.4)
[59430± 563]

30
(386.3± 7.4)

[243266± 1401]

30
(791.4± 24.3)
[429794± 5900]

30
(1017.4± 34.6)
[610935± 6131]

0
(–)
[–]

0
(–)
[–]

ilao(hroc)
30

(31.5± 0.9)
[27128± 312]

30
(55.4± 1.7)
[34680± 559]

30
(98.6± 2.3)
[44236± 905]

30
(417.3± 26.8)

[255089± 11978]

30
(752.0± 26.5)
[330381± 6643]

30
(1415.6± 41.4)
[417815± 10780]

ilao(hpom)
30

(639.5± 34.0)
[27593± 343]

30
(831.9± 39.9)
[35684± 579]

30
(1071.3± 49.6)
[45378± 932]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hmax)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hlmc)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hnet)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc)
5

(1607.3± 141.5)
[30058± 793]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hpom)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i2-dual
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

Table 3: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Probabilistic Parc Printer – With Repair Action – SSP
sheets (s) 4 5
unr. comp. (c) 1 2 3 1

lrtdp(hmax)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hlmc)
30

(1074.1± 17.6)
[189356± 715]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hnet)
30

(285.8± 3.6)
[119792± 398]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc)
30

(239.7± 5.6)
[92816± 399]

1
(1795.0± inf)
[197146± inf]

0
(–)
[–]

0
(–)
[–]

lrtdp(hpom)
4

(1694.1± 53.9)
[93589± 1212]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hmax)
0

(–)
[–]

1
(551.0± inf)

[1451057± inf]

0
(–)
[–]

0
(–)
[–]

ilao(hlmc)
30

(270.5± 4.4)
[142757± 362]

30
(705.1± 8.9)
[339024± 333]

30
(973.1± 14.1)
[460156± 452]

0
(–)
[–]

ilao(hnet)
30

(162.8± 3.0)
[116894± 310]

30
(358.1± 7.9)
[230354± 187]

30
(450.0± 7.3)
[306467± 185]

0
(–)
[–]

ilao(hroc)
30

(137.9± 2.2)
[85124± 290]

30
(291.6± 4.9)
[184387± 597]

30
(387.6± 8.8)
[268433± 497]

30
(1543.2± 28.9)
[889347± 2232]

ilao(hpom)
10

(1656.1± 78.3)
[85251± 461]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hmax)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hlmc)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hnet)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hpom)
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i2-dual
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

Table 4: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Exploding Blocks World – SSP
Planner #3 #4 #5 #7 #8 #9 #10

lrtdp(hmax)
30

(0.3 ± 0.0)
[1855 ± 35]

30
(0.6 ± 0.0)
[3051 ± 72]

30
(0.1 ± 0.0)
[469 ± 33]

30
(29.7 ± 1.9)

[181284 ± 6652]

30
(341.5 ± 9.2)

[1386123 ± 31813]

30
(58.3 ± 1.8)

[141073 ± 2369]

30
(574.5 ± 18.1)

[887676 ± 11053]

lrtdp(hlmc)
30

(0.4 ± 0.0)
[1353 ± 50]

30
(0.5 ± 0.0)
[1525 ± 27]

30
(0.1 ± 0.0)
[136 ± 11]

30
(1.7 ± 0.2)
[2854 ± 359]

30
(407.3 ± 9.9)

[292982 ± 3439]

30
(130.9 ± 2.9)
[67096 ± 1592]

30
(1548.8 ± 25.4)
[614966 ± 9081]

lrtdp(hpmax)
30

(1432.0 ± 34.0)
[621714 ± 833]

30
(553.0 ± 22.0)
[249709 ± 931]

30
(1.8 ± 0.1)
[3426 ± 172]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hnet)
30

(1334.2 ± 31.5)
[543442 ± 584]

30
(528.7 ± 11.8)
[170608 ± 319]

30
(0.5 ± 0.0)
[223 ± 26]

30
(24.4 ± 1.4)

[35294 ± 1234]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc)
30

(1299.3 ± 28.4)
[543646 ± 589]

30
(519.7 ± 15.1)
[170509 ± 304]

30
(0.5 ± 0.0)
[223 ± 26]

30
(26.4 ± 1.4)

[35258 ± 1229]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hroc
de)

30
(0.7 ± 0.0)
[1484 ± 52]

30
(1.1 ± 0.0)
[1986 ± 29]

30
(0.4 ± 0.0)
[207 ± 15]

30
(2.3 ± 0.3)
[3867 ± 553]

30
(202.8 ± 10.1)
[287105 ± 4957]

30
(57.0 ± 2.6)

[63060 ± 1005]

30
(599.1 ± 30.6)
[511435 ± 7638]

lrtdp(hpom)
0

(–)
[–]

30
(1248.9 ± 54.7)
[170608 ± 319]

30
(2.7 ± 0.3)
[223 ± 26]

30
(742.0 ± 56.0)
[35294 ± 1234]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

lrtdp(hpom
de)

30
(4.6 ± 0.3)
[1484 ± 52]

30
(6.5 ± 0.4)
[1986 ± 29]

30
(2.0 ± 0.1)
[207 ± 15]

30
(58.8 ± 9.4)
[3867 ± 553]

0
(–)
[–]

30
(1382.7 ± 66.9)
[63060 ± 1005]

0
(–)
[–]

ilao(hmax)
30

(0.8 ± 0.0)
[958 ± 0]

30
(1.3 ± 0.0)
[1455 ± 11]

30
(0.0 ± 0.0)
[98 ± 4]

30
(16.6 ± 0.7)
[43241 ± 977]

0
(–)
[–]

30
(85.7 ± 1.2)
[41299 ± 412]

23
(1250.8 ± 214.5)
[127152 ± 14522]

ilao(hlmc)
30

(1.0 ± 0.0)
[783 ± 1]

30
(1.4 ± 0.0)
[1063 ± 6]

30
(0.0 ± 0.0)
[79 ± 2]

30
(0.8 ± 0.1)
[1261 ± 137]

0
(–)
[–]

30
(110.7 ± 2.4)
[26719 ± 325]

4
(1189.9 ± 452.1)
[99531 ± 6324]

ilao(hpmax)
1

(1557.0 ± inf)
[656427 ± inf]

14
(811.8 ± 141.9)
[273443 ± 10475]

30
(0.5 ± 0.0)
[388 ± 12]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hnet)
4

(1578.0 ± 217.9)
[604848 ± 5177]

16
(993.5 ± 205.4)
[240415 ± 12276]

30
(0.4 ± 0.0)
[99 ± 4]

30
(6.6 ± 0.3)

[12736 ± 495]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hroc)
4

(1647.8 ± 72.6)
[608297 ± 1246]

21
(844.1 ± 116.3)
[230236 ± 6685]

30
(0.4 ± 0.0)
[99 ± 4]

30
(7.8 ± 0.4)

[12736 ± 495]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hroc
de)

30
(1.3 ± 0.0)
[881 ± 0]

30
(2.0 ± 0.1)
[1541 ± 6]

30
(0.4 ± 0.0)
[82 ± 1]

30
(1.1 ± 0.1)
[1421 ± 159]

3
(1760.4 ± 55.1)
[194229 ± 2903]

30
(99.7 ± 2.3)
[27421 ± 327]

11
(1162.3 ± 335.9)
[94290 ± 16931]

ilao(hpom)
0

(–)
[–]

8
(1603.4 ± 57.2)
[221160 ± 2479]

30
(1.5 ± 0.1)
[99 ± 4]

30
(269.1 ± 19.2)
[12736 ± 495]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

ilao(hpom
de)

30
(3.6 ± 0.1)
[881 ± 0]

30
(5.9 ± 0.2)
[1541 ± 6]

30
(1.0 ± 0.0)
[82 ± 1]

30
(22.6 ± 2.5)
[1421 ± 159]

0
(–)
[–]

30
(711.4 ± 31.0)
[27421 ± 327]

1
(297.0 ± inf)
[10118 ± inf]

i-dual(hmax)
30

(0.3 ± 0.0)
[758 ± 11]

30
(0.6 ± 0.0)
[1706 ± 33]

30
(0.1 ± 0.0)
[183 ± 9]

28
(1553.5 ± 60.3)
[53672 ± 125]

0
(–)
[–]

30
(243.9 ± 16.8)
[41373 ± 103]

0
(–)
[–]

i-dual(hlmc)
30

(0.3 ± 0.0)
[608 ± 9]

30
(0.6 ± 0.0)
[1278 ± 44]

30
(0.1 ± 0.0)
[103 ± 3]

30
(2.5 ± 0.1)
[3067 ± 112]

0
(–)
[–]

30
(77.3 ± 3.5)
[19413 ± 34]

0
(–)
[–]

i-dual(hpmax)
0

(–)
[–]

0
(–)
[–]

30
(0.6 ± 0.0)
[538 ± 24]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hnet)
0

(–)
[–]

0
(–)
[–]

30
(0.4 ± 0.0)
[142 ± 6]

30
(63.8 ± 4.5)
[16049 ± 62]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc)
0

(–)
[–]

0
(–)
[–]

30
(0.4 ± 0.0)
[142 ± 6]

30
(64.8 ± 3.3)
[16049 ± 62]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hroc
de)

30
(0.6 ± 0.0)
[682 ± 9]

30
(1.2 ± 0.0)
[1512 ± 20]

30
(0.4 ± 0.0)
[104 ± 4]

30
(2.8 ± 0.1)
[3180 ± 101]

0
(–)
[–]

30
(103.9 ± 4.9)
[20794 ± 14]

0
(–)
[–]

i-dual(hpom)
0

(–)
[–]

0
(–)
[–]

30
(1.7 ± 0.1)
[142 ± 6]

30
(379.5 ± 19.1)
[16049 ± 62]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i-dual(hpom
de)

30
(2.4 ± 0.1)
[682 ± 9]

30
(5.4 ± 0.2)
[1512 ± 20]

30
(1.2 ± 0.1)
[104 ± 4]

30
(49.6 ± 2.4)
[3180 ± 101]

0
(–)
[–]

30
(600.9 ± 22.4)
[20794 ± 14]

0
(–)
[–]

i2-dual
0

(–)
[–]

0
(–)
[–]

30
(0.9 ± 0.0)
[125 ± 7]

30
(127.7 ± 13.7)
[12270 ± 605]

0
(–)
[–]

0
(–)
[–]

0
(–)
[–]

i2-dual(de)
30

(2.0 ± 0.1)
[673 ± 10]

30
(3.9 ± 0.1)
[1775 ± 18]

30
(0.8 ± 0.0)
[92 ± 4]

30
(6.7 ± 0.5)
[2410 ± 160]

0
(–)
[–]

30
(343.5 ± 20.6)
[20120 ± 47]

0
(–)
[–]

Table 5: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Exploding Blocks World – Large Problems – SSP
Planner #11 #12 #15

ilao(hmax)
12

(366.7 ± 115.0)
[537201 ± 164249]

24
(746.6 ± 245.6)

[646757 ± 202695]

28
(576.6 ± 172.1)

[531583 ± 144612]

ilao(hlmc)
6

(1352.9 ± 97.8)
[419829 ± 28289]

15
(682.3 ± 283.3)

[143873 ± 60006]

12
(613.5 ± 48.3)
[80347 ± 4776]

ilao(hroc
de)

16
(837.8 ± 289.6)

[718672 ± 256401]

26
(792.5 ± 232.5)

[413147 ± 112855]

23
(623.2 ± 242.9)

[326167 ± 131300]

Table 6: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. All
other planners and heuristics omitted had zero coverage for these problems.

Search and Rescue – C-SSP
r planner d = 1 d = 2 d = 3 d = 4

n
=

4

0.
25

i-dual(hmax) 30 (0.0± 0.0)[22± 2] 30 (0.1± 0.0)[114± 23] 30 (0.8± 0.2)[449± 55] 30 (3.2± 0.6)[802± 67]
i-dual(hlmc-m) 30 (0.0± 0.0)[16± 3] 30 (0.1± 0.0)[88± 16] 30 (0.7± 0.1)[361± 46] 30 (2.9± 0.5)[722± 65]
i-dual(hpom) 30 (0.7± 0.0)[18± 4] 30 (1.0± 0.1)[108± 19] 30 (2.7± 0.4)[454± 58] 30 (7.2± 0.9)[879± 79]

i-dual(hc-pom) 30 (0.7± 0.0)[18± 4] 30 (1.1± 0.1)[108± 19] 30 (2.9± 0.4)[450± 58] 30 (7.9± 1.1)[879± 79]
i-dual(hroc) 30 (0.5± 0.0)[18± 4] 30 (0.6± 0.0)[108± 19] 30 (1.3± 0.2)[454± 58] 30 (4.6± 0.7)[879± 79]

i-dual(hc-roc) 30 (0.5± 0.0)[18± 4] 30 (0.7± 0.0)[108± 19] 30 (1.4± 0.2)[450± 57] 30 (5.0± 0.8)[879± 79]
i2-dual 30 (0.3± 0.0)[18± 4] 30 (0.5± 0.0)[65± 16] 30 (1.3± 0.3)[248± 45] 30 (4.7± 0.9)[542± 64]

0.
50

i-dual(hmax) 30 (0.0± 0.0)[30± 4] 30 (0.2± 0.0)[243± 38] 30 (16.8± 6.6)[1834± 300] 29 (413.1± 146.9)[5076± 639]
i-dual(hlmc-m) 30 (0.1± 0.0)[22± 4] 30 (0.2± 0.0)[167± 26] 30 (7.4± 2.9)[1292± 210] 30 (219.5± 88.1)[4130± 587]
i-dual(hpom) 30 (0.8± 0.0)[27± 5] 30 (1.9± 0.2)[206± 33] 30 (22.3± 7.9)[1697± 288] 29 (413.1± 145.7)[5236± 768]

i-dual(hc-pom) 30 (0.9± 0.0)[27± 5] 30 (2.0± 0.2)[206± 33] 30 (23.4± 7.5)[1684± 289] 30 (443.7± 156.6)[5343± 776]
i-dual(hroc) 30 (0.6± 0.0)[27± 5] 30 (0.7± 0.0)[206± 33] 30 (14.4± 6.5)[1697± 288] 29 (385.0± 137.6)[5236± 768]

i-dual(hc-roc) 30 (0.6± 0.0)[27± 5] 30 (0.8± 0.0)[206± 33] 30 (14.4± 6.1)[1684± 289] 30 (433.4± 159.1)[5342± 775]
i2-dual 30 (0.4± 0.0)[27± 6] 30 (0.7± 0.1)[106± 20] 30 (12.7± 7.2)[942± 216] 30 (248.7± 103.5)[2612± 412]

0.
75

i-dual(hmax) 30 (0.0± 0.0)[36± 4] 30 (0.9± 0.2)[696± 76] 26 (400.6± 176.6)[6422± 1111] 0 (–) [–]
i-dual(hlmc-m) 30 (0.1± 0.0)[26± 4] 30 (0.6± 0.1)[391± 39] 30 (137.0± 71.4)[4227± 786] 4 (1352.1± 584.3)[11272± 2742]
i-dual(hpom) 30 (1.0± 0.0)[33± 6] 30 (5.4± 0.6)[515± 59] 28 (368.5± 171.4)[5786± 1184] 1 (1167.0± inf)[9678± inf]

i-dual(hc-pom) 30 (1.1± 0.1)[33± 6] 30 (5.7± 0.6)[515± 59] 28 (333.6± 145.9)[5751± 1178] 1 (1020.0± inf)[9534± inf]
i-dual(hroc) 30 (0.6± 0.0)[33± 6] 30 (1.2± 0.1)[515± 59] 29 (386.2± 199.1)[5986± 1205] 1 (958.0± inf)[9678± inf]

i-dual(hc-roc) 30 (0.6± 0.0)[33± 6] 30 (1.4± 0.2)[516± 59] 29 (326.4± 171.5)[5751± 1183] 1 (799.0± inf)[9512± inf]
i2-dual 30 (0.5± 0.0)[33± 6] 30 (1.5± 0.2)[261± 41] 30 (239.8± 146.3)[2893± 744] 7 (590.6± 422.2)[4034± 1221]

n
=

5

0.
25

i-dual(hmax) 30 (0.1± 0.0)[25± 3] 30 (0.2± 0.0)[176± 39] 30 (2.1± 0.8)[571± 88] 30 (65.9± 30.5)[1905± 321]
i-dual(hlmc-m) 30 (0.1± 0.0)[19± 3] 30 (0.3± 0.1)[128± 23] 30 (1.8± 0.5)[431± 71] 30 (31.6± 16.1)[1459± 275]
i-dual(hpom) 30 (1.2± 0.1)[22± 4] 30 (2.6± 0.3)[154± 29] 30 (7.8± 1.5)[559± 98] 30 (75.4± 30.3)[1875± 357]

i-dual(hc-pom) 30 (1.2± 0.1)[22± 4] 30 (2.7± 0.3)[154± 29] 30 (8.0± 1.5)[553± 99] 30 (76.8± 33.2)[1866± 358]
i-dual(hroc) 30 (0.8± 0.0)[22± 4] 30 (1.0± 0.1)[154± 29] 30 (2.7± 0.6)[559± 98] 30 (59.4± 29.4)[1875± 357]

i-dual(hc-roc) 30 (0.8± 0.0)[22± 4] 30 (1.0± 0.1)[154± 29] 30 (2.7± 0.6)[553± 99] 30 (56.7± 26.9)[1864± 358]
i2-dual 30 (0.6± 0.0)[22± 4] 30 (1.0± 0.1)[94± 21] 30 (2.9± 0.8)[274± 67] 30 (34.5± 19.3)[856± 210]

0.
50

i-dual(hmax) 30 (0.1± 0.0)[36± 4] 30 (0.9± 0.3)[515± 104] 30 (135.9± 54.7)[3582± 628] 5 (949.2± 473.2)[8097± 1451]
i-dual(hlmc-m) 30 (0.1± 0.0)[25± 4] 30 (0.8± 0.2)[312± 58] 30 (29.8± 11.3)[2099± 382] 9 (374.6± 192.4)[5552± 852]
i-dual(hpom) 30 (1.8± 0.1)[31± 5] 30 (9.1± 1.6)[393± 77] 30 (130.9± 42.5)[2930± 564] 9 (806.7± 256.7)[7094± 1206]

i-dual(hc-pom) 30 (2.0± 0.1)[31± 5] 30 (9.8± 1.7)[394± 77] 30 (127.7± 43.4)[2862± 562] 9 (779.8± 283.5)[6958± 1243]
i-dual(hroc) 30 (0.8± 0.0)[31± 5] 30 (1.6± 0.2)[393± 77] 30 (81.1± 34.9)[2930± 564] 9 (741.4± 304.4)[7095± 1206]

i-dual(hc-roc) 30 (0.8± 0.0)[31± 5] 30 (1.7± 0.2)[393± 77] 30 (86.6± 38.3)[2865± 564] 9 (644.4± 287.3)[6951± 1239]
i2-dual 30 (0.8± 0.0)[31± 5] 30 (2.4± 0.4)[225± 55] 30 (45.4± 23.1)[1282± 326] 14 (555.4± 295.9)[3219± 908]

0.
75

i-dual(hmax) 30 (0.1± 0.0)[43± 4] 30 (1.7± 0.5)[807± 129] 19 (433.3± 215.9)[6159± 1260] 0 (–) [–]
i-dual(hlmc-m) 30 (0.1± 0.0)[31± 3] 30 (1.2± 0.2)[444± 64] 28 (387.9± 178.6)[5362± 1221] 2 (631.9± 752.2)[8324± 3215]
i-dual(hpom) 30 (2.6± 0.1)[39± 5] 30 (18.5± 3.1)[570± 91] 20 (400.1± 193.0)[4913± 1107] 1 (920.0± inf)[8912± inf]

i-dual(hc-pom) 30 (2.7± 0.2)[39± 5] 30 (18.5± 3.0)[566± 92] 21 (461.6± 212.6)[5186± 1248] 1 (883.0± inf)[8343± inf]
i-dual(hroc) 30 (0.9± 0.0)[39± 5] 30 (2.1± 0.3)[570± 91] 23 (450.5± 242.1)[5891± 1429] 2 (1163.2± 848.2)[10907± 3910]

i-dual(hc-roc) 30 (0.9± 0.0)[39± 5] 30 (2.2± 0.3)[567± 92] 23 (303.0± 178.6)[5227± 1285] 2 (1030.9± 887.3)[10531± 4300]
i2-dual 30 (1.1± 0.0)[39± 5] 30 (4.2± 0.6)[304± 54] 28 (389.0± 203.7)[2948± 879] 6 (609.5± 422.3)[3198± 1246]

Table 7: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The
problem parameters are: n, the size of the square grid; d, the distance from the robot to the known victim; and r the
ratio of positions that potentially have a victim.

Probabilistic Parc Printer – C-SSP
4 sheets, 3 unreliable components, no repair, and no expected jams (f = 0)

Upper bound on u 1 2 3 4 ∞

i-dual(hmax)
30

(398.3± 21.3)
[17846± 0]

30
(371.2± 14.0)
[17846± 0]

30
(358.9± 15.6)
[17845± 1]

30
(322.2± 16.7)
[17490± 0]

30
(319.3± 16.5)
[17480± 7]

i-dual(hlmc-m)
30

(592.4± 23.7)
[17846± 0]

30
(552.8± 26.6)
[17846± 0]

30
(548.4± 24.6)
[17846± 0]

30
(213.4± 11.5)
[13053± 152]

30
(68.3± 24.1)
[7777± 902]

i-dual(hpom)
25

(1673.5± 37.2)
[17846± 0]

25
(1666.2± 46.0)
[17846± 0]

27
(1602.3± 39.8)
[17846± 0]

30
(1054.8± 30.5)
[13202± 5]

30
(1025.3± 53.0)
[12671± 294]

i-dual(hc-pom)
28

(1620.2± 34.4)
[17845± 0]

29
(1616.3± 36.6)
[17846± 0]

28
(1657.3± 32.5)
[17845± 0]

30
(1077.3± 42.2)
[11139± 104]

30
(734.0± 37.5)
[9016± 258]

i-dual(hroc)
30

(616.6± 31.1)
[17845± 0]

30
(684.9± 55.6)
[17846± 0]

30
(631.8± 34.1)
[17846± 0]

30
(220.5± 7.4)
[13138± 97]

30
(181.2± 14.9)
[12065± 510]

i-dual(hc-roc)
30

(458.1± 26.1)
[17845± 0]

30
(424.1± 13.6)
[17846± 0]

30
(513.9± 22.7)
[17845± 0]

30
(300.3± 17.7)
[11139± 104]

30
(154.5± 11.4)
[9016± 258]

i2-dual
30

(45.7± 29.5)
[1247± 456]

30
(46.1± 21.8)
[1455± 420]

30
(69.1± 34.0)
[1846± 497]

30
(54.3± 20.3)
[1758± 445]

30
(69.4± 22.5)
[1999± 398]

Table 8: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Probabilistic Parc Printer – C-SSP
4 sheets, 1 unreliable components, no repair

Constrs i-dual(hc-pom) i-dual(hroc) i-dual(hc-roc) i2-dual

f̄ = 0 ū = 1
29

(1381.3 ± 36.9)
[15965 ± 1]

0
(–)
[–]

30
(337.7 ± 15.8)
[15965 ± 1]

30
(9.7 ± 1.9)
[650 ± 111]

f̄ = 0 ū = 2
29

(1463.5 ± 48.2)
[15965 ± 0]

1
(1802.0 ± inf)
[36958 ± inf]

30
(331.7 ± 17.0)
[15965 ± 0]

30
(9.6 ± 1.8)
[627 ± 107]

f̄ = 0 ū = 3
29

(1523.3 ± 58.1)
[15965 ± 0]

0
(–)
[–]

30
(400.6 ± 21.3)
[15965 ± 0]

30
(12.0 ± 2.7)
[728 ± 122]

f̄ = 0 ū = 4
30

(892.0 ± 30.6)
[10340 ± 28]

29
(1392.2 ± 63.5)

[32613 ± 2]

30
(168.9 ± 8.2)
[10340 ± 28]

30
(9.3 ± 1.4)
[535 ± 68]

f̄ = 0 ū =∞
30

(695.6 ± 46.7)
[8913 ± 351]

30
(1266.8 ± 62.0)
[32534 ± 41]

30
(126.3 ± 13.1)
[8913 ± 351]

30
(7.3 ± 1.5)
[450 ± 82]

f̄ = 0.1 ū = 1
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

26
(40.0 ± 25.5)
[2022 ± 495]

f̄ = 0.1 ū = 2
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

27
(33.2 ± 13.0)
[1905 ± 411]

f̄ = 0.1 ū = 3
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(38.6 ± 14.6)
[1974 ± 404]

f̄ = 0.1 ū = 4
19

(1004.9 ± 150.0)
[11495 ± 1323]

0
(–)
[–]

30
(401.0 ± 116.0)
[14242 ± 1638]

30
(16.9 ± 3.8)
[1337 ± 227]

f̄ = 0.1 ū =∞
25

(1116.9 ± 184.8)
[13286 ± 1881]

0
(–)
[–]

30
(316.7 ± 104.0)
[13518 ± 1875]

30
(18.0 ± 5.2)
[1348 ± 256]

Table 9: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The
maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is f̄ and ū, respectively.

Probabilistic Parc Printer – C-SSP
4 sheets, 2 unreliable components, no repair

Constrs i-dual(hc-pom) i-dual(hroc) i-dual(hc-roc) i2-dual

f̄ = 0 ū = 1
29

(1470.8 ± 45.1)
[15965 ± 1]

0
(–)
[–]

30
(352.1 ± 15.6)
[15965 ± 1]

30
(10.3 ± 1.6)
[614 ± 82]

f̄ = 0 ū = 2
29

(1426.8 ± 44.5)
[15965 ± 0]

1
(1834.0 ± inf)
[36957 ± inf]

30
(345.1 ± 20.2)
[15965 ± 0]

30
(12.4 ± 2.2)
[699 ± 101]

f̄ = 0 ū = 3
28

(1510.0 ± 51.4)
[15965 ± 0]

0
(–)
[–]

30
(428.3 ± 25.3)
[15965 ± 0]

30
(11.7 ± 2.8)
[660 ± 125]

f̄ = 0 ū = 4
30

(852.1 ± 35.5)
[10340 ± 28]

26
(1331.4 ± 51.0)

[32613 ± 3]

30
(176.6 ± 8.0)
[10340 ± 28]

30
(9.4 ± 1.3)
[500 ± 56]

f̄ = 0 ū =∞
30

(683.6 ± 40.7)
[8913 ± 351]

30
(1235.0 ± 57.8)
[32388 ± 136]

30
(129.3 ± 13.2)
[8913 ± 351]

30
(9.1 ± 1.5)
[497 ± 73]

f̄ = 0.1 ū = 1
29

(1538.0 ± 43.8)
[15965 ± 1]

0
(–)
[–]

30
(401.5 ± 18.2)
[15966 ± 0]

30
(122.5 ± 105.1)
[4070 ± 732]

f̄ = 0.1 ū = 2
30

(1544.1 ± 52.3)
[15965 ± 1]

0
(–)
[–]

30
(392.9 ± 20.7)
[15965 ± 0]

30
(62.7 ± 12.4)
[3626 ± 298]

f̄ = 0.1 ū = 3
27

(1599.0 ± 56.1)
[15965 ± 1]

0
(–)
[–]

30
(488.7 ± 21.3)
[15965 ± 0]

30
(102.6 ± 41.8)
[4238 ± 524]

f̄ = 0.1 ū = 4
30

(875.6 ± 65.9)
[9728 ± 535]

0
(–)
[–]

30
(179.6 ± 20.0)
[9644 ± 512]

30
(45.3 ± 15.3)
[3055 ± 445]

f̄ = 0.1 ū =∞
30

(653.0 ± 39.5)
[7958 ± 261]

0
(–)
[–]

30
(110.9 ± 10.3)
[8213 ± 396]

30
(46.0 ± 9.3)
[3100 ± 321]

f̄ = 0.2 ū = 3
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

9
(225.2 ± 160.0)
[6097 ± 1442]

f̄ = 0.2 ū =∞
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

12
(177.5 ± 151.3)
[5524 ± 1269]

f̄ = 0.3 ū = 1
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

16
(462.1 ± 152.4)
[8885 ± 931]

f̄ = 0.3 ū = 4
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

14
(400.1 ± 200.3)
[8511 ± 1407]

f̄ = 0.3 ū =∞
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

15
(398.2 ± 203.6)
[8178 ± 1540]

Table 10: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The
maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is f̄ and ū, respectively.

Probabilistic Parc Printer – C-SSP
4 sheets, 3 unreliable components, no repair, and f̄ > 0

Constrs i-dual(hc-pom) i-dual(hroc) i-dual(hc-roc) i2-dual

f̄ = 0.1 ū = 1
27

(1574.5 ± 43.0)
[17845 ± 1]

0
(–)
[–]

30
(514.2 ± 27.2)
[17845 ± 1]

30
(167.0 ± 38.4)
[5391 ± 512]

f̄ = 0.1 ū = 2
29

(1617.4 ± 39.1)
[17845 ± 0]

0
(–)
[–]

30
(512.7 ± 23.5)
[17845 ± 0]

30
(165.6 ± 48.4)
[5175 ± 521]

f̄ = 0.1 ū = 3
24

(1649.8 ± 36.0)
[17845 ± 0]

0
(–)
[–]

30
(684.7 ± 40.0)
[17845 ± 0]

30
(163.3 ± 55.7)
[5209 ± 544]

f̄ = 0.1 ū = 4
30

(842.4 ± 39.3)
[9524 ± 224]

0
(–)
[–]

30
(162.0 ± 20.8)
[9440 ± 362]

30
(170.6 ± 51.0)
[5612 ± 717]

f̄ = 0.1 ū =∞
30

(723.3 ± 49.1)
[9030 ± 315]

0
(–)
[–]

30
(145.5 ± 19.4)
[9251 ± 394]

30
(102.8 ± 21.6)
[4703 ± 504]

f̄ = 0.2 ū = 1
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(179.1 ± 31.6)
[5531 ± 412]

f̄ = 0.2 ū = 2
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(227.6 ± 66.6)
[5947 ± 700]

f̄ = 0.2 ū = 3
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(144.0 ± 27.9)
[5067 ± 461]

f̄ = 0.2 ū = 4
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(137.1 ± 42.8)
[5220 ± 621]

f̄ = 0.2 ū =∞
0

(–)
[–]

0
(–)
[–]

0
(–)
[–]

30
(114.5 ± 42.6)
[4512 ± 745]

Table 11: Results are reported as “X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf.
interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The
maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is f̄ and ū, respectively.

B Theoretical results

B.1 Proofs preliminaries
For all our proofs, we assume without loss of generality that the state s in which the heuristics are being queried is
the initial state s0, that is, h(s) means h(s0). This assumption does not affect the generality of our proofs because we
can always generate a copy of the current probabilistic problem with the initial state changed to s for any s ∈ S. This
assumption highlights the problem being solved by the heuristics, that is, to lower bound the optimal cost of reaching
a goal state from the state being queried.

B.2 Proof of Theorem 1
Theorem 1 (Admissibility of hpom). For all states s of the given probabilistic SAS+ task, hpom(s) ≤ V ∗(s).

Before we prove this theorem, we need to define the projection of an occupation measure of an SSP onto a vari-
able v (Definition 7) and show that it is a valid occupation measure for the projected SSP (Lemma 5).

Definition 7 (Projected occupation measure). Given a valid occupation measure x (i.e., x satisfies the flow constraints
(C1) – (C6)) for S and a variable v ∈ V , the projected occupation measure x̂v,s

d,a for Sv,s is

x̂v,s
d,a =



∑
s′∈S s.t. s′[v]=d

xs′,a if v 6= g, a 6= ag∑
sg∈G s.t.
sg [v]=d

∑
s′∈S
a′∈A

P (sg|s′, a′)xs′,a′ if v 6= g, a = ag

0 otherwise.

Lemma 5. x̂v,s
d,a is a valid occupation measure for Sv,s.

Proof. Since xs′,a ≥ 0 for all s′ ∈ S and a ∈ A, then x̂v,s
d,a ≥ 0 for all d ∈ Dv and a ∈ A, thus (C1) is satisfied. By

Definition 7, we have that in(g) =
∑

d′,a∈A(d′) x̂
v,s
d′,aP (g|d′, a). By the definition of Sv,s, the only action that can reach

g is the artificial goal action ag , thus
∑

d′,a∈A(d′) x̂
v,s
d′,aP (g|d′, a) =

∑
d′ x̂

v,s
d′,ag

P (g|d′, ag). Applying Definition 7, we
have ∑

d′

x̂v,s
d′,ag

P (g|d′, ag) =
∑
d′

∑
sg∈G s.t.
sg [v]=d′

s?[v]∈{d′,⊥}

∑
s′∈S,a∈A

P (sg|s′, a)xs′,a =
∑
sg∈G

∑
s′∈S,a∈A

P (sg|s′, a)xs′,a = 1

where the last is step is due to the sink constraint (C3) of the original problem. Since g is the only goal state of Sv,s, we
have that in(g) = 1 is equivalent to the sink constraint for Sv,s. To show that the flow constraints are satisfied, consider

the sum of all the flow constraints of the original problem such that their value for variable v is d ∈ Dv:∑
s∈S:s[v]=d

(∑
s′∈S

a∈A(s′)

P (s|s′, a)xs′,a −
∑

a∈A(s)

xs,a

)
=

∑
s∈S:s[v]=d

∑
s′∈S

a∈A(s′)

P (s|s′, a)xs′,a −
∑

s∈S:s[v]=d

∑
a∈A(s)

xs,a

=
∑

s∈S:s[v]=d

∑
s′∈S

a∈A(s′)

P (s|s′, a)xs′,a −
∑

a∈A(s)

x̂v,s
d,a by Definition 7

=
∑
s′∈S

a∈A(s′)
e∈eff(a):e[v]=d

Pra(e)xs′,a −
∑

a∈A(s)

x̂v,s
d,a

=
∑

d′∈Dv

∑
s′∈S:s′[v]=d′

∑
a∈A(s′)

e∈eff(a):e[v]=d

Pra(e)xs′,a −
∑

a∈A(s)

x̂v,s
d,a

=
∑

d′∈Dv

∑
a∈A:pre(a)[v]∈{d′,⊥}

e∈eff(a):e[v]=d

Pra(e)
(∑
s′∈S:s′[v]=d′

xs′,a

)
−
∑

a∈A(s)

x̂v,s
d,a

=
∑

d′∈Dv

∑
a∈A:pre(a)[v]∈{d′,⊥}

e∈eff(a):e[v]=d

Pra(e)x̂v,s
d′,a −

∑
a∈A(s)

x̂v,s
d,a by Definition 7

=
∑

d′∈Dv

a∈A(d′)

x̂v,s
d′,a

(∑
e∈eff(a):e[v]=d

Pra(e)
)
−
∑

a∈A(d)

x̂v,s
d,a

=
∑

d′∈Dv

a∈A(d′)

x̂v,s
d′,aP (d|d′, a)−

∑
a∈A(d)

x̂v,s
d,a by Definition 1

= in(d)− out(d)

therefore, x̂v,s
d,a satisfies the flow constraints.

Proof of Theorem 1. Let x∗ be the optimal occupation measure for the SSP S associated with the given probabilistic
SAS+ problem. For all v ∈ V , let x̂v,s

d,a be the projected occupation measure of x∗ over v. By Lemma 5, x̂v,s
d,a is a

valid occupation measure for Sv,s, i.e., it respects Cv,s. By Definition 7,
∑

d∈Dv
x̂v,s
d,a =

∑
d∈Dv

∑
s′∈S,s′[v]=d x

∗
s′,a =∑

s′∈S x
∗
s′,a =

∑
d′∈Dv′ x̂

v′,s
d′,a for all a ∈ A and {v, v′} ⊆ V; therefore, x̂v,s

d,a and x̂v′,s
d′,a respect set of constraints

Tyings and is a feasible solution for the minimization problem solved by hpom. Moreover, by the definition of x̂v,s
d,a ,∑

d∈Dv,a
x̂v,s
d,aC(a) = V ∗(s) for all v ∈ V .

B.3 Proof of Theorem 2
Theorem 2 (hpom dominates hroc). The occupation measure heuristic dominates the regrouped operator counting
heuristic, i.e., for all s of the given probabilistic SAS+ task, hroc(s) ≤ hpom(s).

The proof for Theorem 2 is constructive and for this prove and its lemmas, we construct the operator counting
variables from the optimal occupation measure for any variable v as:

Definition 8 (Candidate Ŷa,e). Let x∗ be the optimal solution of the LP solved by hpom(s), then we define Ŷa,e as
Pra(e)

∑
d∈Dv

x∗d,a. Due to the tying constraints of hpom, Ŷa,e can be defined using any variable v ∈ V of the probabilistic

SAS+ problem.

Lemma 6 (Lower bound). For a variable v and a value d ∈ Dv of v,
∑

(a,e)∈APv=d
Ŷa,e +

∑
(a,e)∈SPv=d

Ŷa,e −∑
(a,e)∈ACv=d

Ŷa,e (i.e., the right-hand side of (C7)) is greater or equal to in(d)−out(d) for x∗, i.e., the flow entering
d minus the flow leaving d induced by x∗ in Sv,s.

Proof.∑
(a,e)∈APv=d

Ŷa,e +
∑

(a,e)∈SPv=d

Ŷa,e −
∑

(a,e)∈ACv=d

Ŷa,e

=
∑

a∈A:pre(a)[v]6∈{d,⊥}
e∈eff(a):e[v]=d

Ŷa,e +
∑

a∈A:pre(a)[v]=⊥
e∈eff(a):e[v]=d

Ŷa,e −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e

=
∑

d′∈Dv :d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e by (i) – see below

=
∑

d′∈Dv :d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Pra(e)
(∑
d′∈Dv

x∗d′,a

)
=

∑
d′∈Dv :d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Pra(e)x∗d,a because pre(a)[v] = d thus x∗d′,a = 0 for d 6= d′

=
∑

d′∈Dv :d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

d′∈Dv:d 6=d′

a∈A:pre(a)[v]=d

P (d′|d, a)x∗d,a by Definition 1

=
∑

d′∈Dv

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

d′∈Dv

a∈A:pre(a)[v]=d

P (d′|d, a)x∗d,a by adding and subtracting
∑

a∈A:pre(a)[v]=d

P (d|d, a)x∗d,a

=
∑

d′∈Dv

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

a∈A:pre(a)[v]=d

x∗d,a

= in(d)− out(d|pre(a)[v] = d)

≥ in(d)− out(d) since out(d|pre(a)[v] = ⊥) ≥ 0

(i)
∑

a∈A:pre(a)[v]6∈{d,⊥}
e∈eff(a):e[v]=d

Ŷa,e +
∑

a∈A:pre(a)[v]=⊥
e∈eff(a):e[v]=d

Ŷa,e =
∑

a∈A:pre(a)[v]6=d
e∈eff(a):e[v]=d

Ŷa,e

=
∑

d′∈Dv:d
′ 6=d

a∈A:pre(a)[v]∈{d′,⊥}
e∈eff(a):e[v]=d

x∗d′,a Pra(e) by Definition 8

=
∑

d′∈Dv:d
′ 6=d

a∈A(d′)

x∗d′,a

(∑
pre(a)[v]∈{d′,⊥}
e∈eff(a):e[v]=d

Pra(e)
)

a ∈ A(d′) iff pre(a)[v] ∈ {d′,⊥}

=
∑

d′∈Dv :d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a by Definition 1

Lemma 7 (Upper bound). For a variable v and a value d ∈ Dv of v,
∑

(a,e)∈APv=d
Ŷa,e −

∑
(a,e)∈ACv=d

Ŷa,e −∑
(a,e)∈SCv=d

Ŷa,e (i.e., the right-hand side of (C8)) is less or equal to in(d)− out(d) for x∗, i.e., the flow entering d
minus the flow leaving d induced by x∗ in Sv,s.

Proof.∑
(a,e)∈APv=d

Ŷa,e −
∑

(a,e)∈ACv=d

Ŷa,e −
∑

(a,e)∈SCv=d

Ŷa,e

=
∑

a∈A:pre(a)[v]6∈{d,⊥}
e∈eff(a):e[v]=d

Ŷa,e −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v] 6∈{d,⊥}

Ŷa,e −
∑

a∈A:pre(a)[v]=⊥
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e

=
∑

d′∈Dv:d6=d′

a∈A:pre(a)[v]=d′

P (d|d′, a)x∗d′,a −
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e −
∑

a∈A:pre(a)[v]=⊥
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e by similar argument as (i)

≤
∑

d′∈Dv:d6=d′

a∈A:pre(a)[v]=d′

P (d|d′, a)x∗d′,a −
∑

d′∈Dv :d 6=d′

a∈A(d)

P (d′|d, a)x∗d,a by (ii) – see below

≤
∑

d′∈Dv:d 6=d′

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

d′∈Dv:d6=d′

a∈A(d)

P (d′|d, a)x∗d,a because {a ∈ A|pre(a)[v] = d′} ⊆ A(d′)

=
∑

d′∈Dv

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

d′∈Dv

a∈A(d)

P (d′|d, a)x∗d,a by adding and subtracting
∑

a∈A:pre(a)[v]=d

P (d|d, a)x∗d,a

=
∑

d′∈Dv

a∈A(d′)

P (d|d′, a)x∗d′,a −
∑

a∈A(d)

x∗d,a

= in(d)− out(d)

(ii)
∑

a∈A:pre(a)[v]=d
e∈eff(a):e[v]6∈{d,⊥}

Ŷa,e +
∑

a∈A:pre(a)[v]=⊥
e∈eff(a):e[v] 6∈{d,⊥}

Ŷa,e

=
∑

a∈A:pre(a)[v]∈{d,⊥}
e∈eff(a):e[v]6∈{d,⊥}

Pra(e)
(∑
d′∈Dv

x∗d′,a

)
=

∑
a∈A:pre(a)[v]∈{d,⊥}
e∈eff(a):e[v]6∈{d,⊥}

Pra(e)x∗d,a +
∑

a∈A:pre(a)[v]∈{d,⊥}
e∈eff(a):e[v] 6∈{d,⊥}

Pra(e)
(∑
d′∈Dv :d6=d′

x∗d′,a

)
by splitting the inner sum

≥
∑

a∈A:pre(a)[v]∈{d,⊥}
e∈eff(a):e[v]6∈{d,⊥}

Pra(e)x∗d,a since x∗d′,a ≥ 0 ∀d′ ∈ Dv, a ∈ A

=
∑

d′∈Dv :d
′ 6=d

a∈A:pre(a)[v]∈{d,⊥}
e∈eff(a):e[v]=d′

Pra(e)x∗d,a

=
∑

d′∈Dv:d 6=d′

a∈A(d)

P (d|d′, a)x∗d′,a by Definition 1

Lemma 8 (Ŷa,e is feasible). The set of variables {Ŷa,e|∀a ∈ A, e ∈ eff(a)} is a feasible solution for the LP solved by
hroc.

Proof. For Ŷa,e to be a feasible solution for the LP solved by hroc, it needs to satisfy the net change constraints (C7)
and (C8), and the regrouping constraints (Definition 4). The regrouping constraints are satisfied because

Pra(e1)Ŷa,e2 = Pra(e1) Pra(e2)
∑
d∈Dv

x∗d,a = Pra(e2)Ŷa,e1

Regarding (C7), notice that min pncs→s?
v=d equals

• -1 if s[v] = d and s?[v] 6= d, in which case in(d)− out(d) = −1 since d is the initial state of the projection,

• 1 if s[v] 6= d and s?[v] = d, in which case in(d) − out(d) = 1 since d is the only state of the projection that
reaches the artificial a goal state g of Sv,s,

• 0 otherwise, in which case in(d)− out(d) = 0 since d neither the initial state nor a goal of the projection.

Thus, by Lemma 2,
∑

(a,e)∈APv=d
Ŷa,e−

∑
(a,e)∈ACv=d

Ŷa,e−
∑

(a,e)∈SCv=d
Ŷa,e ≥ in(d)−out(d) = min pncs→s?

v=d .

Through a similar argument for max pncs→s?
v=d and Lemma 3, we have that

∑
(a,e)∈APv=d

Ŷa,e−
∑

(a,e)∈ACv=d
Ŷa,e−∑

(a,e)∈SCv=d
Ŷa,e ≤ in(d)− out(d) = max pncs→s?

v=d . Therefore, the set of variables {Ŷa,e|∀a ∈ A, e ∈ eff(a)} is a
feasible solution for the LP solved by hroc.

Proof of Theorem 2. By Lemma 8, we have that the optimal solution for the LP solved by hpom is feasible for the LP
solved by hroc. Moreover, the cost of this solution is∑

a∈A

C(a)(
∑

e∈eff(a)

Ŷa,e) =
∑
a∈A

C(a)(
∑

e∈eff(a)

Pra(e)(
∑
d∈Dv

x∗d,a)) =
∑
a∈A

C(a)(
∑
d∈Dv

x∗d,a)) = hpom(s)

Since hroc solves a minimisation problem, we have that hroc(s) ≤ hpom(s).

