
Using Lookaheads with Optimal Best-First Search

Roni Stern Tamar Kulberis Ariel Felner
Information Systems Engineering
Deutsche Telekom Laboratories

Ben Gurion University
Beer-Sheva, Israel 85104

roni.stern@gmail.com,{kulberis,felner}@bgu.ac.il

Robert Holte
Computing Science Department

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

holte@cs.ualberta.ca

Abstract

We present an algorithm that exploits the complimentary ben-
efits of best-first search (BFS) and depth-first search (DFS) by
performing limited DFS lookaheads from the frontier of BFS.
We show that this continuum requires significantly less mem-
ory than BFS. In addition, a time speedup is also achieved
when choosing the lookahead depth correctly. We demon-
strate this idea for breadth-first search and for A*. Addition-
ally, we show that when using inconsistent heuristics, Bidi-
rectional Pathmax (BPMX), can be implemented very easily
on top of the lookahead phase. Experimental results on sev-
eral domains demonstrate the benefits of all our ideas.

Introduction

Best-first search (BFS) is a general purpose search algo-
rithm. It keeps a closed list (denoted hereafter as CLOSED)
of nodes that have been expanded, and an open list (denoted
hereafter as OPEN) of nodes that have been generated but
not yet expanded. At each cycle of the algorithm, it ex-
pands the most promising node (the best node) from OPEN
which is moved from OPEN to CLOSED, and its children
are generated and added to OPEN. BFS terminates when a
goal node is chosen for expansion, or when OPEN is empty.

Special cases of BFS differ in their cost function f .
Breadth-first search (denoted here as BRFS) is a BFS with
f = d where d is the depth in the search tree. A* is a BFS
with f(n) = g(n)+h(n), where g(n) is the sum of the edge
costs from the start to node n and h(n) is a heuristic estima-
tion of the cost from node n to a goal. A* with an admissible
heuristic returns optimal solutions.

The main drawback of BFS is its memory requirements.
In order to choose the best node, BFS stores in memory all
the open nodes. Additionally, BFS also stores in memory
all the closed nodes in order to recognize a state that has
already been generated and to enable solution reconstruc-
tion once a goal is reached. The space complexity of BFS
therefore grows exponentially with the depth of the search.
Consequently, BFS cannot solve difficult problems since for
large state spaces it usually exhausts all the available mem-
ory before reaching a goal. In addition, the constant time per
node in a typical expansion cycle is also rather heavy due to
the different primitive operation that are performed.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

By contrast, the memory needs of depth-first search
(DFS) is only linear in the depth of the search and the con-
stant time per node is rather light. DFS in its basic form
may never find a solution and if it does, it does not guarantee
anything about the quality of the solution. However, several
algorithms that generate nodes in a best-first fashion while
activating different versions of DFS have been developed.
The most common algorithm is IDA* (Korf 1985) which
performs a series of DFS calls from the root in an increas-
ing order of costs. Another related algorithm is RBFS (Korf
1993). It expands new nodes in a best-first order even when
the cost function is nonmonotonic. The main limitation of
DFS algorithms is that their efficiency significantly deterio-
rates in state spaces that contain many transpositions since
they cannot perform duplicate pruning. In addition, they are
inefficient with a many unique heuristic values.

We propose a continuum between classic BFS and DFS.
The basic idea is to use the general schema of BFS but to
perform limited DFS lookaheads from nodes when they are
expanded. This schema has great potential to exploit the
complimentary benefits of BFS and DFS. Using these looka-
heads, significant reduction in the memory requirements is
always obtained. Furthermore, when correctly choosing the
lookahead depth we keep the duplicate nodes rate small
enough and significant time speedup can be achieved too.
We also describe how lookaheads can be effectively aug-
mented with BPMX (Felner et al. 2005) when using incon-
sistent heuristics. Experimental results demonstrate the ben-
efits of the presented algorithms on several domains.

Other attempts to search in a best-first order with a limited
amount of memory include MA* (Chakrabarti et al. 1989)
and SMA* (Russell 1992). These algorithms generate fewer
nodes than IDA* but they run slower in practice because
of memory maintenance overhead (Korf 1993). The most
similar to our approach is MREC (Sen and Bagchi 1989).
A* is activated, until memory is exhausted. Then IDA* is
performed from the frontier. There is a significant difference
between MREC and our approach as we activate the DFS
phase at every level regardless of the memory available.

Breadth-first Search with Lookahead

BRFS with lookahead (BRFSL(k)) combines BRFS with
limited DFS search to depth k. As in ordinary BRFS,
BRFSL maintains both OPEN and CLOSED. At each itera-

185

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Algorithm 1: Expansion cycle of BRFSL(k)

Input: n, the best node in the open list
1 foreach state operator op do
2 child ← generateNode(op, n)
3 if DFS-with-GoalTest(child,k)=True then
4 halt ; /* Goal was found */

5 if duplicateDetection(child)=False then
6 insert child to OPEN
7 else
8 update cost function of duplicate (if required)
9 end

10 insert n to CLOSED

11 end

tion, node n with smallest depth in OPEN is extracted. How-
ever, before adding n to CLOSED, a lookahead to depth k
is performed by applying a limited DFS to depth k from n.
Only nodes at depth k are goal tested.1 If a goal is found
during the lookahead, the algorithm halts immediately. If a
goal is not found, node n is added to CLOSED, and its chil-
dren are added to OPEN. Algorithm 1 presents the pseudo
code for BRFSL. Line 3 performs a limited DFS from child.
If a goal is found during this limited DFS, then DFS-with-
GoalTest return True.

An exception to this is the first step of expanding the root.
In this case we do not stop when a goal is reached but con-
tinue the DFS to verify that no goal exists at shallower levels.
In fact, at this step, iterative deepening can be performed in
order to either find a goal at depth less than or equal to k or
to verify that no goal exists at these levels.

Three expansion cycles of BRFSL(2) are illustrated in
Figure 1. Dark nodes indicate the expanded nodes, light
nodes are the nodes visited during lookahead steps, and
nodes with bold outlines were also goal tested. In the first
expansion cycle (a), a DFS is performed from the root node
A to depth 2. Since this is the first step, a goal test is per-
formed for all nodes. Assuming no goal was found in this
cycle, the algorithm will add the direct successors of the
root, B and C, to OPEN. In the next iteration (b), node B is
expanded. Instead of only generating its immediate succes-
sors (D and E), a lookahead to depth 2 is performed, where
only nodes at the deepest lookahead level are goal tested
(nodes H ,I ,J and K). Assuming no goal is found D and E
are added to OPEN and a new iteration starts (c).

Completeness and Optimality

It is easy to see that BRFSL(K) is complete, i.e., it always
finds a goal if one exists. The algorithm also provides the
optimal solution. Assume the goal node is at depth d and the
lookahead is performed to depth k. When expanding nodes
at depth d − k we are actually peeking at nodes at depth d
for the first time. Since nodes at depth smaller than d were
peeked at in earlier expansions, when a goal node is found
at depth d it is optimal.

1Throughout this paper we use the term goal test as a verb,
denoting the process of checking if a given node is a goal node.

Figure 1: Example of BRFSL(2)

Memory complexity Assume that the brute-force branch-
ing factor of the state space is b and that be is the effective
branching factor, i.e., the number of successors after apply-
ing duplicate pruning. It is important to note that be ≤ b,
due to transpositions in the state space. Now, assume that
the depth of the solution is d and the lookahead is performed
to depth k. When the goal node is found, only nodes up to
depth d − k are stored in OPEN and CLOSED. Thus, the
worst case space complexity of BRFSL(K) is

1 + be + b2

e + b3

e + . . . + bd−k

e = O(bd−k

e )

Clearly this requires less space than standard BRFS (=
BRFSL(0)) which requires O(bd

e
) memory.

Time complexity We differentiate between two types of
nodes: expanded nodes and visited nodes. Expanded nodes
are nodes that are expanded from OPEN. Based on the space
complexity analysis above there are 1+ be + b2

e
+ b3

e
+ . . .+

bd−k
e such nodes. Visited nodes are nodes that are visited

during the lookahead DFS calls. A single DFS lookahead
search to depth k visits 1 + b + b2 + b3 + . . . + bk = O(bk)
nodes. We perform such lookaheads for all expanded nodes
and thus the total number of nodes that are visited during all
DFS lookaheads is (1 + be + b2

e
+ b3

e
+ . . . + bd−k

e
) × (1 +

b+b2 +b3 + . . .+bk) this amounts to O(bd−k
e ×bk). This is

larger than the number of nodes traversed by ordinary BRFS
(= 1 + be + b2

e
+ b3

e
+ . . . + bd

e
= O(bd

e
)) for two reasons.

First, unlike regular BRFS where every node is visited only
once, in BRFSL(k) every node from depth larger than k and
smaller than d is visited at least k times during the looka-
heads of previous levels. Second, in the DFS lookaheads we
do not prune duplicate nodes and if the state space contains
transpositions, duplicate nodes are visited via different sub-
trees. In other words, for the DFS steps we use b as the base
of the exponent while for the BRFS steps we always use be.

However, in practice BRFSL(k) may run faster than
BRFS. Since the lookahead is done in a depth-first manner,
nodes can be generated during the lookahead by only apply-
ing the state space operator on the expanded node and apply-
ing the reverse operator when backtracking. This avoids the
need to copy an entire state for every node in the lookahead,
yielding an improved runtime. Therefore, the constant time
per node during the lookahead may be much smaller than
the constant time required to completely generate a node and
insert it to OPEN. In addition, no duplicate detection (DD)

186



15-puzzle

k Memory Expanded DFS Time

0 19,473,242 10373537 0 16.62
1 11,305,305 5978496 12566619 9.56
2 5,978,495 3138531 20674663 6.10
3 3,138,530 1634463 26483929 4.80
4 1,634,462 845867 31085133 4.26
5 845,866 434590 34966998 4.25
6 434,589 222132 38537864 4.31
7 222,131 112758 41900800 4.60
8 112,757 56961 45243397 4.78
9 56,960 28568 48437217 5.21

10 28,567 14258 51578154 5.37
11 14,257 7050 54304459 5.78
12 7,049 3467 56902134 5.92
13 3,466 1682 58866868 6.25
14 1,681 808 60560268 6.29
15 807 385 61653712 6.58
16 384 182 62489184 6.48
17 181 86 62764526 6.69
18 85 40 62911950 6.58

(12,4) TopSpin puzzle

0 12,575,891 1845383 0 17.35
1 1,854,382 258032 3096386 3.31
2 258,031 34887 5442500 2.99
3 34,886 4592 8651828 4.5
4 5,591 583 13207502 6.68

Table 1: Results of BRFSL.

check is done at the DFS stage which also saves time since a
DD check might be time consuming. Thus, for small values
of k, BRFSL(k) might run faster than BRFS.

When increasing k, more nodes are visited by
BRFSL(k) because of the two reasons above (duplicates
and overlapping lookaheads). At some point, this will dom-
inate the fact that the constant time per node is smaller. The
optimal value for k is domain dependent and is strongly re-
lated to the rate of duplicates in the domain and to the con-
stants involved.

Experimental Results

We experimented with BRFSL(k) on the 15-puzzle, for dif-
ferent values of k. Table 1 presents the results averaged over
50 depth-22 instances. The k column shows the lookahead
depth (where k = 0 is ordinary BRFS). The Memory column
shows the amount of memory required for search. The Ex-
panded column shows the number of nodes expanded during
the search. The DFS column shows the number of nodes vis-
ited during the DFS lookahead phase and the time column
shows the runtime in seconds. As expected, larger values
of k constantly reduce the memory needs (labeled in bold)
compared to ordinary BRFS (BRFSL(0)). Furthermore, for
all values of k the search was also faster than BRFSL(0).
Optimal time behavior was obtained for k = 5 where the
time speedup was a factor of 4 and the memory reduction
was by a factor of 20.

Similar results were achieved for 50 instances of the Top-
Spin(12,4) puzzle at depth 14 (see results in the bottom of
the table). In TopSpin, the optimal lookahead depth was
2 (compared to 5 in the 15-puzzle). This is because Top-
Spin contains many short cycles even in our implementation,

which eliminates the most obvious transpositions.

A∗ with Lookahead

Generalizing the lookahead concept to work with A∗ is not
trivial. In BRFS and in BRFSL(k) as well, all nodes of depth
d are visited for the first time before visiting nodes of depth
d + 1. When a goal node is found (during the lookahead
phase) the search can halt, as it is guaranteed that the opti-
mal path to it has been found. By contrast, when A∗ expands
a node it generates new nodes with a variety of costs. There-
fore, the best path to the goal is guaranteed only when all
nodes with cost lower than a goal node have been expanded.
Thus halting the search when a goal is seen in the lookahead
may result in a non-optimal solution. We now show how
a lookahead can be effectively applied in A∗, while guaran-
teeing the optimal solution. The resulting algorithm is called
A∗ with lookahead (AL*).

AL∗ uses the same basic expansion cycle of A∗. The
least cost node v from OPEN is expanded and moved
to CLOSED, and its children are generated and added to
OPEN. Similar to BRFSL, after a node v is expanded, a
limited DFS lookahead is first performed from v. However,
AL* has a few modifications:
Bounding the lookahead with the cost function: All DFS
lookaheads performed in the expansion cycle of node v ex-
pand only nodes with costs less than or equal to f(v) + k,
The DFS backtracks when a node with cost larger than
f(v) + k or a goal node is visited. We denote such nodes
as the lookahead frontier nodes.
Maintaining an upperbound on the goal cost. In order
to guarantee the optimality of the solution we use the same
mechanism used by Depth-First Branch and Bound (DF-
BnB) (Korf 1993). We maintain a variable UB with the cost
of the best solution found so far (initially ∞). The search
halts when no node in OPEN has a cost smaller than UB. In
addition, nodes with cost larger than or equal to UB can be
immediately pruned as they cannot lead to a better solution.
Propagating cost found during the lookahead. We asso-
ciate two f -values with each node. (1) f -static (fs) which
is its original f -value and (2) f -updated (fu): once a looka-
head is performed from a child c, we keep the smallest f -
value among the lookahead frontier nodes. This value is a
lower bound on any solution in the subtree rooted by c. fu is
used to order OPEN.2 However, fs is used to bound the cost
of the lookahead. That is, the lookahead is performed up to
cost fs + k. Otherwise, using the fu to bound the lookahead
will result in a growing lookahead depths, that will increase
the runtime as the search progresses.

Algorithm 2 describes an expansion cycle of AL∗. The
search terminates when the cost of the expanded node v is
larger than or equal to UB (lines 1-2). Child nodes with
cost larger than or equal to UB are pruned (line 6-7). UB
is updated either when a child is found to be a goal (line 9),
or during the lookahead (line 12-13). The lookahead bound
LHB is set to be the minimum between fs(v) + k and UB

2A reminiscent idea was also used in RBFS (Korf 1993;
Reinefeld and Marsland 1994) where two f -values were used:
static and stored.

187



Algorithm 2: Expansion cycle of A∗ with lookahead

Input: v, the best node in the open list
Input: UB, an upper bound, initialized with ∞

1 if cost(v) ≥ UB then
2 Halt ; /* Optimality verified */

3 Insert v to closed list
4 foreach operator op do
5 child ← generateNode(op, v)
6 if fu(child) ≥ UB then
7 Continue ; /* Prune the node */

8 if goalTest(child)=True then
9 UB=fu(child)

10 LHB ← min(UB, fs(v) + k[, NextBest])
11 if fu(child) ≤ LHB then
12 MinCost ← Lookahead(child,LHB,UB,∞)
13 /* lookahead call possibly updating UB */
14 if MinCost > f(child) then

fu(child) ← MinCost
15 if duplicateDetection(child)=False then
16 Insert child to open list
17 else
18 Reorder child in OPEN (if required)
19 end

20 end

(line 10) (the square brackets is an optional version that will
be discussed below). The lookahead DFS procedure (de-
scribed in Algorithm 3 and called in line 12) may update
UB, as well as the cost of child (lines 14-15). MinCost
contains the minimum cost of a lookahead frontier node
found so far. It is updated whenever a frontier node with
smaller cost is found (lines 5,8 and 10 of Algorithm 3). Next
we discuss several variants of the lookahead procedure.

Maintaining Best-First Order in the Lookahead

As explained above, if a node v with cost c is expanded then
the lookahead step in AL∗(k) performs a limited DFS up
to cost c + k. Nodes inside this lookahead are visited in
a DFS manner and not in a best-first manner. This might
cause expansions of nodes with high costs even though the
goal might be found later with a lower cost. Two possible
reasons can cause this and both can be rectified.

First, if the next node v′ in OPEN has a cost of cnext <
c + k then the DFS lookahead may expand nodes with costs
larger than cnext. Thus AL∗(k) does not necessarily visit
new nodes in a best-first manner. This can be rectified by
limiting the depth of the lookahead to be no larger than the
cost of the next best node in OPEN. This option is shown
in the square brackets in line 10 of Algorithm 2. This is
reminiscent of the use of the next best alternative cost of
RBFS (Korf 1993) (denoted there as the upper bound).

Second, the lookahead itself is performed in a DFS man-
ner. Consequently, new nodes within the lookahead subtree
with high costs (e.g., c + k) might be expanded before new
nodes with smaller costs (e.g., c + k − 1). To rectify this,
IDA*or RBFS can be used to implement a completely best-
first lookahead. However, our algorithm produces the opti-
mal solution even without these modifications. In the exper-
imental results presented in this paper we have not imple-

Algorithm 3: AL∗ Lookahead

Input: v, the root of the lookahead
Input: LHB, the limit of the lookahead
Input: UB, an upper bound to the goal cost
Input: MinCost, The min. cost of lookahead frontier node.

1 foreach operator op do
2 child ← generateNode(op, v)
3 if goalTest(child)=True then
4 UB=cost(child)
5 MinCost ← min(MinCost, fu(child))

6 else
7 if fu(child) ≥ LHB then
8 MinCost ← min(MinCost, fu(child))
9 else

10 MinCost ← min(MinCost,
Lookahead(child,LHB, UB, MinCost))

11 end

12 end

13 end
14 return MinCost

mented this due to the overhead of IDA* and RBFS.

Lookahead 0: Implementing Trivial Lookahead

In BRFS the cost function is the depth of the node. Thus,
when expanding a node v with cost c we always generate
nodes with cost c + 1. Therefore BRFSL with lookahead
zero is simply BRFS. By contrast, in A* the cost function is
(f = g + h). Therefore if for a child node x, h decreased
by the same amount that g increased, the total cost of x will
be equal to the cost of v. Thus, in AL∗(0) a lookahead will
be preformed to all nodes below v with the same cost of v.
After the lookahead is completed a child node enters OPEN,
but can then be immediately expanded. Inserting to OPEN
is a costly operation as priority queues times are logarithmic
in the size of OPEN. Thus, we suggest a simple enhance-
ment to AL∗. If a child node has the same cost as its parent
(which has just been expanded) immediately expand it, with-
out inserting it to OPEN. We present this improvement in the
context of AL∗(0) but it can also be implemented in classic
A* and in AL∗(k) for k > 0. In domains where many suc-
cessors share the same cost value, this enhancement is ex-
pected to substantially reduce execution time, as many nodes
will bypass OPEN compared to classic A*. Note that this
enhancement makes BFS more like BRFS, where each ex-
panded node generates nodes with the next largest cost. We
denote this enhancement as trivial lookahead and regard it
as part of lookahead zero. This enhancement was recently
introduced independently (Sun et al. 2009).

Figure 2 illustrates an expansion cycle of AL∗(4) with
trivial lookahead, when node A is chosen for expansion.
First a trivial lookahead is performed, expanding all suc-
cessors of A that have the same cost as A (=22). These
are nodes C, F , and J , marked with black circles. Each
child of these nodes with a cost larger than 22 is inserted to
OPEN, and a lookahead starts from that node. These nodes
are B, K , G, and D, marked with dark gray circles. During
a lookahead, all successors with cost ≤ 26 (22+4) are visited

188



Figure 2: Example of an iteration of AL∗(4).

Algorithm Memory Expanded DFS Time

15-puzzle (average solution length: 50.95)

A∗ 4,790,944 2,653,442 0 15.23
AL∗(0) 4,790,944 2,653,442 0 8.07
AL∗(2) 1,371,783 994,645 8,752,976 2.72
AL∗(4) 361,399 245,900 15,297,728 1.60
AL∗(6) 91,482 59,083 22,418,926 1.68
AL∗(8) 20,920 13,006 28,149,641 1.97

IDA* - - 34,314,189 4.22

(16,4) Top Spin (average solution length: 13.91)

A∗ 6,582,232 889,802 0 63.58
AL∗(0) 2,678,211 278,279 0 42.68
AL∗(1) 829,494 101,896 14,299,225 31.46
AL∗(2) 160,873 18,668 26,466,951 37.39
AL∗(3) 86,962 14,131 35,344,526 48.54

IDA* - - 63,682,787 84.01

Table 2: AL∗ results

and goal tested. Thus the nodes visited during the lookahead
are E, L, H , and M , marked with a double circle.

Experimental Results

We implemented AL∗ on the 15-puzzle with Manhattan
distance heuristic and on the (16,4)-TopSpin with a PDB
heuristic based on 8 tokens. Table 2 presents the results.
For the 15-puzzle we used the standard 100 random in-
stances (Korf 1985). We report average results only for 74
instances that were solvable with A∗ using 2Gb of RAM.
Due to less memory requirements of AL∗(k), 90 instances
were solvable with AL∗(2), 98 with AL∗(4) and the entire
set with deeper lookaheads. For TopSpin the results are for
100 random instances. AL∗(0) denotes the trivial lookahead.
The meaning of the columns are the same as in Table 1.

In both domains using AL∗ with larger lookaheads yields
substantial improvement in terms of memory. Additionally,
trivial expansions amount to a large percentage of the to-
tal expansions yielding significant time reduction. Further-
more, reduction of runtime is achieved for many values of
k. The best runtimes over all the lookaheads is labeled in
bold. For the 15-puzzle k=4 produced the greatest speedup,
achieving a 9-fold reduction of A∗’s runtime accompanied
by 10-fold reduction in the memory required. AL∗(4) also
gains more than a factor of 2 reduction in runtime over
IDA*. For TopSpin (which has many short cycles), k=1 pro-
duced the greatest speedup, achieving a 2-fold reduction of
A∗’s runtime and an 8-fold reduction of memory. Note that
since the TopSpin state space contains many transpositions,
IDA* performs poorly on it. Additionally, even a looka-
head of zero may save memory, since in AL∗ nodes are goal

Figure 3: BPMX examples.

tested when they are generated (unlike text book A∗ imple-
mentation).3 Generating a goal node sets an upper bound on
the goal cost, pruning future nodes with equal or higher cost.
In the 15-puzzle with MD the goal node and its parent have
the same f -value (moving the last tile to its place), thus no
memory reduction is gained with AL∗(0).

Lookahead with Inconsistent Heuristics

As explained above, in AL∗ the cost of a child node fu

is updated during the lookahead by propagating the mini-
mum cost found in the lookahead frontier. When inconsis-
tent heuristics are available (and an undirected state space)
more propagation can be done.4

When inconsistent heuristics are available, admissible
heuristic values can propagate between connected nodes x
and y. h(x) can be updated to be max(h(x), h(y)−d(x, y)).
This is shown in Figure 3 (left). The value from the left node
(10) is propagated to the right node which now becomes 6
instead of 2. Applying this from parents to children (and
further to their descendants) is called Pathmax (Mero 1984).
Recently it has been shown that this can be also applied in
both directions. Values from children can propagate to their
parents (and further to their ancestors or to the other chil-
dren of the parents). This is called Bidirectional Pathmax
(BPMX) (Felner et al. 2005). An example of BPMX on a
search tree is shown in Figure 3 (right). Assuming all edges
costs are 1 then the h-value of the left grandchild (10) is
propagated up and down the tree increasing values of all its
neighborhood (except for gray node, as its value remains 7).

Both directions of BPMX (nodes to their descendants and
vice versa) can be incorporated in IDA* very easily. Heuris-
tic values are passed from a node to its descendants when the
DFS deepens and can propagate up the tree when the DFS
backtracks. A large reduction in the search effort can be ob-
tained when BPMX is implemented on top of IDA* with in-
consistent heuristics (Felner et al. 2005). By contrast, in A*,
BPMX can only be implemented efficiently between an ex-
panded node v and its immediate generated children. These
nodes are at hand when expanding v and are easily manipu-
lated. The maximal heuristic value among the children can
be propagated to v by decreasing it by one (assuming a uni-
form edge cost) and then to the other children by decreasing
it by one again. This process is called BPMX(1) (Zhang
et al. 2009) because the propagation is only performed one
level from v. Further propagation is less efficient because
nodes that might be updated may not be available and we
need to retrieve them from OPEN or CLOSED. In addition,

3This can also be implemented in A∗ (Ikeda and Imai 1999).
4A heuristic h is inconsistent if there exist at least two states, x

and y such that (h(x) − h(y)) > dist(x, y) where dist(x, y) is
the shortest path between x and y.

189



Figure 4: Node expansions using AL∗(2) with BPMX.

(Zhang et al. 2009) showed that this might lead to an expo-
nential blowup and concluded that only BPMX(1) is effec-
tive and practical in A*.

One of the contribution of this paper is that in AL*(k)
deeper propagation than BPMX(1) can be performed with-
out these problems as BPMX can be can be integrated ef-
ficiently along the DFS phase up to the lookahead depth.
It is also possible to use BPMX(1) in AL* to further im-
prove the accuracy of the cost of generated child nodes.
There are three independent possible locations in AL* where
BPMX(1) can be applied. (1) Before the lookahead (before
line 4 in Algorithm 2) to avoid performing redundant looka-
heads. (2) After the lookahead updated the cost of the gener-
ated node (after line 20 in Algorithm 2). Here we propagate
the new cost found at a node to its siblings before perform-
ing a lookahead from them (and possibly pruning them). (3)
After all the lookaheads are performed, to update the cost of
all the child nodes according to the best heuristic cost found
throughout the lookaheads. The nodes will be inserted to
OPEN with this updated cost (after line 23 in Algorithm 2).
As each call to BPMX(1) has an overhead, it might not be
effective to use all three together. We found out that the best
balance is achieved by using only options 2 and 3 for some
domains and using all three options for other domains.

Figure 4 provides an example of an expansion cycle of
AL*(2) with BPMX. Nodes are annotated with their f -cost.
Generated nodes are colored in gray, lookahead nodes are
colored in white and expanded in black. A has three chil-
dren B,C and D. First, B is generated (Figure 4a) and
a lookahead is performed. f(F ) (16) is propagated with
BPMX up to B. Since the lookahead limit (f(A) + 2 = 12)
has been reached, the lookahead halts, without visiting other
children of B. Next, C is generated (Figure 4b) and the cost
of B is propagated to it using BPMX(1) (option 2 described
above). Since the new cost of C exceeds the lookahead limit
(13 > 12), a lookahead is not performed from C. Finally,
D is generated (Figure 4c), with a cost of 18. This cost is
propagated to B and C using option (3) described above. B
and C are now inserted to OPEN with cost 16.

Experimental Results

We implemented AL*(k) with BPMX on several domains,
but present here only the results of TopSpin. Table 3 presents
average results over 100 random instances of TopSpin(16,4).
The heuristic used is a random choice between a variety of
heuristics that were derived from symmetric (geometrical)
lookups on an 8-token PDB. We also added two implemen-
tations of BPMX: A* with BPMX(1) and IDA* with BPMX.

Clearly, AL*(k) with BPMX substantially reduces the
memory requirements. Additionally, a significant improve-
ment in runtime is achieved. A lookahead of 1 yielded the

Algorithm Memory Expanded DFS Time

A∗ 1,015,440 121,154 - 3.60
A∗

BPMX(1) 636,131 76,880 - 2.97

AL∗(0) 621,394 70,706 334,011 2.28
AL∗(1) 47,847 6,530 857,844 1.30
AL∗(2) 7,806 925 1,239,665 1.66
AL∗(3) 882 96 1,448,911 1.91

IDA* - - 3,697,245 5.58

Table 3: AL∗ on TopSpin(16,4) with random heuristic.

best runtime, with an improvement factor of more than 2
over A* with BPMX(1) (plus a factor of 11 reduction in
memory), and a factor of more than 3 over IDA* with BPMX
and simple A∗.

Conclusion and Future Work
We introduced an approach to incorporate a DFS-based
lookahead into BFS algorithms, and in particular to BRFS
and A*. We also showed BPMX propagation in AL* is im-
plemented better than with A* when inconsistent heuristics
are used. Experimental results showed reduction in both
memory and in time for a variety of domains. Future re-
search will continue in a number of directions. First, we
would like to mathematically predict the optimal lookahead
given the different attributes of a domain. Second, the looka-
head depth can be changed dynamically based on dynamic
changes of the attributes of the domain.

Acknowledgments
This research was supported by the Israeli Science Founda-
tion grant no. 305/09 and by the iCORE and NSERC grants.

References
Chakrabarti, P. P.; Ghose, S.; Acharya, A.; and de Sarkar, S. C.
1989. Heuristic search in restricted memory. Artif. Intell. 41(2):
197–221.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005. Dual
lookups in pattern databases. In IJCAI, 103–108.

Ikeda, T., and Imai, H. 1999. Enhanced A algorithms for multiple
alignments: optimal alignments for several sequences and k-opt ap-
proximate alignments for large cases. Theor. Comput. Sci. 210(2):
341–374.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal
admissible tree search. Artif. Intell. 27(1):97–109.

Korf, R. E. 1993. Linear-space best-first search. Artif. Intell. 62(1):
41–78.

Mero, L. 1984. A heuristic search algorithm with modifiable esti-
mate. Artif. Intell. 23(1): 13–27.

Reinefeld, A., and Marsland, T. A. 1994. Enhanced iterative-
deepening search. IEEE Trans. Pattern Anal. Mach. Intell. 16(7):
701–710.

Russell, S. J. 1992. Efficient memory-bounded search methods.
Proc of ECAI-92.

Sen, A., and Bagchi, A. 1989. Fast recursive formulations for best-
first search that allow controlled use of memory. In Proceedings of
IJCAI-89, 297–302.

Sun, X.; Yeoh, W.; Chen, P.-A.; and Koenig, S. 2009. Simple
optimization techniques for A*-based search. In AAMAS (2), 931–
936.

Zhang, Z.; Sturtevant, N. R.; Holte, R. C.; Schaeffer, J.; and Felner,
A. 2009. A* search with inconsistent heuristics. In IJCAI, 634–
639.

190


	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI




