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Abstract

Heuristic search is a general problem solving technique.
While most evaluations of heuristic search focus on the speed
of search, there are relatively few techniques for predicting
when search will end. This paper provides a study of progress
estimating techniques for optimal, suboptimal, and bounded
suboptimal heuristic search algorithms. We examine two
previously proposed techniques, search velocity and search
vacillation, as well as two new approaches, path-based esti-
mation and distribution-based estimation. We find that both
new approaches are better at estimating the remaining amount
of search effort than previous work in all three varieties of
search, occasionally erring by less than 5%.

Introduction
Many problems can be modeled as search problem where
one is required to find a path in a state space. There are
many varieties of search problems and corresponding search
algorithms that are designed to handle them. For example,
search algorithms such as A* (Hart, Nilsson, and Raphael
1968) are used when we require solutions with the least pos-
sible cost, while algorithms like greedy best-first search are
used when we simply need to solve a problem quickly. In
this paper we investigate methods to monitor theprogressof
the search process for finding solution paths.

End-users greatly value having progress indicators for
long tasks (Myers 1985). Further, being able to determine
how much time remains before a search algorithm will re-
turn a solution has a number of applications. Estimates of
time remaining let us know if we should wait for the current
algorithm to finish or if we need to change our requirements
to get something that will finish within our lifetimes. In the
context of anytime search algorithms, it can also help decide
whether we should interrupt a running anytime search algo-
rithm now, or if we should wait for an improved solution.

In this paper we propose three approaches for estimat-
ing the search progress. The first approach, called the
speed-basedapproach, uses existing techniques from time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998;
Dionne, Thayer, and Ruml 2011) to estimate the speed of
search progression. The search speed is combined with an
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estimate of the distance to the goal to provide an estimate of
the future search effort.

The second approach, called thepath-basedapproach,
considers the relation between cost of arriving at an ex-
panded node and the estimated cost of a solution through
the same node. The ratio of these values estimates progress.

Finally we present an approach calleddistribution based
progress estimator, or DBP, which is based on a novel con-
cept called thed-distribution. Thed-distributionof a search
is the number of nodes that were generated with a specific
estimate of actions remaining, ord-value. DBP estimates
the search progress by estimating the finald-distribution of
search by fitting a curve to the currentd-distribution.

We evaluate the proposed techniques for estimating the
search progress on two domains, the 15-puzzle and Life-
cost Grids (Thayer and Ruml 2011). We compare the ac-
curacy of the progress estimations for A∗, weighted A∗, and
greedy best-first search. Results show that the path-based
and distribution-based are superior to the search-speed tech-
niques. It is not conclusive if the distribution-based ap-
proach is significantly better than the path-based estimator.

Progress Estimation

In this section we describe formally what search progress
is, and how it relates to estimating future search effort.
Throughout this paper we assume the time until a search al-
gorithm returns a solution is directly related to the number
of nodes yet to be generated. This is reasonable for domains
where the cost of node generation is the same for all the
nodes. In domains where this isn’t true, it can be corrected
for so long as we know how the cost of generating nodes
changes during search.

Search progress is a number between 0 and 1, represent-
ing how near to completion a search is. More formally,
let GenA(P ) be the number of nodes generated by a given
search algorithmA while attempting to solve a search prob-
lemP . LetRem∗

A(P,GenA(P )) be the number of remain-
ing number of nodes that are going to be generated byA
when solvingP afterA has already generatedGen nodes.1

Searchprogressis the ratio between the already generated

1We omitP andA from bothGen andRem∗ whenA andP
are clear from the context.



nodes and the total number of nodes generated byA when
solvingP .

Definition 1 (Search Progress)The search progress ofA
solvingP after generatingGen nodes is:

Prog∗(Gen) =
Gen

Gen + Rem∗(Gen)

The progress is composed of two components:Gen
andRem∗(Gen). The number of nodes generated so far,
Gen, is known. Generally the number of remaining nodes,
Rem∗(Gen), is usually not known a priori.2

Using future search effort (Rem∗(Gen)), one can de-
rive the search progress (Prog∗(Gen)) and vice versa. Fre-
quently both values are unknown during search. Some
techniques presented in this paper directly estimate search
progress, while other techniques estimate future search ef-
fort and derive progress from that.

Speed-Based Progress Estimator
We begin by consideringspeed-based progress estimators,
or SBP for short. Lethmin be the lowesth-value of any
expanded node. The value ofhmin gives a heuristic notion
of how far the search is from the goal, starting fromhmin =
h(start) and reachinghmin = 0 when the goal is found.
Clearly, hmin monotonically decreases to zero throughout
the search. Thespeed-based progress estimatordescribed
in this section are based on estimating the rate of change
in hmin with respect to the number of nodes expanded by
search. We call this thesearch speed. The search speed
andhmin are then used to estimate the future search effort,
which is then used to estimate the search progress.

Next, we describe two methods for estimating the search-
speed, which are a based on previous work on time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998)
and deadline-aware search (Dionne, Thayer, and Ruml
2011).

Velocity-Based Search Speed Estimator
Time-constrained search aims at finding the best possible
solution given a time constraint. Hiraishi et al. (1998) pro-
posed a time-constrained search algorithm that is based on
Weighted A* (Pohl 1970). Weighted A* uses the node eval-
uation functionf ′(n) = g(n) + w · h(n), wherew is a pa-
rameter. Settingw = 1 results in behavior identical to A*,
and asw is increased, the algorithm behaves more and more
like greedy best first search.

The time-constrained search algorithm of Hiraishi et al.
starts by running Weighted A* withw=1. During the search,
their algorithm considers two search values that relate to
search-speed: thetarget search velocityandsearch velocity.
The target search velocityis calculated at the beginning of
the search, as the initialhmin, which is the heuristic value
of the start state (hstart), divided by the time constraintt.
Then, during the search, after every node is expanded, the
search velocity, denoted byV is calculated as the difference

2The number of remaining nodes is also known as thefuture
search effort(Dionne, Thayer, and Ruml 2011)

betweenhstart andhmin, divided by time that has passed
from the beginning of the search. Let the time passed from
the beginning of the search be measured by the number of
nodes generated so far. Search velocity isV = hstart−hmin

Gen
.

The time constrained search then adjustsw such that the ob-
served velocity and desired velocity match.

It is easy to see that thesearch velocityis defined to ex-
actly estimate thesearch speedmentioned above. Hence,
we can use thesearch velocityto estimate the future search
effort, denoted bySEV as follows:

SEV =
hmin

V

This search effort estimation can then be used to estimate
progress, as explained previously. We call the resulting
search progress estimator thevelocity-based search progress
estimator(VeSP):

V eSP (Gen) =
Gen

Gen + SEV

Vacillation-Based Search Speed Estimator
Deadline-Aware Search (DAS) is an alternate technique to
search under a deadline (Dionne, Thayer, and Ruml 2011).
DAS builds on the understanding that generally many nodes
are expanded between the time a node is generated and its
expansion. This so calledexpansion delayis measured by
the DAS algorithm. The averageexpansion delay, ∆e, can
be used to estimate thespeedwith which search advances
towards a goal. We use it to estimate future search effort
estimation,SEe, as follows:

SEe = ∆e · hmin

We call the resulting search progress estimator the
vacillation-based search progress estimator, or VaSP for
short. The progress estimation formula ofVaSP:

V aSP (Gen) =
Gen

Gen + SEe

Note that in order to calculate the average expansion de-
lay for VaSP, the search algorithm must maintain for every
generated node the time when it was generated. This incurs
some overhead not required byVeSP. Also, note that inVaSP
the average expansion delay is multiplied byhmin. This cor-
responds to unit edge cost domains. For non-unit edge-cost
domains, multiply the average expansion delay bydmin.

Both VeSPandVaSPgeneralize naturally to estimate the
progress of other search algorithms. Clearly, in the first
several hundred nodes the speed estimates are expected to
be inaccurate, but, at least intuitively, after enough nodes
have been expanded both speed estimations can adjust to the
speed of the search algorithm that is used.

The above techniques for estimating search progress are
adaptations of techniques from time-constrained search to
estimate search progress. In the next section we propose
simple search progress estimator methods that directly esti-
mate the search progress. These simple estimators are found
to be more accurate in our experimental results.



Path-Based Progress Estimator
We now introduce thepath-based progress estimator, or
PBP in short. First, we describePBP for estimating the
progress of an A∗ search. Then we describe howPBPcan
be adapted to estimate the progress of greedy search.

Consider the components off(n). Part of the evaluation
function,g(n), is in terms of expended cost, while a portion
of it, h(n), represents cost-to-go. Letn be the last node gen-
erated (i.e.,n is theGen-th node that was generated). The
first progress estimator that we consider, called thenaive
path-based progress estimator(NPBP) is :

NPBP(Gen) =
g(n)

f(n)

Initially, NPBPreturns zero, since theg-value of the root is
zero. When the goal node is expanded,NPBPreturns one,
since theh-value of the goal is also zero. If the cost-to-go
estimate is perfectly accurate (h(n) = h∗(n)) and there is
a single path to the goal,NPBPwill return perfect progress
estimations, in unit edge cost domains, and A∗ expands only
the nodes in the optimal path. In unit-cost domainsg(n) is
the number of steps taken between the root andn, h∗(n) is
the number of steps betweenn and a goal, andf(n) is the
total number of steps along the optimal path. In this case
g(n)
f(n) is an accurate estimate of the progress of search.

Non-Uniform Edge Cost
The above reasoning is incorrect for domains with non-
uniform costs. Consider this example: there is a start nodes,
an intermediate nodei, and a goal nodeg. The cost of going
from s to i is c(s, i) = 1, and the cost of going fromi to g
is c(i, g) = 2. Assuming perfect information, the previous
estimate of progress will tell us that we are only a third of
the way done ati, when we are halfway to the goal.

To adaptNPBP to non-uniform edge cost domains, we
make the progress estimate insensitive to cost as follows: let
d(n) be an estimate of the number of actions in the optimal
path fromn to a goal andD(n) be the depth of noden. We
defineL(n) = D(n) + d(n). Then the adaptedNPBPis:

NPBPL(n) =
D(n)

L(n)

If we have perfect information onD andd as well ash,
thenNPBPLwill return the exact search progress for non-
uniform edge cost as well. For simplicity, we assume uni-
form edge-cost domain, unless stated otherwise.

Non-Perfect Heuristics
In reality,h(n) is not always equal toh∗(n) and A∗ will ex-
pand nodes off the optimal path. Here the progress estima-
tion of NPBP is imperfect. Furthermore, a perfect progress
estimation will increase after every node that is expanded.
SinceNPBPis based on theg andh of the node that is cur-
rently expanded by A∗, its progress estimation may decrease
when a new node is expanded. This is because an A* search
may expand a node that is close to the goal (highg, low h)
and subsequently one far from the goal (lowg, highh).
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Figure 1: Example of PBP and fPBP

To overcome this we propose the following modification
of NPBP: always return the highest value that was returned
so far byNPBP. This ensures that the progress estimation
will be monotonic non-decreasing. We call this progress es-
timator thepath-based progress estimator, or PBP in short.
PBP shares withNPBP the following properties:PBP ini-
tially returns zero, it returns one when the goal is found,
and it is perfect when we have a perfect heuristic. In non-
uniform edge cost domains, one can use the same logic as
PBP, but useD(n)

L(n) instead ofg(n)
f(n) in a variant calledPBPL.

Note that one can the same logic ofPBP and PBPL to
construct a progress estimator for Weighted A* (Pohl 1970).
Weighted A* uses an evaluation functionf ′(n) = g(n) +
w · h(n), wherew is a parameter, instead of thef(n) eval-
uation function of A*. Thus, we can estimate the progress
of Weighted A* by g(n)

f ′(n) . We denote bywPBPthis simple
adaptation ofPBPto Weighted A*.

Using Optimal Solution Cost
Sometimes an accurate estimate of the cost of the opti-
mal solution is available (Lelis, Stern, and Arfaee 2011;
Lelis et al. 2012). This information could be used to better
estimate the progress of search. Assume for a moment that
the cost of the optimal solution,OPT , is known. This new
progress estimator is based onOPT , and on the minimal
f -value in the open list, denoted asfmin. Assuming either
a consistent heuristic or the use of Pathmax (Mero 1984),
fmin is monotonic non-decreasing. When the search starts
fmin is thef -value of the start statef(start) (this is equiv-
alent toh(start)). During searchfmin increases, and when
the goal is foundfmin = OPT .
fmin can be used to define a new progress estimator,

which we call thef -value path-based progress estimator,
or fPBP, that is defined next.

fPBP(Gen) =
fmin − f(start)

OPT − f(start)

Here, the denominatorOPT − f(start) denotes how much
progress must be made since the beginning of search un-
til the optimal solution is found, and the numeratorfmin −

f(start) denotes the search effort completed thus far. Note
that for the extreme case where the heuristic is perfect, we
have thatfstart = OPT andfPBP is undefined (since it
incurs zero divided by zero).

Naturally,OPT is often unavailable. However, we can
estimateOPT with an accurate inadmissible heuristic (Jab-
bari Arfaee, Zilles, and Holte 2011; Thayer, Dionne, and
Ruml 2011) or with solution cost predictors (Lelis, Stern,
and Arfaee 2011; Lelis et al. 2012).

Clearly, it is not always easy to obtain good estimates
of OPT , and thus it is easier in some cases to implement



PBP. However,fPBPis less sensitive to an overly optimistic
heuristic function, as explained next. Consider the follow-
ing extreme example, depicted in Figure 1. There is only
a single path from the initial nodeS to the goalG, that
is composed of 10 nodes, i.e., OPT=10, and all the edges
have unit cost. Assume that the heuristic of the first two
nodes on the path is one, i.e.,h(S) = h(A) = 1. This
value ofh(A) andh(S) is admissible, ash∗(S) = 10, and
h∗(A) = 9. However,h is clearly very misleading with re-
spect to nodeA. This has a great effect onPBP, since once
A is expanded,PBP will return g(A)

f(A) = 1
2 , and will keep

this value until a node with a higher value ofg
h

is expanded.
Clearly, the search is far from being half done, since the op-
timal solution cost is 10. Furthermore,PBPwill still return
1
2 even after nodeB is expanded, which has a perfect heuris-
tic h(B) = h∗(B) = 8. By contrast, whenA is expanded,
fPBPwill return 2−1

10−1 = 1
9 , which is clearly more accurate

than 1
2 that was returned byPBP.

PBP for Greedy Best-First Search
Next, we describe how to use the concept ofPBPto estimate
the progress of greedy best-first search (GBFS). GBFS, also
known as Pure Heuristic Search, is a best-first search that
orders the nodes in the open-list according to theirh-value,
always expanding the node in the open list with the lowest
h-value. GBFS is commonly used when the task is to find a
solution to a search problem as fast as possible.

One way to definePBP for GBFS is exactly the same as
PBP for A*. However, GBFS behaves differently from A∗.
GBFS accounts only for the heuristic value of the nodes in
the open list to decide which node to expand next. There-
fore, we propose the following variation ofPBP for GFBS,
denoted byhPBP, that also only accounts for the heuristic
value of the nodes seen during search.

hPBP(Gen) =
h(root) − hmin

h(root)

As before, it is also possible to define an equivalent estima-
tor that considers distance-to-go (i.e., estimated numberof
actions to reach the goal), for non-unit-cost domains:

dPBP(Gen) =
d(root) − dmin

d(root)

Both the path-based and the speed-based search progress es-
timations described so far heavily depend on the value of
hmin. This means that if a node is generated with very low
hmin in a early stage of the search, e.g., due to a gross under-
estimation of the heuristic, both search speed and path-based
progress estimators will be inaccurate. The next progress es-
timator, called thedistribution based progress estimatoror
DBP in short, is based on a completely different approach
that is robust to such sporadic heuristic errors.

Distribution-Based Progress Estimator
DBP estimates the search progress by learning the “struc-
ture” of the search space.3 Specifically,DBP tries to predict

3We use the term “search space” to denote the set of nodes that
will be visited by the search algorithm that is executed.
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Figure 2:d-distributions for A∗ and GBFS

how many nodes will be generated during the search for ev-
ery value ofd.4 This is done by accumulating throughout
the search the number of nodes generated so far for every
possibled-value, and interpolating the number of nodes that
will be generated in the future for every possibled-value.

Let d0, .., dm be all the possibled-values a node can have.
Throughout the search,DBP maintains for everyd-valuedi
a counterc[di] that counts the number of nodes generated
with d-value equal todi. Initially, c[di] = 0 for all d val-
ues, except for thed-value of the start state,ds, for which
c[ds] = 1. When a noden is generated, thenc[d(n)] is in-
cremented by one. As the search progresses, the values of
c[d1], .., c[dm] are updated, resulting in a distribution of the
frequency of the different heuristic values. We call this dis-
tribution thed-distribution of the search at a given time, or
simply thecurrentd-distribution. Thed-distribution when
the search ends is called acompleted-distribution. Figure 2
shows the completed-distribution for A∗ and GBFS of a ran-
dom instance of the 15-puzzle and of the life-grid domains.

Let c∗ denote thecompleted-distribution, and corre-
spondingly, letc∗[di] be the number of nodes generated
throughout the search withd-value equal todi. Given the
completed-distribution, one can easily compute the exact
search progress as follows:

Prog∗(Gen) =
Gen

∑m

i=1 c
∗[di]

The completed-distribution, c∗, is not available until the
search is finished. To overcome this,DBP estimates the

4Recall that in uniform edge cost domainsd is equivalent toh.
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Figure 3: Study of Progress Estimation in A* and the accuracyof d vs.h.

complete distribution from current distribution by using a
second degree polynomial fit. Letĉ denote the resulting esti-
mation of the completed-distribution, and correspondingly,
let ĉ[di] be the number of nodes that will have ad-value of
di according toĉ. The search progress estimated byDBP
with ĉ is given by:

DBP(Gen) =
Gen

∑m
i=1 ĉ[di]

In the beginning of the search the curve fitting required by
DBP is not given enough data to provide accurate estima-
tions of the completed-distribution. However, as the search
progresses, more nodes are generated, andĉ is expected to
provide a better estimation of the completed-distribution.

Empirical Evaluation

In this section we evaluate accuracy of the proposed progress
estimators techniques for three search algorithms: A*,
Greedy Best First Search (GBFS) and Weighted A* (Pohl
1970). Recall thatprogressis measured by the ratio be-
tween the number of nodes generated and the total number
of nodes generated by the search algorithm when the goal is
found (Definition 1). Thus, the accuracy of a progress es-
timator is measured by the absolute difference between the
estimated progressreturned by the progress estimator, and
thereal progress, computed after the problem was solved. In
the plots shown in this section, they-axis is the average ac-
curacy of a progress estimator for a set of problem instances.
Thex-axis in the plots is thereal progress. As it is impracti-
cal to write down the estimated progress for every expanded
node for these problems, we take 500 samples uniformly at
random from all data points generated by the search.

We test the estimators on Life-cost grids and on the 15
puzzle. Life-cost grids were first proposed by Ruml and
Do (2007). These are a standard 4-connected grid with a
slightly different cost function, moving out of a cell has cost
equal to the y-coordinate of the cell. We use 100 grids that
are 2000x1200, with a starting state in the lower left-hand
corner of the grid and the goal in the lower right. For the 15-
puzzle, we look at the 100 instances used by Korf (1985).

A*

Figure 3(a) shows the relative performance ofVeSP, DBP,
PBP, andfPBP. We exclude the results of VaSP from this
plot because they were substantially worse than the other
approaches. The two best estimators in this case are clearly
the path-based estimatorsfPBPandPBP. Even though less
accurate than the path-based estimators, DBP is also fairly
accurate with errors no greater than 10%. We believe the ac-
curacy ofDBP could be improved in this domain, however.
Figure 2(b) shows thed-distribution for this domain (life
grids). Clearly the second-order polynomial used byDBP
to estimate the reald-distribution does not capture the actual
distribution of d-values, explainingDBP’s performance.

Since the path-based estimators performed best in this do-
main, we compared several variants of the path-based esti-
mators. Specifically, we consider three path-based estimator
variants: PBP, PBPL and fPBP. Recall thatPBPL is PBP
that uses a distance-to-go heuristic (d) and depth (D) instead
of a cost-to-go heuristic (h) and cost-so-far (g).

The results are shown in Figure 3(b). First, we can see
thatPBPL is outperformed by bothfPBPandPBP. This is
counter intuitive, as the actions-to-go heuristics (i.e,d) cor-
responds more accurately than cost-to-go heuristics (h) to
the number of expansions required to reach a goal. This
phenomenon can be explained by considering the accuracy
of d andh in this domain, shown in Figure 3(d). In this plot,
we show the relative error in the cost-to-go and actions-to-
go heuristics computed ash(n)

h∗(n) and d(n)
d∗(n) respectively. The

plot shows clearly that thed heuristic in this domain is far
less accurate than theh heuristic, explaining the improved
performance ofh-based estimators (fPBPandPBP) over the
d-based estimatorPBPL.

The second observation that can be seen from Figure 3(b)
is that fPBP outperforms bothPBP, andPBPL. This sup-
ports the analysis given in the path-based section and exem-
plified in Figure 1. However, note thatfPBPuses additional
information that is not available toPBP: optimal solution
cost. Interestingly, the difference in accuracy betweenfPBP
andPBP is very small, wherefPBP is only about 1% more
accurate thanPBP.

The relative performance of the estimators on the 15-
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Figure 4: Study of Progress Estimation in Greedy Search

puzzle problem is shown in Figure 3(c). In this domain both
DBP andPBPhave similar accuracy. Figure 2(a) shows the
d-distribution seen during an A* search for a random start
state of the 15-puzzle. The second-order polynomial fit used
by DBP is clearly a good choice in this case, which explains
the improved performance ofDBP in this domain.

In contrast to the life-grids domain,PBP is more ac-
curate thanfPBP in the 15-puzzle domain. Recall that
fPBP measures search progress according to the function
fmin−f(start)
OPT−f(start) . AsOPT andf(start) remain fixed through-
out the search, we have thatfPBPmeasures search progress
based onfmin, i.e., the value of the largest expandedf -
value. Thus,fPBP assumes that the search effort required
to increase thef -value is the same throughout search. In
the Grid domain the number of nodes in differentf -layers
is a relatively fixed number as thef -values increases. Thus,
this assumption offPBPholds. However, in the tiles domain
the number of nodes in af -layer grows exponentially as the
f -value increases. Thus, in the tiles domain the assumption
that the search effort required to increasefmin is the same
throughout search clearly does not hold.PBP, on the other
hand, measures search progress according to the maximal
g(n)
f(n) observed. Thus,PBP also considered the advance in
g-values in addition to the advance inf -values seen during
the search. Hence,PBP is able to estimate different search
effort for differentf -layers, which results in more accurate
progress estimations in this domain.

Greedy Search

We now discuss the search progress estimators in Greedy
Best First Search. First, we compare the three progress es-
timation approaches presented in this paper: speed-based
(VaSPandVeSP), path-based and histogram-based (DBP).
As explained in the path-based estimation section, for GBFS
we modifiedfPBP to consider eitherh or d instead off , re-
sulting inhPBPanddPBPprogress estimators, respectively.

First, consider they-axis scale used for the GBFS
progress estimations in Figure 4 in comparison to they-axis
scale used for the A* plots in Figure 3. Clearly, all progress
estimators perform poorly for estimating the progress of
GBFS, with errors ranging up to in comparison with their

performance in estimating the progress of an A* search.
Next, consider the life grid results shown in Figure 4(a).

Similar to the A* results described above, bothhPBP
andDBP significantly outperform the speed-based methods
VaSPandVeSP. VaSPandVeSPboth frequently err in their
estimates by more than 30%, whilePBPandDBPhave esti-
mates that do not err by more than 20%, and frequently have
less than 10% absolute error.hPBPandDBP differentiate
themselves by when they are most accurate, withhPBPbe-
ing more accurate early on, andDBPhaving better estimates
near the end of the search.

Following, consider the performance of the different vari-
ants ofPBP, namelyhPBP, dPBP, PBP andPBPL. Accu-
racy results are shown in Figure 4(b) In this domain we see
small difference between these variants, where some of them
are more accurate at the beginning of the search (dPBPand
hPBP), while others path-based predictors are are better near
the end of the search (e.g.,PBPL). It is hard to see a signifi-
cant variant outperforming the other.

Figure 4(c) presents these same estimation techniques in
greedy search on the 15-puzzle. Results in the tiles problem
are similar to those reported on grids in thatDBPandhPBP
are still the best predictors overall, withDBP being more
accurate in most of the search, except near the end.

While hPBPproduces accurate estimates with error fre-
quently below 10% on the Grid domain, its estimates on the
tiles domain are inaccurate. We conjecture that the inaccu-
racy ofhPBPon the 15-puzzle is explained by the combina-
tion of two facts. First, usually in the beginning of a greedy
search the value ofhmin decreases rapidly (Imai and Kishi-
moto 2011). This will misleadhPBP into thinking that the
search progressed more than it actually have. Second, the
range of heuristic values for the 15-puzzle is much smaller
than the range for the Grid domain. Thus, the rapid decrease
in hmin in the beginning of search will have a major impact
on thehPBP estimations for the 15 puzzle. For instance,
if hmin decreases from 40 to 20 with just a few nodes ex-
panded,hPBPwill mistakenly assert that the search is about
half-way done. On the other hand, on a domain with much
deeper solutions and larger range of heuristic values, a quick
decrease of 20 in thehmin will not represent a large change
in the estimated search progress.



Another factor that contributes to the difference in accu-
racy of hPBPbetween the two domains is the accuracy of
the heuristic functions used. Figure 4(d) shows the accu-
racy ofhPBPwhen using heuristic functions of different ac-
curacy. Here we makehPBPestimations when employing
Manhattan Distance and the 7-8 additive pattern database
(7-8 PDB) (Felner, Korf, and Hanan 2004). Korf and Felner
showed that the 7-8 PDB is far more accurate than Man-
hattan Distance, and we see that the progress estimations
when using the 7-8 PDB are also more accurate. The heuris-
tic used in grid is relatively more accurate than the heuristic
used in the 15-puzzle. Thus, as observed in the results,hPBP
is often more accurate for life grids.

Even thoughDBP is the best estimator on the 15-puzzle as
shown in Figure 4(c), its estimations have an average error of
about 25%, reaching values of almost 40% in the beginning
and in the end of search. These are inaccurate estimations,
especially if compared to the DBP estimations for A* (where
the error ofDBP is at most 10%). The inaccuracy ofDBP for
greedy search is explained by the histograms in Figure 2(d)
and 2(c); the second-order polynomial used byDBPdoesn’t
capture the shape of thed-distribution of greedy search.

Weighted A*
Now that we have discussed A* search and greedy search,
we turn our attentions to Weighted A* (Pohl 1970), a
best-first search algorithm that uses an evaluation function
fw(n) = g(n) + w · h(n), wherew is a parameter. The be-
havior of Weighted A* (WA*) scales smoothly between the
A* and GBFS extremes, according to the value ofw, where
w = 1 results in A*, andw = ∞ results in GBFS.

First, we compare the accuracy of the speed-based, path-
based and distribution-based approaches, when used to esti-
mate the progress of Weighted A* withw = 1.5. Results for
life grid and 15-puzzle are shown in Figure 5(a) and 5(b). As
before, we see thatPBPandDBP have, in general, the best
performance, and are more accurate than eitherVeSPand
VaSPwhen estimating search progress (VaSPis not shown
as it was much worse than other estimators).

Next, consider the effect of different values ofw on the
performance ofPBP. Figure 5(c) compares the performance
of PBP with w = 1.1, 1.5, 1.75 and2. As can clearly be
seen, increasingw results in less accurate search progress
estimations. This is understandable, as increasingw results
in Weighted A* behaving more like GBFS. Since the accu-
racy ofPBPwas shown to be significantly worse for GBFS
than for A*, it is clear thatPBPwith higherw will be less
accurate thatPBPfor lower valuesw.

Lastly, we consider the performance of variants of the
PBP technique in Weighted A* search. Results are shown
in Figure 5(d). As thedPBPandPBPL estimates did not
work in either A* or GBFS, we omit them from the evalua-
tion here. Instead, we focus onhPBP, PBP, andwPBP. As
the results show,PBP outperforms bothhPBPandwPBP.
We conjecture thatPBP outperformswPBPbecausef ′(n)
provides a pessimistic estimate of the search effort required
to complete search. Thayer and Ruml (2008) have shown
that WA* typically finds solutions with cost much lower than
w ∗OPT , and thus wPBP is misled.

Discussion and Summary

fPBP assumes that the search effort required to increase
fmin is the same across search;PBPassumes that the search
effort required to increase the value ofg(n)

f(n) is also the same
throughout search. These assumptions might be problem-
atic in domains with shallow solutions and large branch-
ing factor. In such domains any change infmin and in the
largestg-value seen might represent a large change in the
estimated percentage of search completed. For instance, in
a domain with average solution depth of 5, after expanding
the root nodePBPmight estimate that about 20% of search
was completed, while in reality very little of the search was
completed after expanding the root node. In such domains
we expectDBP to perform better, as long as the fitting func-
tion being used is able to capture the actual distribution of
d-values.

We observed the following trends in the results. First, the
novelPBPandDBP progress estimators are able to predict
with high accuracy the progress of an A* search, differing
from the actual progress by less than 5%. Second, the pro-
posed progress estimators are in general less accurate for
GBFS. Results for Weighted A* lie in the continuum be-
tween these two extremes. Third, it is often the case that the
simplerPBPvariants are more accurate than even the more
complexDBP, as well asVaSPandVeSP.

Related Work
A considerable amount of research was devoted to estimat-
ing the search effort of tree-based methods (Korf, Reid, and
Edelkamp 2001; Zahavi et al. 2010; Lelis, Zilles, and Holte
2012; Knuth 1975; Burns and Ruml 2012; Kilby et al. 2006).
The largest difference between the methods we presented in
this paper and the ones mentioned above is that we estimate
search progress for best-first searches instead of tree-based
searches. Breyer and Korf (2008) predicted the number of
nodes expanded by A* for the 15-puzzle, but they used the
information learned from a complete breadth-first search in
the state space. Hernadvolgyi and Holte (2004) also made
estimations for the number of nodes expanded by A*, but
they ignored the transposition detection the algorithm does.
None of the methods cited above account for transposition
detection other than transpositions on a single path. To the
best of our knowledge we are the first to make predictions
of the search effort of algorithms that detect transpositions.
In addition, the methods presented in this paper are online
estimators in the sense that they estimate search effort while
using the information learned by a search algorithm, while
most tree-based methods do not consult search performance.

Future Work

While having good indications of when our searches will
end is important, the most exciting potential application of
progress estimation techniques is in the realm of search un-
der time constraints. Our evaluation showed that we have
more accurate estimators than those previously used in dead-
line search algorithms, and that is likely to lead to better per-
formance for search under a deadline.
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Figure 5: Study of Progress Estimation in WA*

In this paper, we do not consider adapting techniques for
estimating the size of an IDA* search tree to estimating best-
first search progress. The largest challenge here is learning
how to account for duplicates in tightly connected search
spaces like grids. Future work will investigation of how to
adapt the methods mentioned above so that they can be used
to measure search progress of best-first search.

Conclusion
In this paper we have presented and evaluated several tech-
niques for estimating thesearch progressduring the execu-
tion of a search algorithm. Estimating the search progress
can improve the applicability of search algorithms in real ap-
plications, as end-users strongly prefer having progress indi-
cators such as progress bars when applications perform long
tasks (Myers 1985). This is to our knowledge the first work
on estimating thesearch progress. The proposed techniques
work well for A* and Weighted A* with low-weights. Fu-
ture work will study how to estimate the progress of GBFS
and other search algorithms.
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