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Abstract

Heuristic search is a general problem solving technique.
While most evaluations of heuristic search focus on thedpee
of search, there are relatively few techniques for preuaficti
when search will end. This paper provides a study of progress
estimating techniques for optimal, suboptimal, and bodnde
suboptimal heuristic search algorithms. We examine two
previously proposed techniques, search velocity and kearc
vacillation, as well as two new approaches, path-based esti
mation and distribution-based estimation. We find that both
new approaches are better at estimating the remaining amoun
of search effort than previous work in all three varieties of
search, occasionally erring by less than 5%.

Introduction

Many problems can be modeled as search problem where
one is required to find a path in a state space. There are

many varieties of search problems and corresponding search

algorithms that are designed to handle them. For example,
search algorithms such as A* (Hart, Nilsson, and Raphael
1968) are used when we require solutions with the least pos-
sible cost, while algorithms like greedy best-first seansh a
used when we simply need to solve a problem quickly. In
this paper we investigate methods to monitorphegressof

the search process for finding solution paths.

End-users greatly value having progress indicators for
long tasks (Myers 1985). Further, being able to determine
how much time remains before a search algorithm will re-
turn a solution has a number of applications. Estimates of
time remaining let us know if we should wait for the current
algorithm to finish or if we need to change our requirements
to get something that will finish within our lifetimes. In the
context of anytime search algorithms, it can also help decid
whether we should interrupt a running anytime search algo-
rithm now, or if we should wait for an improved solution.

In this paper we propose three approaches for estimat-
ing the search progress. The first approach, called the
speed-basedpproach, uses existing techniques from time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998;
Dionne, Thayer, and Ruml 2011) to estimate the speed of

search progression. The search speed is combined with an
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estimate of the distance to the goal to provide an estimate of
the future search effort.

The second approach, called thath-basedapproach,
considers the relation between cost of arriving at an ex-
panded node and the estimated cost of a solution through
the same node. The ratio of these values estimates progress.

Finally we present an approach call@gdtribution based
progress estimatgor DBP, which is based on a novel con-
cept called thel-distribution Thed-distributionof a search
is the number of nodes that were generated with a specific
estimate of actions remaining, drvalue. DBP estimates
the search progress by estimating the fialistribution of
search by fitting a curve to the curreftistribution.

We evaluate the proposed techniques for estimating the
search progress on two domains, the 15-puzzle and Life-
cost Grids (Thayer and Ruml 2011). We compare the ac-
curacy of the progress estimations fatr,Aveighted A, and
greedy best-first search. Results show that the path-based
and distribution-based are superior to the search-spebd te
niques. It is not conclusive if the distribution-based ap-
proach is significantly better than the path-based estimato

Progress Estimation

In this section we describe formally what search progress
is, and how it relates to estimating future search effort.
Throughout this paper we assume the time until a search al-
gorithm returns a solution is directly related to the number
of nodes yet to be generated. This is reasonable for domains
where the cost of node generation is the same for all the
nodes. In domains where this isn’t true, it can be corrected
for so long as we know how the cost of generating nodes
changes during search.

Search progress is a number between 0 and 1, represent-
ing how near to completion a search is. More formally,
let Gen o (P) be the number of nodes generated by a given
search algorithm! while attempting to solve a search prob-
lem P. Let Rem’ (P, Gen o(P)) be the number of remain-
ing number of nodes that are going to be generatediby
when solvingP after A has already generat&@n nodes
Searchprogressis the ratio between the already generated

\We omit P and A from both Gen and Rem* when A and P
are clear from the context.



nodes and the total number of nodes generated yhen
solving P.

Definition 1 (Search Progress)The search progress ot
solving P after generatingZen nodes is:

Gen
Gen + Rem™(Gen)

The progress is composed of two componentsen
and Rem™(Gen). The number of nodes generated so far,
Gen, is known. Generally the number of remaining nodes,
Rem™(Gen), is usually not known a priof.

Using future search effortRem™(Gen)), one can de-
rive the search progres®fog™(Gen)) and vice versa. Fre-
qguently both values are unknown during search. Some
techniques presented in this paper directly estimate lsearc
progress, while other techniques estimate future search ef
fort and derive progress from that.

Prog*(Gen) =

Speed-Based Progress Estimator

We begin by consideringpeed-based progress estimators
or SBPfor short. Leth,,;, be the lowesti-value of any
expanded node. The value of,;,, gives a heuristic notion
of how far the search is from the goal, starting from;,, =
h(start) and reachingq,,;,, = 0 when the goal is found.
Clearly, h,,;;, monotonically decreases to zero throughout
the search. Thepeed-based progress estimattascribed

betweenh,.; andh,,;,, divided by time that has passed
from the beginning of the search. Let the time passed from
the beginning of the search be measured by the number of
nodes generated so far. Search velocity is- Zstert—lmin

The time constrained search then adjustuch that the ob-
served velocity and desired velocity match.

It is easy to see that theearch velocitys defined to ex-
actly estimate thesearch speednentioned above. Hence,
we can use theearch velocityo estimate the future search
effort, denoted bys' Fy, as follows:

hmin
SEy = ="

This search effort estimation can then be used to estimate
progress, as explained previously. We call the resulting
search progress estimator tredocity-based search progress
estimator(VeSBH:

Gen

VeSP(Gen) = m

Vacillation-Based Search Speed Estimator

Deadline-Aware Search (DAS) is an alternate technique to
search under a deadline (Dionne, Thayer, and Ruml 2011).
DAS builds on the understanding that generally many nodes
are expanded between the time a node is generated and its
expansion. This so callegikpansion delays measured by

in this section are based on estimating the rate of change the DAS algorithm. The averagxpansion delayAe, can

in h.,in With respect to the number of nodes expanded by
search. We call this theearch speed The search speed
andh,,;, are then used to estimate the future search effort,
which is then used to estimate the search progress.

Next, we describe two methods for estimating the search-
speed, which are a based on previous work on time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998)

and deadline-aware search (Dionne, Thayer, and Ruml

2011).

Velocity-Based Search Speed Estimator

Time-constrained search aims at finding the best possible

solution given a time constraint. Hiraishi et al. (1998)-pro

be used to estimate ttgpeedwith which search advances
towards a goal. We use it to estimate future search effort
estimation,SE,, as follows:

SEe = E : hmzn

We call the resulting search progress estimator the
vacillation-based search progress estimator VaSP for
short. The progress estimation formulav@iSP

B Gen
" Gen+ SE,

Note that in order to calculate the average expansion de-

VaSP(Gen)

posed a time-constrained search algorithm that is based on &Y for VaSF the search algorithm must maintain for every

Weighted A* (Pohl 1970). Weighted A* uses the node eval-
uation functionf’(n) = g(n) + w - h(n), wherew is a pa-
rameter. Settingy = 1 results in behavior identical to A*,

generated node the time when it was generated. This incurs
some overhead not required YgSP Also, note that in/aSP
the average expansion delay is multipliediy;,,. This cor-

and asw is increased, the algorithm behaves more and more €SPonds to unit edge cost domains. For non-unit edge-cost

like greedy best first search.

The time-constrained search algorithm of Hiraishi et al.
starts by running Weighted A* withv=1. During the search,
their algorithm considers two search values that relate to
search-speed: tharget search velocitgndsearch velocity
Thetarget search velocitis calculated at the beginning of
the search, as the initidl,,;,,, which is the heuristic value
of the start state/(;;,,), divided by the time constrairit

domains, multiply the average expansion delayihy;, .

Both VeSPandVaSPgeneralize naturally to estimate the
progress of other search algorithms. Clearly, in the first
several hundred nodes the speed estimates are expected to
be inaccurate, but, at least intuitively, after enough sode
have been expanded both speed estimations can adjust to the
speed of the search algorithm that is used.

The above techniques for estimating search progress are

Then, during the search, after every node is expanded, the adaptations of techniques from time-constrained search to

search velocitydenoted by is calculated as the difference

2The number of remaining nodes is also known asfttare
search effor{Dionne, Thayer, and Ruml 2011)

estimate search progress. In the next section we propose
simple search progress estimator methods that direcily est
mate the search progress. These simple estimators are found
to be more accurate in our experimental results.



Path-Based Progress Estimator

We now introduce thepath-based progress estimagtoor
PBP in short. First, we describ®BP for estimating the
progress of an Asearch. Then we describe h&®BP can
be adapted to estimate the progress of greedy search.
Consider the components ¢fn). Part of the evaluation
function,g(n), is in terms of expended cost, while a portion
of it, h(n), represents cost-to-go. Lete the last node gen-
erated (i.e.n is the Gen-th node that was generated). The
first progress estimator that we consider, called nhee
path-based progress estimatPBP is :
g(n)

f(n)

Initially, NPBPreturns zero, since thgvalue of the root is
zero. When the goal node is expands@®BP returns one,
since theh-value of the goal is also zero. If the cost-to-go
estimate is perfectly accuraté((z) = h*(n)) and there is

a single path to the goaNPBPwill return perfect progress
estimations, in unit edge cost domains, arfdeXpands only
the nodes in the optimal path. In unit-cost domajs) is

the number of steps taken between the rootankl* (n) is

the number of steps betweenand a goal, ang(n) is the
total number of steps along the optimal path. In this case

% is an accurate estimate of the progress of search.

NPBR Gen) =

Non-Uniform Edge Cost

The above reasoning is incorrect for domains with non-
uniform costs. Consider this example: there is a start spde
an intermediate nodg and a goal nodg. The cost of going
from s toiis c(s,i) = 1, and the cost of going fromto ¢

is (i, g) = 2. Assuming perfect information, the previous
estimate of progress will tell us that we are only a third of
the way done at, when we are halfway to the goal.

To adaptNPBP to non-uniform edge cost domains, we
make the progress estimate insensitive to cost as foll@tss: |
d(n) be an estimate of the number of actions in the optimal
path fromn to a goal andD(n) be the depth of node. We
defineL(n) = D(n) + d(n). Then the adapteNPBPIis:

D(n)
L(n)

If we have perfect information o andd as well ash,
thenNPBPLwill return the exact search progress for non-

uniform edge cost as well. For simplicity, we assume uni-
form edge-cost domain, unless stated otherwise.

NPBPL(n) =

Non-Perfect Heuristics

In reality, (n) is not always equal tb*(n) and A will ex-

pand nodes off the optimal path. Here the progress estima-
tion of NPBPis imperfect. Furthermore, a perfect progress
estimation will increase after every node that is expanded.
SinceNPBPIis based on the andh of the node that is cur-
rently expanded by A its progress estimation may decrease

h(S)=1 h(A)=1 h(B)=8

Figure 1: Example of PBP and fPBP

To overcome this we propose the following modification
of NPBP. always return the highest value that was returned
so far byNPBP. This ensures that the progress estimation
will be monotonic non-decreasing. We call this progress es-
timator thepath-based progress estimatar PBPin short.

PBP shares wittNPBP the following propertiesPBP ini-

tially returns zero, it returns one when the goal is found,
and it is perfect when we have a perfect heuristic. In non-
uniform edge cost domains, one can use the same logic as

PBP, but use% instead of% in a variant calledPBPL

Note that one can the same logic BBP and PBPL to
construct a progress estimator for Weighted A* (Pohl 1970).
Weighted A* uses an evaluation functigii(n) = g(n) +
w - h(n), wherew is a parameter, instead of ttf¢n) eval-
uation function of A*. Thus, we can estimate the progress

of Weighted A* by -",(7;) . We denote byPBPthis simple

f(n)
adaptation oPBPto Weighted A*.

Using Optimal Solution Cost

Sometimes an accurate estimate of the cost of the opti-
mal solution is available (Lelis, Stern, and Arfaee 2011,
Lelis et al. 2012). This information could be used to better
estimate the progress of search. Assume for a moment that
the cost of the optimal solutio® PT, is known. This new
progress estimator is based /P71, and on the minimal
f-value in the open list, denoted #s,;,,. Assuming either
a consistent heuristic or the use of Pathmax (Mero 1984),
fmin IS monotonic non-decreasing. When the search starts
fmin is the f-value of the start statg(start) (this is equiv-
alent toh(start)). During searcly,,;, increases, and when
the goal is found,,,;, = OPT.

fmin Can be used to define a new progress estimator,
which we call thef-value path-based progress estimator
or fPBP, that is defined next.

_ fmin — f(start)

fPBR Gen) = OPT — f(start)

Here, the denominat@PT — f(start) denotes how much
progress must be made since the beginning of search un-
til the optimal solution is found, and the numerafqy;,, —
f(start) denotes the search effort completed thus far. Note
that for the extreme case where the heuristic is perfect, we
have thatf,;,.., = OPT and fPBPis undefined (since it
incurs zero divided by zero).

Naturally, OPT is often unavailable. However, we can
estimateO PT" with an accurate inadmissible heuristic (Jab-
bari Arfaee, Zilles, and Holte 2011; Thayer, Dionne, and
Ruml 2011) or with solution cost predictors (Lelis, Stern,

when a new node is expanded. This is because an A* searchand Arfaee 2011; Lelis et al. 2012).

may expand a node that is close to the goal (higlow h)
and subsequently one far from the goal (lgwhigh £).

Clearly, it is not always easy to obtain good estimates
of OPT, and thus it is easier in some cases to implement



PBP. HoweverfPBPis less sensitive to an overly optimistic
heuristic function, as explained next. Consider the follow
ing extreme example, depicted in Figure 1. There is only
a single path from the initial nod§ to the goalG, that

is composed of 10 nodes, i.e., OPT=10, and all the edges
have unit cost. Assume that the heuristic of the first two
nodes on the path is one, i.&.(S) = h(A) = 1. This
value of h(A4) andh(S) is admissible, ag*(S) = 10, and
h*(A) = 9. However,h is clearly very misleading with re-
spect to noded. This has a great effect dPBP, since once

A is expandedPBP will return 9(4) % and will keep

F(A)
this value until a node with a higher value $fis expanded.
Clearly, the search is far from being half done, since the op-
timal solution cost is 10. Furthermor@BP will still return
% even after nod® is expanded, which has a perfect heuris-
tic h(B) = h*(B) = 8. By contrast, whem is expanded,
fPBPwill return 2=L. = 1, which is clearly more accurate

than} that was returned by BP.

PBP for Greedy Best-First Search

Next, we describe how to use the concep®8Pto estimate

the progress of greedy best-first search (GBFS). GBFS, also
known as Pure Heuristic Search, is a best-first search that
orders the nodes in the open-list according to thewalue,
always expanding the node in the open list with the lowest
h-value. GBFS is commonly used when the task is to find a
solution to a search problem as fast as possible.

One way to defin@BP for GBFS is exactly the same as
PBPfor A*. However, GBFS behaves differently fron™A
GBFS accounts only for the heuristic value of the nodes in
the open list to decide which node to expand next. There-
fore, we propose the following variation 8BP for GFBS,
denoted byhPBP, that also only accounts for the heuristic
value of the nodes seen during search.

h(root) — hpmin
h(root)
As before, it is also possible to define an equivalent estima-

tor that considers distance-to-go (i.e., estimated nuraber
actions to reach the goal), for non-unit-cost domains:

d(root) — dpin
d(root)

hPBR Gen)

dPBR Gen) =
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Figure 2:d-distributions for A and GBFS

how many nodes will be generated during the search for ev-
ery value ofd.* This is done by accumulating throughout
the search the number of nodes generated so far for every
possibled-value, and interpolating the number of nodes that
will be generated in the future for every possititgalue.

Letdy, .., d,, be all the possibld-values a node can have.
Throughout the searcBBP maintains for everyl-valued;
a counterc[d;] that counts the number of nodes generated
with d-value equal tal;. Initially, ¢[d;] = 0 for all d val-
ues, except for thd-value of the start statel, for which
clds] = 1. When a node: is generated, theed(n)] is in-
cremented by one. As the search progresses, the values of
cld1], .., c[d,,] are updated, resulting in a distribution of the
frequency of the different heuristic values. We call this-di
tribution thed-distribution of the search at a given time, or

Both the path-based and the speed-based search progress esimply thecurrent d-distribution. Thed-distribution when
timations described so far heavily depend on the value of the search ends is calleccampleted-distribution. Figure 2
hmin. This means that if a node is generated with very low shows the completédistribution for A* and GBFS of aran-
hmin in a early stage of the search, e.g., due to a gross under-dom instance of the 15-puzzle and of the life-grid domains.
estimation of the heuristic, both search speed and patkdbas Let ¢* denote thecompleted-distribution, and corre-
progress estimators will be inaccurate. The next progess e  spondingly, letc*[d;] be the number of nodes generated
timator, called thalistribution based progress estimator throughout the search witl+value equal tal;. Given the
DBP in short, is based on a completely different approach completed-distribution, one can easily compute the exact
that is robust to such sporadic heuristic errors. search progress as follows:

Distribution-Based Progress Estimator

DBP estimates the search progress by learning the “struc-
ture” of the search spaceSpecifically,DBP tries to predict

Prog*(Gen) = Gen A

i
The completead-distribution, ¢*, is not available until the

3 search is finished. To overcome thI3BP estimates the
We use the term “search space” to denote the set of nodesthat

will be visited by the search algorithm that is executed. 4Recall that in uniform edge cost domaitss equivalent tdh.
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Figure 3: Study of Progress Estimation in A* and the accudaivs. h.

complete distribution from current distribution by using a
second degree polynomial fit. Létlenote the resulting esti-
mation of the completé-distribution, and correspondingly,
let ¢[d;] be the number of nodes that will havelasalue of

d; according to¢. The search progress estimated P
with ¢ is given by:

Gen

Zﬁl é[di]

DBP(Gen) =
In the beginning of the search the curve fitting required by
DBP is not given enough data to provide accurate estima-
tions of the completd-distribution. However, as the search
progresses, more nodes are generated¢caseéxpected to
provide a better estimation of the compléteistribution.

Empirical Evaluation

In this section we evaluate accuracy of the proposed pregres
estimators techniques for three search algorithms: A¥*,
Greedy Best First Search (GBFS) and Weighted A* (Pohl
1970). Recall thaprogressis measured by the ratio be-

tween the number of nodes generated and the total number

A*

Figure 3(a) shows the relative performanceveSR DBP,

PBP, andfPBP. We exclude the results of VaSP from this
plot because they were substantially worse than the other
approaches. The two best estimators in this case are clearly
the path-based estimatd®BP andPBP. Even though less
accurate than the path-based estimators, DBP is also fairly
accurate with errors no greater than 10%. We believe the ac-
curacy ofDBP could be improved in this domain, however.
Figure 2(b) shows th@-distribution for this domain (life
grids). Clearly the second-order polynomial useddD®P

to estimate the realdistribution does not capture the actual
distribution of d-values, explainingBP’s performance.

Since the path-based estimators performed best in this do-
main, we compared several variants of the path-based esti-
mators. Specifically, we consider three path-based egiimat
variants: PBP, PBPL andfPBP. Recall thatPBPL is PBP
that uses a distance-to-go heuristitgnd depth D) instead
of a cost-to-go heuristich) and cost-so-far).

The results are shown in Figure 3(b). First, we can see

thatPBPL is outperformed by botfPBP andPBP. This is
counter intuitive, as the actions-to-go heuristics @)egor-

of nodes generated by the search algorithm when the goal is
found (Definition 1). Thus, the accuracy of a progress es-
timator is measured by the absolute difference between the

estimated progreseeturned by the progress estimator, and we show the relative error in the cost-to-go and actions-to-

thereal progresscomputed after the problem was solved. In o () i(n) )
the plots shown in this section, thyeaxis is the average ac- ~ 90 heuristics computed %%m and =75 respectively. The

curacy of a progress estimator for a set of problem instances plot shows clearly that thé heuristic in this domain is far
Thez-axis in the plots is theeal progress As it is impracti- less accurate than thieheuristic, explaining the improved
cal to write down the estimated progress for every expanded performance ofi-based estimatoréfBPandPBP) over the
node for these problems, we take 500 samples uniformly at d-based estimatd?BPL
random from all data points generated by the search. The second observation that can be seen from Figure 3(b)
We test the estimators on Life-cost grids and on the 15 is thatfPBP outperforms bottPBP, and PBPL This sup-
puzzle. Life-cost grids were first proposed by Ruml and ports the analysis given in the path-based section and exem-
Do (2007). These are a standard 4-connected grid with a plified in Figure 1. However, note th&é?BP uses additional
slightly different cost function, moving out of a cell hassto information that is not available tBBP. optimal solution
equal to the y-coordinate of the cell. We use 100 grids that cost. Interestingly, the difference in accuracy betwi#BP
are 2000x1200, with a starting state in the lower left-hand andPBPis very small, wheréPBP is only about 1% more

corner of the grid and the goal in the lower right. For the 15- accurate thaPBP.
puzzle, we look at the 100 instances used by Korf (1985).

responds more accurately than cost-to-go heuristizgd

the number of expansions required to reach a goal. This
phenomenon can be explained by considering the accuracy
of d andh in this domain, shown in Figure 3(d). In this plot,

The relative performance of the estimators on the 15-
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Figure 4: Study of Progress Estimation in Greedy Search

puzzle problem is shown in Figure 3(c). In this domain both performance in estimating the progress of an A* search.
DBP andPBPhave similar accuracy. Figure 2(a) showsthe  Next, consider the life grid results shown in Figure 4(a).
d-distribution seen during an A* search for a random start Similar to the A* results described above, bdtfBP
state of the 15-puzzle. The second-order polynomial fit used andDBP significantly outperform the speed-based methods
by DBPis clearly a good choice in this case, which explains  vaSPandVeSP VaSPand\VeSPboth frequently err in their
the improved performance &BP in this domain. estimates by more than 30%, whR@P andDBP have esti-

In contrast to the life-grids domairBP is more ac- mates that do not err by more than 20%, and frequently have
curate thanfPBP in the 15-puzzle domain. Recall that less than 10% absolute errdiPBPand DBP differentiate
fPBP measures search progress according to the function themselves by when they are most accurate, WRBPbe-

%m_ AsOPT andf (start) remain fixed through- ing more accurate early on, abdBP having better estimates

out the search, we have tHRIBP measures search progress Néar the end of the search. _ _
based onf,,i,, i.e., the value of the largest expandgd Following, consider the performance of the different vari-
value. ThusfPBP assumes that the search effort required ants ofPBP, namelyhPBP, dPBF, PBP andPBPL Accu-

to increase thef-value is the same throughout search. In racy results are shown in Figure 4(b) In this domain we see
the Grid domain the number of nodes in differgntayers small difference between these variants, where some of them
is a relatively fixed number as thievalues increases. Thus, ~ are more accurate at the beginning of the seadétBPand

this assumption dPBPholds. However, in the tiles domain ~ hPBP), while others path-based predictors are are better near
the number of nodes in Alayer grows exponentially as the  the end of the search (e.&BPL). Itis hard to see a signifi-
f-value increases. Thus, in the tiles domain the assumption cant variant outperforming the other.

that the search effort required to incregsg,, is the same Figure 4(c) presents these same estimation techniques in
throughout search clearly does not hoRBP, on the other greedy search on the 15-puzzle. Results in the tiles problem
hand, measures search progress according to the maximalare similar to those reported on grids in tBE8P andhPBP

9(n) ohserved. ThusPBP also considered the advance in  are still the best predictors overall, wibBP being more

- .

g-(véllues in addition to the advance favalues seen during accurf';\te in most of the search, excep.t near thg end.

the search. Henc®BPis able to estimate different search While hPBP produces accurate estimates with error fre-

effort for different f-layers, which results in more accurate ~ guéntly below 10% on the Grid domain, its estimates on the

progress estimations in this domain. tiles domain are inaccurate. We conjecture that the inaccu-
racy ofhPBPon the 15-puzzle is explained by the combina-

Greedy Search tion of two facts. First, usually in the beginning of a greedy

search the value df,,,;,, decreases rapidly (Imai and Kishi-
We now discuss the search progress estimators in Greedymoto 2011). This will misleathPBPinto thinking that the
Best First Search. First, we compare the three progress es-search progressed more than it actually have. Second, the
timation approaches presented in this paper: speed-basedrange of heuristic values for the 15-puzzle is much smaller

(VaSPand VeSBh, path-based and histogram-bas&dBP). than the range for the Grid domain. Thus, the rapid decrease
As explained in the path-based estimation section, for GBFS in h,,,;, in the beginning of search will have a major impact
we modifiedfPBPto consider eitheh or d instead off, re- on thehPBP estimations for the 15 puzzle. For instance,

sulting inhPBPanddPBPprogress estimators, respectively. if h,,;, decreases from 40 to 20 with just a few nodes ex-

First, consider they-axis scale used for the GBFS pandedhPBPwill mistakenly assert that the search is about
progress estimations in Figure 4 in comparison toytais half-way done. On the other hand, on a domain with much
scale used for the A* plots in Figure 3. Clearly, all progress deeper solutions and larger range of heuristic values,aqui
estimators perform poorly for estimating the progress of decrease of 20 in thi,,,;,, will not represent a large change
GBFS, with errors ranging up to in comparison with their in the estimated search progress.



Another factor that contributes to the difference in accu- Discussion and Summary
racy of hPBP between the two domains is the accuracy of

the heuristic functions used. Figure 4(d) shows the accu- .
racy ofhPBPwhen using heuristic functions of different ac- Jmin IS the same across searéfiPassumes that the search

curacy. Here we makePBP estimations when employing effort required to increase the value%% is also the same
Manhattan Distance and the 7-8 additive pattern databasethroughout search. These assumptions might be problem-
(7-8 PDB) (Felner, Korf, and Hanan 2004). Korf and Felner atic in domains with shallow solutions and large branch-
showed that the 7-8 PDB is far more accurate than Man- ing factor. In such domains any changefip.» and in the
hattan Distance, and we see that the progress estimationslargestg-value seen might represent a large change in the
when using the 7-8 PDB are also more accurate. The heuris- €stimated percentage of search completed. For instance, in

tic used in grid is relatively more accurate than the heigrist & domain with average solution depth of 5, after expanding
used in the 15-puzzle. Thus, as observed in the resIBP the root nodd®BP might estimate that about 20% of search

is often more accurate for life grids. was completed, while in reality very little of the search was
Even thougIDBPis the best estimator on the 15-puzzleas completed after expanding the root node. In such domains
shown in Figure 4(c), its estimations have an average efroro We expecDBPto perform better, as long as the fitting func-
about 25%, reaching values of almost 40% in the beginning tion being used is able to capture the actual distribution of
and in the end of search. These are inaccurate estimations,d-values. _ _ _
especially if compared to the DBP estimations for A* (where We observed the following trends in the results. First, the

fPBP assumes that the search effort required to increase

the error oDBPis at most 10%). The inaccuracy@BP for novel PBP andDBP progress estimators are able to predict
greedy search is explained by the histograms in Figure 2(d) with high accuracy the progress of an A* search, differing
and 2(c); the second-order polynomial usedBP doesn’t from the actual progress by less than 5%. Second, the pro-
capture the shape of thiedistribution of greedy search. posed progress estimators are in general less accurate for
GBFS. Results for Weighted A* lie in the continuum be-
Weighted A* tween these two extremes. Third, it is often the case that the

Now that we have discussed A* search and greedy search, simplerPBPvariants are more accurate than even the more

we turn our attentions to Weighted A* (Pohl 1970), a COmPplexDBP, as well as/aSPandVeSP
best-first search algorithm that uses an evaluation fumctio
fw(n) = g(n) +w - h(n), wherew is a parameter. The be- Related Work

havior of Weighted A* (WA”) scales smoothly between the A considerable amount of research was devoted to estimat-

. ;
A*and GBFS_extr*emes, according to the valuegfwhere ing the search effort of tree-based methods (Korf, Reid, and
w = 1 results in A% andw = oo results in GBFS. Edelkamp 2001; Zahavi et al. 2010; Lelis, Zilles, and Holte
First, we compare the accuracy of the speed-based, path-5n1 5. Ky th 1975; Burns and Ruml 2012; Kilby et al. 2006).
gﬁ;‘;ﬂ&ngg';gggg?&}g%ﬁg;ﬁgwgg iei 5W %eensﬁﬁg?:? esti The largest difference betwee_n the methoc_is we present_ed in
life grid and 15-puzzle are shown in Figure 5(a) and 5(b). As this paper and the ones m_entloned abO\{e is that we estimate
before. we see thR!BP andDBP have. in general. the bést search progress for best-first searches !nstead of trestbas
erforr’nance and are more accurafe th%n eNla;SPand searches. Breyer and Korf (2008) predicted the number of
3 Spwh ’ timati h S5.8Pi t sh nodes expanded by A* for the 15-puzzle, but they used the
asFwhen estimating search progre $Pis not shown information learned from a complete breadth-first search in
as it was much worse than other estimators). the state space. Hernadvolgyi and Holte (2004) also made
Next, consider the effect of different values ofon the estimations for the number of nodes expanded by A*, but
performance oPBP. Figure 5(c) compares the performance they ignored the transposition detection the algorithnsdoe

of PBF.)W'th w = 11, 1&5’.1'7'5 and2. A? can cleharly be None of the methods cited above account for transposition
Seen, Increasing resufts in 1ess accurate Search progress - yetaction other than transpositions on a single path. To the

estimations. This is understandable, as increasimgsults b : g
. X . ; ; est of our knowledge we are the first to make predictions
n We'?gtBeg A* behhavmtg mbore_ I'ki.GB'tzls' Slncefth%aé:é:g- of the search effort of algorithms that detect transpas#tio
racy o was shown to be significantly worse tor In addition, the methods presented in this paper are online

Ml s ;
than fotr At\h' agésp?ea}r tha1PBIP with higherw will be less estimators in the sense that they estimate search effole whi
accurate or lower valuésw. using the information learned by a search algorithm, while

Lastly, we consider the performance of variants of the )
PBP technique in Weighted A* search. Results are shown most tree-based methods do not consult search performance.

in Figure 5(d). As thedPBPandPBPL estimates did not

work in either A* or GBFS, we omit them from the evalua- Future Work

tion here. Instead, we focus tPBP, PBP, andwPBP. As While having good indications of when our searches will
the results showPBP outperforms botthPBP and wPBP. end is important, the most exciting potential applicatién o
We conjecture thaPBP outperformswPBP becausef’ (n) progress estimation techniques is in the realm of search un-

provides a pessimistic estimate of the search effort requir ~ der time constraints. Our evaluation showed that we have
to complete search. Thayer and Ruml (2008) have shown more accurate estimators than those previously used in dead
that WA* typically finds solutions with cost much lower than  line search algorithms, and that is likely to lead to bet&s¥ p

w * OPT, and thus wPBP is misled. formance for search under a deadline.
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Figure 5: Study of Progress Estimation in WA*

In this paper, we do not consider adapting techniques for

estimating the size of an IDA* search tree to estimating-best

first search progress. The largest challenge here is lgarnin
how to account for duplicates in tightly connected search

spaces like grids. Future work will investigation of how to

Rim International Conference on Artificial IntelligenceRRCAI),
389-398.

Imai, T., and Kishimoto, A. 2011. A novel technique for avioml
plateaus of greedy best-first search in satisficing plandmgAAL

Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Lewgni

adapt the methods mentioned above so that they can be usecheuristic functions for large state spaceautificial Intelligence

to measure search progress of best-first search.

Conclusion

175(16-17):2075-2098.

Kilby, P.; Slaney, J. K.; Thiebaux, S.; and Walsh, T. 2006tifaat-
ing search tree size. IKAAL

Knuth, D. E. 1975. Estimating the efficiency of backtrack-pro

In this paper we have presented and evaluated several tech-grams.Math. Comp29.

nigues for estimating theearch progressluring the execu-

tion of a search algorithm. Estimating the search progress

can improve the applicability of search algorithms in rgml a
plications, as end-users strongly prefer having progrefis i

cators such as progress bars when applications perform long

tasks (Myers 1985). This is to our knowledge the first work
on estimating theearch progressThe proposed techniques
work well for A* and Weighted A* with low-weights. Fu-
ture work will study how to estimate the progress of GBFS
and other search algorithms.
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