

Occupation Measure Heuristics for Probabilistic Planning

Felipe Trevizan, Sylvie Thiébaut and Patrik Haslum

Data61, CSIRO and Research School of Computer Science, ANU
Canberra, ACT, Australia
first.last@anu.edu.au

Abstract

For the past 25 years, heuristic search has been used to solve domain-independent probabilistic planning problems, but with heuristics that determinise the problem and ignore precious probabilistic information. To remedy this situation, we explore the use of occupation measures, which represent the expected number of times a given action will be executed in a given state of a policy. By relaxing the well-known linear program that computes them, we derive occupation measure heuristics – the first admissible heuristics for stochastic shortest path problems (SSPs) taking probabilities into account. We show that these heuristics can also be obtained by extending recent operator-counting heuristic formulations used in deterministic planning. Since the heuristics are formulated as linear programs over occupation measures, they can easily be extended to more complex probabilistic planning models, such as constrained SSPs (C-SSPs). Moreover, their formulation can be tightly integrated into i-dual, a recent LP-based heuristic search algorithm for (constrained) SSPs, resulting in a novel probabilistic planning approach in which policy update and heuristic computation work in unison. Our experiments in several domains demonstrate the benefits of these new heuristics and approach.

Introduction

Over the past two decades, heuristic search has established itself as the method of choice for optimal deterministic planning. This is in large part thanks to the strong focus on developing domain-independent admissible heuristics, of which there is now a large supply to choose from – see e.g. works on delete-relaxation (Bonet and Geffner 2001), critical path (Haslum and Geffner 2000), abstraction (Helmert, Haslum, and Hoffmann 2007), landmark (Helmert and Domshlak 2009), operator-counting (van den Briel et al. 2007, Pommerening et al. 2014), and potential heuristics (Pommerening et al. 2015).

Heuristic search also has the potential to be a powerful approach for optimally solving *probabilistic* planning problems, such as stochastic shortest path problems (SSPs), constrained SSPs, and other SSP variants (Mausam and Kolobov 2012). Many search algorithms have been developed for this purpose, including (L)TRDP (Barto, Bradtko,

and Singh 1995, Bonet and Geffner 2003), LAO* (Hansen and Zilberstein 2001), FRET (Kolobov et al. 2011, Steinmetz, Hoffmann, and Buffet 2016), and i-dual (Trevizan et al. 2016). However, in contrast to the situation in deterministic planning, the success of these algorithms has been limited by the lack of effective domain-independent heuristics dedicated to the probabilistic planning setting. Existing heuristics simply determinise the problem and fall back on well-established deterministic planning heuristics, failing to exploit valuable information about the probabilities of action outcomes. As far as we are aware, in over two decades of existence of heuristic search algorithms for probabilistic planning, no one has developed admissible heuristics that account for the tradeoff between probabilities and action costs.

To fill this major gap, this paper introduces *occupation measure* heuristics – the first domain-independent admissible heuristics for probabilistic planning that reason about probabilities.¹ An occupation measure is the probabilistic counterpart of an operator count: it represents the expected number of times a given action will be executed in a given state of a policy before the goal is reached. The concept traces back to the *dual linear program* formulation of SSPs (D'Epenoux 1963), which solves SSPs by optimising the policy occupation measures (this contrasts with the more common primal LP formulation where the variables being optimised represent the expected cost to reach the goal). Occupation measure heuristics can therefore be obtained by relaxing the dual LP. We formulate one such relaxation, the projection occupation measure heuristic (h^{pom}), by projecting the dual LP onto individual state variables and enforcing the consistency of the projections' occupation measures. Our experiments show that iLAO* and LRTDP guided by this heuristic often explore significantly fewer nodes than when guided by deterministic planning heuristics.

Similarly to operator-counting heuristics used in the deterministic setting (Pommerening et al. 2014), occupation measure heuristics are formulated as linear programs whose variables are occupation measures. We further relate the two types of heuristics by establishing that h^{roc} , the net-change

¹Our statement applies to SSPs and not to probabilistic conformant planning or MaxProb type problems for which such heuristics exist, see e.g. (Little, Aberdeen, and Thiébaut 2005, Bryce, Kambhampati, and Smith 2006, Little and Thiébaut 2006, Domshlak and Hoffmann 2007, E.-Martín, Rodríguez-Moreno, and Smith 2014).

heuristic for the all-outcomes determinisation of the SSP, augmented with additional constraints enforcing the respective probabilities of the outcomes of each given operator, fits into the occupation measure heuristic framework and is dominated by h^{pom} . This new heuristic h^{roc} has the merit of requiring substantially fewer LP variables than h^{pom} in typical cases, and results in faster run-times and better scalability than deterministic heuristics in several domains.

One of the strengths of occupation measure heuristics is that they can easily be extended to incorporate additional constraints, such as the bounds on expected costs featured in *constrained* stochastic shortest paths problems (C-SSPs) (Altman 1999, Dolgov and Durfee 2005). In a C-SSP, actions are associated with multiple cost functions (fuel, time, etc), one of which is designated as the primary, and the others as secondary costs, and one seeks a stochastic policy optimising the expected primary cost, subject to bounds on the expected secondary costs. We describe $h^{\text{c-pom}}$ (resp. $h^{\text{c-roc}}$), an extension of h^{pom} (resp. h^{roc}) that incorporates such bounds, and use it to guide i-dual, the state of the art heuristic search algorithm for C-SSPs (Trevizan et al. 2016). We find that $h^{\text{c-pom}}$ and $h^{\text{c-roc}}$ provide stronger guidance, as the heuristics are aware not only of probabilities, but also of the requirements regarding all the secondary costs.

Finally, one of the most intriguing advantages of occupation measure heuristics is that they can be computed at once for multiple states, using the same set of linear constraints. Thus, their formulation can directly be incorporated into the LP solved by i-dual to update the policy at each iteration. This leads to i^2 -dual, a brand new type of heuristic search method for C-SSPs where the heuristic computation is lazy, reusable across multiple parts of the search space, and works in unison with the policy update. We find that i^2 -dual outperforms i-dual in coverage, time and number of nodes expanded, regardless of the heuristic used by the latter.

To summarise, this paper makes contributions that open up new avenues of research for probabilistic planning: (1) the first heuristics for SSPs and C-SSPs which exploit probabilistic information, (2) a study of their relationship with the operator-counting heuristics used in the deterministic setting, and (3) a new approach to solving C-SSPs which integrates heuristic computation with policy update.

Background: SSPs

We start with some background about stochastic shortest paths problems, which we represent using a probabilistic variant of SAS⁺. We then follow with a description of relevant solution methods for SSPs, including the dual linear program formulation which optimises occupation measures.

Probabilistic SAS⁺. A *probabilistic SAS⁺ task* is a tuple $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, C \rangle$. \mathcal{V} is a finite set of *state variables*, and each variable v has a finite domain D_v . A *partial state* (or valuation) is a function s on a subset \mathcal{V}_s of \mathcal{V} , such that $s[v] \in D_v$ for $v \in \mathcal{V}_s$ and $v = \perp$ otherwise. If $\mathcal{V}_s = \mathcal{V}$, we say that s is a *state*. s_0 is the *initial state* and s_* is a partial state representing the *goal*. Given two partial states s and s' , we write $s' \subseteq s$ when $s'[v] = s[v]$ for all $v \in \mathcal{V}_{s'}$.

The *result* of applying a (partial) valuation e in state s is

the state $res(s, e)$ such that $res(s, e)[v] = e[v]$ if $e[v] \neq \perp$ and $res(s, e)[v] = s[v]$ otherwise. \mathcal{A} is a finite set of *probabilistic actions*. Each $a \in \mathcal{A}$ consists of a *precondition* $pre(a)$ represented by a partial valuation over \mathcal{V} , a set $eff(a)$ of *effects*, each of which is a partial valuation over \mathcal{V} , and a *probability distribution* $Pr_a(\cdot)$ over effects $e \in eff(a)$ representing the probability of $res(s, e)$ being the state resulting from applying a in s . Finally, $C(a) \in \mathbb{R}_+^*$ is the *immediate cost* of applying a .

Stochastic Shortest Path Problem. A probabilistic SAS⁺ task is a factored representation of a *Stochastic Shortest Path problem* (SSP) (Bertsekas and Tsitsiklis 1991). A SSP is a tuple $\mathbb{S} = \langle S, s_0, G, A, P, C \rangle$ in which S is the finite set of states, $s_0 \in S$ is the initial state, $G \subseteq S$ is the non-empty set of goal states, A is the finite set of actions, $A(s)$ is the subset of actions applicable in state s , $P(s'|s, a)$ represents the probability that $s' \in S$ is reached after applying action $a \in A(s)$ in state s , and $C(a) \in \mathbb{R}_+^*$ is the immediate cost of applying action a . A solution for the SSP is a *deterministic stationary policy* $\pi : S \mapsto A$ such that $\pi(s) \in A(s)$ is the action to be applied in state s . An optimal policy minimises the total expected cost of reaching G from s_0 .

Corresponding SSP. The correspondence between SSPs and their probabilistic SAS⁺ representation is straightforward: a probabilistic SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, C \rangle$ defines an SSP $\langle S, s_0, G, A, P, C \rangle$ where $S = \bigtimes_{v \in \mathcal{V}} D_v$, $G = \{s \in S | s_* \subseteq s\}$, $A(s) = \{a \in A | pre(a) \subseteq s\}$, and $Pr(s'|s, a) = \sum_{e \in eff(a) \text{ s.t. } s' = res(s, e)} Pr_a(e)$.

Dead ends. In this paper, we assume for simplicity that $s_0 \notin G$ and that the goal is always reachable, i.e., that there are no dead ends.² However, our experiments feature problems with dead ends and relax this assumption using the fixed-cost penalty formulation of dead ends (Kolobov, Mausam, and Weld 2012). More principled treatments of dead ends along the lines of (Kolobov, Mausam, and Weld 2012, Teichteil-Königsbuch 2012) are also possible.

Primal Linear Program. It is well-known that SSPs can be solved using linear programming. The most common formulation is the *primal LP formulation* which optimises the policy value function. In this formulation, the variables represent the total expected cost $V(s)$ of reaching the goal from a given state s , and their optimal value V^* is defined by the Bellman equation (1957):

$$V^*(s) = \min_{a \in A(s)} \sum_{s' \in S} P(s'|s, a) (C(a) + V^*(s')) \quad (1)$$

for $s \notin G$ and $V^*(s) = 0$ for $s \in G$. An optimal policy π^* can be extracted from V^* by replacing min by argmin in the Bellman equation.

Dual Linear Program. Somewhat less well-known in the field of AI is the *dual LP formulation* of SSPs (D’Epenoux 1963, Altman 1999). In this formulation, shown in (LP 1), the variables are the policy’s occupation measures $x_{s,a}$ and

²This assumption and our strictly positive cost function is equivalent to assuming that there is at least one *proper* policy and that all *improper* policies have infinite cost.

represent the expected number of times action $a \in A(s)$ will be executed in state s .

$$\min_x \sum_{s \in S, a \in A(s)} x_{s,a} C(a) \quad \text{s.t. (C1) - (C6)} \quad (\text{LP 1})$$

$$x_{s,a} \geq 0 \quad \forall s \in S, a \in A(s) \quad (\text{C1})$$

$$out(s_0) - in(s_0) = 1 \quad (\text{C2})$$

$$\sum_{s_g \in G} in(s_g) = 1 \quad (\text{C3})$$

$$out(s) - in(s) = 0 \quad \forall s \in S \setminus (G \cup \{s_0\}) \quad (\text{C4})$$

$$in(s) = \sum_{s' \in S, a \in A(s')} x_{s',a} P(s|s', a) \quad \forall s \in S \quad (\text{C5})$$

$$out(s) = \sum_{a \in A(s)} x_{s,a} \quad \forall s \in S \setminus G \quad (\text{C6})$$

This dual formulation can be interpreted as a *probabilistic flow problem*, where $x_{s,a}$ describes the flow leaving state s via action a . The objective function captures the minimisation of the total expected cost to reach the goal (sink) from the initial state (source). Constraints (C2) and (C3) define, respectively, the source (initial state s_0) and the sinks (goal states). For any other state, the flow conservation principle applies, i.e., the flow reaching s must leave s (C4). Finally, constraints (C5) and (C6) define expected flow entering and leaving state s , respectively. The optimal solution x^* of (LP 1) can be converted into an optimal policy $\pi^*(s) = a$ where $a \in A(s)$ is the only action such that $x_{s,a}^* \neq 0$.

Heuristic Search. Linear programming explores the entire state space at once. In contrast, Heuristic search algorithms for SSPs such as (i)LAO*, LRTDP, and i-dual (Hansen and Zilberstein 2001, Bonet and Geffner 2003, Trevisan et al. 2016) start from the factored problem representation (e.g., as a probabilistic SAS⁺ task), and incrementally generate parts of the search space, guided by admissible heuristics that estimate the expected cost to reach the goal from each newly generated state (fringe state).

Primal Determinisation Heuristics. Admissible estimates used by these algorithms are typically obtained by relaxing the value function V^* in two steps. Firstly, the problem is determinised: this amounts to replacing the expectation in the Bellman equation (1) with the minimum over the successor states. This transformation is called the *all-outcomes determinisation* (Jimenez, Coles, and Smith 2006). Secondly, since the resulting deterministic planning problem is still PSPACE-complete, it is further relaxed into an admissible deterministic planning heuristic computable in polynomial time, such as h-max or lm-cut (Bonet and Geffner 2001, Helmert and Domshlak 2009). Both the all-outcomes determinisation and these heuristics are typically computed from the factored problem representation³

³In particular, the all-outcomes determinisation of the probabilistic SAS+ task is the deterministic SAS+ task with identical set of variables, initial state, and goal, but whose actions are split into one deterministic action α per probabilistic action $a \in A$ and effect $e \in eff(a)$, such that $pre(\alpha) = pre(a)$, $eff(\alpha) = \{e\}$, and $C(\alpha) = C(a)$.

Unfortunately, these relaxations of V^* do not take probabilities into account, foregoing valuable information. Yet, in 25 years, it has not been clear how to do better. Whilst it is in principle possible to relax the primal formulation without completely sacrificing probabilities (we do this below), this results in heuristics that are not much more informative than the state of the art, albeit more costly to compute. One of the main contributions of this paper is to achieve informative and efficient heuristics that take probabilities into account by moving from the primal to the dual framework.

Occupation Measure Heuristics for SSPs

Similarly to operator-counting heuristics in deterministic planning, occupation measure heuristics for an SSP \mathbb{S} formalise constraints over real variables $x_{s,a} \geq 0$ for each state $s \in S \setminus G$ and action $a \in A(s)$, which must be satisfied by every policy π for \mathbb{S} when setting $x_{s,a}$ to π 's occupation measures. The heuristic then optimises the objective of (LP 1) under those constraints.

In this section, we describe one such heuristic, the *Projection Occupation Measure heuristic* h^{pom} , which we obtain by relaxing the dual LP. The key idea is to project the SSP and the dual LP constraints onto individual state variables, and ensure consistency across projections by tying the projection occupation measures together to enforce that the expected number of times a given action is executed is equal in all projections.

More formally, the projection of a probabilistic SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, C \rangle$ over the state variable $v \in \mathcal{V}$ is the probabilistic SAS⁺ task in which all states and partial valuations are restricted to the variable v . For this work, we interpret this projection as the SSP \mathbb{S}^v (Definition 1). To ensure we correctly synchronise across projections, this SSP has an extra action a_g leading to an absorbing state g as soon as v reaches its goal value.

Definition 1 (Projection of an SSP). Given a probabilistic SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, C \rangle$ and $v \in \mathcal{V}$, its projection from s onto v is the SSP $\mathbb{S}^{v,s} = \langle D_v \cup \{g\}, s[v], \{g\}, \mathcal{A} \cup \{a_g\}, P, C' \rangle$ where $C'(a_g) = 0$ and $C'(a) = C(a)$ for all $a \in \mathcal{A}$, and

$$P(d'|d, a) = \begin{cases} \sum_{\substack{e \in eff(a) \text{ s.t.} \\ e[v] = d'}} \Pr_a(e) & \text{if } d \neq d', a \in \mathcal{A}, pre(a)[v] \in \{d, \perp\} \\ \sum_{\substack{e \in eff(a) \text{ s.t.} \\ e[v] \in \{d, \perp\}}} \Pr_a(e) & \text{if } d = d', a \in \mathcal{A}, pre(a)[v] \in \{d, \perp\} \\ 1 & \text{if } d' = g, a = a_g, s_*[v] \in \{d, \perp\} \\ 0 & \text{otherwise} \end{cases}$$

for all $d \in D_v$, $d' \in D_v \cup \{g\}$ and $a \in \mathcal{A} \cup \{a_g\}$. If the state s is omitted, then $s = s_0$.

Given a policy π for \mathbb{S} , let the augmented policy π' be $\pi'(s) = a_g$ for all $s \in G$ and $\pi'(s) = \pi(s)$ otherwise. It is easy to see that π' is executable in any projection of \mathbb{S} . However, notice that, while π is stationary over \mathbb{S} , π' might be non-stationary over \mathbb{S}^v . This is because, a given state $d \in D_v$ of \mathbb{S}^v might be visited more than once and, at each visit, a different action could be executed depending on the values of the variables $\mathcal{V} \setminus \{v\}$ that are hidden from \mathbb{S}^v .

Given $v \in \mathcal{V}$, let $\mathbf{C}^{v,s}$ represent the flow constraints (C1) – (C6) of the dual formulation of $\mathbb{S}^{v,s}$. Each occupation measure of $\mathbb{S}^{v,s}$ is $x_{d,a}^{v,s}$, for $d \in \mathcal{D}_v$ and $a \in \mathcal{A} \cup \{a_g\}$, and represents the expected number of times a is executed in the state d of $\mathbb{S}^{v,s}$. To tie these projection occupation measures and constraints together into a single LP, we add the following tying constraints.

Definition 2 (Tying constraints). *The set of tying constraints for state s , denoted as Tying^s , is*

$$\sum_{d_i \in \mathcal{D}_{v_i}} x_{d_i,a}^{v_i,s} = \sum_{d_j \in \mathcal{D}_{v_j}} x_{d_j,a}^{v_j,s}, \quad \forall v_i \in \mathcal{V}, v_j \in \mathcal{V}, a \in \mathcal{A}$$

Any policy that is feasible for the SSP is feasible for all projections and satisfies the tying constraints. These constraints ensure that policies for each projection agree on the expected number of times each action is executed. This synchronisation, however, does not enforce that the actions applied and the states reached at each step need to be consistent across projections. The combination of tying and projection constraints results in the following heuristic.

Definition 3 (Projection occupation measure heuristic). *Given a probabilistic SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, \mathbf{C} \rangle$ the projection occupation measure heuristic h^{pom} at state s is the solution of the following LP:*

$$h^{\text{pom}}(s) = \min \sum_{d \in \mathcal{D}_v, a \in \mathcal{A}} x_{d,a}^{v,s} C(a) \mid \text{Tying}^s, \mathbf{C}^{v',s} \quad \forall v' \in \mathcal{V},$$

for any variable $v \in \mathcal{V}$.

Notice that, because of the constraints Tying^s , the value of $h^{\text{pom}}(s)$ is the same regardless of which $v \in \mathcal{V}$ is used in the objective function.

Theorem 1 (Admissibility of h^{pom}). *For all states s of the given probabilistic SAS⁺ task, $h^{\text{pom}}(s) \leq V^*(s)$.*

The proof of Theorem 1 can be found in appendix. The proof focuses on the relationship between the optimal occupation measures x^* of \mathbb{S} and the LP defining h^{pom} . In particular, we show that the occupation measures resulting from projecting x^* onto the variables v , satisfy the constraints of this LP. This implies that the objective value h^{pom} of this LP, is less than or equal to the objective value V^* of the dual LP for \mathbb{S} .

Note that we could in principle use simpler means to obtain an admissible heuristic estimate taking probabilities into account. We could, for instance, optimally solve (e.g., using the dual or primal LP) each of the projections of \mathbb{S} over state variables whose goal value is defined, and take the maximum of their objective values:

$$h^{\text{pmax}}(s) = \max_{v \in \mathcal{V} \text{ s.t. } s_*[v] \neq \perp} V^{*,v}(s)$$

where $V^{*,v}(s)$ is the optimal value function for $\mathbb{S}^{v,s}$. However, this estimate is quite loose as it considers that the variables v are independent in \mathbb{S} and its solution corresponds to a deterministic stationary policy for a single projection. In contrast, the solution found by h^{pom} represents a set of stochastic non-stationary policies which are valid for all projections. As our experiments show, the extra representational power of h^{pom} allows it to be a much more informed heuristic. Unlike h^{pmax} , h^{pom} can only be expressed in the dual framework, since the primal formulation lacks the ability to count action occurrences.

Relationship with Operator Counting

Occupation measure heuristics are powerful, but introduce a fair number of LP variables, of the order of $|\mathcal{A}| \times \sum_{v \in \mathcal{V}} |\mathcal{D}_v|$. While this power will be useful for more complex planning tasks dealt with later in the paper, a heuristic not based on projections can obtain similar results to h^{pom} using a different LP with $\sum_{a \in \mathcal{A}} |\text{eff}(a)|$ variables which, for most planning tasks, will be much smaller. This new LP exploits the fact that occupation measure heuristics can be seen as the probabilistic counterpart of the operator-counting heuristics introduced in classical deterministic planning, e.g., the net change heuristic (Pommerening et al. 2014). In the deterministic setting, operator-counting heuristics formalise constraints over integer variables $Y_a \geq 0$ for each action a , which must be satisfied by every plan π for the problem when setting Y_a to the number of times a is executed in π . These heuristics optimise $\sum_{a \in \mathcal{A}} Y_a C(a)$ and, for efficiency reasons, consider the LP relaxation of these constraints.

We call our probabilistic version of the operator-counting heuristic the *Regrouped Operator-Counting Heuristic h^{roc}* . The idea behind h^{roc} is to enrich the formulation of the net change heuristic for the *all-outcomes determinisation of the problem*, with constraints that regroup operator counts representing the effects of the same action, and which enforce the relationship between their respective probabilities.

When applied to the all-outcomes determinisation of a given probabilistic SAS⁺ task, the net change heuristic has a variable $Y_{a,e}$ for each effect e of an action a , which represents the number of times a is executed and e occurs. For each possible state variable assignment (or atom) $v = d \in \mathcal{D}_v$, this heuristic distinguishes between 4 disjoint classes of action/effect pairs, depending on whether they *always produce* (AP), *sometimes produce* (SP), *always consume* (AC) or *sometimes consume* (SC) the atom:

- $AP_{v=d} = \{(a, e) \mid e[v] = d, \text{pre}(a)[v] = d' \neq d\}$
- $SP_{v=d} = \{(a, e) \mid e[v] = d, \text{pre}(a)[v] = \perp\}$
- $AC_{v=d} = \{(a, e) \mid e[v] = d' \neq d, \text{pre}(a)[v] = d\}$
- $SC_{v=d} = \{(a, e) \mid e[v] = d' \neq d, \text{pre}(a)[v] = \perp\}$

The heuristic is called “net change” in reference to the change of truth value of an atom from a state to another, where a change of 1 means that the atom becomes true, 0 that it is unchanged, and -1 that it becomes false. The possible net change that a variable can accumulate from a state s where $s[v] = d$ to the goal s_* is:

$$pnc_{v=d}^{s \rightarrow s_*} = \begin{cases} \{0, 1\} & \text{if } s_*[v] = \perp \text{ and } s[v] \neq d \\ \{-1, 0\} & \text{if } s_*[v] = \perp \text{ and } s[v] = d \\ \{1\} & \text{if } s_*[v] = d \text{ and } s[v] \neq d \\ \{-1\} & \text{if } s_*[v] = d' \text{ and } s[v] = d \neq d' \\ \{0\} & \text{otherwise} \end{cases}$$

With these notations, given $v \in \mathcal{V}$, $d \in \mathcal{D}_v$, and a state s , the net change constraints $N^{v,d,s}$ are:

$$\sum_{(a,e) \in AP_{v=d}} Y_{a,e} - \sum_{(a,e) \in AC_{v=d}} Y_{a,e} + \sum_{(a,e) \in SP_{v=d}} Y_{a,e} \geq \min pnc_{v=d}^{s \rightarrow s_*} \quad (C7)$$

$$\sum_{(a,e) \in AP_{v=d}} Y_{a,e} - \sum_{(a,e) \in AC_{v=d}} Y_{a,e} - \sum_{(a,e) \in SC_{v=d}} Y_{a,e} \leq \max pnc_{v=d}^{s \rightarrow s_*} \quad (C8)$$

In order to recover the information about the probabilistic effects of each action lost by the all-outcomes determinisation (a necessary step to compute $N^{v,d,s}$), our heuristic h^{roc} uses the following set of constraints:

Definition 4 (Regrouping constraints). *The set of regrouping constraints, denoted as Regroup, is*

$$\Pr_a(e_1)Y_{a,e_2} = \Pr_a(e_2)Y_{a,e_1} \quad \forall a \in \mathcal{A}, \{e_1, e_2\} \in \text{eff}(a).$$

These constraints enforce that the expected number of times outcome e_1 of action a occurs is proportional with a factor $\Pr_a(e_1)/\Pr_a(e_2)$ to the expected number of times any other outcome e_2 of the same action occurs. Therefore, not only the probability of each effect is recovered, but also the effect dependency i.e., $e_1 > 0$ implies $e_i > 0$ for all $e_i \in \text{eff}(a)$.

The heuristic h^{roc} is presented in Definition 5. Theorem 2 shows that h^{pom} dominates h^{roc} , therefore h^{roc} is admissible.

Definition 5 (Regrouped operator-counting heuristic). *Given a probabilistic SAS⁺ task, the regrouped operator-counting heuristic h^{roc} at state s is the solution of the LP:*

$$h^{roc}(s) = \min \sum_Y Y_{a,e} C(a) \mid \text{Regroup}, N^{v,d,s} \quad \forall v \in \mathcal{V}, d \in \mathcal{D}_v$$

Theorem 2 (h^{pom} dominates h^{roc}). *For all state s of the given probabilistic SAS⁺ task, $h^{roc}(s) \leq h^{pom}(s)$.*

The proof of Theorem 2 is in the appendix and it consists in constructing a feasible solution for the LP solved by h^{roc} based on the optimal solution of the LP solved by h^{pom} and showing that both solutions have the same cost.

Similarly to the operator-counting heuristics (including h^{roc}), our projection occupation measure heuristic can also be augmented with constraints that represent other state-of-the-art heuristics, e.g., *disjunctive action landmarks* (Pommerening et al. 2014). This transformation of operator-counting constraints to projection occupation measure constraints is formalized by Corollary 3 of Theorem 2.

Corollary 3. *Any operator-counting constraint over the variables $Y_{a,e}$ for h^{roc} can be translated to a constraint for h^{pom} by replacing $Y_{a,e}$ with $\Pr_a(e) \sum_{d \in \mathcal{D}_v} x_{d,a}^{v,s}$.*

Proof. By the regrouping constraints, $Y_{a,e'}$ equals $Y_{a,e} \Pr_a(e')/\Pr_a(e)$ thus $\sum_{e' \in \text{eff}(a)} Y_{a,e'} = Y_{a,e} / \Pr_a(e)$ for all $e \in \text{eff}(a)$. Moreover, $\sum_{e' \in \text{eff}(a)} Y_{a,e'}$ is the expected number of times that action a is executed and it is equivalent to $\sum_{d \in \mathcal{D}_v} x_{d,a}^{v,s}$ for h^{pom} for any $v \in \mathcal{V}$. \square

More Background: C-SSPs

One of the strengths of occupation measure heuristics is that they are well-suited to solving more complex probabilistic planning problems allowing objectives and additional constraints that can be formulated in terms of occupation measures. In the rest of the paper, we extend occupation measure heuristics to Constrained SSPs (C-SSPs) (Altman 1999), which are a general model for planning uncertainty under multiple competing objectives. These objectives are captured by multiple cost functions, one of which is optimised while constraining the others. For example, a C-SSP allows the minimisation of the policy's expected fuel consumption while keeping the expected time to the goal and the risk of failure below acceptable thresholds.

Constrained SSPs and Probabilistic SAS⁺ tasks. A C-SSP $\mathbb{C} = \langle S, s_0, G, A, P, \vec{C}, \vec{u} \rangle$ is an SSP whose cost function is replaced by a vector of $n + 1$ cost functions $\vec{C} = [C_0, \dots, C_n]$ ($C_j : \mathcal{A} \rightarrow \mathbb{R}_+^*$ for all j) and a vector of n bounds $\vec{u} = [u_1, \dots, u_n]$ ($u_j > 0$ for all j). We refer to C_0 as the *primary cost* and to the other elements of the cost vector as the *secondary costs*. An optimal solution for a C-SSP is a stochastic policy $\pi : S \mapsto \mathcal{A} \times [0, 1]$, which minimises the expected primary cost C_0 to reach the goal G from the initial state s_0 , subject to the expected values of the secondary cost C_j being upper bounded by u_j for $j \in \{1, \dots, n\}$. Whereas for SSPs there always exists an optimal deterministic policy, stochastic policies are needed to optimally account for trade-offs between the various cost functions. Nevertheless, the complexity of optimally solving C-SSPs remains polynomial in the size of the C-SSP (Dolgov and Durfee 2005). Naturally, a C-SSP can be compactly represented by a *constrained probabilistic SAS⁺ task*, i.e. a probabilistic SAS⁺ task whose cost function has been replaced with the corresponding vectors of cost functions and upper bounds.

Dual LP formulation of C-SSPs. From the definition of C-SSPs, it follows that they can be solved by the dual LP formulation of SSPs (LP 1), by replacing C with C_0 in the objective function and adding the following constraint (C9):

$$\sum_{s \in S, a \in \mathcal{A}(s)} x_{s,a} C_j(a) \leq u_j \quad \forall j \in \{1, \dots, n\} \quad (\text{C9})$$

Note that attempting to encode these constraints into the primal LP would lead to a nonlinear program involving bilinear constraints. In contrast, the dual program for C-SSP remains linear, but unlike in the SSP case, returns a potentially stochastic policy given by $\pi^*(a, s) = x_{s,a}^*/\text{out}(s)$.

Heuristic Search for C-SSPs. The main computational burden with the dual LP is that it requires encoding and exploring all states reachable from s_0 . I-dual is a heuristic search algorithm for C-SSPs which alleviates this issue (Trevisan et al. 2016). It explores incrementally larger *partial problems* starting from s_0 , using a set of artificial goal states \hat{G} to represent unexplored areas of the occupation measure space. When first reached, these artificial goal states incur *terminal costs* given by a vector $\vec{H} = [H_0, \dots, H_n]$ of admissible heuristic functions, where H_j underestimates the expected cost C_j of reaching G . At each iteration, i-dual expands the fringe states \mathcal{F}_R that are *reachable* under current best policy. This leads to a new partial problem, i.e. a C-SSP with terminal costs $\hat{\mathbb{C}} = \langle \hat{S}, s_0, \hat{G}, \hat{A}, P, \vec{C}, \vec{u}, \vec{H} \rangle$, where $\hat{G} = \mathcal{F} \cup (G \cap \hat{S})$, i.e., the union of all fringe states (\mathcal{F}) and goals seen so far. The current best policy is updated by solving $\hat{\mathbb{C}}$ using the dual LP formulation of C-SSPs, slightly extended to account for terminal costs:

$$\begin{aligned} \min_x \quad & \sum_{s \in \hat{S}, a \in \hat{\mathcal{A}}(s)} x_{s,a} C_0(s, a) + \sum_{s_g \in \hat{G}} \text{in}(s_g) H_0(s_g) \\ \text{s.t.} \quad & (\text{C1}) - (\text{C6}), (\text{C9}) - (\text{C10}) \end{aligned} \quad (\text{LP 2})$$

$$\sum_{s \in \hat{S}, a \in \hat{\mathcal{A}}(s)} x_{s,a} C_j(s, a) + \sum_{s_g \in \hat{G}} \text{in}(s_g) H_j(s_g) \leq u_j \quad \forall j \in \{1, \dots, n\} \quad (\text{C10})$$

I-dual terminates when all fringe states reachable under the current best policy are goal states of the original C-SSP \mathbb{C} , i.e., when $F_R \subseteq G$. If all heuristics are admissible, the resulting policy is the optimal stochastic policy for \mathbb{C} .

Trevizan et al. (2016) tested i-dual with primal determinisation heuristics H_j (such as h-max or lm-cut) for a relaxation of \mathbb{C} that ignores the constraints and optimises C_j . That is, $H_j(s)$ is an admissible heuristic for the regular SSP $\langle S, s, G, A, P, C_j \rangle$. Unfortunately, such individual heuristic H_j have low accuracy: not only they assume that probabilities are irrelevant, but also that the various cost functions do not interact. For instance a heuristic estimating expected fuel consumption may believe that very little fuel is needed because it completely disregards constraints on expected travel time. As we show below, occupation measure heuristics enable us to remedy both issues.

Occupation measures Heuristics for C-SSPs

Since bounds on expected secondary costs can be expressed by means of linear constraints over occupation measures, extending occupation measures heuristics to include these bounds is straightforward. The resulting heuristics account for probabilities and for the dependence between cost functions, and are suitable for constrained probabilistic SAS⁺ tasks representing C-SSPs. Below we define such a heuristic, $h^{c\text{-pom}}$, which extends h^{pom} to constrained problems. We also define a constrained formulation of h^{roc} , and prove the admissibility of the two heuristics.

Definition 6 (Constrained projection occupation measure and regrouped operator-counting heuristics). *Given a constrained probabilistic SAS⁺ task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, \vec{C}, \vec{u} \rangle$, the constrained projection occupation measure heuristic $h^{c\text{-pom}}$ at state s is the solution of the following LPs:*

$$h^{c\text{-pom}}(s) = \min \sum_{d \in D_v, a \in A} x_{d,a}^{v,s} C_0(a) \mid \text{CostUB}, \text{Tying}^s, C^{v,s} \forall v' \in \mathcal{V}$$

for any variable $v \in \mathcal{V}$, where CostUB is the constraint set:

$$\sum_{d \in D_v, a \in A} x_{d,a}^{v,s} C_j(a) \leq u_j \quad \forall j \in \{1, \dots, n\}.$$

The constrained regrouped operator-counting heuristic $h^{c\text{-roc}}$ at state s is the solution of the following LP:

$$h^{c\text{-roc}}(s) = \min \sum_{a \in A, e \in \text{eff}(a)} Y_{a,e} C_0(a)$$

s.t. CostUB', Regroup, $N^{v,d,s} \forall v \in \mathcal{V}, d \in D_v$

where CostUB' is the constraint set:

$$\sum_{a \in A, e \in \text{eff}(a)} Y_{a,e} C_j(a) \leq u_j \quad \forall j \in \{1, \dots, n\}$$

Theorem 4 (Admissibility of $h^{c\text{-pom}}$ and $h^{c\text{-roc}}$; dominance of $h^{c\text{-pom}}$). *For all states s of the given constrained probabilistic SAS⁺ task, $h^{c\text{-roc}}(s) \leq h^{c\text{-pom}}(s) \leq V^*(s)$.*

The admissibility proof follows from the admissibility of h^{pom} (Theorem 1) and h^{roc} (Theorem 2), and the fact that,

for all $a \in A$, $\sum_{d \in D_v} x_{d,a}^{v,s}$ and $\sum_{a \in A, e \in \text{eff}(a)} Y_{a,e}$ are both lower bounds on the expected number of times action a is executed in state s . The dominance proof follows from the dominance of h^{pom} (Theorem 2) and from Corollary 3.

Using these heuristics in conjunction with i-dual is straightforward: we call i-dual with the heuristic vector \vec{H} such that H_j is $h^{c\text{-pom}}$ or $h^{c\text{-roc}}$ for the constrained SAS⁺ probabilistic task $\langle \mathcal{V}, \mathcal{A}, s_0, s_*, [C_j, C_1, \dots, C_n], \vec{u} \rangle$. That is, to compute the heuristic for a given cost function C_j , we substitute C_j for the primary cost C_0 of the problem in Definition 6. As our experiments show, i-dual equipped with such \vec{H} often explores substantially fewer states to find an optimal stochastic policy than with primal determinisation heuristics.

Heuristics $h^{c\text{-pom}}$ and $h^{c\text{-roc}}$ account for the constraints in an admissible way, but use the cost bounds u_j regardless of whether the artificial goal state s is s_0 or is reached far down the policy. In principle, we would like to make these heuristics tighter by keeping track of the expected costs g_j incurred before reaching an artificial goal state of the policy under consideration (analogously to the function g of A^*), and using $u_j - g_j$ as the bounds in place of u_j in the CostUB and CostUB' constraints. However, this seems at first glance impossible to do, since g_j is policy dependent, and the policy update step of i-dual (in which the heuristics we are seeking to compute are used) explores the entire (infinite) stochastic policy space for the current partial problem at once.

Our final contribution, in the next section, is i²-dual, a variant of i-dual which achieves this by integrating the computation of the $h^{c\text{-pom}}$ heuristic and the policy update into a single LP. This LP explores the policy space while simultaneously performing *lazy* heuristic computation. It also reuses parts of heuristic computations corresponding to different projections across the state and policy space. As far as we are aware, this constitutes a significant departure from existing approaches in the literature.

Heuristic Computation Within Policy Update

In a nutshell, our LP integrating the heuristic computation within policy update is the union of the dual LP solved by i-dual (LP 2) and the LP solved to compute $h^{c\text{-pom}}$ (Definition 6) at the reachable fringe states – albeit with the tighter cost upper bounds. Since the reachable fringe states and their probability of being reached are dependent on the policy being computed, the key challenge is to link these two LPs by passing the correct probability flow to the $h^{c\text{-pom}}$ computation, without explicit reference to each individual reachable fringe state. We achieve this as follows.

Firstly, we generalise the set of flow constraints $C^{v,s}$ for the projections onto v to not depend on s for initial state, but instead, to use a probability distribution p_0^v over initial states. Formally, given $v \in \mathcal{V}$, let p_0^v be a probability distribution over $D_v \cup \{g\}$, then the flow constraints C^{v,p_0^v} represents the dual formulation constraints for \mathbb{S}^{v,p_0^v} (i.e., the projected SSP with probabilistic initial state) and is defined as:

$$x_{d,a}^v \geq 0 \quad \forall d \in D_v, a \in A \quad (C11)$$

$$out^v(d) - in^v(d) = p_0^v(d) \quad \forall d \in D_v \quad (C12)$$

$$in^v(g) = 1 \quad (C13)$$

$$in^v(d) = \sum_{d' \in D_v, a \in A \cup \{a_g\}} x_{d',a}^v P(d|d', a) \quad \forall d \in D_v \cup \{g\} \quad (C14)$$

$$out^v(d) = \sum_{a \in A \cup \{a_g\}} x_{d,a}^v \quad \forall d \in D_v \quad (C15)$$

As expected, $C^{v,s}$ is the special case of C^{v,p_0^v} for $p_0^v(s[v]) = 1$. Moreover, the probabilistic initial state p_0^v allows us to redirect towards the heuristic computation the total probability mass of all reachable fringe states, including the goal probability mass via $p_0^v(g)$. This leads to the following combined LP, where as before, $v \in \mathcal{V}$ is any state variable:

$$\min_x \sum_{s \in \hat{S}, a \in \hat{A}(s)} x_{s,a} C_0(a) + \sum_{d \in D_v, a \in A} x_{d,a}^v C_0(a) \quad \text{s.t.} \quad (C16) - (C25) \quad (\text{LP 3})$$

$$x_{s,a} \geq 0 \quad \forall s \in \hat{S}, a \in \hat{A}(s) \quad (C16)$$

$$out(s_0) - in(s_0) = 1 \quad (C17)$$

$$out(s) - in(s) = 0 \quad \forall s \in \hat{S} \setminus \hat{G} \quad (C18)$$

$$in(s) = \sum_{s' \in \hat{S}, a \in \hat{A}(s')} x_{s',a} P(s|s', a) \quad \forall s \in \hat{S} \quad (C19)$$

$$out(s) = \sum_{a \in \hat{A}(s)} x_{s,a} \quad \forall s \in \hat{S} \setminus \hat{G} \quad (C20)$$

$$\sum_{s \in \hat{S}, a \in \hat{A}(s)} x_{s,a} C_j(a) + \sum_{d \in D_v, a \in A} x_{d,a}^v C_j(a) \leq u_i \quad \forall j \in \{1, \dots, n\} \quad (C21)$$

$$p_0^{v'}(g) = \sum_{s_g \in \hat{S} \cap G} in(s_g) \quad \forall v' \in \mathcal{V} \quad (C22)$$

$$p_0^{v'}(d) = \sum_{s_f \in F, s_f[v'] = d} in(s_f) \quad \forall v' \in \mathcal{V}, d \in D_{v'} \quad (C23)$$

$$\sum_{d_i \in D_{v_i}} x_{d,a}^{v_i} = \sum_{d_j \in D_{v_j}} x_{d,a}^{v_j} \quad \forall v_i, v_j \in \mathcal{V}, a \in A \quad (C24)$$

$$\text{and constraints } C^{v',p_0^{v'}} \quad \forall v' \in \mathcal{V} \quad (C25)$$

The second sum in the objective function estimates the expected primary costs of reachable fringe states, and is equivalent to $\sum_{s_g \in \hat{G}} in(s_g) H_0(s_g)$ when H_0 is h^{c-pom} with the tighter secondary cost bounds $u_j - g_j$. (C16) – (C20) represent the dual constraints formulation for a regular SSP with the sink constraint omitted. (C21) are the secondary cost constraints where the second summation is obtained using the computed heuristics, similarly to the objective function. (C22) – (C23) define the probabilistic initial state of each projection as the probability mass of reaching, respectively, the goal of the original problem and fringe states satisfying $v' = d$. (C24) is the set of tying constraints (Definition 2) written using the projection occupation measure variables

x^{v_i} and x^{v_j} that don't depend on a state s . (C25) represents each of the projections of the problem onto v' using $p_0^{v'}$ as probabilistic initial state. Lastly, the sink constraint equivalent to (C3) is enforced by (C13) of each projection. Formally, since p_0^v is a probability distribution, (C13) is equivalent to $\sum_{s_g \in \hat{S} \cap G} in(s_g) + \sum_{s_f \in F} in(s_f) = 1$ by (C22) and (C23) for each $C^{v',p_0^{v'}}$.

The key insight for this integrated version i^2 -dual, is that p_0^v , for each v , is not fixed, instead, it's a set of free variables that the LP solver is optimizing. Moreover, p_0^v bridges two LPs: the LP solving the current C-SSP and the LP computing the heuristics; therefore, a change in any of the variables in one of these LPs is propagated to the other. The result is a completely new approach where policy update and heuristic computation work in unison, without one driving the other.

Note that it is not possible to integrate h^{c-roc} with i -dual while remaining in the LP framework. This is because operator-counting variables only represent actions (and their outcomes) whereas the occupation measure variables also represent the state. It is this feature that enables occupation measure formulations to compute the heuristic for multiple states at once using the same set of constraints. Formally, an integration of h^{c-roc} to i -dual requires s to be a free variable to be optimised; this in turn means that $pnc_{v=d}^{s \rightarrow s_*$ can no longer be a constant and that integer variables must be introduced to capture the case statements in its definition.

Empirical Evaluation

In this section we empirically evaluate our new heuristics for SSPs and C-SSPs, and our new planner i^2 -dual. All our results represent the average over 30 runs of each combination of planner and heuristic. We enforce a 30-minutes and 4-Gb cut-off for all experiments. Due to space limitations, a comprehensive description of domains and the full table of results for each domain is in the appendix.

Stochastic Shortest Path Problems

For SSPs, we compare our new heuristics h^{roc} and h^{pom} against (i) the determinisation-based heuristics h^{max} , h^{lmc} and net change heuristic h^{net} , and (ii) the trivial max-projection heuristic h^{pmax} . We use LRTDP and iLAO* as the search algorithms for this comparison. For completeness, the appendix also reports results when i -dual and i^2 -dual are used, but we do not consider them further in this subsection since they are not designed for ordinary SSPs and perform poorly as expected. We consider the following domains:

Blocks World (IPPC'08). Extension of the well-known deterministic blocks world domain in which the actions pick-up and put-on-block might fail with probability 0.25. Moreover, three new probabilistic actions allow towers of two blocks to be manipulated: pick-tower, put-tower-on-block, and put-tower-down.

Exploding blocks world (IPPC'08). Extension of the deterministic blocks world domain in which blocks can explode and destroy other blocks or the table. Once a block or the table is destroyed, nothing can be placed on them, and

		LRTDP					iLAO				
		h^{\max}	h^{lmc}	h^{net}	h^{roc}	h^{pom}	h^{\max}	h^{lmc}	h^{net}	h^{roc}	h^{pom}
Blocks World	8	3	0	26	30	30	2	30	30	30	30
	8	28	0	30	30	30	30	30	30	30	30
	8	2	0	12	30	29	2	30	30	30	30
	10	0	0	0	30	18	0	0	1	30	30
	10	0	0	0	30	0	0	0	0	30	30
	12	0	0	0	0	0	0	0	0	30	5
Parc Printer	F,4,2	30	30	30	30	30	4	30	30	30	30
	F,4,3	30	30	30	30	30	0	30	30	30	30
	F,5,2	0	30	0	30	0	2	16	0	30	0
	F,5,3	0	30	0	30	0	0	0	0	30	0
	T,4,2	0	0	0	1	0	1	30	30	30	0
	T,4,3	0	0	0	0	0	0	30	30	30	0
	T,5,1	0	0	0	0	0	0	0	0	30	0
Exploding BW	7	30	30	30	30	30	30	30	30	30	30
	8	30	30	0	30	0	0	0	0	3	0
	9	30	30	0	30	30	30	30	0	30	30
	10	30	30	0	30	0	23	4	0	11	1
	11	0	0	0	0	0	12	6	0	16	0
	12	0	0	0	0	0	24	15	0	26	0
Tire	15	0	0	0	0	0	28	12	0	23	0
	3	30	30	30	30	30	30	30	30	30	30
	4	30	30	30	30	30	30	30	30	30	30
	5	30	24	0	30	0	0	0	0	4	0
	6	0	0	0	30	0	0	0	0	0	0

Table 1: Coverage for selected SSP problems. Best planner (i.e., fastest planner to obtain the best coverage) in bold. Dead-end variant of the h^{roc} and h^{pom} used in the gray cells. Parameters: number of blocks for blocks world; (has repair action, s, c) for parc printer; and IPPC’08 problem number for exploding blocks world and triangle tire world.

destroyed blocks cannot be moved; therefore, problems in this domain can have unavoidable dead ends.

Triangle Tire World (IPPC’08). This domain represents a car that has to travel between locations in order to reach a goal location from its initial location. When the car moves between locations, a flat tire happens with probability 0.5 and the car becomes unable to move if both the car and the location do not have a spare tire. Problems in this domain are generated to have avoidable dead ends.

Probabilistic Parc Printer. Probabilistic extension of the sequential Parc Printer domain from IPC in which s sheets need to be printed on a modular printer. The printer has c unreliable components in which a sheet can jam with probability 0.1 making the component unavailable and requiring a new exemplar of this sheet to be printed. The unavailability of components creates avoidable dead ends. Also, a high-cost repair action that removes all jams and restores availability of all components can be available.

Table 1 presents coverage results for a subset of the problems solved and the following is a summary of our findings from the experiments in appendix:

Does taking probability into account in the heuristic help? To answer this question, we compare the performance of h^{net} against h^{roc} since the only difference between

them is that h^{roc} takes probability into account through the regrouping constraints. For blocks world, tire world and parc printer, planners using h^{roc} obtained a speed up w.r.t. to h^{net} between 2x-56x, 1.3x-10x, and 1.1x-14x, respectively. Moreover, planners using h^{roc} were able to scale up to larger problems than when using h^{net} : 10 blocks vs 8 blocks for blocks world, 5 vs 4 sheets for parc printer, and problem #5 vs #4 for tire world. For exploding blocks world, there was no statistically significant difference between h^{roc} and h^{net} .

Is h^{pom} better than h^{roc} ? No. For all the problems considered, a planner using h^{roc} outperforms the same planner using h^{pom} in both runtime and scalability. Moreover, this difference is statistically relevant, specially for the runtime: planners using h^{roc} are up to 25x, 8x, 46x and 34x faster than the same planner using h^{pom} for blocks world, tire world, parc printer and exploding blocks world, respectively. This runtime difference is because h^{pom} and h^{roc} returned the same heuristic values for the considered problems and the LPs solved by h^{pom} have considerably more variables than the LPs solved by h^{roc} . The difference between the number of states explored by a planner using h^{pom} and h^{roc} is statistically insignificant which also illustrate this point.

How do h^{pom} and h^{roc} compare to the state-of-the-art? For blocks world, planners using h^{pom} and h^{roc} are the only ones that scale up to problems with 10 blocks and the best performance overall is obtained by iLAO* with h^{roc} . For parc printer, h^{roc} outperforms all other heuristics and h^{lmc} outperforms h^{pom} for the planners considered. The best performance in this domain alternates between LRTDP with h^{roc} and iLAO* with h^{roc} . For tire world LRTDP with h^{max} is the best planner closely followed by LRTDP with h^{roc} as the problem size increases up to problem #5. LRTDP with h^{roc} is the only planner that can handle problem #6. A similar trend happens for iLAO* with h^{max} and h^{roc} . For i-dual, h^{roc} is always better than h^{max} .

Except in exploding blocks world, h^{pom} and h^{roc} expand much fewer states, e.g., up to 48x less than h^{max} and 10x less than h^{net} in parc printer, 5x times less than h^{lmc} in blocks world. For exploding blocks world, planners using h^{net} , h^{roc} and h^{pom} perform poorly as they do not detect dead ends as early as h^{max} and h^{lmc} . This advantage of h^{max} and h^{lmc} is due to two reasons: (i) a state s has zero probability of reaching the goal iff it is a dead end in the all-outcomes determinisation, thus h^{max} and h^{lmc} are aware of dead ends even though they ignore probabilities; and (ii) for this domain, the dead ends are reached when a precondition of an action that potentially leads to the goal becomes false, thus h^{max} and h^{lmc} can easily find the dead ends since they propagate the actions preconditions. To illustrate these points, we augmented h^{roc} and h^{pom} with h^{max} as a dead-end detector. Formally, $h_{\text{de}}^{\text{roc}}(s)$ equals the dead-end penalty if h^{max} reports that s is a dead end and $h^{\text{roc}}(s)$ otherwise (similarly for $h_{\text{de}}^{\text{pom}}$). The results for $h_{\text{de}}^{\text{roc}}$ and $h_{\text{de}}^{\text{pom}}$ corroborate the above explanation because of the large increase in performance when compared against h^{roc} and h^{pom} , respectively. Moreover, planners using h^{max} and $h_{\text{de}}^{\text{roc}}$ perform similarly and the best heuristic for a given problem alternates between them: h^{max} is better in 4 problems, $h_{\text{de}}^{\text{roc}}$ is better in 3 problems, and

		i-dual						
		h^{\max}	$h^{\text{lmc-m}}$	h^{roc}	$h^{\text{c-roc}}$	h^{pom}	$h^{\text{c-pom}}$	$i^2\text{-dual}$
Search and Rescue	4, 0.50, 3	30	30	30	30	30	30	30
	4, 0.50, 4	29	30	30	30	29	30	30
	4, 0.75, 3	26	30	29	29	28	28	30
	4, 0.75, 4	0	4	1	1	1	1	7
	5, 0.50, 3	30	30	30	30	30	30	30
	5, 0.50, 4	5	9	9	9	9	9	14
	5, 0.75, 3	19	28	23	23	20	21	28
	5, 0.75, 4	0	2	2	2	1	1	6
Parc Printer	0, 1	30	30	30	30	25	28	30
	0, ∞	30	30	30	30	30	30	30
	0.1, 1	0	0	0	30	0	27	30
	0.1, ∞	0	0	0	30	0	30	30
	0.2, 1	0	0	0	0	0	0	30
	0.2, ∞	0	0	0	0	0	0	30

Table 2: Coverage for selected C-SSP problems. Best planner (i.e., fastest planner to obtain the best coverage) in bold. For the parc printer problems shown, $s = 4$, $c = 3$ and no repair action is available. Parameters: (n, r, d) for search and rescue; and (f, u) upper bounds for parc printer.

the difference is statistically insignificant for 2 problems.

Constrained SSPs

For C-SSPs, we compare $i^2\text{-dual}$ against i-dual using as heuristic vector $\vec{H} = [h, \dots, h]$ for h equal to: (i) the SSP heuristics h^{\max} , h^{roc} and h^{pom} ; and (ii) the cost-constrained heuristics $h^{\text{c-roc}}$ and $h^{\text{c-pom}}$. We also consider the heuristic vector $[h^{\text{lmc}}, h^{\max}, \dots, h^{\max}]$, i.e., h^{lmc} for C_0 and h^{\max} for the other cost functions; we refer to this heuristic vector as $h^{\text{lmc-m}}$. The planners are evaluated in two domains:

Search and rescue. Domain from (Trevizan et al. 2016) in which a robot has to navigate an $n \times n$ grid and its goal is to find a survivor and bring her to a safe location as fast as possible. The constraint is to keep the expected fuel consumption under a certain threshold. The location of one survivor is known a priori; however, some other locations (selected at random) have 0.05, 0.1, or 0.2 probability of also having another survivor. Thus, the planner has to trade off fuel, exploration of unknown survivors, and time to rescue. The other parameters of a problem are: d , the distance to the known survivor; and r , the density of potential survivors.

Constrained Parc Printer. Extension of the probabilistic parc printer domain in which the expected number of jams is upper-bounded by f . Also, the expected number of times the reliable finisher component can be used is upper-bounded by u . When this threshold is reached, only a more expensive and potentially unreliable finisher component is available.

Table 2 presents coverage results for a subset of the problems solved and the following is a summary of our findings from the experiments in appendix:

Does the constraints in the heuristics help? Yes. Comparing h^{roc} against $h^{\text{c-roc}}$ and h^{pom} against $h^{\text{c-pom}}$, we observed a small improvement in coverage and no statistically relevant speed up for the search and rescue domain. For the parc printer domain, the improvement in coverage is signif-

icant: $h^{\text{c-pom}}$ obtained at least 63% in 22 problems in which h^{pom} has 0% coverage; and $h^{\text{c-roc}}$ obtained 100% coverage in 16 problems in which h^{roc} has 0% coverage.

Is $i^2\text{-dual}$ better than i-dual using $h^{\text{c-pom}}$? Yes and, in both domains, $i^2\text{-dual}$ is the best overall planner. For the search and rescue domain, $i^2\text{-dual}$ obtained the best coverage in all the problems, tying with $h^{\text{lmc-m}}$ in the small and medium problems at 100% and solving up to 3 times more instances than $h^{\text{lmc-m}}$ for the larger problems. Regarding runtime, there is no statistically significant difference between $i^2\text{-dual}$ and $h^{\text{lmc-m}}$ for the problems in which both obtained the same coverage. For the constrained parc printer domain, $i^2\text{-dual}$ outperforms all other planners in both coverage and runtime: it obtained coverage between 30% and 100% in 13 problems that no other planner was able to solve and up to 34x speed up w.r.t. the second best planner.

Conclusion

In this paper, we have presented what we believe to be the first domain-independent admissible heuristics specifically designed to exploit the interactions between probabilities and action costs found in SSPs and C-SSPs. We have shown that they perform well across a range of domains and search algorithms, and that handling probabilities in heuristics often pays. Previous heuristics exploiting outcome probabilities have only considered MaxProb type problems, and used the planning graph data structure which can yield poor estimates when policies are cyclic (Little and Thiébaux 2006). One area of future work is to improve the accuracy of our heuristics by augmenting their formulation with merges and disjunctive action landmarks (and other operator counting constraints), as was done in the deterministic setting by Bonet and van den Briel (2014).

We have established a bridge between the more general occupation measure constraints and the operator counting constraints used in deterministic planning (Pommerening et al. 2014). Future work should settle the question of whether the h^{pom} and h^{roc} heuristics are equivalent. We have not, so far, found a single counter-example to this, but have only managed to prove equivalence in the absence of “sometimes consumers/producers”. In the deterministic setting, Pommerening et al. (2015) have established the equivalence of the net change heuristics and projection heuristics under optimal general cost partitioning. However, it is not obvious to us how to adapt their proof to our setting where optimal cost partitioning is replaced with tying constraints.

Finally, we have introduced $i^2\text{-dual}$, a new state of the art method for C-SSPs in which policy update and heuristic computation are fully synergistic. We believe that the principles behind $i^2\text{-dual}$ can be replicated to incorporate path-dependent heuristics into other algorithms.

Acknowledgements

This research was funded by AFOSR grant FA2386-15-1-4015. We thank the anonymous reviewers for their constructive and helpful comments.

References

Altman, E. 1999. *Constrained Markov Decision Processes*, volume 7. CRC Press.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning to act using real-time dynamic programming. *Artif. Intell.* 72(1-2):81–138.

Bellman, R. 1957. *Dynamic Programming*. Princeton University Press.

Bertsekas, D., and Tsitsiklis, J. 1991. An Analysis of Stochastic Shortest Path Problems. *Mathematics of Operations Research* 16(3):580–595.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search. *Artif. Intell.* 129(1-2):5–33.

Bonet, B., and Geffner, H. 2003. Labeled RTDP: improving the convergence of real-time dynamic programming. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for optimal planning: Landmarks and merges. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Sequential monte carlo in probabilistic planning reachability heuristics. In *Proc. Int. Conf. on Automated Planning and Scheduling*, 233–242.

D’Epenoux, F. 1963. A probabilistic production and inventory problem. *Management Science* 10:98–108.

Dolgov, D. A., and Durfee, E. H. 2005. Stationary deterministic policies for constrained mdps with multiple rewards, costs, and discount factors. In *Proc. Int. Joint Conf. on Artificial Intelligence*.

Domshlak, C., and Hoffmann, J. 2007. Probabilistic planning via heuristic forward search and weighted model counting. *J. Artif. Intell. Res. (JAIR)* 30:565–620.

E.-Martín, Y.; Rodríguez-Moreno, M. D.; and Smith, D. E. 2014. Progressive heuristic search for probabilistic planning based on interaction estimates. *Expert Systems* 31(5):421–436.

Hansen, E. A., and Zilberstein, S. 2001. LAO: A heuristic search algorithm that finds solutions with loops. *Artificial Intelligence* 129(1):35–62.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. In *Proc. Int. Conf. of Artificial Intelligence Planning Systems*, 140–149.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths and abstractions: What’s the difference anyway? In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible abstraction heuristics for optimal sequential planning. In *Proc. Int. Conf. on Automated Planning and Scheduling*, 176–183.

Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in probabilistic domains using a deterministic numeric planner. In *Proc. Workshop of the UK Planning and Scheduling Special Interest Group*.

Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuristic search for generalized stochastic shortest path mdps. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of goal-oriented mdps with dead ends. In *Proc. Conf. on Uncertainty in Artificial Intelligence (UAI)*.

Little, I.; Aberdeen, D.; and Thiébaut, S. 2005. Prottle: A probabilistic temporal planner. In *Proc. of National Conference on Artificial Intelligence (AAAI)*, 1181–1186.

Little, I., and Thiébaut, S. 2006. Concurrent probabilistic planning in the graphplan framework. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Mausam, and Kolobov, A. 2012. *Planning with Markov Decision Processes*. Morgan & Claypool.

Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014. Lp-based heuristics for cost-optimal planning. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015. From non-negative to general operator cost partitioning. In *Proc. of National Conference on Artificial Intelligence (AAAI)*, 3335–3341.

Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Revisiting goal probability analysis in probabilistic planning. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

Teichteil-Königsbuch, F. 2012. Stochastic safest and shortest path problems. In *Proc. AAAI Conf. on Artificial Intelligence*.

Trevizan, F. W.; Thiébaut, S.; Santana, P. H.; and Williams, B. C. 2016. Heuristic search in dual space for constrained stochastic shortest path problems. In *Proc. Int. Conf. on Automated Planning and Scheduling*.

van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen, T. 2007. An lp-based heuristic for optimal planning. In *Int. Conf. on Principles and Practice of Constraint Programming*.

A Experiments

A.1 Domains

Probabilistic Blocks World. This domain is an extension of the well-known blocks world in which the actions pick-up and put-on-block might fail with probability 0.25. When these actions fail, the target block is dropped on the table. The action pick-up-from-table also fails with probability 0.25, in which case nothing happens, i.e., the target block remains on the table. Three actions allow towers of two blocks to be manipulated: pick-tower, put-tower-on-block, and put-tower-down. While put-tower-down deterministically puts the tower still assembled on the table, the other two actions are probabilistic and fail with probability 0.9. The current state is not changed when pick-tower fails and put-tower-on-block fails by dropping the tower on the table (the dropped tower remains built). We consider the problems from the IPPC'08 finals and the IPPC'06 warm-up since the latter provides a smoother transition between small and large instances. We will refer to the probabilistic blocks worlds as blocks world.

Exploding Blocks World. This domain is a probabilistic extension of the **deterministic** blocks world from IPPC'08 in which blocks can explode and destroy other blocks or the table. Once a block or the table is destroyed, nothing can be placed on them, and destroyed blocks cannot be moved; therefore, problems in this domain can have unavoidable dead ends. All actions have the same effects as in their deterministic blocks world counterpart and put-down and put-on-block have the probabilistic side effect of detonating the block being held and destroying the table or the block below with probability 0.4 and 0.1, respectively. When a block detonates, it destroys the object below it and it cannot detonate again (i.e., it is safe to move it). We use the fixed version of this domain that forbids a block to be placed on top of itself.

Triangle Tire World. This IPPC'08 domain represents a car that has to travel between locations in order to reach a goal location from its initial location. The roads are represented as directed graph in the shape of a triangle and, every time the car moves between locations, a flat tire happens with probability 0.5. Some locations have a spare tire and in these locations the car can deterministically replace its flat tire by a new one. When the car has a flat tire, it cannot change its location; therefore the car can get stuck in locations that do not have a spare tire (dead ends).

Probabilistic Parc Printer. This domain is a probabilistic variant of the sequential Parc Printer IPC domain used in conjunction with IPC problems P01-P09. In Problem P_s, $s \in \{1, \dots, 9\}$ sheets need to be printed at minimal cost on a modular printer¹. A number $c \in \{0, \dots, 5\}$ of the printer's components are unreliable:² when processing a sheet, they jam with probability 0.1, which results in the component becoming unavailable and a new exemplar of this sheet being printed from scratch. The unavailability of these components creates avoidable dead-ends. Optionally, an additional component³ can jam in away that would create an unavoidable dead-end, if it wasn't for the existence of a repair action. This action costs 10001 and removes all jams and restores availability of all components at once. In the C-SSP version, there are constraints limiting the expected number of jams to $f \in \{0, 0.1, \dots, 1\}$, and the expected number of times the Finisher-1-Stack-Letter action can be used to $u \in \{0, 1, \dots, s\}$, forcing the more expensive and potentially unreliable Finisher-2 to be used after the threshold is reached.

Search and Rescue. This constrained SSP domain introduced in Trevizan et al. (2016) is a vehicle navigation problem in an $n \times n$ grid where the goal is to find one survivor, board her on the vehicle and bring her to safety. The

¹The problems and domain, including action costs, are identical to the IPC ones, except for the probabilistic effects and one small change: to increase redundancy, the Finisher2-Stack-Letter stacks the sheet in Finisher1.Tray instead of Finisher2.Tray

²These are BlackFeeder-RSRC, EndCap-RSRC, HtmOverBlack-RSRC, HtmOverColor-RSRC, and Finisher2-RSRC.

³ColorFeeder-RSRC

main cost function C_0 is time and the secondary cost function C_1 is fuel consumption; therefore, the optimal solution for the problems in this domain minimize the time to rescue a survivor while keeping the expected fuel consumption under a certain threshold (the vehicle fuel autonomy). The time for moving from a location to an adjacent one depends on the load of the vehicle (higher if a survivor has boarded) and changes with the speed of the vehicle which can be slow, normal, or fast. The fuel consumption increases with load and speed, and some of the more demanding moves (e.g., moving fast with survivor boarded) can fail with a small probability. The location of one survivor at Hamming distance $d \in \{1, \dots, 4\}$ is known a priori; whereas the presence or absence of a survivor at each other location can be known or unknown, and in the latter case, has an initial probability in the range low (5%), medium (10%) and high (20%). The presence or absence of a survivor is revealed by a coin flip when visiting the location, and remains known thereafter; therefore, this domain is a perfect-sensing constrained POMDP encoded as C-SSP. We used random problem instances with a density $r \in \{25\%, 50\%, 75\%\}$ of locations with initially unknown survivor presence.

A.2 Methodology

For the blocks worlds, exploding blocks world and triangle tire world, we solve their IPPC instances 30 times using different random seeds to initialize the planners to account for the stochastic nature of the problems. Since the parc printer generator is deterministic, i.e., a given value of parameters uniquely defines a problem, we follow the same approach of solving each problem 30 times. For the search and rescue domain, we generate 30 different random instances for each parametrization of the problem and solve each instance only once; this allows us to account for both the stochastic nature of the problem generator and the generated problems.

The memory and runtime cut-off enforced for each planner is 30 minutes and 4 Gb for all problem except the problem #6 of the triangle tire world in which the cut-off is 48 hours and 12 Gb. We use Gurobi 6.5 as LP solver and all experiments are conducted in a Linux cluster of 6-cores AMD Opteron 4334 running at 3.1GHz. All planners are single threaded and Gurobi is also limited to run in a single thread.

All the results are reported as “ X (Y) [Z]” where X is the coverage (that is, how many instances out of 30 the planner was able to find the optimal solution), Y is the average cpu-time (and its 95% confidence interval) in seconds, and Z is the average number of states (and its 95% confidence interval) visited by the planner. Both the cpu-time Y and number of visited states Z only take into consideration the instances in which the optimal solution was found. For each problem, the planners with largest coverage have their X value highlighted and within those planners, the one with fastest cpu-time has its Y highlighted and the planner that visits the less states has its Z value highlighted.

For C-SSPs all heuristic vector \vec{H} are of the form $[h, \dots, h]$ for h equal to h^{\max} , h^{roc} , h^{pom} , $h^{\text{c-roc}}$ and $h^{\text{c-pom}}$, thus, we address these heuristics simply by h . The only exception is $h^{\text{lmc-m}}$ that represents the heuristics vector $[h^{\text{lmc}}, h^{\max}, \dots, h^{\max}]$, i.e., h^{lmc} for C_0 and h^{\max} for the other cost functions.

A.3 Results

Blocks World. The results are presented in Table 1. All the problems in Table 1 are from IPPC’06. The problems with 4 blocks from IPPC’06 and 5 blocks from IPPC’08 are omitted since all planners obtained 100% coverage in a few seconds (similarly to the 6-blocks problem presented). For the other problems not reported in Table 1, all planners obtained 0% coverage.

Triangle Tire World. The results are presented in Table 2. For problem #6 the runtime and memory cutoff were extended to 48 hours and 12 Gb. For this problem, LRTDP using h^{\max} (the best planner up to problem #5) ran out of memory after 5.1 ± 0.2 hours and explored 49.2 ± 0.1 million states. LRTDP using h^{roc} and $h_{\text{de}}^{\text{roc}}$ was able to solve problem #6 and explored only 1.4 ± 0.1 million states.

Blocks World – SSP

Problem id	4006	15934	20752	23171	24967	25241	14262	19475	19848
Num. Blocks	6	6	6	8	8	8	10	10	12
lrdp(h^{\max})	30 (4.6 \pm 0.1) [9155 \pm 5]	30 (6.1 \pm 0.1) [9243 \pm 0]	30 (6.6 \pm 0.2) [9243 \pm 0]	3 (1547.9 \pm 281.0) [922273 \pm 3]	28 (1587.1 \pm 54.9) [922204 \pm 3]	2 (1562.5 \pm 73.8) [922272 \pm 0]	0 (--) [--]	0 (--) [--]	0 (--) [--]
lrdp(h^{inc})	30 (14.9 \pm 0.5) [5835 \pm 73]	30 (25.1 \pm 0.8) [8202 \pm 45]	0 (27.0 \pm 0.8) [8732 \pm 26]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]
lrdp(h^{net})	30 (4.5 \pm 0.1) [6149 \pm 72]	30 (6.2 \pm 0.2) [8171 \pm 35]	30 (7.2 \pm 0.3) [8860 \pm 17]	26 (1574.1 \pm 67.8) [887320 \pm 478]	30 (994.2 \pm 52.1) [623940 \pm 3705]	12 (1577.1 \pm 127.4) [914287 \pm 216]	0 (--) [--]	0 (--) [--]	0 (--) [--]
lrdp(h^{rc})	30 (0.7 \pm 0.0) [129 \pm 18]	30 (1.0 \pm 0.1) [476 \pm 73]	30 (2.0 \pm 0.1) [1651 \pm 73]	30 (52.6 \pm 3.6) [23024 \pm 1217]	30 (41.3 \pm 2.0) [18861 \pm 751]	30 (40.5 \pm 6.2) [18469 \pm 2684]	30 (61.8 \pm 7.6) [15526 \pm 2038]	30 (236.3 \pm 39.1) [57519 \pm 8194]	0 (--) [--]
lrdp(h^{pom})	30 (2.1 \pm 0.3) [122 \pm 23]	30 (4.9 \pm 0.8) [378 \pm 73]	30 (18.9 \pm 1.1) [1661 \pm 52]	2 (843.7 \pm 49.3) [20437 \pm 998]	30 (757.8 \pm 39.0) [18466 \pm 690]	2 (814.8 \pm 16.8) [20262 \pm 2873]	18 (1349.5 \pm 159.0) [11185 \pm 1371]	0 (--) [--]	0 (--) [--]
ilaq(h^{\max})	30 (3.3 \pm 0.1) [3899 \pm 8]	30 (7.0 \pm 0.3) [6312 \pm 8]	30 (8.0 \pm 0.2) [7237 \pm 9]	30 (1622.5 \pm 331.4) [771866 \pm 1763]	30 (789.3 \pm 32.4) [348930 \pm 272]	2 (1645.1 \pm 165.9) [814373 \pm 537]	0 (--) [--]	0 (--) [--]	0 (--) [--]
ilaq(h^{inc})	30 (2.6 \pm 0.1) [894 \pm 5]	30 (5.4 \pm 0.1) [1594 \pm 5]	30 (8.6 \pm 0.2) [2522 \pm 43]	30 (1219.9 \pm 55.8) [114295 \pm 6117]	30 (297.9 \pm 24.5) [30634 \pm 2440]	30 (1113.0 \pm 72.7) [36314 \pm 5563]	0 (--) [--]	0 (--) [--]	0 (--) [--]
ilaq(h^{net})	30 (1.6 \pm 0.0) [1044 \pm 3]	30 (2.8 \pm 0.1) [1871 \pm 5]	30 (3.7 \pm 0.1) [2595 \pm 7]	30 (255.5 \pm 11.1) [102622 \pm 142]	30 (59.7 \pm 2.5) [25651 \pm 47]	30 (193.0 \pm 8.7) [81682 \pm 229]	1 (1776.0 \pm inf) [519121 \pm inf]	0 (--) [--]	0 (--) [--]
ilaq(h^{rc})	30 (0.6 \pm 0.0) [65 \pm 2]	30 (0.7 \pm 0.0) [88 \pm 6]	30 (1.1 \pm 0.0) [428 \pm 10]	30 (6.8 \pm 0.4) [2020 \pm 105]	30 (4.1 \pm 0.1) [1114 \pm 13]	30 (3.4 \pm 0.4) [846 \pm 148]	30 (8.0 \pm 0.5) [821 \pm 64]	30 (11.1 \pm 1.6) [1836 \pm 295]	30 (147.4 \pm 15.8) [13425 \pm 1561]
ilaq(h^{pom})	30 (1.5 \pm 0.1) [62 \pm 3]	30 (1.7 \pm 0.1) [85 \pm 6]	30 (6.0 \pm 0.2) [463 \pm 11]	30 (88.0 \pm 4.7) [1830 \pm 73]	30 (55.3 \pm 2.6) [1133 \pm 18]	30 (43.5 \pm 7.1) [866 \pm 146]	30 (129.1 \pm 14.1) [874 \pm 86]	30 (211.0 \pm 23.1) [1464 \pm 146]	5 (1230.0 \pm 240.0) [3981 \pm 1158]
i-dual(h^{\max})	30 (8.8 \pm 0.3) [329 \pm 4]	30 (28.5 \pm 1.1) [5349 \pm 3]	30 (32.3 \pm 1.5) [5789 \pm 2]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]	0 (--) [--]
i-dual(h^{inc})	30 (2.4 \pm 0.1) [789 \pm 7]	30 (5.2 \pm 0.1) [1337 \pm 4]	30 (8.2 \pm 0.3) [2085 \pm 28]	0 (--) [--]	0 (39.1 \pm 48.0) [2243 \pm 2013]	0 (1750.0 \pm inf) [54963 \pm inf]	0 (--) [--]	0 (--) [--]	0 (--) [--]
i-dual(h^{net})	30 (1.4 \pm 0.0) [893 \pm 3]	30 (3.1 \pm 0.1) [1568 \pm 4]	30 (4.2 \pm 0.2) [2156 \pm 18]	0 (--) [--]	0 (149.0 \pm 8.1) [21415 \pm 23]	3 (1640.0 \pm 307.2) [67002 \pm 54]	0 (--) [--]	0 (--) [--]	0 (--) [--]
i-dual(h^{rc})	30 (0.7 \pm 0.0) [121 \pm 3]	30 (0.8 \pm 0.0) [226 \pm 6]	30 (1.1 \pm 0.0) [510 \pm 13]	30 (6.4 \pm 0.3) [2023 \pm 83]	30 (4.8 \pm 0.2) [1480 \pm 42]	30 (5.0 \pm 0.2) [1532 \pm 22]	30 (17.0 \pm 1.3) [3383 \pm 202]	30 (22.7 \pm 1.2) [4559 \pm 139]	30 (341.7 \pm 31.1) [26176 \pm 1128]
i-dual(h^{pom})	30 (2.0 \pm 0.1) [122 \pm 2]	30 (3.2 \pm 0.2) [231 \pm 5]	30 (6.5 \pm 0.3) [529 \pm 10]	30 (87.9 \pm 4.4) [2041 \pm 91]	30 (64.3 \pm 4.6) [1486 \pm 46]	30 (68.4 \pm 3.3) [1559 \pm 22]	30 (382.0 \pm 34.3) [3283 \pm 229]	30 (549.3 \pm 36.4) [4471 \pm 155]	30 (341.7 \pm 31.1) [26176 \pm 1128]
i ² -dual	30 (1.2 \pm 0.1) [75 \pm 7]	30 (1.9 \pm 0.2) [151 \pm 15]	30 (3.2 \pm 0.2) [504 \pm 15]	30 (15.6 \pm 1.2) [1712 \pm 81]	30 (14.7 \pm 0.8) [1328 \pm 52]	30 (19.8 \pm 1.3) [1953 \pm 47]	30 (28.2 \pm 2.4) [2582 \pm 102]	30 (60.5 \pm 3.7) [2582 \pm 102]	30 (269.8 \pm 15.8) [7671 \pm 528]

Table 1: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Triangle Tire World – SSP

Planner	3	4	5	6
lrdp(h^{\max})	30 (1.0 ± 0.0) [18845 ± 448]	30 (29.1 ± 1.0) [310819 ± 8293]	30 (1138.2 ± 19.4) [5039987 ± 132819]	0 (-) []
lrdp(h^{lmc})	30 (1.9 ± 0.1) [18845 ± 448]	30 (54.5 ± 1.5) [310819 ± 8293]	24 (1653.4 ± 35.9) [4976306 ± 155947]	0 (-) []
lrdp(h^{pmax})	30 (2.5 ± 0.1) [18400 ± 122]	30 (63.7 ± 2.8) [300274 ± 2757]	1 (1593.0 ± inf) [4886354 ± inf]	0 (-) []
lrdp(h^{net})	30 (3.9 ± 0.1) [18400 ± 122]	30 (96.3 ± 3.3) [300274 ± 2757]	0 (-) []	0 (-) []
lrdp(h^{roc})	30 (2.9 ± 0.1) [7512 ± 74]	30 (47.3 ± 1.9) [84867 ± 710]	30 (1247.0 ± 45.8) [1070160 ± 10502]	30 (74099.1 ± 1017.9) [14700898 ± 165934]
lrdp(h^{pom})	30 (13.4 ± 0.7) [7512 ± 74]	30 (410.3 ± 23.4) [84867 ± 710]	0 (-) []	0 (-) []
lrdp($h_{\text{de}}^{\text{roc}}$)	30 (2.8 ± 0.1) [7777 ± 100]	30 (48.4 ± 1.4) [87017 ± 720]	30 (1251.8 ± 41.0) [1057085 ± 10142]	30 (72758.0 ± 841.3) [14312152 ± 146164]
lrdp($h_{\text{de}}^{\text{pom}}$)	30 (12.5 ± 0.6) [7777 ± 100]	30 (345.9 ± 13.3) [87017 ± 720]	0 (-) []	0 (-) []
ilao(h^{\max})	30 (1.7 ± 0.1) [6627 ± 39]	30 (70.2 ± 2.3) [112270 ± 639]	0 (-) []	0 (-) []
ilao(h^{lmc})	30 (2.2 ± 0.1) [6627 ± 39]	30 (84.2 ± 2.5) [112270 ± 639]	0 (-) []	0 (-) []
ilao(h^{pmax})	30 (3.1 ± 0.2) [8290 ± 42]	30 (107.1 ± 4.9) [141212 ± 637]	0 (-) []	0 (-) []
ilao(h^{net})	30 (3.6 ± 0.1) [8290 ± 42]	30 (121.3 ± 4.3) [141212 ± 637]	0 (-) []	0 (-) []
ilao(h^{roc})	30 (2.6 ± 0.1) [4463 ± 25]	30 (72.0 ± 2.9) [55578 ± 407]	1 (1780.0 ± inf) [797926 ± inf]	0 (-) []
ilao(h^{pom})	30 (9.3 ± 0.6) [4463 ± 25]	30 (298.4 ± 17.9) [55578 ± 407]	0 (-) []	0 (-) []
ilao($h_{\text{de}}^{\text{roc}}$)	30 (2.4 ± 0.1) [4019 ± 30]	30 (58.4 ± 1.8) [49980 ± 402]	4 (1697.2 ± 121.0) [728580 ± 22713]	0 (-) []
ilao($h_{\text{de}}^{\text{pom}}$)	30 (7.5 ± 0.4) [4019 ± 30]	30 (238.5 ± 11.9) [49980 ± 402]	0 (-) []	0 (-) []
i-dual(h^{\max})	30 (3.6 ± 0.1) [5540 ± 12]	30 (630.4 ± 45.6) [94203 ± 163]	0 (-) []	0 (-) []
i-dual(h^{lmc})	30 (3.8 ± 0.1) [5540 ± 12]	30 (646.5 ± 29.2) [94203 ± 163]	0 (-) []	0 (-) []
i-dual(h^{pmax})	30 (7.2 ± 0.4) [6711 ± 19]	30 (1392.4 ± 76.4) [116080 ± 171]	0 (-) []	0 (-) []
i-dual(h^{net})	30 (6.5 ± 0.4) [6711 ± 19]	30 (1289.1 ± 61.4) [116080 ± 171]	0 (-) []	0 (-) []
i-dual(h^{roc})	30 (2.6 ± 0.1) [3379 ± 15]	30 (127.9 ± 9.6) [39278 ± 71]	0 (-) []	0 (-) []
i-dual(h^{pom})	30 (8.1 ± 0.5) [3379 ± 15]	30 (312.8 ± 15.6) [39278 ± 71]	0 (-) []	0 (-) []
i-dual($h_{\text{de}}^{\text{roc}}$)	30 (2.7 ± 0.1) [3379 ± 15]	30 (138.3 ± 8.6) [39278 ± 71]	0 (-) []	0 (-) []
i-dual($h_{\text{de}}^{\text{pom}}$)	30 (7.8 ± 0.3) [3379 ± 15]	30 (306.2 ± 17.6) [39278 ± 71]	0 (-) []	0 (-) []
i ² -dual	30 (14.3 ± 0.5) [5897 ± 24]	3 (1710.2 ± 123.6) [71107 ± 833]	0 (-) []	0 (-) []
i ² -dual(de)	30 (12.3 ± 0.4) [4243 ± 17]	13 (1441.6 ± 140.5) [48583 ± 274]	0 (-) []	0 (-) []

Table 2: For problem #6, the runtime and memory cutoff were extended to 48 hours and 12 Gb.

Probabilistic Parc Printer. The results are presented in Tables 3 and 4 for problems without and with the repair action, respectively. Problems with 1 to 3 sheets are omitted because planners obtained 100% coverage in just a few seconds. For Table 4, all planners have 0% coverage for the problems with 5 sheets and more than 1 unreliable component.

Exploding Blocks World. The results for the problems #3-#10 and #11-#15 are presented in Tables 5 and 6, respectively. Problems #1, #2, and #6 are omitted because all planners obtained 100% coverage in few seconds. All planners had 0% coverage for problems #13 and #14.

Search and Rescue. The results are presented in Table 7. For each problem, we constraint the maximum usage of fuel to be $\lceil 0.5f_{ssp} \rceil$ where f_{ssp} is the expected fuel used by the optimal policy without the fuel constraint (i.e., the optimal SSP policy that only optimizes the time). Only problems in which the fuel constraint can be satisfied are considered.

Constrained Probabilistic Parc Printer. The results are presented in Tables 8 to 11. i-dual using h^{\max} , $h^{\text{lmc-m}}$ and h^{pom} are able to find the optimal policies only for the problems in which no (expected) jam is allowed (i.e., the upper bound on f is 0). Such problems can be solved using an expensive but simple policy which consists in printing all sheets using the color printing components of the printer, rather than differentiating between sheets that really require color printing and those that can be printed in black and white.

Probabilistic Parc Printer – No Repair Action – SSP

# sheets (s)	4			5		
	1	2	3	1	2	3
lrtdp(h^{\max})	30 (111.9 \pm 2.0) [588232 \pm 52]	30 (721.9 \pm 10.3) [1627883 \pm 113]	30 (1105.4 \pm 19.3) [2594878 \pm 1659]	0 (-) [-]	0 (-) [-]	0 (-) [-]
lrtdp(h^{lmc})	30 (39.2 \pm 1.0) [67626 \pm 1410]	30 (70.3 \pm 2.0) [115697 \pm 3052]	30 (109.0 \pm 2.2) [177589 \pm 4383]	30 (543.0 \pm 18.9) [705680 \pm 16084]	30 (949.4 \pm 24.6) [1201385 \pm 34277]	30 (1473.5 \pm 43.6) [1844481 \pm 49657]
lrtdp(h^{net})	30 (42.4 \pm 1.2) [90387 \pm 1313]	30 (244.3 \pm 5.1) [366604 \pm 3703]	30 (372.0 \pm 6.3) [541452 \pm 7037]	30 (638.6 \pm 17.3) [980367 \pm 15045]	0 (-) [-]	0 (-) [-]
lrtdp(h^{roc})	30 (13.6 \pm 0.5) [31675 \pm 703]	30 (20.2 \pm 0.6) [41784 \pm 1305]	30 (25.4 \pm 0.7) [53182 \pm 2030]	30 (170.9 \pm 6.5) [310789 \pm 7010]	30 (244.6 \pm 11.1) [407339 \pm 12202]	30 (311.6 \pm 12.3) [505102 \pm 18865]
lrtdp(h^{pom})	30 (693.4 \pm 29.2) [31699 \pm 705]	30 (924.4 \pm 44.5) [41811 \pm 1309]	30 (1158.9 \pm 56.3) [52995 \pm 2035]	0 (-) [-]	0 (-) [-]	0 (-) [-]
ilao(h^{\max})	30 (500.5 \pm 59.5) [536964 \pm 37890]	4 (1064.8 \pm 708.7) [1122916 \pm 488274]	0 (-) [-]	5 (713.1 \pm 575.1) [1967318 \pm 1241330]	2 (782.1 \pm 601.6) [2210028 \pm 1052384]	0 (-) [-]
ilao(h^{lmc})	30 (56.1 \pm 3.1) [37854 \pm 1675]	30 (112.1 \pm 5.4) [58048 \pm 2339]	30 (205.3 \pm 4.4) [99985 \pm 1367]	30 (743.0 \pm 47.2) [366846 \pm 17319]	16 (1656.8 \pm 82.2) [602596 \pm 23631]	0 (-) [-]
ilao(h^{net})	30 (72.1 \pm 1.4) [59430 \pm 563]	30 (386.3 \pm 7.4) [243266 \pm 1401]	30 (791.4 \pm 24.3) [429794 \pm 5900]	30 (1017.4 \pm 34.6) [610935 \pm 6131]	0 (-) [-]	0 (-) [-]
ilao(h^{roc})	30 (31.5 \pm 0.9) [27128 \pm 312]	30 (55.4 \pm 1.7) [34680 \pm 559]	30 (98.6 \pm 2.3) [44236 \pm 905]	30 (417.3 \pm 26.8) [255089 \pm 11978]	30 (752.0 \pm 26.5) [330381 \pm 6643]	30 (1415.6 \pm 41.4) [417815 \pm 10780]
ilao(h^{pom})	30 (639.5 \pm 34.0) [27593 \pm 343]	30 (831.9 \pm 39.9) [35684 \pm 579]	30 (1071.3 \pm 49.6) [45378 \pm 932]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{\max})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{lmc})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{net})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{roc})	5 (1607.3 \pm 141.5) [30058 \pm 793]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{pom})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i ² -dual	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]

Table 3: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Probabilistic Parc Printer – With Repair Action – SSP

# sheets (s)	4			5
# unr. comp. (c)	1	2	3	1
lrtdp(h^{\max})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
lrtdp(h^{lmc})	30 (1074.1 \pm 17.6) [189356 \pm 715]	0 (-) [-]	0 (-) [-]	0 (-) [-]
lrtdp(h^{net})	30 (285.8 \pm 3.6) [119792 \pm 398]	0 (-) [-]	0 (-) [-]	0 (-) [-]
lrtdp(h^{roc})	30 (239.7 \pm 5.6) [92816 \pm 399]	1 (1795.0 \pm inf) [197146 \pm inf]	0 (-) [-]	0 (-) [-]
lrtdp(h^{pom})	4 (1694.1 \pm 53.9) [93589 \pm 1212]	0 (-) [-]	0 (-) [-]	0 (-) [-]
ilao(h^{\max})	0 (-) [-]	1 (551.0 \pm inf) [1451057 \pm inf]	0 (-) [-]	0 (-) [-]
ilao(h^{lmc})	30 (270.5 \pm 4.4) [142757 \pm 362]	30 (705.1 \pm 8.9) [339024 \pm 333]	30 (973.1 \pm 14.1) [460156 \pm 452]	0 (-) [-]
ilao(h^{net})	30 (162.8 \pm 3.0) [116894 \pm 310]	30 (358.1 \pm 7.9) [230354 \pm 187]	30 (450.0 \pm 7.3) [306467 \pm 185]	0 (-) [-]
ilao(h^{roc})	30 (137.9 \pm 2.2) [85124 \pm 290]	30 (291.6 \pm 4.9) [184387 \pm 597]	30 (387.6 \pm 8.8) [268433 \pm 497]	30 (1543.2 \pm 28.9) [889347 \pm 2232]
ilao(h^{pom})	10 (1656.1 \pm 78.3) [85251 \pm 461]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{\max})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{lmc})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{net})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{roc})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i-dual(h^{pom})	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]
i ² -dual	0 (-) [-]	0 (-) [-]	0 (-) [-]	0 (-) [-]

Table 4: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Exploding Blocks World – SSP

Planner	#3	#4	#5	#7	#8	#9	#10
lrdp(h^{\max})	30 (0.3 ± 0.0) [1855 ± 35]	30 (0.6 ± 0.0) [3051 ± 72]	30 (0.1 ± 0.0) [469 ± 33]	30 (29.7 ± 1.9) [181284 ± 6652]	30 (341.5 ± 9.2) [1386123 ± 31813]	30 (58.3 ± 1.8) [141073 ± 2369]	30 (574.5 ± 18.1) [887676 ± 11053]
lrdp(h^{lmc})	30 (0.4 ± 0.0) [1353 ± 50]	30 (0.5 ± 0.0) [1525 ± 27]	30 (0.1 ± 0.0) [136 ± 11]	30 (1.7 ± 0.2) [2854 ± 359]	30 (407.3 ± 9.9) [292982 ± 3439]	30 (130.9 ± 2.9) [67096 ± 1592]	30 (1548.8 ± 25.4) [614966 ± 9081]
lrdp(h^{pmax})	30 (1432.0 ± 34.0) [621714 ± 833]	30 (553.0 ± 22.0) [249709 ± 931]	30 (1.8 ± 0.1) [3426 ± 172]	0 (-) [...]	0 (-) [...]	0 (-) [...]	0 (-) [...]
lrdp(h^{net})	30 (1334.2 ± 31.5) [543442 ± 584]	30 (528.7 ± 11.8) [170608 ± 319]	30 (0.5 ± 0.0) [223 ± 26]	30 (24.4 ± 1.4) [35294 ± 1234]	0 (-) [...]	0 (-) [...]	0 (-) [...]
lrdp(h^{roc})	30 (1299.3 ± 28.4) [543646 ± 589]	30 (519.7 ± 15.1) [170509 ± 304]	30 (0.5 ± 0.0) [223 ± 26]	30 (26.4 ± 1.4) [35258 ± 1229]	0 (-) [...]	0 (-) [...]	0 (-) [...]
lrdp($h_{\text{dc}}^{\text{roc}}$)	30 (0.7 ± 0.0) [1484 ± 52]	30 (1.1 ± 0.0) [1986 ± 29]	30 (0.4 ± 0.0) [207 ± 15]	30 (2.3 ± 0.3) [3867 ± 553]	30 (202.8 ± 10.1) [287105 ± 4957]	30 (57.0 ± 2.6) [63060 ± 1005]	30 (599.1 ± 30.6) [511435 ± 7638]
lrdp(h^{pom})	0 (-) [...]	30 (1248.9 ± 54.7) [170608 ± 319]	30 (2.7 ± 0.3) [223 ± 26]	30 (742.0 ± 56.0) [35294 ± 1234]	0 (-) [...]	0 (-) [...]	0 (-) [...]
lrdp($h_{\text{dc}}^{\text{pom}}$)	30 (4.6 ± 0.3) [1484 ± 52]	30 (6.5 ± 0.4) [1986 ± 29]	30 (2.0 ± 0.1) [207 ± 15]	30 (58.8 ± 9.4) [3867 ± 553]	0 (-) [...]	30 (1382.7 ± 66.9) [63060 ± 1005]	0 (-) [...]
ilao(h^{\max})	30 (0.8 ± 0.0) [958 ± 0]	30 (1.3 ± 0.0) [1455 ± 11]	30 (0.0 ± 0.0) [98 ± 4]	30 (16.6 ± 0.7) [43241 ± 977]	0 (-) [...]	30 (85.7 ± 1.2) [41299 ± 412]	23 (1250.8 ± 214.5) [127152 ± 14522]
ilao(h^{lmc})	30 (1.0 ± 0.0) [783 ± 1]	30 (1.4 ± 0.0) [1063 ± 6]	30 (0.0 ± 0.0) [79 ± 2]	30 (0.8 ± 0.1) [1261 ± 137]	0 (-) [...]	30 (110.7 ± 2.4) [26719 ± 325]	4 (1189.9 ± 452.1) [99531 ± 6324]
ilao(h^{pmax})	1 (1557.0 ± inf) [656427 ± inf]	14 (811.8 ± 141.9) [273443 ± 10475]	30 (0.5 ± 0.0) [388 ± 12]	0 (-) [...]	0 (-) [...]	0 (-) [...]	0 (-) [...]
ilao(h^{net})	4 (1578.0 ± 217.9) [604848 ± 5177]	16 (993.5 ± 205.4) [240415 ± 12276]	30 (0.4 ± 0.0) [99 ± 4]	30 (6.6 ± 0.3) [12736 ± 495]	0 (-) [...]	0 (-) [...]	0 (-) [...]
ilao(h^{roc})	4 (1647.8 ± 72.6) [608297 ± 1246]	21 (844.1 ± 116.3) [230236 ± 6685]	30 (0.4 ± 0.0) [99 ± 4]	30 (7.8 ± 0.4) [12736 ± 495]	0 (-) [...]	0 (-) [...]	0 (-) [...]
ilao($h_{\text{dc}}^{\text{roc}}$)	30 (1.3 ± 0.0) [881 ± 0]	30 (2.0 ± 0.1) [1541 ± 6]	30 (0.4 ± 0.0) [82 ± 1]	30 (1.1 ± 0.1) [1421 ± 159]	3 (1760.4 ± 55.1) [194229 ± 2903]	30 (99.7 ± 2.3) [27421 ± 327]	11 (1162.3 ± 335.9) [94290 ± 16931]
ilao(h^{pom})	0 (-) [...]	8 (1603.4 ± 57.2) [221160 ± 2479]	30 (1.5 ± 0.1) [99 ± 4]	30 (269.1 ± 19.2) [12736 ± 495]	0 (-) [...]	0 (-) [...]	0 (-) [...]
ilao($h_{\text{dc}}^{\text{pom}}$)	30 (3.6 ± 0.1) [881 ± 0]	30 (5.9 ± 0.2) [1541 ± 6]	30 (1.0 ± 0.0) [82 ± 1]	30 (22.6 ± 2.5) [1421 ± 159]	0 (-) [...]	30 (711.4 ± 31.0) [27421 ± 327]	1 (297.0 ± inf) [10118 ± inf]
i-dual(h^{\max})	30 (0.3 ± 0.0) [758 ± 11]	30 (0.6 ± 0.0) [1706 ± 33]	30 (0.1 ± 0.0) [183 ± 9]	28 (1553.5 ± 60.3) [53672 ± 125]	0 (-) [...]	30 (243.9 ± 16.8) [41373 ± 103]	0 (-) [...]
i-dual(h^{lmc})	30 (0.3 ± 0.0) [608 ± 9]	30 (0.6 ± 0.0) [1278 ± 44]	30 (0.1 ± 0.0) [103 ± 3]	30 (2.5 ± 0.1) [3067 ± 112]	0 (-) [...]	30 (77.3 ± 3.5) [19413 ± 34]	0 (-) [...]
i-dual(h^{pmax})	0 (-) [...]	0 (-) [...]	30 (0.6 ± 0.0) [538 ± 24]	0 (-) [...]	0 (-) [...]	0 (-) [...]	0 (-) [...]
i-dual(h^{net})	0 (-) [...]	0 (-) [...]	30 (0.4 ± 0.0) [142 ± 6]	30 (63.8 ± 4.5) [16049 ± 62]	0 (-) [...]	0 (-) [...]	0 (-) [...]
i-dual(h^{roc})	0 (-) [...]	0 (-) [...]	30 (0.4 ± 0.0) [142 ± 6]	30 (64.8 ± 3.3) [16049 ± 62]	0 (-) [...]	0 (-) [...]	0 (-) [...]
i-dual($h_{\text{dc}}^{\text{roc}}$)	30 (0.6 ± 0.0) [682 ± 9]	30 (1.2 ± 0.0) [1512 ± 20]	30 (0.4 ± 0.0) [104 ± 4]	30 (2.8 ± 0.1) [3180 ± 101]	0 (-) [...]	30 (103.9 ± 4.9) [20794 ± 14]	0 (-) [...]
i-dual(h^{pom})	0 (-) [...]	0 (-) [...]	30 (1.7 ± 0.1) [142 ± 6]	30 (379.5 ± 19.1) [16049 ± 62]	0 (-) [...]	0 (-) [...]	0 (-) [...]
i-dual($h_{\text{dc}}^{\text{pom}}$)	30 (2.4 ± 0.1) [682 ± 9]	30 (5.4 ± 0.2) [1512 ± 20]	30 (1.2 ± 0.1) [104 ± 4]	30 (49.6 ± 2.4) [3180 ± 101]	0 (-) [...]	30 (600.9 ± 22.4) [20794 ± 14]	0 (-) [...]
i ² -dual	0 (-) [...]	0 (-) [...]	30 (0.9 ± 0.0) [125 ± 7]	30 (127.7 ± 13.7) [12270 ± 605]	0 (-) [...]	0 (-) [...]	0 (-) [...]
i ² -dual(de)	30 (2.0 ± 0.1) [673 ± 10]	30 (3.9 ± 0.1) [1775 ± 18]	30 (0.8 ± 0.0) [92 ± 4]	30 (6.7 ± 0.5) [2410 ± 160]	0 (-) [...]	30 (343.5 ± 20.6) [20120 ± 47]	0 (-) [...]

Table 5: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Exploding Blocks World – Large Problems – SSP

Planner	#11	#12	#15
ilao(h^{\max})	12 (366.7 ± 115.0) [537201 ± 164249]	24 (746.6 ± 245.6) [646757 ± 202695]	28 (576.6 ± 172.1) [531583 ± 144612]
ilao(h^{lmc})	6 (1352.9 ± 97.8) [419829 ± 28289]	15 (682.3 ± 283.3) [143873 ± 60006]	(613.5 ± 48.3) [80347 ± 4776]
ilao($h_{\text{de}}^{\text{roc}}$)	16 (837.8 ± 289.6) [718672 ± 256401]	26 (792.5 ± 232.5) [413147 ± 112855]	(623.2 ± 242.9) [326167 ± 131300]

Table 6: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. All other planners and heuristics omitted had zero coverage for these problems.

Search and Rescue – C-SSP

		planner	$d = 1$	$d = 2$	$d = 3$	$d = 4$
$n = 4$	0.25	i-dual(h^{\max})	30 (0.0 ± 0.0) [22 ± 2]	30 (0.1 ± 0.0) [114 ± 23]	30 (0.8 ± 0.2) [449 ± 55]	30 (3.2 ± 0.6) [802 ± 67]
		i-dual($h^{\text{lmc-m}}$)	30 (0.0 ± 0.0) 16 ± 3	30 (0.1 ± 0.0) [88 ± 16]	30 (0.7 ± 0.1) [361 ± 46]	30 (2.9 ± 0.5) [722 ± 65]
		i-dual(h^{pom})	30 (0.7 ± 0.0) [18 ± 4]	30 (1.0 ± 0.1) [108 ± 19]	30 (2.7 ± 0.4) [454 ± 58]	30 (7.2 ± 0.9) [879 ± 79]
		i-dual($h^{\text{c-pom}}$)	30 (0.7 ± 0.0) [18 ± 4]	30 (1.1 ± 0.1) [108 ± 19]	30 (2.9 ± 0.4) [450 ± 58]	30 (7.9 ± 1.1) [879 ± 79]
		i-dual(h^{roc})	30 (0.5 ± 0.0) [18 ± 4]	30 (0.6 ± 0.0) [108 ± 19]	30 (1.3 ± 0.2) [454 ± 58]	30 (4.6 ± 0.7) [879 ± 79]
		i-dual($h^{\text{c-roc}}$)	30 (0.5 ± 0.0) [18 ± 4]	30 (0.7 ± 0.0) [108 ± 19]	30 (1.4 ± 0.2) [450 ± 57]	30 (5.0 ± 0.8) [879 ± 79]
		i^2 -dual	30 (0.3 ± 0.0) [18 ± 4]	30 (0.5 ± 0.0) [65 ± 16]	30 (1.3 ± 0.3) [248 ± 45]	30 (4.7 ± 0.9) [542 ± 64]
	0.50	i-dual(h^{\max})	30 (0.0 ± 0.0) [30 ± 4]	30 (0.2 ± 0.0) [243 ± 38]	30 (16.8 ± 6.6) [1834 ± 300]	29 (413.1 ± 146.9)[5076 ± 639]
		i-dual($h^{\text{lmc-m}}$)	30 (0.1 ± 0.0) 22 ± 4	30 (0.2 ± 0.0) [167 ± 26]	30 (7.4 ± 2.9) [1292 ± 210]	30 (219.5 ± 88.1) [4130 ± 587]
		i-dual(h^{pom})	30 (0.8 ± 0.0) [27 ± 5]	30 (1.9 ± 0.2) [206 ± 33]	30 (22.3 ± 7.9) [1697 ± 288]	29 (413.1 ± 145.7)[5236 ± 768]
		i-dual($h^{\text{c-pom}}$)	30 (0.9 ± 0.0) [27 ± 5]	30 (2.0 ± 0.2) [206 ± 33]	30 (23.4 ± 7.5) [1684 ± 289]	30 (443.7 ± 156.6) [5343 ± 776]
		i-dual(h^{roc})	30 (0.6 ± 0.0) [27 ± 5]	30 (0.7 ± 0.0) [206 ± 33]	30 (14.4 ± 6.5) [1697 ± 288]	29 (385.0 ± 137.6)[5236 ± 768]
		i-dual($h^{\text{c-roc}}$)	30 (0.6 ± 0.0) [27 ± 5]	30 (0.8 ± 0.0) [206 ± 33]	30 (14.4 ± 6.1) [1684 ± 289]	30 (433.4 ± 159.1) [5342 ± 775]
		i^2 -dual	30 (0.4 ± 0.0) [27 ± 6]	30 (0.7 ± 0.1) [106 ± 20]	30 (12.7 ± 7.2) [942 ± 216]	30 (248.7 ± 103.5) [2612 ± 412]
$n = 5$	0.25	i-dual(h^{\max})	30 (0.0 ± 0.0) [36 ± 4]	30 (0.9 ± 0.2) [696 ± 76]	26 (400.6 ± 176.6)[6422 ± 1111]	0 (–) [–]
		i-dual($h^{\text{lmc-m}}$)	30 (0.1 ± 0.0) 26 ± 4	30 (0.6 ± 0.1) [391 ± 39]	30 (137.0 ± 71.4) [4227 ± 786]	4 (1352.1 ± 584.3)[11272 ± 2742]
		i-dual(h^{pom})	30 (1.0 ± 0.0) [33 ± 6]	30 (5.4 ± 0.6) [515 ± 59]	28 (368.5 ± 171.4)[5786 ± 1184]	1 (1167.0 ± inf)[9678 ± inf]
		i-dual($h^{\text{c-pom}}$)	30 (1.1 ± 0.1) [33 ± 6]	30 (5.7 ± 0.6) [515 ± 59]	28 (333.6 ± 145.9)[5751 ± 1178]	1 (1020.0 ± inf)[9534 ± inf]
		i-dual(h^{roc})	30 (0.6 ± 0.0) [33 ± 6]	30 (1.2 ± 0.1) [515 ± 59]	29 (386.2 ± 199.1)[5986 ± 1205]	1 (958.0 ± inf)[9678 ± inf]
		i-dual($h^{\text{c-roc}}$)	30 (0.6 ± 0.0) [33 ± 6]	30 (1.4 ± 0.2) [516 ± 59]	29 (326.4 ± 171.5)[5751 ± 1183]	1 (799.0 ± inf)[9512 ± inf]
		i^2 -dual	30 (0.5 ± 0.0) [33 ± 6]	30 (1.5 ± 0.2) [261 ± 41]	30 (239.8 ± 146.3) [2893 ± 744]	7 (590.6 ± 422.2) [4034 ± 1221]
	0.50	i-dual(h^{\max})	30 (0.1 ± 0.0) [25 ± 3]	30 (0.2 ± 0.0) [176 ± 39]	30 (2.1 ± 0.8) [571 ± 88]	30 (65.9 ± 30.5) [1905 ± 321]
		i-dual($h^{\text{lmc-m}}$)	30 (0.1 ± 0.0) 19 ± 3	30 (0.3 ± 0.1) [128 ± 23]	30 (1.8 ± 0.5) [431 ± 71]	30 (31.6 ± 16.1) [1459 ± 275]
		i-dual(h^{pom})	30 (1.2 ± 0.1) [22 ± 4]	30 (2.6 ± 0.3) [154 ± 29]	30 (7.8 ± 1.5) [559 ± 98]	30 (75.4 ± 30.3) [1875 ± 357]
		i-dual($h^{\text{c-pom}}$)	30 (1.2 ± 0.1) [22 ± 4]	30 (2.7 ± 0.3) [154 ± 29]	30 (8.0 ± 1.5) [553 ± 99]	30 (76.8 ± 33.2) [1866 ± 358]
		i-dual(h^{roc})	30 (0.8 ± 0.0) [22 ± 4]	30 (1.0 ± 0.1) [154 ± 29]	30 (2.7 ± 0.6) [559 ± 98]	30 (59.4 ± 29.4) [1875 ± 357]
		i-dual($h^{\text{c-roc}}$)	30 (0.8 ± 0.0) [22 ± 4]	30 (1.0 ± 0.1) [154 ± 29]	30 (2.7 ± 0.6) [553 ± 99]	30 (56.7 ± 26.9) [1864 ± 358]
		i^2 -dual	30 (0.6 ± 0.0) [22 ± 4]	30 (1.0 ± 0.1) [94 ± 21]	30 (2.9 ± 0.8) [274 ± 67]	30 (34.5 ± 19.3) [856 ± 210]
$n = 5$	0.25	i-dual(h^{\max})	30 (0.1 ± 0.0) [36 ± 4]	30 (0.9 ± 0.3) [515 ± 104]	30 (135.9 ± 54.7) [3582 ± 628]	5 (949.2 ± 473.2)[8097 ± 1451]
		i-dual($h^{\text{lmc-m}}$)	30 (0.1 ± 0.0) 25 ± 4	30 (0.8 ± 0.2) [312 ± 58]	30 (29.8 ± 11.3) [2099 ± 382]	9 (374.6 ± 192.4)[5552 ± 852]
		i-dual(h^{pom})	30 (1.8 ± 0.1) [31 ± 5]	30 (9.1 ± 1.6) [393 ± 77]	30 (130.9 ± 42.5) [2930 ± 564]	9 (806.7 ± 256.7)[7094 ± 1206]
		i-dual($h^{\text{c-pom}}$)	30 (2.0 ± 0.1) [31 ± 5]	30 (9.8 ± 1.7) [394 ± 77]	30 (127.7 ± 43.4) [2862 ± 562]	9 (779.8 ± 283.5)[6958 ± 1243]
		i-dual(h^{roc})	30 (0.8 ± 0.0) [31 ± 5]	30 (1.6 ± 0.2) [393 ± 77]	30 (81.1 ± 34.9) [2930 ± 564]	9 (741.4 ± 304.4)[7095 ± 1206]
		i-dual($h^{\text{c-roc}}$)	30 (0.8 ± 0.0) [31 ± 5]	30 (1.7 ± 0.2) [393 ± 77]	30 (86.6 ± 38.3) [2865 ± 564]	9 (644.4 ± 287.3)[6951 ± 1239]
		i^2 -dual	30 (0.8 ± 0.0) [31 ± 5]	30 (2.4 ± 0.4) [225 ± 55]	30 (45.4 ± 23.1) [1282 ± 326]	14 (555.4 ± 295.9) [3219 ± 908]
	0.50	i-dual(h^{\max})	30 (0.1 ± 0.0) [43 ± 4]	30 (1.7 ± 0.5) [807 ± 129]	19 (433.3 ± 215.9)[6159 ± 1260]	0 (–) [–]
		i-dual($h^{\text{lmc-m}}$)	30 (0.1 ± 0.0) 31 ± 3	30 (1.2 ± 0.2) [444 ± 64]	28 (387.9 ± 178.6) [5362 ± 1221]	2 (631.9 ± 752.2)[8324 ± 3215]
		i-dual(h^{pom})	30 (2.6 ± 0.1) [39 ± 5]	30 (18.5 ± 3.1) [570 ± 91]	20 (400.1 ± 193.0)[4913 ± 1107]	1 (920.0 ± inf)[8912 ± inf]
		i-dual($h^{\text{c-pom}}$)	30 (2.7 ± 0.2) [39 ± 5]	30 (18.5 ± 3.0) [566 ± 92]	21 (461.6 ± 212.6)[5186 ± 1248]	1 (883.0 ± inf)[8343 ± inf]
		i-dual(h^{roc})	30 (0.9 ± 0.0) [39 ± 5]	30 (2.1 ± 0.3) [570 ± 91]	23 (450.5 ± 242.1)[5891 ± 1429]	2 (1163.2 ± 848.2)[10907 ± 3910]
		i-dual($h^{\text{c-roc}}$)	30 (0.9 ± 0.0) [39 ± 5]	30 (2.2 ± 0.3) [567 ± 92]	23 (303.0 ± 178.6)[5227 ± 1285]	2 (1030.9 ± 887.3)[10531 ± 4300]
		i^2 -dual	30 (1.1 ± 0.0) [39 ± 5]	30 (4.2 ± 0.6) [304 ± 54]	28 (389.0 ± 203.7) [2948 ± 879]	6 (609.5 ± 422.3) [3198 ± 1246]

Table 7: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The problem parameters are: n , the size of the square grid; d , the distance from the robot to the known victim; and r the ratio of positions that potentially have a victim.

Probabilistic Parc Printer – C-SSP

4 sheets, 3 unreliable components, no repair, and no expected jams ($f = 0$)

Upper bound on u	1	2	3	4	∞
i-dual(h^{\max})	30 (398.3 \pm 21.3) [17846 \pm 0]	30 (371.2 \pm 14.0) [17846 \pm 0]	30 (358.9 \pm 15.6) [17845 \pm 1]	30 (322.2 \pm 16.7) [17490 \pm 0]	30 (319.3 \pm 16.5) [17480 \pm 7]
i-dual($h^{\text{lmc-m}}$)	30 (592.4 \pm 23.7) [17846 \pm 0]	30 (552.8 \pm 26.6) [17846 \pm 0]	30 (548.4 \pm 24.6) [17846 \pm 0]	30 (213.4 \pm 11.5) [13053 \pm 152]	30 (68.3 \pm 24.1) [7777 \pm 902]
i-dual(h^{pom})	25 (1673.5 \pm 37.2) [17846 \pm 0]	25 (1666.2 \pm 46.0) [17846 \pm 0]	27 (1602.3 \pm 39.8) [17846 \pm 0]	30 (1054.8 \pm 30.5) [13202 \pm 5]	30 (1025.3 \pm 53.0) [12671 \pm 294]
i-dual($h^{\text{c-pom}}$)	28 (1620.2 \pm 34.4) [17845 \pm 0]	29 (1616.3 \pm 36.6) [17846 \pm 0]	28 (1657.3 \pm 32.5) [17845 \pm 0]	30 (1077.3 \pm 42.2) [11139 \pm 104]	30 (734.0 \pm 37.5) [9016 \pm 258]
i-dual(h^{roc})	30 (616.6 \pm 31.1) [17845 \pm 0]	30 (684.9 \pm 55.6) [17846 \pm 0]	30 (631.8 \pm 34.1) [17846 \pm 0]	30 (220.5 \pm 7.4) [13138 \pm 97]	30 (181.2 \pm 14.9) [12065 \pm 510]
i-dual($h^{\text{c-roc}}$)	30 (458.1 \pm 26.1) [17845 \pm 0]	30 (424.1 \pm 13.6) [17846 \pm 0]	30 (513.9 \pm 22.7) [17845 \pm 0]	30 (300.3 \pm 17.7) [11139 \pm 104]	30 (154.5 \pm 11.4) [9016 \pm 258]
i^2 -dual	30 (45.7 \pm 29.5) [1247 \pm 456]	30 (46.1 \pm 21.8) [1455 \pm 420]	30 (69.1 \pm 34.0) [1846 \pm 497]	30 (54.3 \pm 20.3) [1758 \pm 445]	30 (69.4 \pm 22.5) [1999 \pm 398]

Table 8: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted.

Probabilistic Parc Printer – C-SSP

4 sheets, 1 unreliable components, no repair

Constrs	i-dual($h^{c\text{-pom}}$)	i-dual(h^{roc})	i-dual($h^{c\text{-roc}}$)	i ² -dual
$\bar{f} = 0 \quad \bar{u} = 1$	29 (1381.3 \pm 36.9) [15965 \pm 1]	0 (-) [-]	30 (337.7 \pm 15.8) [15965 \pm 1]	30 (9.7 \pm 1.9) [650 \pm 111]
$\bar{f} = 0 \quad \bar{u} = 2$	29 (1463.5 \pm 48.2) [15965 \pm 0]	1 (1802.0 \pm inf) [36958 \pm inf]	30 (331.7 \pm 17.0) [15965 \pm 0]	30 (9.6 \pm 1.8) [627 \pm 107]
$\bar{f} = 0 \quad \bar{u} = 3$	29 (1523.3 \pm 58.1) [15965 \pm 0]	0 (-) [-]	30 (400.6 \pm 21.3) [15965 \pm 0]	30 (12.0 \pm 2.7) [728 \pm 122]
$\bar{f} = 0 \quad \bar{u} = 4$	30 (892.0 \pm 30.6) [10340 \pm 28]	29 (1392.2 \pm 63.5) [32613 \pm 2]	30 (168.9 \pm 8.2) [10340 \pm 28]	30 (9.3 \pm 1.4) [535 \pm 68]
$\bar{f} = 0 \quad \bar{u} = \infty$	30 (695.6 \pm 46.7) [8913 \pm 351]	30 (1266.8 \pm 62.0) [32534 \pm 41]	30 (126.3 \pm 13.1) [8913 \pm 351]	30 (7.3 \pm 1.5) [450 \pm 82]
$\bar{f} = 0.1 \quad \bar{u} = 1$	0 (-) [-]	0 (-) [-]	0 (-) [-]	26 (40.0 \pm 25.5) [2022 \pm 495]
$\bar{f} = 0.1 \quad \bar{u} = 2$	0 (-) [-]	0 (-) [-]	0 (-) [-]	27 (33.2 \pm 13.0) [1905 \pm 411]
$\bar{f} = 0.1 \quad \bar{u} = 3$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (38.6 \pm 14.6) [1974 \pm 404]
$\bar{f} = 0.1 \quad \bar{u} = 4$	19 (1004.9 \pm 150.0) [11495 \pm 1323]	0 (-) [-]	30 (401.0 \pm 116.0) [14242 \pm 1638]	30 (16.9 \pm 3.8) [1337 \pm 227]
$\bar{f} = 0.1 \quad \bar{u} = \infty$	25 (1116.9 \pm 184.8) [13286 \pm 1881]	0 (-) [-]	30 (316.7 \pm 104.0) [13518 \pm 1875]	30 (18.0 \pm 5.2) [1348 \pm 256]

Table 9: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is \bar{f} and \bar{u} , respectively.

Probabilistic Parc Printer – C-SSP
 4 sheets, 2 unreliable components, no repair

Constrs	i-dual($h^{\text{c-pom}}$)	i-dual(h^{roc})	i-dual($h^{\text{c-roc}}$)	i^2 -dual
$\bar{f} = 0 \quad \bar{u} = 1$	29 (1470.8 \pm 45.1) [15965 \pm 1]	0 (--) [--]	30 (352.1 \pm 15.6) [15965 \pm 1]	30 (10.3 \pm 1.6) [614 \pm 82]
$\bar{f} = 0 \quad \bar{u} = 2$	29 (1426.8 \pm 44.5) [15965 \pm 0]	1 (1834.0 \pm inf) [36957 \pm inf]	30 (345.1 \pm 20.2) [15965 \pm 0]	30 (12.4 \pm 2.2) [699 \pm 101]
$\bar{f} = 0 \quad \bar{u} = 3$	28 (1510.0 \pm 51.4) [15965 \pm 0]	0 (--) [--]	30 (428.3 \pm 25.3) [15965 \pm 0]	30 (11.7 \pm 2.8) [660 \pm 125]
$\bar{f} = 0 \quad \bar{u} = 4$	30 (852.1 \pm 35.5) [10340 \pm 28]	26 (1331.4 \pm 51.0) [32613 \pm 3]	30 (176.6 \pm 8.0) [10340 \pm 28]	30 (9.4 \pm 1.3) [500 \pm 56]
$\bar{f} = 0 \quad \bar{u} = \infty$	30 (683.6 \pm 40.7) [8913 \pm 351]	30 (1235.0 \pm 57.8) [32388 \pm 136]	30 (129.3 \pm 13.2) [8913 \pm 351]	30 (9.1 \pm 1.5) [497 \pm 73]
$\bar{f} = 0.1 \quad \bar{u} = 1$	29 (1538.0 \pm 43.8) [15965 \pm 1]	0 (--) [--]	30 (401.5 \pm 18.2) [15966 \pm 0]	30 (122.5 \pm 105.1) [4070 \pm 732]
$\bar{f} = 0.1 \quad \bar{u} = 2$	30 (1544.1 \pm 52.3) [15965 \pm 1]	0 (--) [--]	30 (392.9 \pm 20.7) [15965 \pm 0]	30 (62.7 \pm 12.4) [3626 \pm 298]
$\bar{f} = 0.1 \quad \bar{u} = 3$	27 (1599.0 \pm 56.1) [15965 \pm 1]	0 (--) [--]	30 (488.7 \pm 21.3) [15965 \pm 0]	30 (102.6 \pm 41.8) [4238 \pm 524]
$\bar{f} = 0.1 \quad \bar{u} = 4$	30 (875.6 \pm 65.9) [9728 \pm 535]	0 (--) [--]	30 (179.6 \pm 20.0) [9644 \pm 512]	30 (45.3 \pm 15.3) [3055 \pm 445]
$\bar{f} = 0.1 \quad \bar{u} = \infty$	30 (653.0 \pm 39.5) [7958 \pm 261]	0 (--) [--]	30 (110.9 \pm 10.3) [8213 \pm 396]	30 (46.0 \pm 9.3) [3100 \pm 321]
$\bar{f} = 0.2 \quad \bar{u} = 3$	0 (--) [--]	0 (--) [--]	0 (--) [--]	9 (225.2 \pm 160.0) [6097 \pm 1442]
$\bar{f} = 0.2 \quad \bar{u} = \infty$	0 (--) [--]	0 (--) [--]	0 (--) [--]	12 (177.5 \pm 151.3) [5524 \pm 1269]
$\bar{f} = 0.3 \quad \bar{u} = 1$	0 (--) [--]	0 (--) [--]	0 (--) [--]	16 (462.1 \pm 152.4) [8885 \pm 931]
$\bar{f} = 0.3 \quad \bar{u} = 4$	0 (--) [--]	0 (--) [--]	0 (--) [--]	14 (400.1 \pm 200.3) [8511 \pm 1407]
$\bar{f} = 0.3 \quad \bar{u} = \infty$	0 (--) [--]	0 (--) [--]	0 (--) [--]	15 (398.2 \pm 203.6) [8178 \pm 1540]

Table 10: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is \bar{f} and \bar{u} , respectively.

Probabilistic Parc Printer – C-SSP

4 sheets, 3 unreliable components, no repair, and $\bar{f} > 0$

Constrs	i-dual($h^{\text{c-pom}}$)	i-dual(h^{roc})	i-dual($h^{\text{c-roc}}$)	i ² -dual
$\bar{f} = 0.1 \quad \bar{u} = 1$	27 (1574.5 \pm 43.0) [17845 \pm 1]	0 (-) [-]	30 (514.2 \pm 27.2) [17845 \pm 1]	30 (167.0 \pm 38.4) [5391 \pm 512]
$\bar{f} = 0.1 \quad \bar{u} = 2$	29 (1617.4 \pm 39.1) [17845 \pm 0]	0 (-) [-]	30 (512.7 \pm 23.5) [17845 \pm 0]	30 (165.6 \pm 48.4) [5175 \pm 521]
$\bar{f} = 0.1 \quad \bar{u} = 3$	24 (1649.8 \pm 36.0) [17845 \pm 0]	0 (-) [-]	30 (684.7 \pm 40.0) [17845 \pm 0]	30 (163.3 \pm 55.7) [5209 \pm 544]
$\bar{f} = 0.1 \quad \bar{u} = 4$	30 (842.4 \pm 39.3) [9524 \pm 224]	0 (-) [-]	30 (162.0 \pm 20.8) [9440 \pm 362]	30 (170.6 \pm 51.0) [5612 \pm 717]
$\bar{f} = 0.1 \quad \bar{u} = \infty$	30 (723.3 \pm 49.1) [9030 \pm 315]	0 (-) [-]	30 (145.5 \pm 19.4) [9251 \pm 394]	30 (102.8 \pm 21.6) [4703 \pm 504]
$\bar{f} = 0.2 \quad \bar{u} = 1$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (179.1 \pm 31.6) [5531 \pm 412]
$\bar{f} = 0.2 \quad \bar{u} = 2$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (227.6 \pm 66.6) [5947 \pm 700]
$\bar{f} = 0.2 \quad \bar{u} = 3$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (144.0 \pm 27.9) [5067 \pm 461]
$\bar{f} = 0.2 \quad \bar{u} = 4$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (137.1 \pm 42.8) [5220 \pm 621]
$\bar{f} = 0.2 \quad \bar{u} = \infty$	0 (-) [-]	0 (-) [-]	0 (-) [-]	30 (114.5 \pm 42.6) [4512 \pm 745]

Table 11: Results are reported as “ X (Y) [Z]” where X is the coverage, Y and Z are the average (and 95% conf. interval) for the cpu-time and number of states visited, respectively. Best values for each problem is highlighted. The maximum expected value for f (number of jams) and u (usage of cheaper finisher component) is \bar{f} and \bar{u} , respectively.

B Theoretical results

B.1 Proofs preliminaries

For all our proofs, we assume *without loss of generality* that the state s in which the heuristics are being queried is the initial state s_0 , that is, $h(s)$ means $h(s_0)$. This assumption does not affect the generality of our proofs because we can always generate a copy of the current probabilistic problem with the initial state changed to s for any $s \in \mathbb{S}$. This assumption highlights the problem being solved by the heuristics, that is, to lower bound the optimal cost of reaching a goal state from the state being queried.

B.2 Proof of Theorem 1

Theorem 1 (Admissibility of h^{pom}). *For all states s of the given probabilistic SAS⁺ task, $h^{\text{pom}}(s) \leq V^*(s)$.*

Before we prove this theorem, we need to define the projection of an occupation measure of an SSP onto a variable v (Definition 7) and show that it is a valid occupation measure for the projected SSP (Lemma 5).

Definition 7 (Projected occupation measure). *Given a valid occupation measure x (i.e., x satisfies the flow constraints (C1) – (C6)) for \mathbb{S} and a variable $v \in \mathcal{V}$, the projected occupation measure $\hat{x}_{d,a}^{v,s}$ for $\mathbb{S}^{v,s}$ is*

$$\hat{x}_{d,a}^{v,s} = \begin{cases} \sum_{s' \in \mathbb{S} \text{ s.t. } s'[v]=d} x_{s',a} & \text{if } v \neq g, a \neq a_g \\ \sum_{\substack{s_g \in \mathbb{G} \text{ s.t.} \\ s_g[v]=d}} \sum_{a' \in \mathcal{A}} P(s_g|s', a') x_{s',a'} & \text{if } v \neq g, a = a_g \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 5. $\hat{x}_{d,a}^{v,s}$ is a valid occupation measure for $\mathbb{S}^{v,s}$.

Proof. Since $x_{s',a} \geq 0$ for all $s' \in \mathbb{S}$ and $a \in \mathcal{A}$, then $\hat{x}_{d,a}^{v,s} \geq 0$ for all $d \in \mathcal{D}_v$ and $a \in \mathcal{A}$, thus (C1) is satisfied. By Definition 7, we have that $\text{in}(g) = \sum_{d',a \in \mathcal{A}(d')} \hat{x}_{d',a}^{v,s} P(g|d', a)$. By the definition of $\mathbb{S}^{v,s}$, the only action that can reach g is the artificial goal action a_g , thus $\sum_{d',a \in \mathcal{A}(d')} \hat{x}_{d',a}^{v,s} P(g|d', a) = \sum_{d'} \hat{x}_{d',a_g}^{v,s} P(g|d', a_g)$. Applying Definition 7, we have

$$\sum_{d'} \hat{x}_{d',a_g}^{v,s} P(g|d', a_g) = \sum_{d'} \sum_{\substack{s_g \in \mathbb{G} \text{ s.t.} \\ s_g[v]=d'}} \sum_{s' \in \mathbb{S}, a \in \mathcal{A}} P(s_g|s', a) x_{s',a} = \sum_{s_g \in \mathbb{G}} \sum_{s' \in \mathbb{S}, a \in \mathcal{A}} P(s_g|s', a) x_{s',a} = 1$$

where the last step is due to the sink constraint (C3) of the original problem. Since g is the only goal state of $\mathbb{S}^{v,s}$, we have that $\text{in}(g) = 1$ is equivalent to the sink constraint for $\mathbb{S}^{v,s}$. To show that the flow constraints are satisfied, consider

the sum of all the flow constraints of the original problem such that their value for variable v is $d \in \mathsf{D}_v$:

$$\begin{aligned}
& \sum_{s \in \mathsf{S}: s[v] = d} \left(\sum_{\substack{s' \in \mathsf{S} \\ a \in \mathsf{A}(s')}} P(s|s', a) x_{s', a} - \sum_{a \in \mathsf{A}(s)} x_{s, a} \right) \\
&= \sum_{s \in \mathsf{S}: s[v] = d} \sum_{\substack{s' \in \mathsf{S} \\ a \in \mathsf{A}(s')}} P(s|s', a) x_{s', a} - \sum_{s \in \mathsf{S}: s[v] = d} \sum_{a \in \mathsf{A}(s)} x_{s, a} \\
&= \sum_{s \in \mathsf{S}: s[v] = d} \sum_{\substack{s' \in \mathsf{S} \\ a \in \mathsf{A}(s')}} P(s|s', a) x_{s', a} - \sum_{a \in \mathsf{A}(s)} \hat{x}_{d, a}^v \quad \text{by Definition 7} \\
&= \sum_{\substack{s' \in \mathsf{S} \\ a \in \mathsf{A}(s') \\ e \in \mathsf{eff}(a): e[v] = d}} \Pr_a(e) x_{s', a} - \sum_{a \in \mathsf{A}(s)} \hat{x}_{d, a}^v \\
&= \sum_{d' \in \mathsf{D}_v} \sum_{s' \in \mathsf{S}: s'[v] = d'} \sum_{\substack{a \in \mathsf{A}(s') \\ e \in \mathsf{eff}(a): e[v] = d}} \Pr_a(e) x_{s', a} - \sum_{a \in \mathsf{A}(s)} \hat{x}_{d, a}^v \\
&= \sum_{d' \in \mathsf{D}_v} \sum_{\substack{a \in \mathsf{A}: \mathsf{pre}(a)[v] \in \{d', \perp\} \\ e \in \mathsf{eff}(a): e[v] = d}} \Pr_a(e) \left(\sum_{s' \in \mathsf{S}: s'[v] = d'} x_{s', a} \right) - \sum_{a \in \mathsf{A}(s)} \hat{x}_{d, a}^v \\
&= \sum_{d' \in \mathsf{D}_v} \sum_{\substack{a \in \mathsf{A}: \mathsf{pre}(a)[v] \in \{d', \perp\} \\ e \in \mathsf{eff}(a): e[v] = d}} \Pr_a(e) \hat{x}_{d', a}^v - \sum_{a \in \mathsf{A}(s)} \hat{x}_{d, a}^v \quad \text{by Definition 7} \\
&= \sum_{d' \in \mathsf{D}_v} \hat{x}_{d', a}^v \left(\sum_{e \in \mathsf{eff}(a): e[v] = d} \Pr_a(e) \right) - \sum_{a \in \mathsf{A}(d)} \hat{x}_{d, a}^v \\
&= \sum_{d' \in \mathsf{D}_v} \hat{x}_{d', a}^v P(d|d', a) - \sum_{a \in \mathsf{A}(d)} \hat{x}_{d, a}^v \quad \text{by Definition 1} \\
&= \mathsf{in}(d) - \mathsf{out}(d)
\end{aligned}$$

therefore, $\hat{x}_{d, a}^v$ satisfies the flow constraints. \square

Proof of Theorem 1. Let x^* be the optimal occupation measure for the SSP \mathbb{S} associated with the given probabilistic SAS⁺ problem. For all $v \in \mathcal{V}$, let $\hat{x}_{d, a}^{v, s}$ be the projected occupation measure of x^* over v . By Lemma 5, $\hat{x}_{d, a}^{v, s}$ is a valid occupation measure for $\mathbb{S}^{v, s}$, i.e., it respects $\mathcal{C}^{v, s}$. By Definition 7, $\sum_{d \in \mathsf{D}_v} \hat{x}_{d, a}^{v, s} = \sum_{d \in \mathsf{D}_v} \sum_{s' \in \mathsf{S}, s'[v] = d} x_{s', a}^* = \sum_{s' \in \mathsf{S}} x_{s', a}^* = \sum_{d' \in \mathsf{D}_v} \hat{x}_{d', a}^{v', s}$ for all $a \in \mathsf{A}$ and $\{v, v'\} \subseteq \mathcal{V}$; therefore, $\hat{x}_{d, a}^{v, s}$ and $\hat{x}_{d', a}^{v', s}$ respect set of constraints $\mathcal{T}^{v, s}$ and is a feasible solution for the minimization problem solved by h^{pom} . Moreover, by the definition of $\hat{x}_{d, a}^{v, s}$, $\sum_{d \in \mathsf{D}_v, a} \hat{x}_{d, a}^{v, s} C(a) = V^*(s)$ for all $v \in \mathcal{V}$. \square

B.3 Proof of Theorem 2

Theorem 2 (h^{pom} dominates h^{roc}). *The occupation measure heuristic dominates the regrouped operator counting heuristic, i.e., for all s of the given probabilistic SAS⁺ task, $h^{\text{roc}}(s) \leq h^{\text{pom}}(s)$.*

The proof for Theorem 2 is constructive and for this prove and its lemmas, we construct the operator counting variables from the optimal occupation measure for any variable v as:

Definition 8 (Candidate $\hat{Y}_{a,e}$). *Let x^* be the optimal solution of the LP solved by $h^{pom}(s)$, then we define $\hat{Y}_{a,e}$ as $\Pr_a(e) \sum_{d \in D_v} x_{d,a}^*$. Due to the tying constraints of h^{pom} , $\hat{Y}_{a,e}$ can be defined using any variable $v \in \mathcal{V}$ of the probabilistic SAS⁺ problem.*

Lemma 6 (Lower bound). *For a variable v and a value $d \in D_v$ of v , $\sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} + \sum_{(a,e) \in SP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e}$ (i.e., the right-hand side of (C7)) is greater or equal to $in(d) - out(d)$ for x^* , i.e., the flow entering d minus the flow leaving d induced by x^* in $\mathbb{S}^{v,s}$.*

Proof.

$$\begin{aligned}
& \sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} + \sum_{(a,e) \in SP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e} \\
&= \sum_{\substack{a \in A: pre(a)[v] \notin \{d, \perp\} \\ e \in eff(a): e[v] = d}} \hat{Y}_{a,e} + \sum_{\substack{a \in A: pre(a)[v] = \perp \\ e \in eff(a): e[v] = d}} \hat{Y}_{a,e} - \sum_{\substack{a \in A: pre(a)[v] = d \\ e \in eff(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} \\
&= \sum_{\substack{d' \in D_v: d \neq d' \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{a \in A: pre(a)[v] = d \\ e \in eff(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} \quad \text{by (i) - see below} \\
&= \sum_{\substack{d' \in D_v: d \neq d' \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{a \in A: pre(a)[v] = d \\ e \in eff(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) \left(\sum_{d' \in D_v} x_{d',a}^* \right) \\
&= \sum_{\substack{d' \in D_v: d \neq d' \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{a \in A: pre(a)[v] = d \\ e \in eff(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) x_{d,a}^* \quad \text{because } pre(a)[v] = d \text{ thus } x_{d',a}^* = 0 \text{ for } d \neq d' \\
&= \sum_{\substack{d' \in D_v: d \neq d' \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{d' \in D_v: d \neq d' \\ a \in A: pre(a)[v] = d}} P(d'|d, a) x_{d,a}^* \quad \text{by Definition 1} \\
&= \sum_{\substack{d' \in D_v \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{d' \in D_v \\ a \in A: pre(a)[v] = d}} P(d'|d, a) x_{d,a}^* \quad \text{by adding and subtracting } \sum_{a \in A: pre(a)[v] = d} P(d|d, a) x_{d,a}^* \\
&= \sum_{\substack{d' \in D_v \\ a \in A(d')}} P(d|d', a) x_{d',a}^* - \sum_{a \in A: pre(a)[v] = d} x_{d,a}^* \\
&= in(d) - out(d|pre(a)[v] = d) \quad \text{since } out(d|pre(a)[v] = \perp) \geq 0 \\
&\geq in(d) - out(d)
\end{aligned}$$

$$\begin{aligned}
(i) \quad & \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] \notin \{d, \perp\} \\ e \in \text{eff}(a): e[v] = d}} \hat{Y}_{a,e} + \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] = \perp \\ e \in \text{eff}(a): e[v] = d}} \hat{Y}_{a,e} = \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] \neq d \\ e \in \text{eff}(a): e[v] = d}} \hat{Y}_{a,e} \\
&= \sum_{\substack{d' \in \mathsf{D}_v: d' \neq d \\ a \in \mathsf{A}: \text{pre}(a)[v] \in \{d', \perp\} \\ e \in \text{eff}(a): e[v] = d}} x_{d',a}^* \Pr_a(e) \quad \text{by Definition 8} \\
&= \sum_{\substack{d' \in \mathsf{D}_v: d' \neq d \\ a \in \mathsf{A}(d')}} x_{d',a}^* \left(\sum_{\substack{\text{pre}(a)[v] \in \{d', \perp\} \\ e \in \text{eff}(a): e[v] = d}} \Pr_a(e) \right) \quad a \in \mathsf{A}(d') \text{ iff } \text{pre}(a)[v] \in \{d', \perp\} \\
&= \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}(d')}} P(d|d', a) x_{d',a}^* \quad \text{by Definition 1}
\end{aligned}$$

□

Lemma 7 (Upper bound). *For a variable v and a value $d \in \mathsf{D}_v$ of v , $\sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in SC_{v=d}} \hat{Y}_{a,e}$ (i.e., the right-hand side of (C8)) is less or equal to $\text{in}(d) - \text{out}(d)$ for x^* , i.e., the flow entering d minus the flow leaving d induced by x^* in $\mathbb{S}^{v,s}$.*

Proof.

$$\begin{aligned}
& \sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in SC_{v=d}} \hat{Y}_{a,e} \\
&= \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] \notin \{d, \perp\} \\ e \in \text{eff}(a): e[v] = d}} \hat{Y}_{a,e} - \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] = d \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} - \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] = \perp \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} \\
&= \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}: \text{pre}(a)[v] = d'}} P(d|d', a) x_{d',a}^* - \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] = d \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} - \sum_{\substack{a \in \mathsf{A}: \text{pre}(a)[v] = \perp \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} \quad \text{by similar argument as (i)} \\
&\leq \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}: \text{pre}(a)[v] = d'}} P(d|d', a) x_{d',a}^* - \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}(d)}} P(d'|d, a) x_{d,a}^* \quad \text{by (ii) - see below} \\
&\leq \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{d' \in \mathsf{D}_v: d \neq d' \\ a \in \mathsf{A}(d)}} P(d'|d, a) x_{d,a}^* \quad \text{because } \{a \in \mathsf{A} | \text{pre}(a)[v] = d'\} \subseteq \mathsf{A}(d') \\
&= \sum_{\substack{d' \in \mathsf{D}_v \\ a \in \mathsf{A}(d')}} P(d|d', a) x_{d',a}^* - \sum_{\substack{d' \in \mathsf{D}_v \\ a \in \mathsf{A}(d)}} P(d'|d, a) x_{d,a}^* \quad \text{by adding and subtracting } \sum_{a \in \mathsf{A}: \text{pre}(a)[v] = d} P(d|d, a) x_{d,a}^* \\
&= \sum_{\substack{d' \in \mathsf{D}_v \\ a \in \mathsf{A}(d')}} P(d|d', a) x_{d',a}^* - \sum_{a \in \mathsf{A}(d)} x_{d,a}^* \\
&= \text{in}(d) - \text{out}(d)
\end{aligned}$$

$$\begin{aligned}
(ii) & \sum_{\substack{a \in A: \text{pre}(a)[v] = d \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} + \sum_{\substack{a \in A: \text{pre}(a)[v] = \perp \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \hat{Y}_{a,e} \\
&= \sum_{\substack{a \in A: \text{pre}(a)[v] \in \{d, \perp\} \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) \left(\sum_{d' \in D_v} x_{d',a}^* \right) \\
&= \sum_{\substack{a \in A: \text{pre}(a)[v] \in \{d, \perp\} \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) x_{d,a}^* + \sum_{\substack{a \in A: \text{pre}(a)[v] \in \{d, \perp\} \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) \left(\sum_{d' \in D_v: d \neq d'} x_{d',a}^* \right) \quad \text{by splitting the inner sum} \\
&\geq \sum_{\substack{a \in A: \text{pre}(a)[v] \in \{d, \perp\} \\ e \in \text{eff}(a): e[v] \notin \{d, \perp\}}} \Pr_a(e) x_{d,a}^* \quad \text{since } x_{d',a}^* \geq 0 \ \forall d' \in D_v, a \in A \\
&= \sum_{\substack{d' \in D_v: d' \neq d \\ a \in A: \text{pre}(a)[v] \in \{d, \perp\} \\ e \in \text{eff}(a): e[v] = d'}} \Pr_a(e) x_{d,a}^* \\
&= \sum_{\substack{d' \in D_v: d' \neq d \\ a \in A(d)}} P(d|d', a) x_{d',a}^* \quad \text{by Definition 1}
\end{aligned}$$

□

Lemma 8 ($\hat{Y}_{a,e}$ is feasible). *The set of variables $\{\hat{Y}_{a,e} \mid \forall a \in A, e \in \text{eff}(a)\}$ is a feasible solution for the LP solved by h^{roc} .*

Proof. For $\hat{Y}_{a,e}$ to be a feasible solution for the LP solved by h^{roc} , it needs to satisfy the net change constraints (C7) and (C8), and the regrouping constraints (Definition 4). The regrouping constraints are satisfied because

$$\Pr_a(e_1) \hat{Y}_{a,e_2} = \Pr_a(e_1) \Pr_a(e_2) \sum_{d \in D_v} x_{d,a}^* = \Pr_a(e_2) \hat{Y}_{a,e_1}$$

Regarding (C7), notice that $\min pnc_{v=d}^{s \rightarrow s_*}$ equals

- -1 if $s[v] = d$ and $s_*[v] \neq d$, in which case $\text{in}(d) - \text{out}(d) = -1$ since d is the initial state of the projection,
- 1 if $s[v] \neq d$ and $s_*[v] = d$, in which case $\text{in}(d) - \text{out}(d) = 1$ since d is the only state of the projection that reaches the artificial a goal state g of $\mathbb{S}^{v,s}$,
- 0 otherwise, in which case $\text{in}(d) - \text{out}(d) = 0$ since d neither the initial state nor a goal of the projection.

Thus, by Lemma 2, $\sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in SC_{v=d}} \hat{Y}_{a,e} \geq \text{in}(d) - \text{out}(d) = \min pnc_{v=d}^{s \rightarrow s_*}$.

Through a similar argument for $\max pnc_{v=d}^{s \rightarrow s_*}$ and Lemma 3, we have that $\sum_{(a,e) \in AP_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in AC_{v=d}} \hat{Y}_{a,e} - \sum_{(a,e) \in SC_{v=d}} \hat{Y}_{a,e} \leq \text{in}(d) - \text{out}(d) = \max pnc_{v=d}^{s \rightarrow s_*}$. Therefore, the set of variables $\{\hat{Y}_{a,e} \mid \forall a \in A, e \in \text{eff}(a)\}$ is a feasible solution for the LP solved by h^{roc} .

□

Proof of Theorem 2. By Lemma 8, we have that the optimal solution for the LP solved by h^{pom} is feasible for the LP solved by h^{roc} . Moreover, the cost of this solution is

$$\sum_{a \in \mathcal{A}} C(a) \left(\sum_{e \in \text{eff}(a)} \hat{Y}_{a,e} \right) = \sum_{a \in \mathcal{A}} C(a) \left(\sum_{e \in \text{eff}(a)} \text{Pr}_a(e) \left(\sum_{d \in \mathcal{D}_v} x_{d,a}^* \right) \right) = \sum_{a \in \mathcal{A}} C(a) \left(\sum_{d \in \mathcal{D}_v} x_{d,a}^* \right) = h^{\text{pom}}(s)$$

Since h^{roc} solves a minimisation problem, we have that $h^{\text{roc}}(s) \leq h^{\text{pom}}(s)$. \square