
Tailoring Pattern Databases for
Unsolvable Planning Instances

Simon Ståhlberg
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

simon.stahlberg@liu.se

Abstract

There has been an astounding improvement in domain-
independent planning for solvable instances over the last
decades and planners have become increasingly efficient at
constructing plans. However, this advancement has not been
matched by a similar improvement for identifying unsolv-
able instances. In this paper, we specialise pattern databases
for dead-end detection and, thus, for detecting unsolvable in-
stances. We propose two methods of constructing pattern col-
lections and show that spending any more time constructing
the pattern collection is likely to be unproductive. In other
words, very few other pattern collections within the given
space bounds are able to detect more dead-ends. We show
this by carrying out a novel statistical analysis: a large com-
puter cluster has been used to approximate the limit of pat-
tern collections with respect to dead-end detection for many
unsolvable instances, and this information is used in the anal-
ysis of the proposed methods. Consequently, further improve-
ment must come from combining pattern databases with other
techniques, such as mutexes. Furthermore, we explain why
one of the proposed methods tends to find significantly more
unsolvable variable projections, which is desirable since they
imply that the instance is unsolvable. Finally, we compare the
best proposed method with the winner and the runner up of
the first unsolvability international planning competition, and
show that the method is competitive.

1 Introduction

Over the past decades domain-independent planning has en-
joyed a tremendous improvement and instances that earlier
took an immense time to solve can now be solved very
quickly. A few examples of planners are FAST FORWARD
(Hoffmann and Nebel 2001), FAST DOWNWARD (Helmert
2006), and LAMA (Richter and Westphal 2010), all of which
use heuristic functions to guide the search. However, most
heuristic functions are not good at detecting dead-ends. Al-
though are a few heuristic functions that provide good dead-
end detection, they were often not designed with that pur-
pose in mind, e.g. the critical path heuristic hm (Haslum and
Geffner 2000). Detecting dead-ends is crucial for unsolvable
planning instances since every state reachable from the ini-
tial state is a dead-end.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The development of heuristic functions has largely been
driven by the international planning competitions (IPC).
Historically, all benchmarks in IPC have been solvable, so
planners participating in IPC had little use of techniques
for identifying unsolvable instances. However, unsolvable
instances are undoubtedly important in practice. Three ex-
amples are oversubscription planning, where all goals can-
not be satisfied simultaneously and the objective is to max-
imise the number of satisfied goals (Smith 2004); penetra-
tion testing in computer security, where a system is con-
sidered safe if there is no solution (Boddy et al. 2005;
Futoransky et al. 2010); and model checking where, given
a specification, the task is to check if a model of a sys-
tem meets the specification, e.g. deadlocks are impossible
(Edelkamp, Leue, and Visser 2007). Model checking can
be viewed as planning (Edelkamp 2003; Edelkamp, Keller-
shoff, and Sulewski 2010), and vice versa (Giunchiglia and
Traverso 1999). In the light of the recent research on detect-
ing unsolvability, IPC has introduced an unsolvability track.

The recent work by Bäckström et al. (2013) and Hoff-
mann et al. (2014) are both concerned with unsolvable in-
stances. Bäckström et al. (2013) introduced a method for
identifying unsolvable planning instances loosely based on
consistency checking in constraint programming. The cor-
nerstone of their method is variable projection. The method
systematically enumerates every subset of variables and
projects the instance onto it, and then checks whether the
projection is unsolvable or not. If the projection is unsolv-
able, then the original instance must be unsolvable. Projec-
tions onto smaller subsets are faster to solve, so the method
starts with every subset of size 1, then every subset of size
2, and so on. Consistency checking for planning is efficient
if unsolvability can be proved for a reasonably small subset,
otherwise it quickly becomes too time-consuming because
of the sheer number of possible projections.

In the case when consistency checking fails (e.g. if the
smallest subset that yields an unsolvable variable projection
is too big), then working directly with the original instance
might work. Hoffmann et al. (2014) specialised Merge &
Shrink (M&S) (Helmert, Haslum, and Hoffmann 2007) to
detect dead-ends and to prove unsolvability.

In this paper, we approach the problem of detecting un-
solvability in a similar way but specialise pattern databases
(PDBs) (Culberson and Schaeffer 1998; Edelkamp 2001;

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

274

Felner et al. 2004) to detect dead-ends. PDBs are, just as
consistency checking, based on variable projection for pro-
viding heuristic guidance. Most current methods for decid-
ing on PDBs are designed with solvable instances in mind
and they perform poorly on unsolvable instances. Hence,
we propose two methods of constructing pattern collections
for dead-end detection (Section 4) and carry out a detailed
statistical analysis (Section 5) on these. A typical statistical
analysis of heuristic functions study instance coverage and
run-time. One issue with this approach is that the limitation
of the method is not clear. If we have a pattern collection that
performs well on an instance, then we do not know if there
is another pattern collection which would have performed
considerably better. We address this issue by taking advan-
tage of a large computer cluster and determine a distribu-
tion for every instance of how good projections are at dead-
end detection. These distributions are then used to show that
the proposed methods construct pattern collections that are
amongst the best (Section 5.2). In other words, to improve
dead-end detection further would require additional tech-
niques. We show that the two proposed methods differ in
a significant way: one method tends to find more unsolvable
projections than the other, which is important since an un-
solvable projection implies that the instance is unsolvable
(Section 5.3). We also show that mutexes are useful for im-
proving how many dead-ends patterns can detect (Section 6).
Finally, we run experiments and show that our best method is
competitive with winner, Aidos, and the runner up, SymPA,
of the first unsolvability IPC (Section 7). More precisely,
the coverage of our method is comparable to SymPA, and
is better than DE-PDBs, which is similar to our method and
is part of Aidos. The experiments show that mutexes have a
considerable effect on many instances.

2 Preliminaries

We briefly present the SAS+ planning formalism (Bäckström
and Nebel 1995). A SAS+ instance is a tuple Π =
(V,A, I,G) where:
• V = {v1, . . . , vn} is the set of variables, and each vari-

able is associated with a domain Dv . A partial state is a
set s ⊆ ⋃

v∈V {(v, d) : d ∈ Dv} where every variable in
V occurs in at most one pair. A total state is a partial state
where every variable in V occurs in exactly one pair.

• A is the set of actions, and an action a has a precondition
pre(a) and an effect eff(a), which are both partial states.

• I is the initial state, and is a total state.
• G is the goal, and is a partial state.
We write V (Π), A(Π), I(Π) and G(Π) for the set of vari-
ables, actions, the initial state and the goal of Π, respectively.

The set of all total states of an instance Π is
StateSpace(Π) = {{(v1, d1), . . . , (vn, dn)} : d1 ∈
Dv1 , . . . , dn ∈ Dvn , n = |V (Π)|}. We view partial states
as partial functions (e.g. s[v] = d means that (v, d) ∈ s)
and use the corresponding notation, in which case we use
D(s) to denote the domain of the partial function s. We
say that a partial state s1 matches another partial state s2
if s1 ⊆ s2. We define the composition of two partial states

s1, s2 as s1⊕s2 = s2∪{(v, s1[v]) : v ∈ D(s1)\D(s2)}. An
action a is applicable in a total state s if pre(a) ⊆ s, the re-
sult of applying a in s is the total state s⊕ eff(a). Given two
total states sI , sG, a sequence of actions ω = 〈a1, . . . , an〉
is called a plan from sI to sG if and only if there exists a se-
quence of intermediate total states 〈s1, . . . , sn−1〉, such that
s1 is the result of a1 in sI , si is the result of ai in si−1 for
all 2 ≤ i ≤ n− 1, and sG is the result of an in sn−1. A plan
ω is also a solution with respect to a goal G if G ⊆ sG. A
state s is reachable with respect to an initial state sI if there
is a plan from sI to s.

The causal graph CG(Π) of a SAS+ instance Π =
(V,A, I,G) is the digraph (V,E) where an arc (v1, v2),
v1 	= v2 belongs to E if and only if there exists an action
a ∈ A such that v2 ∈ D(eff(a)) and v1 ∈ D(pre(a)) ∪
D(eff(a)).

The following definitions are central to this paper:
Definition 1. A state s is a dead-end if there is no plan from
s to any goal state g, G ⊆ g, where G is the goal.

We define variable projection, or simply projection, in the
usual way (Helmert 2004).
Definition 2. Let Π = (V,A, I,G) be a SAS+ instance and
let V ′ ⊆ V . The variable projection of a partial state s
onto V ′ is defined as s|V ′ = {(v, d) : (v, d) ∈ s, v ∈
V ′}. The variable projection of Π onto V ′ is Π|V ′ =
(V ′, A|V ′ , I|V ′ , G|V ′), A|V ′ = {a|V ′ : a ∈ A} where
pre(a|V ′) = pre(a)|V ′ and eff(a|V ′) = eff(a)|V ′ .

3 Pattern Databases & Collections
We give a brief introduction to pattern databases and present
a strategy to build them. A pattern P ⊆ V (Π) is a subset
of variables of an instance Π, and the lowest plan cost of
reaching a goal state from each state s ∈ StateSpace(Π|P) is
stored in a pattern database (PDB) hP . The database is used
to efficiently provide an estimate of the real plan cost from
some state to a goal state. We write hP (s) to denote the cost
associated with s in hP . A main problem with constructing
a PDB is how to choose the pattern, since PDBs are often
vastly different w.r.t. how informative they are (and there is
an enormous amount of them).

As the name suggests, a pattern collection C consists of
several patterns which, together, are used to provide a plan
cost estimate: C(s) = max{hP (s) : P ∈ C}. A popular
strategy to build a pattern collection is iPDB (Haslum et al.
2007). The iPDB strategy uses hill-climbing search in the
space of pattern collections, and we use a similar strategy.
Hill-climbing search is an optimisation technique which at-
tempts to maximise some score function by local search. In
planning, the score function for solvable instances is often
the average cost in the PDB. The search starts with a pattern
of a single goal variable, and then attempts to find a better
pattern by repeatedly adding a single variable to it. There
might be several candidates, and the candidate whose PDB
scored best is selected. This procedure is repeated until some
condition is met. More precisely, let Π be an instance, then
we use the following pattern selection strategy in this paper.

1. Let P = {g} where (g, d) ∈ G(Π), d ∈ Dg (i.e. g is a
goal variable), and let b be a bound on the maximum PDB

275

size. We also have some function Score, where the input
is a PDB and the output is a number;

2. Compute Score(hP∪{v}) for every v ∈ V (Π), where v /∈
P , v is weakly connected to some variable in P in the
causal graph, and |Dv| ·

∏{|Dv′ | : v′ ∈ P} ≤ b.

3. If there are no candidates then return P ; and

4. Let P be the candidate with the highest score in step 2 and
go to step 2. If there are several candidates with the same
score then chose one arbitrarily.

The resulting pattern is added to the pattern collection, and
then we start yet another search (with another initial pattern,
if there is one). This is repeated until either: the collection is
sufficiently large; or if the last 5 searches returned patterns
that we have already seen before. The implementation tries
to avoid candidates that were selected in previous searches.

4 Methods

In this section, we define the methods that we analyse in
the paper. We propose two methods for constructing pattern
collections. Both methods are based on hill-climbing search
and the only difference is the score function. Before we de-
fine them, we give a definition of a central concept. Let Π
be a planning instance. The function ξ(Π) generates a set of
at most 20000 reachable states of Π by breadth-first search.
Note that, if Π is unsolvable then every state of ξ(Π) is a
dead-end. The function ξ is required to generate the same
set every time for the same instance. Our methods are:

• HCDE(Π): A pattern collection is constructed for Π by
hill-climbing search with the scoring function:

DE(hP) =
|{s∈StateSpace(Π|P):hP (s)=∞}|

|StateSpace(Π|P)|

Which favours PDBs with a high ratio of dead-ends.

• HCSamples(Π): A pattern collection is constructed for Π by
hill-climbing search with a scoring function that attempts
to maximise the number of different dead-end states that
the pattern collection can detect. If two patterns are able
to identify exactly the same states as dead-ends, then we
only need one of them. The overlap of a new pattern with
the collection is approximated with the help of ξ(Π) in the
following way. Let P be a pattern and let C be the current
collection, then the scoring function is:

Samples(hP , C) = |{s ∈ ξ(Π) : hP (s) =∞, C(s) 	=∞}|
The function Samples outputs the number of dead-ends
that C did not detect as dead-ends, but hP did detect. Note
that, ξ generate states close to the initial state. Detecting
dead-end states close to the initial state is likely to prune
away many reachable states from the search space. Hence,
Samples should favour patterns that can detect many, pre-
viously undetected, dead-end states of ξ(Π). Furthermore,
we resolve tiebreaks with DE(hP) (and if we still have a
tiebreak then the successor is chosen arbitrarily).

5 Statistical Analysis

We present a detailed statistical analysis of how well pat-
tern collections constructed by the methods defined in Sec-
tion 4 perform on benchmarks. Roughly speaking, the anal-
ysis reveals the limit of pattern collections as a method for
detecting dead-ends, and we attain this by letting a computer
cluster1 generate PDBs using many years of CPU-time. The
collected data lets us visualise the distribution of PDBs w.r.t.
how many dead-ends they have – a crucial property for good
dead-end detection. We show that the methods perform com-
parably but that HCDE tends to find more unsolvable projec-
tions, which is important since such projections prove that
the instance is unsolvable. Because of this difference, we
consider HCDE to be better than HCSamples (on these bench-
marks).

5.1 Domains

The statistical analysis is done on the benchmarks of un-
solvable instances provided by Hoffman et al. (2014), which
consists of 8 different domains. We give a brief explanation
of the domain in each benchmark:

• 3SAT: Unsolvable formulas in the phase transition region.

• Bottleneck: n agents have to move to their respective goal
on a grid. However, when an agent moves to a tile it is
flipped and agents cannot move to a flipped tile. Instances
are unsolvable since only n−1 agents can reach their goal.

• Mystery and No mystery: Transportation domains there is
not enough fuel to achieve the goal.

• Peg Solitaire (Pegsol): A tabletop game and the (impossi-
ble) goal is to have a single peg in the center of the board.

• Rovers: A fuel-restricted rover has to complete its mission
before it runs out of energy. Normally, the rover is able to
recharge but this is prevented in these instances.

• TPP: An agent is given a budget and can buy goods, drive
between markets with different prices, and sell goods. The
goal is to own a lot of goods, but its impossible to earn
enough money for this.

• Tiles: A sliding tiles puzzle where the initial state of the
puzzle is taken from an unsolvable part of the state space.

5.2 Dead-end detection

We briefly discussed a disadvantage of typical analysis
methods in Section 1: the absence of a notion of optimal-
ity. For example, let hP be a PDB whose size is bounded by
some integer b, and s a dead-end state that hP cannot de-
tect. Then there is no guarantee that there is another PDB,
whose size is also bounded by b, that can detect s. An opti-
mal pattern collection for the bound b would contain a PDB
for every dead-end that is detectable by a PDB whose size
is bounded by b. Note that there might be dead-ends that an
optimal pattern collection does not detect. In this section,
we analyse how well the pattern collections constructed by

1The processors were 8-core Intel Xeon E5-2660 at 2.2GHz,
provided by National Supercomputer Centre (NSC) at Linköping
University. Website: https://www.nsc.liu.se/

276

0

1

Bottleneck 90%

0

1

No mystery 91%

0

1

Pegsol
83%

0

1

Mystery 87%

0

1
Rovers 77%

0
1

3SAT 28%

0

1

TPP 76%

Figure 1: Every point represents an instance Π and they are
ordered in increasing difficulty (left to right). The value of
a point is the ratio of the number of dead-ends identified by
HCDE(Π) to the number of dead-ends detected by φ(Π) on
the set ξ(Π). A point below 1 means that the pattern collec-
tion identified fewer dead-ends than φ(Π), and the percent-
age is the average ratio of dead-ends that φ(Π) detected of
ξ(Π). No PDB detected any dead-end for Tiles.

HCDE and HCSamples are at detecting dead-ends, and whether
spending more CPU-time would help. The latter is estimated
by comparing how many dead-ends they detect compared to
pattern collections that were constructed by using years of
CPU-time on a computer cluster. The dead-ends that we use
to compare them are generated by ξ.

It is, of course, computationally infeasible to construct op-
timal pattern collections in general, and a more pragmatic
approach is to spend an unreasonable amount of CPU-time
instead. We used a computer cluster to generate 20 million
random PDBs for every instance Π where the size of every
PDB is bounded by 500000, and we denote this set of PDBs
as P(Π). The pattern collection φ(Π) ⊆ P(Π) consists of
the 1500 patterns with the highest percentage of dead-ends.
We stress that even though we generate 20 million PDBs,
it is not a complete set of PDBs for most instances, and it
is possible for HCDE and HCSamples to generate PDBs not in
P(Π). The reason why we do not generate more or larger
PDBs is because of how computationally expensive it is. Of
course, the same bound on PDB size was used by HCDE(Π)
and HCSamples(Π) in the following analysis.

Figure 1 and 2 shows how HCDE and HCSamples perform
against φ, where hill-climbing methods were given at most
20 minutes to construct a pattern collection. The pattern col-
lections perform similarly and in most domains they were
able to detect as many dead-ends as φ. The exceptions are
Pegsol and 3SAT, which we examine more closely later.
In the other domains the ratio is close to 1, i.e. HCDE and
HCSamples detected about as many dead-ends as φ. We ob-

0

1

Bottleneck 90%

0

1

No mystery 91%

0

1

Pegsol
83%

0

1

Mystery 87%

0

1

Rovers 77%

0
1

3SAT 28%

0

1
TPP 76%

Figure 2: Same as Figure 1 except that we used HCSamples.

0% 20% 40% 60% 80%

0.5%

0% 20% 40% 60% 80%

18.2%

0% 20% 40% 60% 80%

0.6%

Percent of dead-ends

N
o.

of
PD

B
s Pegsol (10) 3SAT (22-5-2) 3SAT (129-30-2)

Figure 3: Histograms of the percent of dead-ends of the
PDBs in P for 3 instances. The numbers within the paren-
theses denote specific instances in the benchmark. The per-
centage in the upper right corner is the average percent of
dead-ends across all PDBs of the instance.

serve the effect of P(Π) being incomplete in 3SAT, where
HCDE and HCSamples detect many more dead-ends than φ.
Due to space constraints we have not included how many
dead-ends φ detected per instance, but the experiments pre-
sented later shed some light on how successful HCDE is in
practice. Typically, the frequency of dead-ends drop as the
instance difficulty increase (roughly speaking, the difficulty
of an instance is its state space size, or by the parameters
used to generate it), i.e. good patterns become more rare.
Consider this: φ was given several weeks of CPU-time per
instance to generate 20 million PDBs and construct a pattern
collection, whereas HCDE and HCSamples were given a mere
20 minutes and they were still able to compete with φ!

The two outliers are Pegsol and 3SAT, but why is this?
Figure 3 shows the histograms of how many dead-ends the
PDBs of P have for 3 instances: a hard Pegsol instance, an
easy 3SAT instance and a hard 3SAT instance. A histogram
is a graphical representation of the frequency of the given
data points, that is, the more frequent a data point is, the
taller its corresponding bar is. For instance, a tall bar at 0%
means that many PDBs in P have around 0% dead-ends.
The easier 3SAT instance has a smaller state space than the

277

Average percentile rank

Domain Minimum Average Maximum

3SAT 98 98 99
Bottleneck 49 67 93
Mystery 51 75 99
No mystery 96 97 99
Pegsol 96 98 99
Rovers 99 99 99
TPP 99 99 99

Table 1: Minimum, average and the maximum average per-
centile rank of the ratio of dead-ends in the PDBs of the
unsolvable projections in P(Π), for every instance Π. That
is, for every instance of a domain we take the average per-
centile rank of the unsolvable projections, and then we take
the minimum, the average or the maximum (of the afore-
mentioned average) over the entire domain.

harder one which means that the PDBs for the easy instance
are (relatively) a lot more informative than the PDBs for the
hard instance. To get a more meaningful distribution for the
hard instance we might have to consider larger PDBs or ad-
ditional techniques (e.g. mutexes). The situation is different
for Pegsol, where the distribution in Figure 3 is representa-
tive for every Pegsol instance, i.e. the PDBs are not very
informative. The distributions are even worse for smaller
PDBs, i.e. no PDB has any dead-end. The methods HCDE
and HCSamples might struggle when given these instances be-
cause their score functions count dead-ends for smaller state
space sizes but the score is almost always 0. In other words,
the search degrades to blind, uninformed search and is there-
fore unlikely to find the few patterns which are useful for
dead-end detection.

5.3 Unsolvable projections

If we encounter an unsolvable projection at some point dur-
ing the construction of a pattern collection then we can ter-
minate early: we know that the initial state is a dead-end
and that the instance is unsolvable. Hence, unsolvable pro-
jections are very important. The proposed methods differ in
this regard; HCDE found a total of 1458 unsolvable projec-
tions over all instances, whereas HCSamples only found 499
(we did not terminate early, and every pattern collection con-
tained at most 60 PDBs of unsolvable projections).

In this section, we investigate why HCDE finds more
unsolvable projections than HCSamples. Firstly, we explore
whether the PDBs of unsolvable projections tend to have a
lot of dead-ends in addition to the initial state, i.e. if such
PDBs are likely to get a high score by DE. Secondly, we in-
vestigate how many ”minimal” unsolvable projections there
are. By minimal we mean that there is no unsolvable pro-
jection of fewer variables. Thirdly, we analyse if different
unsolvable projections have many variables in common.

We now study whether there often is a correlation between
unsolvability and the frequency of dead-ends. Note that, it is
possible for the initial state to be the only dead-end. Table 1
shows that PDBs of unsolvable projections tend to have a
high percentile rank in the distribution of frequency of dead-
ends, i.e. PDBs of unsolvable projections tend to have many

% of unsolvable projections # of instances

Domain Avg. k Level k Level k + 1 Level k Level k + 1

3SAT 11 0.002% - 5 0
Bottleneck 4 1.425% 3.755% 20 20
Mystery 3.63 9.008% 12.434% 8 8
No Mystery 4.72 1.646% 7.917% 25 20
Pegsol 10.90 0.176% 0.195% 21 2
Rovers 4 0.002% 0.005% 3 3
TPP 4.2 0.039% 0.152% 5 4

Table 2: The average frequency of unsolvable projections
of every domain, for the lowest inconsistent level k, and if
possible level k + 1. However, it was not computationally
feasible to solve every projection in both levels for every in-
stance. The last two columns detail for how many instances
we were able to do this for. The Tiles domain is omitted
since every projection that we solved was solvable.

dead-ends. The percentile rank of a PDB is its relative po-
sition in a distribution, e.g. if the percentile rank of a PDB
is 99 then 99% of the PDBs have a smaller or equal ratio
of dead-ends. For example, Figure 3 illustrates this distri-
bution for 3 instances. Note that a high percentile rank of a
PDB for the Pegsol instance means that the PDB has around
10% dead-ends (i.e. a high percentile rank does not guaran-
tee good dead-end detection but that it is amongst the best
for said purpose). Due to space constraints we present for ev-
ery domain, the minimum, average and maximum of the av-
erage rank of PDBs of unsolvable projections per instance.
For most domains, the percentile ranks are very high, around
98, which means that PDBs of unsolvable projections tend
to score high by DE. This partly explains why HCDE en-
counters far more unsolvable projections than HCSamples: DE
serves as a heuristic function to find unsolvable projections.
The two exceptions are Bottleneck and Mystery, but their av-
erage percentile rank is higher than 50, i.e. they have more
dead-ends than the average PDB.

It is also important to consider how many variables the
projections have. We define level k of an instance as the set
of projections with exactly k variables. Furthermore, we say
that a level is inconsistent if at least one projection of level k
is unsolvable. If the lowest inconsistent level is k then a hill-
climbing search need at least k−1 iterations to encounter an
unsolvable projection. The average frequency of unsolvable
projections of 7 domains can be found in Table 2, where
the frequencies are for the lowest inconsistent level k and
the next level. In contrast to ξ, we consider every projection
at level k (and k + 1). However, this was not possible for
some instances (e.g. any 3SAT instance at level k + 1) due
to the sheer number of projections. We observed that the fre-
quencies did not vary much between instances of the same
domain. Unsurprisingly, the frequencies are low at level k:
3SAT and Rovers had the lowest average frequency of about
0.002%; Mystery had the highest average frequency of about
9%; and the average frequency over every domain was about
1.76%. At level k + 1, the situation improved substantially:
Rovers had the lowest frequency with about 0.005% unsolv-
able projections, which is almost 3 times more frequent than
the previous level; The highest frequency was about 12.43%

278

7.9% 5.0% 20.2%

14.2%

0% 20% 40% 60% 80%

0.0%

0% 20% 40% 60% 80%

0.0%

0% 20% 40% 60% 80%

7.7%

Percent of unsolvable neighbours

N
um

be
ro

fu
ns

ol
va

bl
e

pr
oj

ec
tio

ns

3SAT

Bottleneck Mystery No mystery

Pegsol Rovers TPP

26.3% 54.7% 46.4%

0% 20% 40% 60% 80%

14.2%

0% 20% 40% 60% 80%

30.7%

0% 20% 40% 60% 80%

24.8%

Percent of unsolvable neighbours

N
um

be
ro

fu
ns

ol
va

bl
e

pr
oj

ec
tio

ns

Bottleneck Mystery No mystery

Pegsol Rovers TPP

Figure 4: Histograms of the ratio between number of unsolv-
able neighbours and the total number of neighbours that un-
solvable projections have. The upper and lower histograms
are of the lowest inconsistent level k and k+1, respectively.

for the Mystery domain. The average frequency over every
domain was 4.08% – slightly higher than 2 times the pre-
vious level. The outlier is Pegsol, whose frequency barely
increased from level k to level k + 1.

We conjecture that unsolvable projections tend to have
many variables in common. We define the following rela-
tionship between projections.
Definition 3. Let Π|V1

and Π|V2
be projections that both

have weakly connected causal graphs and contain at least
one goal variable each. Then Π|V1 , Π|V2 are neighbours if
|V1| = |V2|, |V1 ∩ V2| = |V1| − 1.

In other words, two neighbours share all but one vari-
able and we examine whether most unsolvable projections
are also neighbours. Figure 4 presents histograms over how
many unsolvable neighbours an unsolvable projection has at
the lowest inconsistent level k and the next level (k+1), re-
spectively. The averages in the histograms are significantly
higher than the average frequency of unsolvable projections
(Table 2) in most domains. This is interesting since it sug-
gests that we are observing something which is typical for
unsolvable projections. Due to space constraints, we have
not included histograms of the percentage of unsolvable
neighbours for every projection, but those histograms have
a single tall bar at around 0% (mainly due to the fact that

of neighbourhoods Size of neighbourhoods

Domain Level k Level k + 1 Level k Level k + 1

3SAT 1 - 213.8 -
Bottleneck 2.35 1 33.53 2849.25
Mystery 1 1 1.25 36.25
No Mystery 1.12 1 17.5 223.9
Pegsol 1474.95 1628 21.6 21.67
Rovers 2.33 1 1 294
TPP 1 1.5 1 30.5

Table 3: The average number of neighbourhoods and their
average size for every domain, at the lowest inconsistent
level k and at level k. The average number of unsolvable pro-
jections per instance can be calculated by taking the product
of the number of neighbourhoods and their size.

there are far fewer unsolvable projections than solvable pro-
jections). The average (normalised) percentage of unsolv-
able neighbours was about 7.85% and 28.17% for level k
and k + 1, respectively, which are significantly higher than
the corresponding averages of frequency of unsolvable pro-
jections (1.76% and 4.08%). When the percentage of un-
solvable neighbours differs significantly, then we are able
to reason about how likely a projection is to be solvable by
looking at its neighbours: if we know that all of its neigh-
bours are solvable, then the projection is very likely to be
solvable as well. At level k+1 the percentage of unsolvable
neighbours is even higher.

A natural follow-up question is what happens if we al-
low neighbours to differ in more than one variable. We de-
fine neighbourhood as the transitive closure of the neighbour
relation on unsolvable neighbours. In other words, every
projection in the neighbourhood is unsolvable. Intuitively,
a neighbourhood is a set of projections that have many vari-
ables in common. Table 3 details how many neighbourhoods
there are and how large they are. For every domain, except
Pegsol, the number of neighbourhoods are very few and they
can be quite large, especially at level k+1. The outlier is still
Pegsol, where the histogram for level k and level k + 1 are
about the same, and they have about the same average. For
TPP, we note that, even though the unsolvable projection(s)
at level k has 0% neighbours, there is on average only one
neighbourhood (of average size 1).

The difference between HCDE and HCSamples can be ex-
plained in the following way: HCDE will always try to select
the individually best PDB, whilst HCSamples tries to select a
PDB that works well with the current pattern collection –
even if the PDB contains far fewer dead-ends. Since unsolv-
able projections tend to have many variables in common, it is
therefore likely that their dead-end detection capabilities are
similar. Hence, if the current pattern collection already con-
tains a PDB in a neighbourhood of unsolvable projections,
then HCDE is more likely than HCSamples to select a PDB in
the same neighbourhood (since HCSamples might avoid PDBs
with similar dead-end detection capabilities).

Since both methods identified about as many dead-ends
and HCDE encountered more unsolvable projections, we
consider HCDE to be the better (at least on this benchmark).
Hence, we will only evaluate HCDE in Section 7.

279

Mutexes identified Goal is mutex

Domain (# instances) h2 h3 h2 h3

3SAT (30) 42 38 554 0 0
Bottleneck (25) 51 679 248 340 10 20
Mystery (9) - - 9 9
No mystery (25) 81 788 2 027 164 0 10
Pegsol (24) 826 4 768 0 6
Rovers (25) 19 431 234 424 3 8
Tiles (20) 11 160 11 160 0 0
TPP (25) 97 858 1 479 852 1 5

Table 4: The sum of mutexes identified for every domain.
Mutexes are identified by either h2 or h3. The sum does not
include mutexes for instances whose goal matched a mutex.

6 Mutual Exclusions

A useful and well-known technique to improve the heuristic
values of a PDB is to use mutexes: a mutex is a partial state
which matches states that cannot be reached from the initial
state. We generate mutexes with the critical path heuristic
hm (Haslum and Geffner 2000). More specifically, we let
m = 2 or m = 3. In this section, we detail how many mu-
texes h2 and h3 identify and whether any of the mutexes can
directly prove the instance unsolvable. If a mutex does not
infer unsolvability, then it can still have a tremendous effect
on increasing the number of dead-ends in a PDB.
Definition 4. A partial state sm of a SAS+ instance Π is a
mutual exclusion, or mutex, if and only if there is no reach-
able state s from I(Π) such that sm ⊆ s.

A common definition of mutex in the literature is that
there is no reachable total state which contains more than
one variable-value pair of a mutex, but we use a more gen-
eral definition. We get mutexes of size 2 and 3 from h2 and
h3, respectively. Ideally, for an unsolvable instance Π we
want to prove that some sm ⊆ G(Π) is a mutex (i.e. every
goal state is unreachable), but it is obviously PSPACE-hard
to do so. Hence, if we use a polynomial-time algorithm to
identify mutexes then the typical case is that the goal does
not match any identified mutex.

To (naively) decide whether a partial state sm is a mutex
for an instance Π, we let sm be the goal and evaluate h2 on
I(Π). Table 4 details how many mutexes were found by h2

and h3, and how many instances were identified as unsolv-
able by a mutex. Every instance of the Mystery domain had
a goal which matched a mutex as well as many instances of
the Bottleneck domain. Mutexes from h2 immediately iden-
tified 23 of 183 instances as unsolvable, whilst mutexes from
h3 identified 58 instances as unsolvable. For every instance,
it took less than 4 seconds for h2 to identify mutexes, and
(except in a few cases) less than 5 minutes for h3.

If a solution for a projection visits a state that matches a
mutex then there is no corresponding solution for the origi-
nal instance, and by avoiding such solutions we can gener-
ate PDBs with potentially more dead-ends. Figure 5 shows
the impact of exploiting mutexes when generating PDBs for
two instances, and the impact is a very significant increase
in dead-ends: the average ratio of dead-ends for the 3SAT
PDBs went from 15.7% to 84.2% and for the TPP PDBs
it went from 3.6% to 88.4%. Figure 5 consists of only two

15.7%

0% 20% 40% 60% 80%

3.6%

Percent of dead-ends

N
um

be
ro

fP
D

B
s

3SAT (22-5-4)

TPP (05-02)

84.2%

0% 20% 40% 60% 80%

88.4%

Percent of dead-ends

3SAT (22-5-4)

TPP (05-02)

Figure 5: Histograms of the percent of dead-ends of the
PDBs in P for two instances. The PDBs in the histograms
to the left did not use mutexes, whilst the PDBs in the his-
tograms to the right did. The mutexes were generated by h3.
No mutex matched any goal.

instances, but the experiments in Section 7 show that many
other instances benefit greatly, too, from using mutexes.

7 Experiments

In this section, we evaluate HCDE on the benchmarks of
unsolvable instances provided by Hoffmann et al. (2014).
Our method and the consistency checking method is imple-
mented in C#, and the other methods are part of the Fast
Downward planner (Helmert 2006) which is implemented in
C++. We gave every method 30 minutes and 4 GB of avail-
able memory for every instance, and they were run on an
Intel i7 4790 at 3.6 GHz. The methods we compared were:

• Blind: Check whether a goal state is reachable without
using any dead-end detection.

• Mrg1 and Mrg2 (Hoffmann, Kissmann, and Álvaro Tor-
ralba 2014): Two variants of the M&S heuristic that are
optimised for dead-end detection.

• CC (Bäckström, Jonsson, and Ståhlberg 2013): An opti-
mised version of the consistency checking method. We
changed the search strategy to A* and the heuristic func-
tion is a pattern collection of every pair of variables.

• HCBL: A pattern collection is constructed by hill-climbing
search with the scoring function:

S(hP) =

∑{hP (s):hP (s)�=∞,s∈StateSpace(Π|P)}
|StateSpace(Π|P)|

The score function S is useful for solvable instances, but
not so much for unsolvable. The planner used a depth-
first search algorithm, and the pattern collection is used to
detect dead-ends. This method serves as a baseline.

• HCDE: The pattern collection is constructed as de-
scribed in this paper, and is using the same planner as
HCBL. We also evaluate different PDB and pattern col-
lection sizes, and how much PDBs benefit from mu-
texes generated from h2 or h3. These parameters are
denoted as Cn

m, where C is the pattern collection,

280

HCBL HCDE

M&S CC C500k
60M C500k

60M C2.75M
60M C5M

60M IPC contenders

Domain (#) Blind Mrg1 Mrg2 - h3 - - h2 h3 - h2 h3 - h2 h3 Aidos DE-PDBs SymPA

3SAT (30) 15 15 13 0 0 15 15 15 15 15 15 15 15 15 15 30 15 10
Bottleneck (25) 9 5 11 20 20 16 22 20 21 21 20 20 20 19 20 25 19 25
Mystery (9) 2 6 1 8 9 6 7 9 9 6 9 9 6 9 9 9 6 9
No mystery (25) 0 25 25 25 25 20 23 23 23 23 22 23 25 25 25 25 25 25
Pegsol (24) 24 24 0 0 6 24 24 24 24 24 24 24 24 24 24 24 24 24
Rovers (25) 0 18 18 3 9 11 14 17 19 10 19 21 9 19 22 22 13 23
Tiles (20) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TPP (25) 0 11 19 5 6 11 23 23 23 22 22 22 22 22 22 25 20 22

Total (183) 60 114 97 71 85 113 138 141 144 131 141 144 131 143 147 170 132 148
Total* (109) 11 65 74 61 69 64 89 92 95 82 92 95 82 94 98 106 83 104

Table 5: Coverage results on the benchmarks. The second total is the coverage of every domain except 3SAT, Pegsol and Tiles.

n ≥ max{|StateSpace(Π|P)| : P ∈ C}, m ≥∑
P∈C |StateSpace(Π|P)|, and we write h2 or h3 to de-

note whether the mutexes were generated by h2 or h3.

• Three contenders of the first unsolvability IPC. First, DE-
PDBs (Pommerening and Seipp 2016), which identifies
dead-ends by systematically constructing PDBs and then
use them to prune the reachable state space – very com-
parable to our method. Second, Aidos (Seipp et al. 2016),
the winner of the first unsolvability IPC, which consists of
an array of methods, and one of them is DE-PDBs. Third,
SymPA (Álvaro Torralba 2016), which performs bidirec-
tional search in the original and abstract state spaces.

Coverage results are presented in Table 5, together with
two different totals. The first total is the sum of coverage
for every domain, whilst the second ignores the coverages
of 3SAT, Pegsol and Tiles. We motivate the second total in
the following way. Any heuristic function that is evaluated
sufficiently fast will perform well on the excluded instances
because the blind heuristic function performs well. In other
words, we are not measuring how good they are at deal-
ing with the combinatorial explosion. Note that blind search
does not have full coverage for the excluded domains, but
no other method performed better (except for Aidos in the
3SAT domain). The difference between the two total cover-
ages is especially noticeable for consistency checking (CC):
CC was not able to compete with Mrg1 in the first total (71
vs. 114), but could compete in the second total (61 vs. 65).

The best performing method w.r.t. total coverage was Ai-
dos which proved 170 (or 106) of 183 (or 109) instances as
unsolvable – impressive! However, it is arguably not fair to
compare a single method to a collection of methods. Hence,
we focus our comparison to the most similar method: DE-
PDBs, which is also part of Aidos. Our best performing
configuration was C5M

60M using mutexes generated by h3,
which identified 147 (or 98) as unsolvable. DE-PDBs iden-
tified 132 (or 83) instances as unsolvable, which is 15 less
than our. The difference is explained by Mystery and Rovers,
where our method had a much better coverage thanks to mu-
texes. When HCDE did not have access to mutexes, then its
performance was comparable to DE-PDBs. The reason why
HCBL performs surprisingly well is because it stops once it
finds an unsolvable projection, regardless of its score.

8 Discussion

In this paper, we proposed and compared two methods of
constructing pattern collections for dead-end detection. We
showed by a statistical analysis and experiments that the
methods performed very well: for most instances there is
little point in spending more time to construct a better pat-
tern collection, and the pattern collections outperformed the
other methods in the experiments w.r.t. total coverage. Fur-
thermore, since the pattern collections are often very good,
we believe that further improvement is likely to come from
enhancing patterns with other techniques (such as mutexes).
We showed that mutexes generated by hm had a tremendous
impact on the number of dead-ends in PDBs, and it would
be interesting to compare different mutex generation meth-
ods. Another possibility of improving PDBs is to simplify
the instance such that the simplified instance is solvable if
and only if the original instance is, e.g. redundant actions
(Haslum and Jonsson 2000) are actions that can be removed
since they are replaceable by a sequence of other actions.
DE-PDBs and HCDE without mutexes perform similarly, and
a difference is the order they consider patterns. DE-PDBs is
not as aggressive as HCDE since it considers patterns in the
same way as consistency checking, perhaps they differ sig-
nificantly w.r.t. pattern collection construction time.

We showed that unsolvable projections tend to have many
variables in common, and that unsolvable projections tend
to have many dead-ends. Hence, another research direction
is to devise a method that identifies those variables, and use
the method to guide the hill climbing search. This would be
useful when the score function for e.g. HCDE fails to provide
a meaningful score, which is often the case for small PDBs
with no dead-ends. However, we cannot expect a significant
improvement since the proposed methods are already con-
structing good pattern collections.

It is worth noting that solvable instances might also con-
tain dead-ends and therefore the proposed methods might be
useful for such instances, e.g. Sokoban (Pereira, Ritt, and
Buriol 2014). Pattern collections can easily be tailored to-
ward both heuristic guidance and dead-end detection; it is
simply a matter of selecting different PDBs for either pur-
pose. However, the cost is increased pattern collection con-
struction time or increased memory usage. The latter might
be addressed by compressing the PDBs (Felner et al. 2007).

281

Acknowledgements

Simon Ståhlberg is partially supported by the National
Graduate School in Computer Science (CUGS), Sweden.
The National Supercomputer Centre (NSC) at Linköping
University provided access to a computer cluster, which was
vital for this work. The anonymous reviewers provided very
valuable and important feedback.

References

Álvaro Torralba. 2016. SymPA: Symbolic perimeter ab-
stractions for proving unsolvability. In First Unsolvability
International Planning Competition.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Proceedings of the 6th International Symposium
on Combinatorial Search (SoCS ’13), 29–37.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Proceedings of the 15th International Conference
on Automated Planning and Scheduling (ICAPS ’05), 12–
21.
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S.; Kellershoff, M.; and Sulewski, D. 2010. Pro-
gram model checking via action planning. In Proceedings
of the 6th International Workshop on Model Checking and
Artificial Intelligence, 32–51.
Edelkamp, S.; Leue, S.; and Visser, W., eds. 2007. Directed
Model Checking, volume 06172 of Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the 6th European Conference on Planning
(ECP-01), 13–24.
Edelkamp, S. 2003. Promela planning. In Proceedings of the
10th International Conference on Model Checking Software,
SPIN’03, 197–213.
Felner, A.; ; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. Journal of Artificial Intelligence
(JAIR) 22(1):279–318.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. Journal of Artificial
Intelligence (JAIR) 30:213–247.
Futoransky, A.; Notarfrancesco, L.; Richarte, G.; and Sar-
raute, C. 2010. Building computer network attacks. CoRR
abs/1006.1916.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Proceedings of the 5th European Conference
on Planning on Recent Advances in AI Planning (ECP’99),
1–20.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proceedings of 5th International Con-

ference on Artificial Intelligence Planning and Scheduling
(AIPS ’00, 140–149.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Proceedings of 5th International Con-
ference on Artificial Intelligence Planning and Scheduling
(AIPS ’00), 150–158.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 22th AAAI Conference on Artificial Intelligence
(AAAI ’07), 1007–1012.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS ’07), 176–183.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS
’04), 161–170.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:2001.
Hoffmann, J.; Kissmann, P.; and Álvaro Torralba. 2014.
“Distance”? Who cares? Tailoring merge-and-shrink heuris-
tics to detect unsolvability. In Proceedings of the 21st Euro-
pean Conference on Artificial Intelligence (ECAI ’14), 441–
446.
Pereira, A. G.; Ritt, M.; and Buriol, L. S. 2014. Solving
sokoban optimally using pattern databases for deadlock de-
tection. In Encontro Nacional de Inteligência Artificial e
Computacional, 514–520.
Pommerening, F., and Seipp, J. 2016. Fast downward dead-
end pattern database. In First Unsolvability International
Planning Competition.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39(1):127–
177.
Seipp, J.; Pommerening, F.; Sievers, S.; Wehrle, M.;
Fawcett, C.; and Alkhazraji, Y. 2016. Fast downward aidos.
In First Unsolvability International Planning Competition.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS ’04),
393–401.

282

