Bridging the Gap between Abstractions and Critical-Path Heuristics via
Hypergraphs

Marcel Steinmetz

CISPA Helmholtz Center for Information Security

Saarland Informatics Campus
Saarbriicken, Germany
steinmetz @cispa.saarland

Abstract

Abstractions and critical-path heuristics are among the most
important families of admissible heuristics in classical plan-
ning. In this paper, we present a new family of heuris-
tics, which we name hyperabstractions, given by the com-
bination of the principal ideas underlying abstractions and
critical-path heuristics. Hyperabstractions approximate goal
distances through a mapping from states to sets of abstract
states. The abstract transition behavior forms a relation be-
tween abstract states and sets of abstract states, and is for-
mally represented via the notion of hypergraphs. We show
that both abstractions and critical-path heuristics can natu-
rally be expressed as members of this family. Moreover, we
devise a method to construct hyperabstractions, using either
a set of abstractions or a critical-path heuristic as a seed,
in a way that guarantees that the resulting distance estima-
tions dominate those of the input heuristics, sometimes even
strictly. By finding suitable cost partitionings for hyperab-
straction heuristics, this dominance result is preserved even
in comparison to the additive combination of the input heuris-
tics. Our experiments indicate the potential of this new class
of heuristics, opening a wide range of future research topics.

Introduction

Heuristic search is a very popular method in classical plan-
ning. There is a huge body of research on how to auto-
matically obtain good heuristic functions. Relating differ-
ent families of heuristics is important to deepen the under-
standing of existing and to derive new heuristics. Helmert
and Domshlak (2009) studied the relation between abstrac-
tion (Edelkamp 2001; 2006; Helmert et al. 2014), critical-
path (Haslum and Geffner 2000), delete-relaxation and land-
mark heuristics (Bonet and Geffner 2001; Hoffmann, Por-
teous, and Sebastia 2004), showing that some of them are
closely connected. However, the exact connection between
general abstraction and critical-path heuristics is yet unclear.

We devise a new type of heuristics, hyperabstrac-
tions, that naturally generalizes abstraction and critical-path
heuristics. Hyperabstractions are functions that map states to
sets of abstract concepts. Heuristic values are computed as
distances between sets of concepts in hypergraphs, concrete

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Alvaro Torralba
Saarland University
Saarland Informatics Campus
Saarbriicken, Germany
torralba@cs.uni-saarland.de

interpretations of hyperabstractions, with particular proper-
ties. Each hyperabstraction comes with multiple interpreta-
tions, differing in size and quality of the distance estimates.
We show that every critical-path heuristic can be compiled
into a dominating hyperabstraction heuristic in polynomial
time. Moreover, for every set of abstraction heuristics, there
exist polynomially constructable hyperabstraction heuristics
dominating their combination via the maximum. Both re-
sults directly carry over to additive ensembles via the ap-
plication of cost partitionings. While there exist polynomial
algorithms computing the optimal cost partitioning for sets
of abstractions (Katz and Domshlak 2008a), the complex-
ity of optimal cost partitioning for critical-path heuristics is
not known. In this paper, we show that finding the optimal
cost-partitioning for critical-path heuristics is NP-hard. This
result generalizes directly to hyperabstraction heuristics.
The experiments confirm the potential improvements in
informativeness compared to abstraction and critical-path
heuristics. Nevertheless, better construction methods for hy-
perabstraction heuristics remain an important question. All
proofs are available in a TR (Steinmetz and Torralba 2019).

Preliminaries

We introduce the planning formalisms, the heuristic func-
tions considered in this paper, as well as hypergraphs.

FDR Planning

A FDR planning task (Béckstrom 1995) is a tuple II =
(V, A, sz,G) of variables V, each v € V with finite domain
D,; actions A; a complete variable assignment sz, called the
initial state; and a partial variable assignment G, the goal.
Each action a € A defines a precondition pre, and an ef-
fect eff ,, both partial variable assignments to V, and a non-
negative cost ¢, € Rd. A fact is a variable value pair (v, d)
where v € V and d € D,. We use conjunctions of facts
and partial variable assignments interchangeably. Both are
treated as sets of facts, using usual set operations for ma-
nipulation and comparison. Two conjunctions of facts C, C’
are compatible, written C || C’, if C(v) = C’(v) for every
v € V where both are defined.

We denote by S the set of all states of II. An action a is
applicable in state s if pre, || s. A(s) gives the set of all

actions applicable in s. For a € A(s), the result of applying
ain s, written sfa], is given by the variable assignments in s,
overwritten by those in eff ,. The state space of I1 is given by
the labeled transition system O = (S, T, £, s7,Sg) where
the set of transitions contains (s,a, s[a]) € T for every
s € S and a € A(s); transition labels L = A; and Sg
gives all goal states, i.e., sg € Sg if G || sg. A plan for
s is a sequence of actions 7 = {ay,...,a,) that labels a
path from s to some sg € Sg. 7 is optimal if its summed-up
action cost is minimal among all plans for s.

Heuristics

A heuristic (function) is a function h: S — R U {oo} that
maps states to an approximation of the cost-to-go to reach
a goal state. The perfect heuristic h* assigns each state s
to the cost of an optimal plan for s, h*(s) = oo if no plan
for s exists. A heuristic h is admissible if h(s) < h*(s) for
every s € S. h is consistent if h(s) — h(t) < c(a) for every
(s,a,t) € T. his goal-aware if h(sg) = 0 for all sg € Sg.
Every goal-aware and consistent heuristic is admissible. A
heuristic h dominates another h’, written h > 1/, if h(s) >
h'(s) for all s € S. h strictly dominates h', written h > I/,
if h > 1/, and h(s) > h/(s) for at least one state s € S.

In this paper, we will consider two families of admissible
heuristics: abstraction, and critical-path heuristics.

Abstractions Abstraction heuristics compute the goal-
distance in an abstract state space, dropping the distinction
between some of the original states so to make the compu-
tation of h* feasible. Formally, an abstraction is a surjective
function a.: § — S of states to abstract states. o implic-
itly introduces an equivalence relation between states, where
s ~q tiff a(s) = a(t). For an abstract state s* € S¢, we
denote by [s*] all states s € S such that a(s) = s®.

The abstract state space of O induced by « is given
by the labeled transition system ©% = (5%, 7, A, s%,S§)
where s¢ = a(sz), Sg = {a(sg) | sg € Sg}, and T =
{{als),a,a(t)) | (s,a,t) € T}. We denote by h§. the
function assigning every abstract state s* in ©“ to the min-
imal cost to reach any state in S from s®. The abstraction
heuristic associated with v is given by h*(s) := ha (a(s)).

Various techniques have been proposed to automatically
construct the abstraction function «. Different approaches
aim to be as accurate as possible while still practical to
compute, e. g., symbolic representations of ©% (Edelkamp
2002; Torralba et al. 2017), or designing « so to compute
h&a without actually constructing ©% (Katz and Domsh-
lak 2008b). In this paper, however, we consider only ab-
stractions where the abstraction mapping « and its abstract
state space can be computed and stored in an explicit form.
Examples are pattern databases (PDBs) (Edelkamp 2001;
Haslum et al. 2007), merge-and-shrink (MS) (Helmert et al.
2014), and Cartesian abstractions (Seipp and Helmert 2018).

Critical-Path Heuristics Critical-path heuristics estimate
goal distance by breaking reasoning down to atomic con-
Jjunctions. Which conjunctions are treated as atomic, and

thus how accurate the estimations are going to be, is con-
trolled via the parameter C. Let C be any set of conjunctions
of facts. The regression of a conjunction C' by an action a is
defined if C' || eff , and (C \ eff,) || pre,. If defined, the
regression is given by Regr(C, a) = (C\eff ,)Upre,,. Other-
wise, we write Regr(C,a) = L. The critical-path heuristic
over C is defined as h¢(s) = h®(s,G) where h¢(s,C) =

0 CCs
i a hC ,R C’ C C
aeA,Rg,lwl(Icl’,a);éL@ + h"(s, Regr(C, a))) € 0
max__ h¢ (s,C") otherwise
crec,c'ce

The most common method to choose C is enumerating all
conjunctions of size up to m, where m € N7 is a parameter.
The resulting heuristic is denoted A" (Haslum and Geffner
2000; Haslum 2009). Recent works used the flexibility of
critical-path heuristics to refine the heuristic online, during
search, by incrementally adding conjunctions to C (Stein-
metz and Hoffmann 2017; Fickert and Hoffmann 2017).

Cost Partitioning Multiple admissible heuristics can triv-
ially be combined in a way that preserves admissibility by
taking the maximum. Summing up the individual estima-
tions dominates the maximum, but is admissible only under
particular conditions. A popular method satisfying such con-
dition by construction is cost partitioning (Katz and Domsh-
lak 2008a). Cost partitioning does not only allow the admis-
sible combination of multiple heuristics, but can be used also
to improve a single heuristic. A prominent example for the
latter is the LM-cut heuristic (Helmert and Domshlak 2009).
Formally, let ¢’: A +— R be any cost function. We de-
note by h[¢'] the heuristic function h computed in the copy
of IT whose cost function is replaced by ¢’. A cost partition-
ing is a tuple of cost functions ¢ = {c1, . .., ¢,) such that for
every action a € A, it holds that } ", ¢;(a) < ¢(a). Using
cost partitionings, an ensemble of heuristics A1, ..., h, can
be additively combined through h; _ ,[c] := Z?=1 hi[ci].
ha,..n[c] is admissible if all heuristics hy, ..., h,, are ad-
missible (Katz and Domshlak 2008a). A cost partitioning is
applied to a single heuristic h by setting h; = h for all ;. We
denote the additive combination by h[c] in that case.
Clearly, the estimates of hq,_,[c] depend crucially on
the distribution of the action costs over the individual heuris-
tics. We say that a cost partitioning ¢ = {c1,...,¢p) is
optimal for hy,..., h, in a state s, if hy__,[c](s) >
hi,..n[c'](s) for all other cost partitionings ¢’ of size n.
For a single heuristic h, the size of c is not fixed a priori.
Hence, in the definition of optimality for single heuristics,
the size restriction is dropped. For an ensemble of abstrac-
tion heuristics, an optimal cost partitioning can be found in
polynomial time (Katz and Domshlak 2008a). For critical-
path heuristics it was an open question whether it is possible
to compute an optimal cost partitioning in polynomial time.

Hypergraphs

A labeled weighted directed hypergraph (Gallo, Longo, and
Pallottino 1993) is given by a triple H = (N, &, £, w) con-
sisting of a finite set of nodes N, a finite set of labels L,

each | € L associated with a weight w(l) € R{, and a fi-
nite set of hyperedges £ C 2V x £ x 2V, A hyperedge e
is a tuple (T¢,l., H.) where T, is the tail of e, H, is the
head e, and [, is the label. e is called a backward (B) hyper-
edge if |H.| < 1. e is a strict B-hyperedge if |H.| = 1. e
is a (strict) forward (F) hyperedge if |T.| < 1 (|T.| = 1).
‘H is a (strict) B-hypergraph if it contains only (strict) B-
hyperedges, and similarly, H is an (strict) F-hypergraph if
all its edges are (strict) F-hyperedges. Hypergraphs satis-
fying the B- and F-conditions at the same time are called
BF-hypergraphs. The symmetric image of H is given by the
hypergraph H = (N, &, L) where N' = N, L = L, and, for
every e € &, £ contains € = (H,,l.,T,). Note that H is an
F-hypergraph iff is a B-hypergraph, and a B-hypergraph
iff H is an F-hypergraph.

For the rest of the paper, we will exclusively consider B-
and F-hypergraphs. Let H be a B-hypergraph, and N, N’ C
N be two subsets of nodes. The minimal distance, distance
for short, from N to N’ in H is given by the point-wise
maximal function satisfying' d% (N, N') =

0 ifN'CN
mineeg pem, (w(le) +d% (N, T.)) if N' = {n'} (2)
max,en: dy (N, {n'}) otherwise

Note the similarities between Equations (1) and (2). Both
are indeed closely related. We will come back to this com-
parison when we later show how critical-path heuristics can
be phrased in terms of this hypergraph notation.

In F-hypergraphs the distance d% is defined symmetri-
cally. Using the symmetric image operator, it holds that
dy (N, N') = d2(N',N). We will omit the F and B su-
perscript if the type is clear, and omit the sub- and super-
scripts all together if also H is clear from the context. Gallo
et al. (1993) have shown a polynomial (in |#|) algorithm to
compute minimal distances in hypergraphs.

Hyperabstractions

In this section we introduce hyperabstractions and show
how admissible heuristics can be derived from this notion.
Consider any planning task II = (V, A, s7,G), and let
O = (8,7, A, sz,Sg) be its associated state space.

Definition 1 (Hyperabstraction) A hyperabstraction is a
function p: S + 27 mapping states to abstract concepts.
‘P is the set of abstract concepts associated with p.

Abstract concepts describe features of particular states.
Propositional formulae over facts are natural variants of such
features, but more complex structures such as for example
those underlying abstract states qualify as well. Similarly to
abstractions, for any p € P, we denote by [p] the set of all
states s € S such that p € p(s). Note, however, that in con-
trast to abstract states, the same state may be represented by
multiple abstract concepts. We chose the term abstract con-
cept instead of abstract state to make this difference explicit.

'We assume that min(()) = co and max(§)) = 0.

Each state being possibly associated with multiple con-
cepts, abstract transitions should no longer connect differ-
ent concepts individually, but form a relation between sets
of them. In principle, hypergraphs provide the possibility to
define complex transition behavior between arbitrary sets
of concepts. However, the distance metric for such gen-
eral hypergraphs gets difficult to define, or expensive to
compute (see e.g. Ausiello and Laura 2017), and are thus
not particularly suited for our purpose: heuristic compu-
tation. In the following, we thus consider specifically the
F- and B-hypergraph special cases. We propose two dif-
ferent interpretations of hyperabstractions accordingly. Let
H = (N,E,L,w) by a hypergraph with nodes N' = P,
labels £ = A, and weights w = ¢. We say that:

Definition 2 (F-interpretation) 7 is an F-interpretation
of p if H is an F-hypergraph, and for every transition
(s,a,t) € T and for every ps € p(s), H has a hyperedge
({ps},a, P;) € & such that P; C p(t).

Definition 3 (B-interpretation) 7 is a B-interpretation of
p if H is a B-hypergraph, and for every transition
(s,a,t) € T and for every p; € p(t), H has a hyperedge
(Ps,a,{p+}) € & such that P; C p(s).

To ensure that distances obtained from hyperabstractions
are admissible, all transitions in the original state space must
be preserved by the abstract transition relation of the inter-
pretations. Both definitions, however, leave open the exact
choice of the sets P;, respectively Ps, to do so for any partic-
ular transition. Defining the, unique, (F or B) interpretation
associated with a hyperabstraction raises certain complica-
tions, as we will see below. The restriction of hyperedges
to tails of size <1 (F-interpretation) and heads of size <1
(B-interpretation) leads to a very fundamental difference in
how ©™’s transitions are reflected in the hypergraphs. Given
an abstract concept p € P and action a € A, the hyper-
edges of F-interpretations enumerate consequences of the
application of a in the context of p, i.e., possible effects of
applying a in the states [p]. In contrast, the hyperedges of B-
interpretations enumerate different conditions under which
the application of a makes true p, i.e., results in a state
in [p]. Phrased in common search terms, F-interpretations
provide information in terms of progression, whereas B-
interpretations provide information on the regression.

Heuristic functions associated with a hyperabstraction p
are obtained directly from the distance metrics of the F-
and B-interpretations of p. To make apparent the symmet-
ric nature of F- and B-hyperabstraction heuristics, we define
both heuristics as functions h,, : (25 x 25) — RE U {o0},
h,(S,T) yielding an approximation of the minimal cost of
all paths in ©' between any state s € S and any t €
T. Abusing the notation, we use the same heuristic sym-
bol to denote h,(s) := h,({s},Sg). Let HY be any F-
interpretation of p, and H" be any B-interpretation H® of
p- We define:

Definition 4 (F-hyperabstraction heuristic) The F-
hyperabstraction heuristic associated with p and HY is

given by hy[H](S,T) = djye (Nyes p(5), Urer A(1))-

Definition 5 (B-hyperabstraction heuristic) The B-
hyperabstraction heuristic associated with p and HP is

given by RB[HP](S,T) = B (U, p(s), Nyer (1))

We omit the hypergraph parameter if it is clear from the
context, or unimportant for the discussion. The difference in
F- versus B-hypergraph distance function requires to swap
the set operators in the definitions. In the forward case, for
any two sets Ps, Pr C P, d¥ (Ps, Pr) measures the maxi-
mal distance d¥ ({ps}, Pr) of any p, € Ps. Because of this
maximization, to guarantee that hj (S,T’) admissibly esti-
mates of the distance from any s € S to the states in 7', Pg
may only contain abstract concepts representing all states
in S. On the other hand, Pr must contain every abstract
concept representing some state in 7' so that d¥ ({p,}, Pr)
admissibly approximates the cost to reach from [ps] any
state in 7". Symmetrically, d®(Ps, Pr) is the maximum over
d®(Ps, {p;}) for all p; € Pr. To ensure the admissibility of
hE, Pr may hence only contain abstract concepts that rep-
resent all states in 7', while Ps must contain every abstract
concept representing any state in .S.

Moreover, observe that, for any fixed set Pr C P,
d¥ ({p}, Pr) can be precomputed individually for every ab-
stract concept p. Since the heuristic computations hg (s) will
generate d” (Ps, Pr) calls, changing only the Pg part, i (s)
can be computed just based on lookups of the precomputed
distances. This optimization is not possible for 22, since the

distance estimate d®(Ps, Pr) requires the consideration of
Ps as a whole, which however varies from state to state.

Before going into formal claims, consider the following
example to get an intuitive understanding of the two hyper-
abstraction variants.

Example 1 (“Robot in a china shop”) Consider the fol-
lowing task. There are three variables: whether the robot
R has entered the shop (T) or not (F), and the state of two
vases V1 and V5 (clean C, held by the robot R, broken B).
The (unit-cost) actions are: enter changing R from F to T,
pickup(V;) with precondition {V; = C,R = T} and ef-
fect {V; = R}, drop(V;) requiring that {V; = R} and set-
ting {V; = B,R = F} in its effect, and smash(V;,V;)
with precondition {R = T,V; = R,V; = C} and ef-
fect {V; = BY}. The initial state is st = {R = F,V; =
C,Vo = C}.The goalis G = {R =T,V; = B,V, = B}.
An optimal plan for sz is given by the action sequence
(enter, pickup(V7), smash(V4, V2), drop(V1), enter).

Let P be the set of all facts of 11. Consider the hyperab-
straction p : S — 27 that maps every state to the facts true
in it. Figure I depicts a F- and a B-interpretation of p, omit-
ting edge labels and self-loops for the sake of readability.
Ignore the red part for this example.

Both interpretations are constructed by connecting for
every action the precondition and effect facts accordingly.
Consider drop (V1) along with its hyperedges (those marked
in blue). drop(V}) affects Vi and R. In HY, applying this

R=F A (Vi=C V V»=C)]

F-interpretation H¥

B-interpretation H

Figure 1: F- and B-interpretations for the task in Example 1.

action in any state with R=T will change the value of R
to F. The hyperedge ({R=T},drop(V1),{R=F7}) repre-
sents every such transition. Vi=B could be added to the
head as well, which would strengthen the hyperedge, further
constraining the set of successor states, and thus possibly
increasing the distance estimates. Adding V=B is however
not required to satisfy Definition 2. Similarly, the hyperedge
({Vi=R},drop(V1),{R=F,V1=B}) covers the applica-
tion of drop(V1) in every state where Vi=R. The remain-
ing abstract concepts either don’t represent any state where
drop(V1) is applicable, e.g., V1=C, or remain invariant,
e. g., the Vs facts. In HB, every application of drop (V1) re-
quires Vi=R. The action always makes true the facts R=F
and V1=DB, encoded by the two depicted hyperedges.

The resulting heuristic estimates are hy[H"](sz) =

hiy[HP](s7) = 3. There is only a single goal state, so both
measure the distance from the set of facts Pz := s to
Pg := G. Figure 1 annotates every p € P with the dis-
tances dy, ({p}, Pg) and d s (Pr,{p}). Consider the fact
p = (Vi, R). The heuristic values of both heuristics rely
on dZF({p},Pg) = dZB(PI,{p}) = 2. p’s only outgo-
ing hyperedge in HY leads to R=F and Vi=B. The esti-
mated distance for the former fact is 1, the latter is con-
tained in Pg. The maximum over both distances is 1, result-
ing in dELF (p, Pg) = 2. In HB, the only hyperedge leading
to p has R=T and V,=C in its tail. The distance from Pr
to the former is 1, the latter is 0. The maximum is again 1,
vielding dZB (Pr,{p}) = 2. Notably, the F and B distance

functions account for different applications of enter: d%F

observes that enter must be executed after drop; d%B sees
that enter must be executed prior to pickup.

As pointed out earlier, there might be different hyper-
graphs satisfying Definitions 2 or 3, differing in the design
of the transition relation. Since the hyperabstraction heuris-
tics compute their estimations based on the chosen hyper-
edges, the quality of the heuristics is strongly affected by
those choices. Consider the red part of Figure 1, which intro-
duces a new abstract concept p representing all states where
the robot has not entered the shop and at least one of the
vases is clear. Figure 1 shows two possible ways to repre-

sent the enter transitions leaving the states [p]: via the single
solid hyperedge, or via the two dashed ones. Choosing the
former, the information is lost that one of the vases was clear
beforehand. In this case, A (s7) stays 3. The latter also sat-
isfies the F-interpretation definition: the application of enter
in any state s € [p] changes the value of R to T'. Moreover,
one of s(V1)=C and s(V2)=C must have been true before-
hand, both variables are not affected by enter. For the latter
choice, we however obtain hY (s7) = 4.

Of course, one would like to always choose the hyper-
graph yielding the most accurate estimations relative to the
abstract concepts at hand. Unfortunately this not is not fea-
sible in general. Let h,lj* and h2* denote the “best” hyper-
abstraction heuristics one can obtain for p. This is, dropping
the distinction between F and B for the remainder of this
section, hfj* is defined such that, for every X-interpretation

H of p, it holds that hff* > hf[?—[], and there is an X-
interpretation * of p such that AX* = hX[H*]. Then

Theorem 1 (i) h?* is well-defined, i. e., for every p there
exists an X-interpretation H* of p as defined in the text, and
(ii) given an X-interpretation H of p and state s, deciding
whether h [H](s) = h)*(s) is NP-hard.

Proof (sketch). Consider the forward case. For (i), a de-
sired F-interpretation H* can be constructed by creating for
every transition (s, a,t) and for every ps € p(s), a hyper-
edge ({ps},a, p(t)). Regarding (ii), similar to the example
given above, hyperedges can be used to resolve disjunctive
conditions in atomic concepts. One can design II,, and p,,
such that such disjunctions are turned into transition non-
determinism, and thus exponentially many hyperedges must
be considered to obtain hff*.

Despite this rather disappointing result, hyperabstraction
heuristics remain admissible regardless of the interpretation.
Moreover, we will see in the next sections that polynomially
constructable interpretations suffice to show dominance over
various existing heuristics from the literature.

Theorem 2 For every task 11, hyperabstraction p, and X-
interpretation H of p, hz([H] is consistent and goal-aware.

Proof (sketch). Follows from the requirements on the struc-
ture of the hyperedges £ imposed by Definitions 2 and 3.

Relation to Existing Techniques

Both abstraction and critical-path heuristic can naturally
be written as hyperabstractions. The former boils down to
a special case of hyperabstractions where every state is
mapped to exactly one abstract concept. The latter can be
seen as a hyperabstraction that maps every state to the set of
atomic conjunctions true in that state.

This section goes beyond this simple observation, show-
ing that critical-path heuristics can indeed be seen as one
particular interpretation of a hyperabstraction. Moreover, we
will establish the connection between abstractions and hy-
perabstractions, regarding hyperabstractions as a new way
to admissibly combine multiple abstractions.

In both comparisons, we will provide dominance results
for the non-additive case. Those results directly generalize
to the additive combination of abstraction and critical-path
heuristics through the use of appropriate cost partitionings.
This promotes the quest for computing optimal cost parti-
tionings for hyperabstractions. We close the section with a
negative result, showing that finding optimal cost partition-
ings for hyperabstractions is NP-hard in general.

Critical-Path Heuristics

That critical-path heuristics are related to hypergraphs has
been observed before, e. g., (Haslum 2006). However, this
relation has so far not been spelled out formally and explic-
itly. We do this here using our notions of hyperabstractions.
More specifically, we show how to construct, from he, a hy-
perabstraction p¢ and B-interpretation H¢ of pC such that
the equations underlying A€ and hpB [H€] turn into the same.
Let C be any set of atomic conjunctions. Consider the hy-
perabstraction p¢ with abstract concepts P = C, mapping
every state to the atomic conjunctions satisfied in it. The hy-
pergraph HC underlying hC’s distance computation is con-
structed as follows. HC contains one node for every atomic
conjunction. For every conjunction C' € C and actiona € A,
HC contains a hyperedge e“"® iff Regr(C, a) is defined, and
e“® = (T,c.a,a,{C}) where T,c.. = {C' € C | C' C
Regr(C,a)}. It is straightforward to verify that d3 . is in-
deed equivalent to the recursive definition of h¢. Observe
that 4 also satisfies Definition 3. Consider any transition
(s,a,t) € T, and any conjunction satisfied in ¢, C; € p°(t).
Clearly, Regr(C}, a) must be defined and RegréCt, a) C s.
By the construction of ¢, there is an edge e¢“** € & la-
beled with a and whose tail contains exactly the atomic con-
junctions satisfied in Regr(C}, a). Thus T,c,.« C p€(s).

Theorem 3 For every task I, and set of atomic conjunc-
tions C, one can construct a B-interpretation H of pC in
polynomial time such that hffc [H] > hC.

This result immediately carries over to the comparison to
additive critical-path heuristics (Haslum, Bonet, and Geffner
2005; Helmert and Domshlak 2009), i.e., is orthogonal to
the application of cost-partitionings.

The definition of HC above is loosely related to the IT™-
compilation (Haslum 2009). The II" compilation explicitly
encodes the satisfaction of atomic conjunctions C' via new
state variables w¢. To determine the satisfaction of C', II"™
introduces copies of actions a/ augmenting the precondi-
tion of a by additional context information, sets of facts f,
very similar to the construction of 7¢’s hyperedges. The
1™ compilation differs from the 4 construction in that we
consider arbitrary conjunctions. Moreover, II" introduces
an action copy af for every action a and set of facts f of
size of at most m—1, but sets true m¢ for all conjunctions
C guaranteed to be satisfied after the application of a in the
context of f. In contrast, HE considers individually the sat-
isfaction of each C' by a via separate hyperedges 2.

B-hyperabstractions generalize critical-path heuristics in
two aspects: (1) they natively support more complex abstract

states; (2) critical-path heuristics represent only one partic-
ular instantiation of the associated hyperabstraction. How to
exploit (1) will be the topic of an upcoming section. Re-
garding (2), Theorem 1 already indicates that ¢ might not
be the optimal B-interpretation for pC. In fact, under par-
ticular circumstances, it is possible to consider different B-
interpretations, leading to higher heuristic estimates, while
still staying within the polynomial (in |C|) size bound. For
instance, assume there are actions that affect variables with-
out imposing preconditions on them. Such variables will be
left unspecified in every regression over this action. Hence,
conjunctions that contain assignments to these variables will
never be part of the tails of the hyperedges generated for this
action. To avoid this shortcoming, one can generate multiple
hyperedges for an atomic conjunction action pair, instead of
just a single one. Then in each of those hyperedges, one can
augment the regression with an additional context, allowing
to include more atomic conjunctions in the tails of the hy-
peredges, and thus may lead to higher heuristic estimates.

Theorem 4 There exist 11, C, and B-interpretations H of p©
where |H| is polynomially bounded in |C| but hch [H] > hC.

The idea above is similar to context-splitting (Roger,
Pommerening, and Helmert 2014). The latter is a technique
that, given a propositional formula ¢ over facts and an action
a, constructs a new task where a is split into two actions that
are identical to a but one having the precondition pre, A ¢
and the other one pre, A —¢. This split can be helpful to
derive (admissible) additive heuristics, e. g., in the construc-
tion of cost partitionings the costs of both splits can be dis-
tributed independently to different heuristics. However, in
contrast to context-splitting, hyperabstraction interpretations
allow to split hyperedges much more specifically, indepen-
dently of other hyperedges of the same action. Moreover,
and much more crucially, hyperedges can be split over non-
disjoint contexts. In the example in Figure 1, the two dashed
hyperedges are not mutually exclusive: both are simultane-
ously representing the application of enter to the initial state.

Abstractions

Let «: § — S“ be any abstraction, and ©“ be its in-
duced abstract state space. Labeled transition systems can
be seen as a special case of labeled hypergraphs whose
hyperedges have heads and tails with size of exactly one,
i.e., satisfy the strict BF-hypergraph criterion. This has
two immediate consequences: (1) O satisfies Definitions 2
and 3, by construction. (2) For strict BF-hypergraphs the
forward distance d*({n}, N’) boils down to the mini-
mal graph distance from n to any n’ € N’. Therefore,
BEO°](s) = d5. ({a(s)},88) = hbe(als) = ho(s).
i.e., abstraction heuristics can be interpreted directly as F-
hyperabstraction heuristics. Moreover, in the construction
of any F-interpretation H of «, there are exactly two pos-
sible hyperedges to represent any transition (s, a,t) € T:
either ({a(s)}, a, {a(¥)}) or ({a(s)},a, D). The former is
selected by ©%, and clearly carries more information than
the latter, i.e., h® = hg*. However, although ©% being
a B-interpretation of «, h® is in general not equivalent to

hB[©%]. In strict BF-hypergraphs, d2({n}, N’) gives the
maximum of the minimal graph distances from n to any
n’ € N’. To account for that, h® considers in N’ only
those abstract concepts representing all goal states. In case
of the abstraction «, this means that hZ[©%] = h® only if (*)
S| = 1, but hB[0°](s) = dF,0~({a(s)},0) = 0 < he if
« maps any two goal states to different abstract states. Note
that (*) necessarily holds for tasks in transition normal form
(TNF) (Pommerening and Helmert 2015).

Single abstractions hence constitute trivial instantiations
of our concepts of F-hyperabstraction heuristics, and un-
der certain circumstances also B-hyperabstraction heuris-
tics. The converse is however not true. Helmert et al. (2014)
have shown planning tasks where the critical-path heuristic
h? is perfect, but, unless P = NP, it is not possible to con-
struct any M&S abstraction o with h* = h* in polynomial
time. Given the observations from the previous section, this
results directly carries over to B-hyperabstraction heuristics
in general. It turns out that the hypergraph characteristics are
actually not required to show this relation:

Theorem 5 There exist families of tasks 11,, and polynomi-
ally size-bounded forward and backward hyperabstraction
heuristics such that hEF [(HY] = hpBB [HB] = h* and both

HY and H® are BF-hypergraphs, but unless P = NP, it is
not possible to construct any M&S abstraction o such that
h® = h* in polynomial time.

Proof (sketch). The proof is based on a family of tasks rep-
resenting CNF formulas. Given a formula ¢, the correspond-
ing task is designed so that states represent possible Boolean
variable assignments, h*(s) = 1 iff s does not satisfy the
formula, and 2*(s) = 0 otherwise. Using this, the evaluation
of ¢ can be encoded as F and B hyperabstraction heuristics,
even restricted to BF-hypergraphs. However, if it were pos-
sible to construct a M&S abstraction « such that h® = h*,
for arbitrary ¢, in time polynomial in the size of ¢, then we
could solve SAT for any CNF formula in polynomial time
through an inspection of a.

Note that even though this claim considers only M&S ab-
stractions, it also applies to less general cases like PDBs.

So far, we have seen that hyperabstractions are strictly
more powerful than single abstractions, even restricted to
BF-hypergraphs, and thus without making use of the pos-
sibility to define actual hyperedges. We next show that
single hyperabstractions also dominate the combination of
collections of abstractions. Unfortunately, we cannot re-
port any result for the other direction, i.e., it remains
unclear whether a single hyperabstraction can be always
compiled into an equivalent collection of abstractions, in
polynomial time. Let aq,...,a, be any set of abstrac-
tions. Consider the hyperabstraction whose abstract con-
cepts P are given by the union of all S, combin-
ing all the abstraction functions into the single hyper-
abstraction function: p(s) = {ai(s),...,an(s)}. Con-
sider the BF-hypergraph #, given by the union of all in-
duced abstract state spaces O, ..., ©% . H satisfies Def-
initions 2 and 3 similarly to the single abstraction case.

Moreover, since abstract states of different abstractions are
not connected, the forward distance in H from any ab-
stract state to the abstract goal states remains the same
as in the abstract state’s corresponding abstraction, i.e.,
it holds that df, ({s*},U; Sg") = d5,({s*},85"), and
therefore hE[H](s) = d5,({oa(s), ... an(s)},U; S§°) =
max; <i<n dy ({ei(s)}, 8§*) = maxi<i<p h (s).

In the construction of H, we still did not make use of the
expressiveness of hypergraphs. The consideration of hyper-
graphs instead of simple transition systems allows drawing
connections between the different abstractions. Consider for
example two projections, one on variable v, one on wu. If
there is an action that modifies both v and u, then every hy-
peredge labeled by this action can be extended by connec-
tions to states in both projections. Moreover, adding more
abstract states to the tail (in the B case) and to the head (in
the F case), can never cause a decrease in distance. Thus
adding such connections can only be beneficial for the re-
sulting heuristic. In other words, hyperabstractions can be
seen as a new method to admissibly combine a set of ab-
stractions, which dominates just taking the maximum:

Theorem 6 Let oy, ...,a, be any abstractions. Consider
p as described in the text. One can always construct an
F-interpretation H of p in time polynomial in the size of
O, . .., 0% such that hE’H > maxi<i<n h*'. There are
cases where this dominance holds strictly. If 11 is in TNF; the
same holds for backward hyperabstraction heuristics.

This result applies to the additive combination of ab-
stractions as well. In particular, given any set of abstraction
heuristics that are additively combined via a cost partition-
ing ¢, Theorem 6 can easily be extended to show the exis-
tence of a single hyperabstraction heuristic that, under the
application of the same ¢, dominates the additive ensemble:

Corollary 1 For every ensemble of abstractions
ai,...,an, a single F-hyperabstraction heuristic hg [H]
can be constructed in polynomial time (in the size of the
abstract state space) such that it holds, for every cost
partitioning ¢, that hi[H]|[c] > ha, ... a,[c]. If I is in
TNE, the same holds for B hyperabstraction heuristics.

Optimal Cost Partitioning

Plugging multiple cost functions into a single hyperabstrac-
tion heuristic provides a very powerful formalism able to
dominate arbitrary additive ensembles of abstraction heuris-
tics as well as the application of cost partitionings to critical-
path heuristics. This raises the question of whether we can
do anything more with additive hyperabstractions. To an-
swer this question to at least some extent, we next show that
in contrast to additive abstractions, it is hard to compute the
optimal cost partitioning for hyperabstraction heuristics. The
proof works via a detour to the critical-path heuristic h':

Theorem 7 Optimal cost partitioning for h' is NP-hard.

Since critical-path heuristics can be seen as particular B-
interpretations of a hyperabstraction, this result immediately

carries over to backward hyperabstraction heuristics. More-
over, due to the symmetric nature of the definitions of B- and
F-hyperabstraction heuristics, it is not difficult to extend the
proof for h' to work also for F-interpretations. We obtain:

Corollary 2 Optimal cost partitioning for hyperabstraction
heuristics in general is NP-hard.

Practical Construction of Hyperabstractions

Hyperabstraction heuristics consist of two components: (1)
the hyperabstraction function p, and (2) an interpretation of
p as a hypergraph. Regarding (1), given the vast literature in
the automatic construction of abstraction heuristics in clas-
sical planning, it is natural to define p as the union of ab-
straction functions v, . .., ay. Each individual abstraction
«; can for example be a PDB, Cartesian, or M&S abstrac-
tion. The considered abstractions do not have to be of the
same type, though. The set of abstract concepts are given
by P = Uie[l’k} S%i. Each state s is mapped to its cor-

responding abstract state in each abstraction, i.e., p(s) =
{a1(8),...,ar(s)}.

Regarding (2), we next show a generic method to generate
B-hyperedges so to obtain different B-interpretations for p.
The construction of F-interpretations is omitted for the sake
of brevity, but works analogously. To provide a unified algo-
rithm that supports all the different abstraction variants, we
treat abstract states as the equivalence relations they induce.
The algorithm operates directly on these sets of states. In an
actual implementation, these sets can of course not be enu-
merated explicitly, each abstract state possibly representing
an exponential number of real states. However, the specific
operations used by the algorithm can be implemented effi-
ciently for various kinds of abstractions (particularly Carte-
sian and PDBs), taking into account the concrete structure
and representation of abstract states. For computing the tail
of the B-hyperedges, a notion for the regression of sets of
states is required. Let T C S be any set of states, and
a € A be any action. We define the regression of 7" over
aas Regr(T,a) ={s €S| (s,a,t) e T,t €T}.

Consider any action a € 4. We next describe the method,
Algorithm 1, to generate the B-hyperedges for this action.
To satisfy Definition 3, we must add, for every abstract state
t% € P where Regr([t®],a) # 0, at least one representa-
tive hyperedge ¢ = (T, a,{t*}). Different interpretations
may be constructed differing in how many such edges e to
consider. There are two extremes:

(i) A single hyperedge that represents all transitions into
any state in [¢t*]. In this case, T, = {s® € P |
Regr([t*i],a) C [s*]} includes the maximal number of
abstract states, satisfying Definition 3.

(i1) One hyperedge for every concrete transition into any state
in [t*], i.e., for every state s € Regr([t*¢], a), the hyper-
edge e q,¢00 With tail Tp, ., = p(s).

(i) gives the simplest “reasonable” choice of a B-
interpretation of p, yet pays this simplicity through possible
information loss. The red part in Figure 1 shows an example.

Algorithm 1: Generic algorithm for generating all
B-hyperedges with head t* € §% C P, and action
a € A. To obtain F-interpretations, the regression
operation must be substituted by progression, and the
head and the tail of the hyperedges must be swapped.

Input: Abstractions a, . . ., g,
abstract state t®i € S, actiona € A

Output: B-hyperedges £(t*, a)
1 X + SelectSplit({ay,...,ax},t%,a);
2 Y < selectOthers({ay,...,ax},t*,a);
3 E(tY,a) 0,
4 if X = () then
T. + {s* € 8% | a € Y,Regr([t*],a) C [s*]};
o | Et7,0) « ((T,a, {17]}
7 foreach Sx €[] .y S“ do
8 Sctwt — Regr([taiL a) n ﬂsaeSX [Sa] >
9 if S.izt #) then

W

10 Sy +{s* eS| a€y,Se C[s¥}:
11 T, < Sx U Sy;
12 E(t*,a) < £t a) U{(Te,a,{t*})} ;

13 return £(t%, a) ;

On the contrary, (ii) provides the most informative hyper-
graph possible, but the number of hyperedges is worst-case
exponential in the number of abstract states.

To trade-off between heuristic accuracy and computa-
tional cost, Algorithm 1 allows to interpolate between the
two extremes by means of the methods SelectSplit and
SelectOthers, both choosing a subset of the input ab-
stractions. The abstractions given by SelectSplit are
used to determine transitions for which to generate sepa-
rate hyperedges as in (ii). To do so, the hyperedges are built
so that each e € £(t“,a) contains Sx C T, for some
choice Sx of abstract states for all abstractions selected by
SelectSplit. Each e is supposed to cover only those
transitions sfa] € [t*] where s is jointly represented by all
abstract states in Sx . To ensure that Definition 3 is satisfied,
Algorithm 1 computes the collection £(%¢, a) in an exhaus-
tive manner, considering, and possibly creating a hyperedge,
for every combination of abstract states Sx € [[,cyx S°.
For the remaining abstractions o ¢ X, in order to preserve
that every generated hyperedge e with set Sx indeed cov-
ers all applications s[a] relevant to Sy, we may include in
the tail of e an abstract state s* € S® only if s represents
all the states s with such transition (line 10). The method
SelectOthers determines the abstractions for which to
do this analysis, and thus which abstractions to take into ac-
count in the computation of the tails in addition to X.

Table 1 shows three particular choices of SelectSplit
and SelectOthers, resulting in: (a) the critical-path
heuristic h™, considering as abstractions the projections
onto all variable subsets of size up to m; (b) the maxi-
mum over multiple abstractions, and (c) a new combination,
which guarantees to dominate both of them.

SelectSplit | SelectOthers
@hm] {ar, ... ok}
(b) maxtjep g h* | {ou}
(c) combination {a;} {ag,...,ar}

Table 1: Different instantiations of Algorithm 1.

Experiments

Given the extensive research on the construction of state-of-
the-art abstractions and critical-path heuristics, e. g., (Seipp
and Helmert 2018; Helmert et al. 2014; Franco et al. 2017;
Steinmetz and Hoffmann 2017), we do not expect to beat
those configurations. The goal of our evaluation is to ver-
ify whether the theoretical dominance results also show in
practice. For that, we investigate whether applying the hy-
perabstraction construction on top of a set of abstractions
is more informative than taking their maximum. Our imple-
mentation is in Fast Downward (Helmert 2006). We are us-
ing all IPC STRIPS benchmarks of the optimal tracks. The
experiments were performed on a cluster of Intel ES-2660
machines running at 2.20 GHz, restricting CPU time to 30
minutes and memory to 4 GB. We use PDB(m): pattern
databases of size up to m € {1,2,3}; as well as Cartesian
abstractions constructed via the CEGAR approach (Seipp
and Helmert 2018) as seed abstractions. The hyperabstrac-
tion interpretations are computed using Algorithm 1 with the
parameters as shown in Table 1(c).

Q@ o

S ¢

=
.

233
e
®

2
T
o

10% o

Expansions HF{PDB,}

10t)

101 S I L |)
1070 100 10t 102 10% >
Time max{PDB,} (s)

i cound vl ol v cond ol
100 10t 10% 10% 10% 10° 10 107 108
Expansions max{PDB,}

Figure 2: Comparison of the F-hyperabstraction based on
PDB(2) versus taking their maximum in terms of expan-
sions until the last f-layer and runtime.

Figure 2 compares the systematic PDBs of size 2 against
the F-interpretation of the corresponding hyperabstraction.
The F-interpretation of abstraction heuristics can provide
more informative estimates, reducing the number of ex-
pansions in some cases compared to taking the maximum
among them. This result can be expected to carry over to
the additive scenario where the same cost-partitioning is
used for abstractions and hyperabstractions. Moreover, F-
interpretations do not have a large overhead over abstraction
heuristics in evaluation time, though the comparison in total
time shows that the construction is more expensive.

Applying the hyperabstraction construction on the CE-
GAR abstractions did not have a considerable effect on
the heuristic accuracy, regardless of considering F- or B-
hyperabstraction heuristics. An explanation is that the con-
struction of the individual Cartesian abstractions focuses on
different parts of the planning task.

Conclusion

In this paper we introduced hyperabstractions, a new family
of heuristics that generalizes abstractions and critical-path
heuristics, dominating most admissible heuristics in the lit-
erature. Hyperabstractions map each state to a set of abstract
states. This is related to more general notions of abstrac-
tions used in model-checking, where the same state may
be mapped into multiple abstract predicates (Cousot and
Cousot 1977; Ball, Podelski, and Rajamani 2001). Previ-
ous multimapping abstractions for planning resulted in less
informed estimates than taking the maximum over several
abstraction heuristics (Pang and Holte 2011). We circum-
vent this by computing distances in an hypergraph instead,
ensuring that hyperabstractions dominate the corresponding
abstraction heuristics, sometimes strictly.

Hyperabstractions have potential for obtaining stronger
heuristics than previous families of heuristics, e.g., as a
novel method to combine different abstractions, or by ex-
plicitly reasoning about the hypergraphs underlying the
computation of critical-path heuristics. However, it is yet un-
known how to exploit their full potential. Promising lines for
future research include finding automatic methods to derive
hyperabstractions (i.e., identifying cases where there may
be oportunities to combine abstractions via an hyperabstrac-
tion), and additive ensembles thereof.

Acknowledgments. Thanks to the anonymous reviewers
for their very helpful comments. This work has been par-
tially supported by German Federal Ministry of Education
and Research (BMBF) through funding for CISPA (grant
no. 16KIS0656), and the German Research Foundation
(DFG), under grant HO 2169/5-1. The FAI research group
at Saarland University has received support by DFG grant
389792660 as part of TRR 248 (see https://perspicuous-
computing.science).

References

Ausiello, G., and Laura, L. 2017. Directed hypergraphs: Introduc-
tion and fundamental algorithms—a survey. Theoretical Computer
Science 658:293 — 306.

Bidckstrom, C. 1995. Expressive equivalence of planning for-
malisms. Artificial Intelligence 76(1-2):17-34.

Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean and
Cartesian abstraction for model checking C programs. In Proc. of
TACAS’01, 268-283.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5-33.

Cousot, P, and Cousot, R. 1977. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the 5th ACM Sympo-
sium on Principles of Programming Languages (POPL’77), 238—
252.

Edelkamp, S. 2001. Planning with pattern databases. In Proc. of
ECP’01, 13-24.

Edelkamp, S. 2002. Symbolic pattern databases in heuristic search
planning. In Proc. of AIPS’02, 274-283.

Edelkamp, S. 2006. Automated creation of pattern database search
heuristics. In Proc. of MoChArt’06, 35-50.

Fickert, M., and Hoffmann, J. 2017. Complete local search: Boost-
ing hill-climbing through online heuristic-function refinement. In
Proc. ICAPS’17.

Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017. On
creating complementary pattern databases. In Proc. of IJCAI’17.

Gallo, G.; Longo, G.; and Pallottino, S. 1993. Directed hyper-
graphs and applications. Discrete Applied Mathematics 42(2):177—
201.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proc. of AIPS’00, 140-149.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. of AAAI’07, 1007—
1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible
heuristics for domain-independent planning. In Proc. of AAAI'0S,
1163-1168.

Haslum, P. 2006. Improving heuristics through relaxed search -
an analysis of TP4 and HSP*a in the 2004 planning competition.
Journal of Artificial Intelligence Research 25:233-267.

Haslum, P. 2009. h™(P) = h'(P™): Alternative characterisations
of the generalisation from h™** to h™. In Proc. of ICAPS’09, 354—
357.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. of
ICAPS’09, 162-169.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & shrink abstraction: A method for generating lower bounds
in factored state spaces. Journal of the Association for Computing
Machinery 61(3):16:1-16:63.

Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191-246.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered land-
marks in planning. Journal of Artificial Intelligence Research
22:215-278.

Katz, M., and Domshlak, C. 2008a. Optimal additive composition
of abstraction-based admissible heuristics. In Proc. of ICAPS 08,
174-181.

Katz, M., and Domshlak, C. 2008b. Structural patterns heuristics
via fork decomposition. In Proc. of ICAPS’ 08, 182—189.

Pang, B., and Holte, R. C. 2011. State-set search. In Proc. of
SOCS’11.

Pommerening, F., and Helmert, M. 2015. A normal form for clas-
sical planning tasks. In Proc. ICAPS’15, 188—-192.

Roger, G.; Pommerening, F.; and Helmert, M. 2014. Optimal plan-
ning in the presence of conditional effects: Extending Im-cut with
context splitting. In Proc. of ECAI’14, 765-770.

Seipp, J., and Helmert, M. 2018. Counterexample-guided Carte-
sian abstraction refinement for classical planning. Journal of Arti-
ficial Intelligence Research 62:535-577.

Steinmetz, M., and Hoffmann, J. 2017. State space search nogood
learning: Online refinement of critical-path dead-end detectors in
planning. Artificial Intelligence 245:1-37.

Steinmetz, M., and Torralba, A. 2019. Bridging the gap between
abstractions and critical-path heuristics via hypergraphs. Technical
report. Available at http://fai.cs.uni-saarland.de/steinmetz/papers/
icaps19-tr.pdf.

Torralba, A.; Alcazar, V.; Kissmann, P.; and Edelkamp, S. 2017.
Efficient symbolic search for cost-optimal planning. Artificial In-
telligence 242:52-79.

