
Domain Independent Approaches for Finding Diverse Plans
Biplav Srivastava† Tuan A. Nguyen‡ Alfonso Gerevini¶

Subbarao Kambhampati∗ Minh Binh Do§ Ivan Serina¶

†IBM India Research Laboratory, New Delhi and Bangalore, India, sbiplav@in.ibm.com

*Arizona State University, Tempe, AZ, USA 85287, rao@asu.edu

‡University of Natural Sciences, Ho Chi Minh, Vietnam, natuan@fit.hcmuns.edu.vn

§Palo Alto Research Center, USA, minhdo@parc.com

¶University of Brescia, Italy,{gerevini,serina}@ing.unibs.it

Abstract

In many planning situations, a planner is required
to return a diverse set of plans satisfying the same
goals which will be used by the external systems
collectively. We take a domain-independent ap-
proach to solving this problem. We propose differ-
ent domain independent distance functions among
plans that can provide meaningful insights about
the diversity in the plan set. We then describe how
two representative state-of-the-art domain indepen-
dent planning approaches – one based on compila-
tion to CSP, and the other based on heuristic local
search – can be adapted to produce diverse plans.
We present empirical evidence demonstrating the
effectiveness of our approaches.

1 Introduction
A typical automated planner takes as input the specifications
of the initial and goal states and the set of available ac-
tions, and finds a plan that will satisfy the goals by efficiently
searching in the space of possible state configurations or ac-
tion orderings (plans). In many planning situations, a planner
is required to return not one but a set of diverse plans satisfy-
ing the same goals which will be used by the external systems
collectively. As an example, in adaptive web services compo-
sition, the web service engine wants to have a set of diverse
plans/ compositions such that if there is a failure while exe-
cuting one composition, an alternative may be used which is
less likely to be failing simultaneously[Chafleet al., 2006].
However, if a user is helping in selecting the compositions,
the planner could be first asked for a set of diverse plans and
when she selects one of them, the planner is next asked to find
plans that are similar to the selected one. Another example is
using planning for intrusion detection[Boddy et al., 2005],
where the aim is to detect diverse ways of possible intrusion
attacks (represented as plans).

Although the need for finding similar or different plans has
been noticed in the past, there has been little concrete work
on formalizing and solving the problem. What little there is
has concentrated on finding similar plans[Foxet al., 2006] or

∗Kambhampati’s research is supported in part by an IBM Faculty
Award, the NSF grant IIS–308139, the ONR grant N000140610058,
and by a Lockheed Martin subcontract TT0687680 to ASU as part
of the DARPA Integrated Learning program.

are domain-specific approaches (See Section 5). For exam-
ple, Myers[Myers & Lee, 1999] expects the domain model-
ers to provide a “meta-theory” of the domain (in addition to
the domain transition model in terms of actions and their ef-
fects). In this paper, we focus on domain-independent means
of finding (and comparing) diverse plans. This immediately
brings up the issue:on what basis should two plans be com-
pared?The first contribution of this paper is the proposal of a
spectrum of distance measures that capture plan characteris-
tics in terms of actions, behaviors (states that result fromthe
plan execution) and causal structures.

Once the distance measures are in place, we turn to the
issue of automatically generating sets of plans that have the
desired diversity in terms of those distance measures. A naive
approach for this would be to let the planner generate multi-
ple solutions and filter out the solutions that do not satisfy
the required diversity. Such a filtering approach is not very
promising, particularly given the fact that the set of plansfor
a given problem can in principle be infinite.1 Indeed, Boddy
et. al. 2005, who use this type of filtering technique in the in-
trusion detection domain, explicitly acknowledge the needfor
approaches that take diversity constraints into account during
search more actively.

The second contribution of our paper is thus an investiga-
tion of effective approaches for using distance measures to
bias a planner’s search to find diverse plans efficiently. The
technical details of biasing the search do depend on the de-
tails of the underlying planner. To get a broader understand-
ing, we decided to investigate two representative state-of-the-
art planning approaches. The first,GP-CSP, typifies the issues
involved in generating diverse plans in bounded horizon com-
pilation approaches, while the second,LPG, typifies the issues
involved in modifying the heuristic search planners. Our in-
vestigations withGP-CSPallow us to compare the relative dif-
ficulties of enforcing diversity with each of the three distance
measures. We find that using action-based distance measures
to find diverse plans usually results in plans that are also di-
verse with respect to their behavior and causal structures,but
less likely in other permutations. WithLPG, we focus only
on the action-based distance, which can be treated in a nat-
ural way by a relatively simple modification of the heuristic
function, to explore scaleup issues. We find that the proposed
distance measures makeLPG more effective in solving for di-
verse plans over large problem instances.

1To see this, note that there may be infinitely many non-minimal
variations of a single plan.

Basis Pros Cons
Actions Does not require No problem information

problem information is used
States Not dependent on any specific Needs an execution

plan representation simulator to identify states
Causal links Considers causal proximity Requires domain theory

of state transitions (action)
rather than positional
(physical) proximity

Table 1: The pros and cons of different bases to characterize
plans.

In the rest of the paper, we start by formalizing the problem
and then propose different plan distance functions. Next, we
propose methods to find diverse plans and demonstrate their
effectiveness usingGP-CSPandLPG. We end with a discus-
sion on related work and our main results.

2 Distance Measures
To talk formally about generation of diverse plans, we need to
start with the notion of distance between plans. Letδ(Si, Sj)
→ [0, 1] denote a distance function between a pair of plans.
A value of 0 represents complete similarity of plans while 1
represents complete diversity. Following the convention of
[Hebrardet al., 2005], for a given setS of plans, we de-
fine max(δ, S) = max

Si,Sj∈S
δ(Si, Sj) andmin(δ, S) = min

Si,Sj∈S

δ(Si, Sj). The problem of findingk diverse/ similar plans
for a problemPP , whose set of all plans is represented by
Plan(PP), is then stated below.

dDISTANTkSET (resp. dCLOSEkSET): Find S
with S ⊆ Plan(PP), | S | = k andmin(δ, S) ≥ d
(resp.max(δ, S) ≤ d).

At the heart of tackling this problem is the issue of defining
criteria by which two plans are compared.2 As mentioned
earlier, we focus here on domain-independent measures for
comparing plans. We can compare two plans in terms of:

1. Actions that are present in the two plans.

2. The behaviors resulting from the execution of the plans
(where the behavior is captured in terms of the sequence
of states the agent goes through).

3. The causal structures of the two plans measured in terms
of the causal links representing how actions contribute to
the goals being achieved.3

Table 1 gives the pros and cons of using the different com-
parison methods. We note that if actions in the plans are used
as the basis for comparison, no additional problem or domain
theory information is needed. If plan behaviors are used as
the basis for comparison, the representation of the plans that
bring about state transition becomes irrelevant since onlythe

2This issue is complicated by the fact that the plans being com-
pared can be generated by an automated planner or found in other
ways, e.g., given manually or manipulated after getting it from
a planner[Srivastava, Vanhatalo, & Koehler, 2005]. Although we
only consider generated plans, the distance measures applyto other
provences as well. We make no apriori assumption about the plans
like each goal has a single causal support structure.

3A causal linkA1

p1→ A2 records that a predicate is produced
at A1 and consumed atA2. A causal chain is a sequence of causal

links of the formA1

p1→ A2, A2

p2→ A3, ..., An−1

pn−1

→ An. We use
causal links for analysis but refer to a plan’s causal links by causal
chains, wherever possible, for convenience.

Name Basis Computation
δ1 (δa) Actions Set-difference
δ2 Actions Prefixes Neighbourhood
δ3 (δs) States Set-difference
δ4 States Prefixes Neighbourhood
δ5 (δc) Causal Links Set-difference
δ6 Causal Links Prefixes Neighbourhood

Table 2: A spectrum of distance functions based on different
bases and way of computations.
actual states that an execution of the plan will take is consid-
ered. Hence, we can now compare plans of different repre-
sentations, e.g., 4 plans where the first is a deterministic plan,
the second is a contingent plan, the third is a hierarchical plan
and the fourth is a policy encoding probabilistic behavior.If
causal links are used as the basis for comparison, the causal
proximity among actions is now considered rather than just
physical proximity in the plan.

Aggregating Distances Once a basis for plan comparison is
chosen, we still have different choices for aggregating thedis-
tances. For example, if we are interested in action based com-
parison of plans, then we could (i) view the plans as sets (or
bags) of actions and consider set (bag) difference between the
two plans, (ii) consider the plans as sequences of actions and
consider measures such as “hamming distance” that are sen-
sitive to the position of the actions. In Table 2, 6 distance
functions are presented which use 3 different bases and 2 dif-
ferent ways of computation. We useδ1, δ3 andδ5 and refer to
them byδa, δs andδc, respectively, in the rest of the paper.

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-2

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-2

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3
<p1,p2,p3>

<g1,g2,g3>

Plan S1-1

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3
<p1,p2,p3>

<g1,g2,g3>

Plan S1-1

Ai-p1-A1-g1-Agg1S1-1,
S1-2

Ai-p2-A2-g2-Agg2

Ai-p3-A3-g3-Agg3

Ai-p3-A3’, Ai-p1-A1-g1-A2’,Ai-
p2-A2’-g2-A3’, A3’-g3-Ag

g3

Ai-p1-A1-g1-A2’,Ai-p2-A2’,
A2’-g2-Ag

g2

Ai-p1-A1-g1-Agg1S1-3

Causal ChainsGoalPlan

Ai-p1-A1-g1-Agg1S1-1,
S1-2

Ai-p2-A2-g2-Agg2

Ai-p3-A3-g3-Agg3

Ai-p3-A3’, Ai-p1-A1-g1-A2’,Ai-
p2-A2’-g2-A3’, A3’-g3-Ag

g3

Ai-p1-A1-g1-A2’,Ai-p2-A2’,
A2’-g2-Ag

g2

Ai-p1-A1-g1-Agg1S1-3

Causal ChainsGoalPlan

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-3

Initial State Goal State

Figure 1: Example illustrating bases for distance measures.
Ai andAg denote dummy actions producing the initial state
and consuming the goal state, respectively.
Example:

In Figure 1, three plans are shown for a planning prob-
lem where the initial state is〈p1, p2, p3〉 and the goal state
is 〈g1, g2, g3〉. The action models and the causal structures
of plans are shown to the left. Plans S1-1 and S1-2 have the
same actions but different ordering structures. S1-1 has par-
allel actions while S1-2 has them in sequence. The plan S1-3
hasA1 like the other plans but all other actions are different
(A

′

2
andA

′

3
). However, it also achieves the same goals.

An action based plan comparison method which uses
position-based distance aggregation would find S1-1, S1-2
and S1-3 to be all different. This is because all the three plans

have different sets of action prefixes. If instead, the action in-
formation is used with set differencing, S1-1 and S1-2 would
be found to be identical.

A state based comparison method which uses any of the
given computation choice would find S1-2 and S1-3 to be
identical, and both of them to be different from S1-1. This
is because the states after every transition in S1-2 and S1-3
are identical. S1-1, on the other hand, has (trivially) the same
first and last states but no intermediate states.

A causal link based comparison method which uses set dif-
ferencing would find S1-1 and S1-2 to be the same while S1-3
as different. This is because the causal links for goalsg2 and
g3 in S1-1 (S1-2) are different from those of S1-3.

3 Finding Diverse Plans with GP-CSP
The GP-CSP planner[Do & Kambhampati, 2001] converts
Graphplan’s planning graph into a CSP encoding, and solves
it using a standard CSP solver. The solution of the encoding
represents a valid plan for the original planning problem. In
the encoding, the CSP variables correspond to the predicates
that have to be achieved at different levels in the planning
graph (different planning steps) and their possible valuesare
the actions that can support the predicates. For each CSP vari-
able representing a predicatep, there are two special values:
i) ⊥: indicates that a predicate is not supported by any action
and isfalseat a particular level/planning-step; ii) “noop”: in-
dicates that the predicate is true at a given leveli because it
was made true at some previous levelj < i and no other
action deletesp betweenj andi. Constraints encode the re-
lations between predicates and actions: 1) mutual exclusion
relations between predicates and actions; and 2) the causal
relationships between actions and their preconditions.

3.1 Adapting GP-CSP to Different Distance Bases
When the above planning encoding is solved by any standard
CSP solver, it will return a solution containing〈var, value〉 of
the form{〈x1, y1〉, ...〈xn, yn〉}. The collection ofxi where
yi 6= ⊥ represents the facts that are made true at different time
steps (plan trajectory) and can be used as a basis for thestate-
baseddistance measure; the set of(yi 6= ⊥) ∧ (yi 6= noop)
represents the set of actions in the plan and can be used
for action-baseddistance measure; lastly, the assignments
〈xi, yi〉 themselves represent the causal relations and can be
used for thecausal-baseddistance measure.

However, there are several complications we need to over-
come before a specific distance measure between plans can
be computed. First, the same action can be represented by
different values in the domains of different variables. Con-
sider a simple example in which there are two factsp and
q, both supported by two actionsa1 and a2. When set-
ting up the CSP encoding, we assume that the CSP variables
x1 andx2 are used to representp andq. The domains for
x1 andx2 are {v11, v12} and{v21, v22}, both representing
the two actions{a1, a2} (in that order). The assignments
{〈x1, v11〉, 〈x2, v21〉} and {〈x1, v12〉, 〈x2, v22〉} have a dis-
tance of 2 in traditional CSP because different values are as-
signed for each variablex1 andx2. However, they both rep-
resent the same action set{a1, a2} and thus lead to the plan
distance of 0 if we use the action-based distance in our plan
comparison. Therefore, we first need to translate the set of
values in all assignments back to the set of action instances
before doing comparison using action-based distance. The

second complication arises for the causal-based distance.A
causal linka1

p
→ a2 between two actionsa1 and a2 indi-

cates thata1 supports the preconditionp of a2. However, the
CSP assignment〈p, a1〉 only provides the first half of each
causal-link. To complete the causal-link, we need to look at
the values of other assignments to identify actiona2 that oc-
cur at the later level in the planning graph and hasp as its
precondition.

3.2 Making GP-CSP Return a Set of Solutions
To make GP-CSP return a set of solutions satisfying the
dDISTANTkSET constraint using one of the three distances,
we add “global” constraints to each original encoding to en-
forced-diversity between every pair of solutions. When each
global constraint is called upon by the normal forward check-
ing and arc-consistency checking procedures inside the de-
fault solver to check if the distance between two solutions is
over a predefined valued, we first map each set of assign-
ments to an actual set of actions (action-based), predicates
that are true at different plan-steps (state-based) or causal-
links (causal-based) using the method discussed in the previ-
ous section. This process is done by mapping all〈var, value〉
CSP assignments into action sets using a call to the planning
graph, which is outside of the CSP solver, but works closely
with the general purpose CSP solver inGP-CSP. The com-
parison is then done within the implementation of the global
constraint to decide if two plans are diverse enough.

We investigate two different ways to use the global con-
straints: 1)parallel strategy to return the set ofk solutions
all at once; and 2)greedystrategy to return them one after an-
other. In theparallel approach, we create one encoding that
containsk identical copies of each original planning encod-
ing created usingGP-CSPplanner. Thek copies are connected
together usingk(k − 1)/2 pair-wise global constraints. Each
global constraint between theith andjth copies ensures that
two plans represented by the solutions of those two copies
will be at leastd distant from each other. If each copy hasn
variables, then this constraint involves2n variables.

In thegreedyapproach, thek copies are not setup in par-
allel up-front, but sequentially. We add to theith copy one
global constraint to enforce that the solution of theith copy
should bed-diverse from any of thosei − 1 solutions. The
advantage of the greedy approach is that each CSP encoding
is significantly smaller in terms of the number of variables (n
vs. k∗n), smaller in terms of the number of global constraints
(1 vs. k(k − 1)/2), and each global constraint also contains
lesser number of variables (n vs. 2∗n).4 Thus, each encoding
in the greedy approach is easier to solve. However, because
each solution depends on all previously found solutions, the
encoding can be unsolvable if the previously found solutions
comprise a bad initial solution set.

3.3 Empirical Evaluation
We implemented the parallel and greedy approaches dis-
cussed earlier for the three distance measures and tested them
with the benchmark set ofLogisticsproblems provided with
the Blackbox planner[Kautz & Selman, 1998]. All experi-
ments were run on a Linux Pentium 4, 3Ghz machine with

4However, each constraint is more complicated because it en-
codes(i-1) previously found solutions.

Prob1 Prob2 Prob3 Prob4 Prob5 Prob6

δa 0.087 7.648 1.021 6.144 8.083 178.633
δs 0.077 9.354 1.845 6.312 8.667 232.475
δc 0.190 6.542 1.063 6.314 8.437 209.287

Random 0.327 15.480 8.982 88.040 379.182 6105.510

Table 3: Average solving time (in seconds) to find a plan us-
ing greedy (first 3 rows) and by random (last row) approaches

Prob1 Prob2 Prob3 Prob4 Prob5 Prob6

δa 0.041/0.35 0.067/0.65 0.067/0.25 0.131/0.1* 0.126/0.15 0.128/0.2
δs 0.035/0.4 0.05/0.8 0.096/0.5 0.147/0.4 0.140/0.5 0.101/0.5
δc 0.158/0.8 0.136/0.95 0.256/0.55 0.459/0.15* 0.346/0.3* 0.349/0.45

Table 4: Comparison of the diversity in the solution sets re-
turned by the random and greedy approaches

512MB RAM. For each problem5, we test with differentd
values ranging from 0.01 (1%) to 0.95 (95%)6 andk increases
from 2 ton wheren is the maximum value for whichGP-CSP
can still find solutions within plan horizon. The horizon (par-
allel plan steps) limit is 30.

We found that the greedy approach outperformed the paral-
lel approach and solved significantly higher number of prob-
lems. Therefore, we focus on the greedy approach hereafter.
For each combination ofd, k, and a given distance measure,
we record the solving time and output the average/min/max
pairwise distances of the solution sets.
Baseline Comparison: As a baseline comparison, we have
also implemented arandomapproach. In this approach, we
do not use global constraints but use random value ordering
in the CSP solver to generatek different solutions without
enforcing them to be pairwised-distance apart. For each dis-
tanced, we continue running the random algorithm until we
find kmax solutions wherekmax is the maximum value ofk
that we can solve for the greedy approach for that particular
d value. In general, we want to compare with our approach
of using global constraint to see if the random approach can
effectively generate diverse set of solutions by looking at: (1)
the average time to find a solution in the solution set; and
(2) the maximum/average pairwise distances betweenk ≥ 2
randomly generated solutions.
Figure 3 shows the comparison of average solving time to
find one solution in the greedy and random approaches. The
results show that on an average, the random approach takes
significantly more time to find a single solution, regardlessof
the distance measure used by the greedy approach. To assess
the diversity in the solution sets, Table 4 shows the compar-
ison of: (1) the average pairwise minimum distance between
the solutions in sets returned by the random approach; and (2)
the maximumd for which the greedy approach still can find
a set of diverse plans. The comparisons are done for all three
distance measures. For example, the first cell(0.041, 0.35)
in Table 4, implies that the minimum pairwise distance av-
eraged for all solvablek ≥ 2 using the random approach is
d = 0.041 while it is 0.35 (i.e. 8x more diverse) for the
greedy approach using theδa distance measure. Except for 3
cases, using global constraints to enforce minimum pairwise
distance between solutions helpsGP-CSPreturn significantly
more diverse set of solutions. On an average, the greedy ap-

5log-easy=prob1, rocket-a=prob2, log-a = prob3, log-b = prob4,
log-c=prob5, log-d=prob6.

6Increments of 0.01 from 0.01 to 0.1 and of 0.05 thereafter.

d Prob1 Prob2 Prob3 Prob4 Prob5 Prob6

0.01 11,5,28 8,18,12 9,8,18 3,4,5 4,6,8 8,7,7
0.03 6,3,24 8,13,9 7,7,12 2,4,3 4,6,6 4,7,6
0.05 5,3,18 6,11,9 5,7,10 2,4,3 4,6,5 3,7,5
0.07 2,3,14 6,10,8 4,7,6 2,4,2 4,6,5 3,7,5
0.09 2,3,14 6,9,6 3,6,6 2,4,2 3,6,4 3,7,4
0.1 2,3,10 6,9,6 3,6,6 2,4,2 2,6,4 3,7,4
0.2 2,3,5 5,9,6 2,6,6 1,3,1 1,5,2 2,5,3
0.3 2,2,3 4,7,5 1,4,4 1,2,1 1,3,2 1,3,3
0.4 1,2,3 3,6,5 1,3,3 1,2,1 1,2,1 1,2,3
0.5 1,1,3 2,4,5 1,2,2 - 1,2,1 1,2,1
0.6 1,1,2 2,3,4 - - - -
0.7 1,1,2 1,2,2 - - - -
0.8 1,1,2 1,2,2 - - - -
0.9 - 1,1,2 - - - -

Table 5: For each givend value, each cell shows the largest
solvablek for each of the three distance measuresδa, δs, and
δc (in this order). The maximum values in cells are in bold.

proach returns 4.25x, 7.31x, and 2.79x more diverse solutions
than the random approach forδa, δs andδc, respectively.
Analysis of the different distance-bases: Overall, we were
able to solve 1264(d, k) combinations for three distance mea-
suresδa, δs, δc using the greedy approach. We were particu-
larly interested in investigating the following issues:
• H1 - Is it easy or difficult to find a set of diverse so-

lutions using different distance measures? Thus, (1) for
the samed andk values, which distance measure is more
difficult (time consuming) to solve; and (2) given an en-
coding horizon limit, how high is the value ofd andk
that we can still find set of solutions for a given problem
using different distance measures.

• H2 - What, if any, is the correlation/sensitivity between
different distance measures? Thus, how diverse the so-
lutions returned when using distance measureδ′ are ac-
cording to anotherδ′′ 6= δ′ (whereδ′, δ′′ ∈ {δa, δs, δc})

RegardingH1, Table 5 shows the highest solvablek value
for each distanced and baseδa, δs, andδc. For a given(d, k)
pair, enforcingδa appears to be the most difficult, thenδs, and
δc is the easiest.GP-CSP is able to solve 237, 462, and 565
combinations of(d, k) respectively forδa, δs andδc. GP-CSP
solvesdDISTANTkSET problems more easily withδs andδc

than withδa due to the fact that solutions with different ac-
tion sets (diverse with regard toδa) will likely cause different
trajectories and causal structures (diverse with regard toδs

andδc). Betweenδs andδc, δc solves more problems for eas-
ier instances (Problems 1-3) but less for the harder instances,
as shown in Table 5. We conjecture that for solutions with
more actions (i.e. in bigger problems) there are more causal
dependencies between actions and thus it is harder to reorder
actions to create a different causal-structure.

For running time comparisons, among 216 combinations
of (d, k) that were solved by all three distance measures,GP-
CSPtakes the least amount of time forδa in 84 combinations,
for δs in 70 combinations and 62 forδc. The first three lines
of Table 3 show the average time to find one solution ind-
diversek-set for each problem usingδa, δs andδc (which we
call ta, ts and tc respectively). In general,ta is the small-
est andts > tc in most problems. Thus, while it is harder
to enforceδa thanδs andδc (as indicated in Table 5), when
the encodings for all three distances can be solved for a given
(d, k), thenδa takes less time; this can be due to tighter con-
straints (more pruning power for the global constraints) and
simpler global constraint setting.

To testH2, in Table 6, we show the cross-validation be-
tween different distance measuresδa, δs, andδc. In this table,

δa δs δc

δa - 1.262 1.985
δs 0.485 - 0.883
δc 0.461 0.938 -

Table 6: Cross-validation of distance measuresδa, δs, andδc.

cell 〈row, column〉 = 〈δ′, δ′′〉 indicates that over all combina-
tions of(d, k) solved for distanceδ′, the average valued′′/d′

whered′′ andd′ are distance measured according toδ′′ andδ′,
respectively (d′ ≥ d). For example,〈δs, δa〉 = 0.485 means
that over 462 combinations of(d, k) solvable forδs, for each
d, the average distance betweenk solutions measured byδa

is 0.485 ∗ ds. The results indicate that when we enforced for
δa, we will likely find even more diverse solution sets accord-
ing to δs (1.26 ∗ da) andδc (1.98 ∗ da). However, when we
enforced for eitherδs or δc, we are not likely to find a more
diverse set of solutions measured by the other two distance
measures. Nevertheless, enforcingd usingδc will likely give
comparable diverse degreed for δs (0.94 ∗dc) and vice versa.
We also observe thatds is highly dependent on the difference
between the parallel lengths of plans in the set.ds seems to
be the smallest (i.eds < da < dc) when allk plans have the
same/similar number of time steps. This is consistent with
the fact thatδa andδc do not depend on the steps in the plan
execution trajectory whileδs does.

4 Finding Diverse Plans with LPG
LPG is a local-search-based planner, that incrementally mod-
ifies a partial plan in a search for a plan that contains no
flaws [Gerevini, Saetti, & Serina, 2003]. The behavior of
LPG is controlled by an evaluation function that is used to
select between different plan candidates in a neighborhood
generated for local search. At each search step, the elements
in the search neighborhood of the current partial planπ are
the alternative possible plans repairing a selected flaw inπ.
The elements of the neighborhood are evaluated according to
anaction evaluation functionE [Gerevini, Saetti, & Serina,
2003]. This function is used to estimate the cost of either
adding or of removing an action nodea in the partial plan
π being generated. In the next two subsections, we present
some modifications toLPG for computing diverse plans using
the action-based plan distance.

4.1 Revised Evaluation Function for Diverse Plans
In order to managedDISTANCEkSET problems, the function
E has been extended to include an additional evaluation term
that has the purpose of penalizing the insertion and removal
of actions thatdecreasethe distance of the current partial plan
π under adaptation from a reference planπ0. In general,E
consists of four weighted terms, evaluating four aspects ofthe
quality of the current plan that are affected by the addition
(E(a)i) or removal (E(a)r) of a

E(a)i = αE ·Execution cost(a)i+αT ·Temporal cost(a)i+

+ αS · Search cost(a)i + αD · |(π0 − π) ∩ π
i
R|

E(a)r = αE ·Execution cost(a)r+αT ·Temporal cost(a)r+

+ αS · Search cost(a)r + αD · |(π0 − π − a) ∩ π
r
R|.

The first three terms of the two forms ofE are unchanged
from the standard behavior ofLPG. The fourth term, used
only for computing diverse plans, is the new term estimating
how the proposed plan modification will affect the distance

from the reference planπ0. Each cost term inE is computed
using a relaxed temporal planπR [Gerevini, Saetti, & Serina,
2003].

The πR plans are computed by an algorithm, calledRe-
laxedPlan, formally described and illustrated in[Gerevini,
Saetti, & Serina, 2003], that we have slightly modified to pe-
nalize the selection of actions decreasing the plan distance
from the reference plan. The specific change toRelaxedPlan
for computing diverse plans is very similar to the change de-
scribed in[Fox et al., 2006], and it concerns the heuristic
function for selecting the actions for achieving the subgoals
in the relaxed plans. In the modified function forRelaxed-
Plan, we have an extra 0/1 term that penalizes an actionb for
πR if its addition decreases the distance ofπ+πR from π0 (in
the plan repair context investigated in[Fox et al., 2006], b is
penalized if its additionincreasessuch a distance).

The last term of the modified evaluation functionE is a
measure of the decrease in plan distance caused by adding or
removinga: |(π0−π)∩πi

R
| or |(π0 −π−a)∩πr

R
|, whereπi

R

contains the new actiona. Theα-coefficients of theE-terms
are used to weigh their relative importance.7 The values of
the first 3 terms are automatically derived from the expression
defining the plan metric for the problem[Gerevini, Saetti, &
Serina, 2003]. The coefficient for the fourth new term ofE
(αD) is automatically set during search to a value propor-
tional tod/δa(π, π0), whereπ is the current partial plan under
construction. The general idea is to dynamically increase the
value ofαD according to the number of plansn that have
been generated so far: ifn is much higher thank, the search
process consists of finding many solutions with not enough
diversification, and hence the importance of the lastE-term
should increase.

4.2 Making LPG Return a Set of Plans
In order to compute aset of k d-distant plans solving a
dDISTANCEkSET problem, we run theLPG search multiple
times, until the problem is solved, with the following two ad-
ditional changes to the standard version ofLPG: (i) the pre-
processing phase computing mutex relations and other reach-
ability information exploited during the relaxed plan con-
struction is done only once for all runs; (ii) we maintain an
incremental set of valid plans, and we dynamically select one
of them as the reference planπ0 for the next search. Concern-
ing (ii), let P = {S1, ..., Sn} be the set ofn valid plans that
have been computed so far, andCPlans(Si) the subset ofP
containing all plans that have a distance greater than or equal
to d from a reference planSi ∈ P . The reference planπ0

used in the modified heuristic functionE is a planSmax ∈ P
which has a maximal set of diverse plans inP , i.e.,

Smax = ARGMAX{Si∈P} {|CPlans(Si)|} .

Smax is incrementally computed each time the local search
finds a new solution. In addition to being used to identify the
reference plan inE, Smax is also used for defining the initial
state (partial plan) of the search process. Specifically, weini-
tialize the search using a (partial) plan obtained by randomly
removing some actions from a (randomly selected) plan in the
setCPlans(Smax) ∪ {Smax}.

The process of generating diverse plans starting from a dy-
namically chosen reference plan continues until at leastk

7These coefficients are also normalized to a value in[0, 1] using
the method described in[Gerevini, Saetti, & Serina, 2003].

plans that are alld-distant from each other have been pro-
duced. The modified version ofLPG to compute diverse plans
is calledLPG-d.

4.3 Experimental Analysis with LPG-d
The distance functionδa, using set-difference, can be written
as the sum of two terms:

δa(Si, Sj) =
|Si − Sj |

|Si| + |Sj |
+

|Sj − Si|

|Si| + |Sj |.

The first term represents the contribution of the actions inSi

to the plan difference, while the second term indicates the
contribution ofSi to δa. We experimentally observed that in
some cases the differences between two diverse plans com-
puted usingδa are mostly concentrated in only one of the
δa components. This asymmetry means that one of the two
plans can have many more actions than the other one, which
could imply that the quality of one of the two plans is much
worse than the quality of the other plan. In order to avoid this
problem, we can parametrizeδa by imposing the two extra
constraints

δA
a ≥ d/γ andδB

a ≥ d/γ

whereδA
a andδB

a are the first and second terms ofδa, respec-
tively, andγ is an integer parameter “balancing” the diversity
of Si andSj .

In this section, we analyze the performance of the modi-
fied version ofLPG, calledLPG-d, in three different bench-
mark domains from the 3rd and 5th IPCs.8 The main goals of
the experimental evaluation were (i) showing thatLPG-d can
efficiently solve a large set of(d, k)-combinations, (ii) inves-
tigating the impact of theδa γ-constraints on performance,
(iii) comparingLPG-d and the standardLPG.

We testedLPG-d using both the default and parametrized
versions ofδa, with γ = 2 andγ = 3. We give detailed
results forγ = 3 and a more general evaluation forγ = 2
and the originalδa. We considerd that varies from0.05 to
0.95, using0.05 increment step, and withk = 2...5, 6, 8,
10, 12, 14, 16, 20, 24, 28, 32 (overall, a total of 266(d, k)-
combinations). SinceLPG-d is a stochastic planner, we use
the median of the CPU times (in seconds) and the median
of the average plan distances (over five runs). The average
plan distance for a set ofk plans solving a specific(d, k)-
combination (δav) is the average of the plans distances be-
tween all pairs of plans in the set. The tests were performed
on an AMD Athlon(tm) XP 2600+, 512 Mb RAM. The CPU-
time limit was 300 seconds.

The 1st column of Figure 2 gives results for the largest
problem in IPC-3DriverLog-Time (fully-automated track).
LPG-d solves109 (d, k)-combinations, including combina-
tions d ≤ 0.4 andk = 10, andd = 0.95 andk = 2. The
average CPU time (top plots) is162.8 seconds. The aver-
ageδav (bottom plots) is0.68, with δav always greater than
0.4. With the originalδa function LPG-d solves110 (d, k)-
combinations, the average CPU time is160 seconds, and the
averageδav is 0.68; while with γ = 2 LPG-d solves100 com-
binations, the average CPU time is169.5 seconds, and the
averageδav is 0.69.

The 2nd column of Figure 2 gives results for the largest
problem in IPC-3Satellite-Strips. LPG-d solves211

8We testedLPG-d with other domains and problems, obtaining
generally good results, that we omit for lack of space.

(k, d)-combinations;173 of them require less than10 sec-
onds. The average CPU time is12.1 seconds, and the average
δav is 0.69. We observed similar results when using the orig-
inal δa function or the parametrizedδa with γ = 2 (in the
second case,LPG-d solves 198 problems, while the average
CPU time and the averageδav are nearly the same as with
γ = 3).

The 3rd column of Figure 2 gives results for a middle-size
problem in IPC-5Storage-Propositional. LPG-d solves
225 (k, d)-combinations,39 of which require less than 10
seconds, while128 of them require less than 50 seconds. The
average CPU time is64.1 seconds and the averageδav is0.88.
With the originalδa LPG-d solves240 (k, d)-combinations,
the average CPU time is41.8 seconds, and the averageδav is
0.87; with γ = 3 LPG-d solves206 combinations, the average
CPU time is69.4 seconds and the averageδav is 0.89.

The local search inLPG is randomized by a “noise” pa-
rameter that is automatically set and updated during search
[Gerevini, Saetti, & Serina, 2003]. This randomization is
one of the techniques used for escaping local minima, but
it also can be useful for computing diverse plans: if we run
the search multiple times, each search is likely to consider
different portions of the search space, which can lead to dif-
ferent solutions. It is then interesting to compareLPG-d and
a method in which we simply run the standardLPG until k
d-diverse plans are generated. An experimental comparison
of the two approaches show that in many casesLPG-d per-
forms better. In particular, the new evaluation functionE is
especially useful for planning problems that are easy to solve
for the standardLPG, and that admit many solutions. In these
cases, the originalE function produces many valid plans with
not enough diversification. This problem is significantly alle-
viated by the new term inE. An example of domain where
we observed this behavior islogistics.9

5 Related Work
Researchers including Tate[Tate, Dalton, & Levine, 1998]
and Myers[Myers, 2005; Myers & Lee, 1999] have articu-
lated the need for finding dissimilar plans. Myers, in partic-
ular, presents an approach to generate diverse plans in the
context of her HTN planner by requiring the meta-theory
of the domain to be available and using bias on the meta-
theoretic elements to control search[Myers & Lee, 1999].
The metatheory of the domain is defined in terms of pre-
defined attributes and their possible values covering roles,
features and measures. Our work differs from hers in two re-
spects. First, we focus on domain-independent distance mea-
sures. Second we consider the computation of diverse plans
in the context of state of the art domain independent planners.

The problem of finding similar plans has been considered
in the context of replanning. A recent effort in this direction
is [Fox et al., 2006]. Our work focuses on the problem of
finding diverse plans by a variety of distance measures.

Outside the planning literature, our closest connection is
to the work by Hebrard et al 2005, who solve the problem

9E.g., forlogistics a (prob3 of Table 3)LPG-d solved 128
instances, 41 of them in less than 1 CPU second and 97 of them in
less than 10 CPU seconds; the average CPU time was16.7 seconds
and the averageδav was0.38. While using the standardLPG, only
78 instances were solved, 20 of them in less than 1 CPU secondsand
53 of them in less than 10 CPU seconds; the average CPU time was
23.6 seconds and the averageδav was0.27.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 2

 4
 6

 8
 10

 12
 14

 0.01

 0.1

 1

 10

 100

 1000

dDISTANCEkSET: Median of the cpu-time for the pfile20 problem of
 gamma=3 - DriverLog Time domain

cpu-time

d

k

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 5

 10
 15

 20
 25

 30
 35

 0.01

 0.1

 1

 10

 100

 1000

dDISTANCEkSET: Median of the cpu-time for the pfile20 problem of
 gamma=3 - Satellite Strips domain

cpu-time

d

k

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 5

 10
 15

 20
 25

 30
 35

 0.01

 0.1

 1

 10

 100

 1000

dDISTANCEkSET: Median of the cpu-time for the pfile15 problem of
 gamma=3 - storage Propositional domain

cpu-time

d

k

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 2

 4
 6

 8
 10

 12
 14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dDISTANCEkSET: Median of the Average distances for the pfile20 problem of
 gamma=3 - DriverLog Time domain

Distance

d

k

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 5

 10
 15

 20
 25

 30
 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dDISTANCEkSET: Median of the Average distances for the pfile20 problem of
 gamma=3 - Satellite Strips domain

Distance

d

k

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 5

 10
 15

 20
 25

 30
 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dDISTANCEkSET: Median of the Average distances for the pfile15 problem of
 gamma=3 - storage Propositional domain

Distance

d

k

Figure 2: Performance ofLPG-d (CPU-time and plan distance) for there problems inDriverLog-Time, Satellite-Strips
andStorage-Propositional.

of finding similar/ dissimilar solutions for CSPs without ad-
ditional domain knowledge. It is instructive to note that un-
like CSP, where the number of potential solutions is finite
(albeit exponential), the number of distinct plans for a given
problem can be infinite (since we can have infinitely many
non-minimal versions of the same plan). Thus, effective ap-
proaches for generating diverse plans are even more critical.
The challenges in finding interrelated plans also bear some
tangential similarities to the work in information retrieval
on finding similar or dissimilar documents (c.f.[Callan &
Minka, 2002]).

6 Conclusion
In this paper, we focused on domain-independent approaches
for finding diverse plans. We articulated three different
domain-independent distance measures for comparing plans.
We then developed effective approaches for using these dis-
tance measures to bias the performance of two state-of-the-
art planning approaches —GP-CSPandLPG. The approaches
we developed for supporting the generation of diverse plans
in GP-CSPare broadly applicable to other planners based on
bounded horizon compilation approaches for planning. Sim-
ilarly, the techniques we developed forLPG, such as biasing
the relaxed plan heuristics in terms of distance measures, are
applicable to other heuristic planners. The experimental re-
sults withGP-CSP explicate the relative difficulty of enforc-
ing the various distance measures, as well as the correlation
among the individual distance measures (as assessed in terms
of the sets of plans they find). The experiments withLPG
demonstrate the potential of heuristic planning in producing
large sets of highly diverse plans.

References
[Boddyet al., 2005] Boddy, M.; Gohde, J.; Haigh, T.; and Harp,

S. 2005. Course of action generation for cyber security using
classical planning. InProc. ICAPS. AAAI.

[Callan & Minka, 2002] Callan, J., and Minka, T. 2002. Novelty
and redundancy detection in adaptive filtering. InProc. SIGIR.
ACM Press.

[Chafleet al., 2006] Chafle, G.; Dasgupta, K.; Kumar, A.; Mittal,
S.; and Srivastava, B. 2006. Adaptation in Web Services Com-
position and Execution. InProc. ICWS.

[Do & Kambhampati, 2001] Do, M. B., and Kambhampati, S.
2001. Planning as constraint satisfaction: Solving the planning
graph by compiling it into CSP.AI 132(2):151–182.

[Foxet al., 2006] Fox, M.; Gerevini, A.; Long, D.; and Serina, I.
2006. Plan stability: Replanning versus plan repair. InProc.
ICAPS.

[Gerevini, Saetti, & Serina, 2003] Gerevini, A.; Saetti, A.; and Se-
rina, I. 2003. Planning through stochastic local search andtem-
poral action graphs.Journal of Artificial Intelligence Research
(JAIR)20:pp. 239–290.

[Hebrardet al., 2005] Hebrard, E.; Hnich, B.; O’Sullivan, B.; and
Walsh, T. 2005. Finding diverse and similar solutions in con-
straint programming. InProc. AAAI.

[Kautz & Selman, 1998] Kautz, H., and Selman, B. 1998. Black-
box: A new approach to the application of theorem proving to
problem solving. InWorkshop on Planning as Combinatorial
Search, AIPS-98, Pittsburgh, PA.

[Myers & Lee, 1999] Myers, K., and Lee, T. J. 1999. Generat-
ing qualitatively different plans through metatheoretic biases. In
Proc. AAAI.

[Myers, 2005] Myers, K. 2005. Metatheoretic plan summarization
and comparison. InProc. ICAPS WK. Mixed-initiative Planning
and Scheduling.

[Srivastava, Vanhatalo, & Koehler, 2005] Srivastava, B.; Vanhat-
alo, J.; and Koehler, J. 2005. Managing the life cycle of plans. In
Proc. IAAI, pg 1569–1575.

[Tate, Dalton, & Levine, 1998] Tate, A.; Dalton, J.; and Levine, J.
1998. Generation of multiple qualitatively different planoptions.
In Proc. AIPS-98, Pittsburgh. AIAI.

