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Abstract

In many planning situations, a planner is required
to return a diverse set of plans satisfying the same
goals which will be used by the external systems
collectively. We take a domain-independent ap-
proach to solving this problem. We propose differ-
ent domain independent distance functions among
plans that can provide meaningful insights about
the diversity in the plan set. We then describe how
two representative state-of-the-art domain indepen-
dent planning approaches — one based on compila-
tion to CSP, and the other based on heuristic local

search — can be adapted to produce diverse plans.

We present empirical evidence demonstrating the
effectiveness of our approaches.

I ntroduction

are domain-specific approaches (See Section 5). For exam-
ple, Myers[Myers & Lee, 1999 expects the domain model-
ers to provide a “meta-theory” of the domain (in addition to
the domain transition model in terms of actions and their ef-
fects). In this paper, we focus on domain-independent means
of finding (and comparing) diverse plans. This immediately
brings up the issueon what basis should two plans be com-
pared?The first contribution of this paper is the proposal of a
spectrum of distance measures that capture plan chascteri
tics in terms of actions, behaviors (states that result fiioen
plan execution) and causal structures.

Once the distance measures are in place, we turn to the
issue of automatically generating sets of plans that hawe th
desired diversity in terms of those distance measures. enai
approach for this would be to let the planner generate multi-
ple solutions and filter out the solutions that do not satisfy
the required diversity. Such a filtering approach is not very
promising, particularly given the fact that the set of pléors
a given problem can in principle be infiniteindeed, Boddy

A typical automated planner takes as input the specificationet. al. 2005, who use this type of filtering technique in the in
of the initial and goal states and the set of available actrusion detection domain, explicitly acknowledge the nieed
tions, and finds a plan that will satisfy the goals by effidignt approaches that take diversity constraints into accourmglu
searching in the space of possible state configurations-or agearch more actively.
tion orderings (plans). In many planning situations, a p&n The second contribution of our paper is thus an investiga-
is required to return not one but a set of diverse plans gatisf tion of effective approaches for using distance measures to
ing the same goals which will be used by the external systemBias a planner’s search to find diverse plans efficiently. The
collectively. As an example, in adaptive web services compotechnical details of biasing the search do depend on the de-
sition, the web service engine wants to have a set of diversiils of the underlying planner. To get a broader understand
plans/ compositions such that if there is a failure while-exe ing, we decided to investigate two representative statiief
cuting one composition, an alternative may be used which igrt planning approaches. The firsg-csp typifies the issues
less likely to be failing simultaneoud@hafleet al., 2004. involved in generating diverse plans in bounded horizon-com
However, if a user is helping in selecting the compositionspilation approaches, while the secondg, typifies the issues
the planner could be first asked for a set of diverse plans anigivolved in modifying the heuristic search planners. Our in
when she selects one of them, the planner is next asked to fingstigations wittc P-cspPallow us to compare the relative dif-
plans that are similar to the selected one. Another exaraple ficulties of enforcing diversity with each of the three dista
using planning for intrusion detectidiBoddy et al., 2004, measures. We find that using action-based distance measures
where the aim is to detect diverse ways of possible intrusioto find diverse plans usually results in plans that are also di
attacks (represented as plans). verse with respect to their behavior and causal structbrgs,
Although the need for finding similar or different plans hasless likely in other permutations. WittpG, we focus only
been noticed in the past, there has been little concrete workn the action-based distance, which can be treated in a nat-
on formalizing and solving the problem. What little there is ural way by a relatively simple modification of the heuristic
has concentrated on finding similar plffsx et al, 2004 or ~ function, to explore scaleup issues. We find that the prapose
distance measures makeG more effective in solving for di-
*Kambhampati's research is supported in part by an IBM Fgcult VEISe plans over large problem instances.
Award, the NSF grant [1IS-308139, the ONR grant NO001406&005
and by a Lockheed Martin subcontract TT0687680 to ASU as part 1To see this, note that there may be infinitely many non-mihima
of the DARPA Integrated Learning program. variations of a single plan.



Bas's Pros Cons Name Bas's Computation
Actions Does not require No problem information 51 (0a) Actions Set-difference
problem information is used 5o Actions Prefixes Neighbourhood|
States Not dependent on any specifi¢ Needs an execution 53 (0s) States Set-difference
plan representation simulator to identify states 54 States Prefixes Neighbourhoo
Causal links | Considers causal proximity Requires domain theory 55 (0c) Causal Links | Set-difference
of state transitions (action) 36 Causal Links | Prefixes Neighbourhoo
rather than positional
(physical) proximity

Table 2: A spectrum of distance functions based on different

Table 1: The pros and cons of different bases to characterizgases and way of computations. ) . )
plans. actual states that an execution of the plan will take is @bnsi

In the rest of the paper, we start by formalizing the problerf"€d: Hence, Wi czlm nOV‘{] Comﬁaff? plans gf diffe_re_g:_ repre-
and then propose different plan distance functions. Neat, wS€Ntations, €.g., 4 plans where the firstis a determinittrc, p

propose methods to find diverse plans and demonstrate thdff€ sécond is a contingent plan, the third is a hierarchieal p

effectiveness usingP-cspandLpG. We end with a discus- and the fourth is a policy encoding probabilistic behavir.
sion on related work and our main results. causal links are used as the basis for comparison, the causal

proximity among actions is now considered rather than just
2 Distance Measures physical proximity in the plan.

To talk formally about generation of diverse plans, we need t Aggregating Distances Once a basis for plan comparison is
start with the notion of distance between plans. &(&;, S;) chosen, we still have different choices for aggregatingitie

— [0, 1] denote a distance function between a pair of planstances. For example, if we are interested in action based com
A value of 0 represents complete similarity of plans while 1parison of plans, then we could (i) view the plans as sets (or
represents complete diversity. Following the conventibn o bags) of actions and consider set (bag) difference between t

[Hebrardet al, 2004, for a given setS of plans, we de- two plans, (i) consider the plans as sequences of actioss an
fine max@, S) = 72 _g §(S;,5;) andmin(, S) = 7% consider measures such as “hamming distance” that are sen-

- Si,SJ‘GS Si,SJ‘ES . .. . .
5(S:,S;). The problem of finding: diverse/ similar plans sitive to the position of the actions. In Table 2, 6 distance
for g pjroblemPP whose set of all plans is represented byfunctlons are presented which use 3 different bases and 2 dif
Plan(PP), is then stated below ferent ways of computation. We uég §3 andds and refer to
' ' them byé,, §, andé,, respectively, in the rest of the paper.
dDISTANTKSET (resp. dCLOSEKSET): Find S

with S C Plan(PP), | S | = k andmin(, S) > d Initial State Goal State
(respmax6, S) < d) Action | Preconditions | Effect OAI <gLg2.g3>
. . . . L. AL p1 ol \
At the heart of tackling this problemiis the issue of defining  {—— = 4@ =
criteria by which two plans are comparédAs mentioned e A . \.QM/'
earlier, we focus here on domain-independent measures for | »
comparing plans. We can compare two plans in terms of: — = Plan St1
1. Actions that are present in the two plans. PSS
) ) ) Plan Goal | Causal Chains <gLgzpt>
2. The behaviors resulting from the execution of the plans : R
. . . S1-1, gl Ai-pl-Al-gl-Ag <gLg2g3>
(where the behavior is captured in terms of the sequence |s:2 .
- <p1,p2,p3>
of states the agent goes through). 2 | ApzAZgZAg olan 510
. g3 Ai-p3-A3-g3-Ag -
3. The causal structures of the two plans measured interms |
of the causal links representing how actions contribute to , ___ A o
) A 92 [ A-pL-ALGLAZ Ap2-AZ, —»O_. O —_ O —_
the goals being achievéd. AZ:g2Ag e
g3 | Arp3-A3, AipL-Al-gl-AZ Ar <oLp2,p3>
Table 1 gives the pros and cons of using the different com- PEAZG2AS, AT 93RS

<pLp2,p3>

parison methods. We note that if actions in the plans are used Plan S1.3
as the basis for comparison, no additional problem or domain

theory information is needed. If plan behaviors are used ag;y ;.o 1: Example illustrating bases for distance measures
the basis for comparison, the representation of the plaats th 4 *5 4 4 denote dummy actions producing the initial state
bring about state transition becomes irrelevant since trdy aﬁd consguming the goal state, respectively

— . Example:
2This issue is complicated by the fact that the plans being-com In Igigure 1, three plans are shown for a planning prob-

pared can be generated by an automated planner or founden othlem where the initial state i&
. ! gy 1,p2,p3) and the goal state
ways, e.g., given manually or manipulated after gettingrainf is (g1, ¢, 93). The action models and the causal structures

a plannelSrivastava, Vanhatalo, & Koehler, 2405Although we
only consider generated plans, the distance measurestapptiyer ~ ©f plans are shown to the left. Plans S1-1 and S1-2 have the

provences as well. We make no apriori assumption about drespl Same actions but different ordering structures. S1-1 has pa
like each goal has a single causal support structure. allel actions while S1-2 has them in sequence. The plan S1-3

°A causal linkA; ”% A, records that a predicate is produced NasA like the other plans but all other actions are different
at A; and consumed at,. A causal chain is a sequence of causal (A'2 andA;)), However, it also achieves the same goals.
links of the formA; 2% As, Ay 22 A, . Ap_y 725" A, We use An action based plan comparison method which uses

causal links for analysis but refer to a plan’s causal linkgausal ~ position-based distance aggregation would find S1-1, S1-2
chains, wherever possible, for convenience. and S1-3to be all different. This is because all the threegpla



have different sets of action prefixes. If instead, the adtie = second complication arises for the causal-based distahce.
formation is used with set differencing, S1-1 and S1-2 wouldggysal linka, 2 a, between two actions; anda, indi-

be found to be identical. _ cates that; supports the preconditignof a,. However, the
_A state based comparison method which uses any of thesp assignmen(p, a;) only provides the first half of each
given computation choice would find S1-2 and S1-3 to becaysal-link. To complete the causal-link, we need to look at

identical, and both of them to be different from S1-1. Thisthe values of other assignments to identify actigrthat oc-
is because the states after every transition in S1-2 and S1g3yr at the later level in the planning graph and paas its

are identical. S1-1, on the other hand, has (trivially) @6 precondition.
first and last states but no intermediate states.
A causal link based comparison method which uses setdif3 2 M aking GP-CSP Return a Set of Solutions
ferencing would find S1-1 and S1-2 to be the same while S1-3 i .
as different. This is because the causal links for ggatsnd To make GP-CSP return a set of solutions satisfying the

g3 in S1-1 (S1-2) are different from those of S1-3. dDISTANTKSET constraint using one of the three distances,
we add “global” constraints to each original encoding to en-
3 Finding Diverse Planswith GP-CSP forced-diversity between every pair of solutions. When each

_ global constraint is called upon by the normal forward check

The Gp-csp plannefDo & Kambhampati, 200Lconverts  ing and arc-consistency checking procedures inside the de-
Graphplan’s planning graph into a CSP encoding, and solvegwult solver to check if the distance between two solutiens i
it using a standard CSP solver. The solution of the encodingver a predefined valué we first map each set of assign-
represents a valid plan for the original planning problem. | ments to an actual set of actions (action-based), predicate
the encoding, the CSP variables correspond to the predicaténat are true at different plan-steps (state-based) orataus
that have to be achieved at different levels in the planninginks (causal-based) using the method discussed in thé-prev
graph (different planning steps) and their possible valres  ous section. This process is done by mappingait, value)
the actions that can support the predicates. For each CEP vaCcSP assignments into action sets using a call to the planning
able representing a predicatethere are two special values: graph, which is outside of the CSP solver, but works closely
i) L: indicates that a predicate is not supported by any actioiith the general purpose CSP solverdr-csp. The com-
and isfalseat a particular level/planning-step; i) “noop™: in- parison is then done within the implementation of the global
dicates that the predicate is true at a given lev@écause it constraint to decide if two plans are diverse enough.
was made true at some previous leyek i and no other We investigate two different ways to use the global con-
action deleteg betweenj andi. Constraints encode the re- straints: 1)parallel strategy to return the set éfsolutions
Iatlons between predlce_ltes and aCtIOI’!S: 1) mutual eX(ﬂUSIOa” atonce; and 2greedystrategy to return them one after an-
relations between predicates and actions; and 2) the causgther. In theparallel approach, we create one encoding that
relationships between actions and their preconditions. containsk identical copies of each original planning encod-

. . . ing created usingpP-csPplanner. The copies are connected
3.1 Adapting GP'C_SP to D|ffere_|1t Distance Bases together using:(lg— 1)/§pair-wise gIobaFI) constraints. Each
When the above planning encoding is solved by any standargiopal constraint between th# and;*" copies ensures that
CSP solver, it will return a solution containirigar, valug of o plans represented by the solutions of those two copies
the form{(z1,41),...(xn,yn)}. The collection ofr; where il pe at leastd distant from each other. If each copy has
y; # L representsthe facts that are made true at differenttimggriaples, then this constraint involves variables.
steps (plan trajectory) and can be used as a basis fetdte> In the greedyapproach, thé: copies are not setup in par-

baseddistance measure; the set@f # L) A (yi # 700p)  ayel yp-front, but sequentially. We add to thié copy one
represents the set of actions in the plan and can be use

for action-baseddistance measure; lastly, the assignment§ obal constraint to enforce that the solution of #fecopy

o ; ould bed-diverse from any of thosé — 1 solutions. The
ﬁ?e’ngmﬁggﬁ!ﬁbraegaeﬂ?;gwee n:ggzﬁlréelatlons and can l?Q‘i%vantage of the greedy approach is that each CSP encoding

However, there are several complications we need to ovef® significantly smaller in terms of the number of variables (

come before a specific distance measure between plans c4fy #*7), Smaller in terms of the number of global constraints
be computed. First, the same action can be represented by V" k(k —1)/2), and each global constraint also contains

¢ . ' ) A ; 4 ;
different values in the domains of different variables. Con €sser number of variables ¢s. 2xn).” Thus, each encoding
sider a simple example in which there are two fgetand

in the greedy approach is easier to solve. However, because
¢, both supported by two actions, and az. When set- each solution depends on all previously found solutions, th
ting up the CSP encoding, we assume that the CSP variabl&§coding can be unsolvable if the previously found soltion
x, andz, are used to represeptandq. The domains for COMprise a bad initial solution set.

x1 andxzo are {vi1,v12} and {vs1, v22}, both representing . .

the two action{s{al,ag]} (in téat orde%). The assignments 3-3 Empirical Evaluation

{{z1,v11), (¥2,v21) } and {(z1,v12), (¥2,v22)} have a dis- We implemented the parallel and greedy approaches dis-
tance of 2 in traditional CSP because different values are agussed earlier for the three distance measures and tested th
signed for each variable; andx,. However, they both rep-  with the benchmark set dfogisticsproblems provided with
resent the same action set;, a2} and thus lead to the plan the Blackbox plannéKautz & Selman, 1998 All experi-
distance of O if we use the action-based distance in our plaments were run on a Linux Pentium 4, 3Ghz machine with
comparison. Therefore, we first need to translate the set of

values in all assignments back to the set of action instances “However, each constraint is more complicated because it en-
before doing comparison using action-based distance. Thepdeg(i-1) previously found solutions.



[ [[ Probl [ Prob2 | Prob3 | Prob4 T Prob5 | Prob6 | [[d__J[ ProbI [ Prob2 | Prob3 | Prob4 | Prob5 | Prob6 |

0a 0.087 | 7.648 | 1.021 | 6.144 | 8.083 | 178.633 001 [ 115,28 [ 81812 [ 9818 [ 345 [ 468 [ 877

5. 0.077 | 9.354 | 1.845 | 6.312 | 8667 | 232475 ggg ggig gﬁg ;;ig gf;g igg g;g

de 0.190 6.542 1.063 6.314 8.437 209.287 007 2:314 6:10:8 4:7,6 2:4:2 4:6:5 3:7:5

[ Random ][ 0.327 ] 15.480 | 8.982 | 88.040 [ 379.182] 6105.510] 0.09 || 2314 69,6 366 242 364 374

0.1 2,310 59,6 366 242 | 264 | 374

. . . . 0.2 2.35 59,6 266 13.1 152 253

Table 3: Average solving time (in seconds) to find a plan us- 03 | 228 [ 475 | 144 | 121 [ 132 [ 133

ing greedy (first 3 rows) and by random (last row) approaches 04 ] 123 365 [ 133 [ 121 [ 121 [123

05 113 245 122 - 12.1 12.1

0.6 112 2,34 - - -

[ [ Probl [ Prob2 [ Prob3 | Prob4 [ Prob5 [ Prob6 | 0.7 112 122
3o 0.041/0.35 | 0.067/0.65 | 0.067/0.25 ]| 0.131/0.1F | 0.126/0.15 | 0.128/0.2 08 112 122
S 0.035/0.4 | 0.05/0.8 0.096/05 | 0.147/04 | 0.140/05 | 0.101/0.5 0.9 - 112

Oc 0.158/0.8 [ 0.136/0.95 | 0.256/0.55 | 0.459/0.15* | 0.346/0.3* | 0.349/0.45

. . o ) Table 5: For each gived value, each cell shows the largest
Table 4: Comparison of the diversity in the solution sets resolvablek for each of the three distance measuigs’,, and
turned by the random and greedy approaches d. (in this order). The maximum values in cells are in bold.

) ) proach returns 4.25x, 7.31x, and 2.79x more diverse saisitio

512MB RAM. For each problef we test with different than the random approach féy, 5, andd,, respectively.
values ranging from 0.01 (1%) to 0.95 (95%ndk increases ~ Analysis of the different distance-bases: Overall, we were
from 2 ton wheren is the maximum value for whickP-csP  able to solve 1264d, k) combinations for three distance mea-
can still find solutions within plan horizon. The horizon(pa suress,, §,, J. using the greedy approach. We were particu-
allel plan steps) limit is 30. larly interested in investigating the following issues:

We found that the greedy approach outperformed the paral- 4 141 . |5 it easy or difficult to find a set of diverse so-
lel approach and solved significantly higher number of prob- | tions using different distance measures? Thus, (1) for
lems. Therefore, we focus on the greedy approach hereafter.  ho samel andk values, which distance measure is more

For each combination af, k, and a given distance measure, difficult (time consuming) to solve; and (2) given an en-
we record the solving time and output the average/min/max coding horizon limit, how high is the value afandk

pairwise distances of the solution sets. _ that we can still find set of solutions for a given problem
Baseline Comparison: As a baseline comparison, we have using different distance measures.

also implemented eandomapproach. In this approach, we . . . o

do not use global constraints but use random value ordering ® H2 - What, if any, is the correlation/sensitivity between

in the CSP solver to generatedifferent solutions without different distance measures? Thus, how dlyerse the so-
enforcing them to be pairwisédistance apart. For each dis- lutions returned Wr,‘,e” using d'Sta/”CS measlrare ac-
tanced, we continue running the random algorithm until we cording to anothed” 7# &’ (whered’, 8" € {da, s, dc})

find k,,,.. solutions wheré,,,.... is the maximum value ot RegardingH1, Table 5 shows the highest solvaliealue

that we can solve for the greedy approach for that particulafor each distancé and baseé,,, d,, andd.. For a givend, k)

d value. In general, we want to compare with our approactpair, enforcing,, appears to be the most difficult, thé&yp and

of using global constraint to see if the random approach can. is the easiestGp-cspis able to solve 237, 462, and 565

effectively generate diverse set of solutions by lookind®t  combinations ofd, k) respectively fow,, 65 andd.. GP-CSP

the average time to find a solution in the solution set; andsolvesdDISTANTKSET problems more easily with andd,

(2) the maximum/average pairwise distances between2  than withd, due to the fact that solutions with different ac-

randomly generated solutions. tion sets (diverse with regard Q) will likely cause different

Figure 3 shows the comparison of average solving time tdrajectories and causal structures (diverse with regard to

find one solution in the greedy and random approaches. Thandé.). Betweery, andd., J. solves more problems for eas-

results show that on an average, the random approach taks instances (Problems 1-3) but less for the harder instanc

significantly more time to find a single solution, regardless as shown in Table 5. We conjecture that for solutions with

the distance measure used by the greedy approach. To asse¥sre actions (i.e. in bigger problems) there are more causal

the diversity in the solution sets, Table 4 shows the compardependencies between actions and thus it is harder to reorde

ison of: (1) the average pairwise minimum distance betweeRctions to create a different causal-structure.

the solutions in sets returned by the random approach; and (2 For running time comparisons, among 216 combinations

the maximumy for which the greedy approach still can find of (d, k) that were solved by all three distance measuzes,

a set of diverse plans. The comparisons are done for all thregsptakes the least amount of time @y in 84 combinations,

distance measures. For example, the first @&041,0.35)  for é, in 70 combinations and 62 fai.. The first three lines

in Table 4, implies that the minimum pairwise distance av-of Table 3 show the average time to find one solutiod-n

eraged for all solvablé > 2 using the random approach is diversek-set for each problem using, §, andé. (which we

d = 0.041 while it is 0.35 (i.e. 8x more diverse) for the call t,, ¢; andt. respectively). In general, is the small-

greedy approach using tidg distance measure. Except for 3 est andt, > t. in most problems. Thus, while it is harder

cases, using global constraints to enforce minimum pa@rwisto enforcesd, thand, andé. (as indicated in Table 5), when

distance between solutions helps-cspreturn significantly  the encodings for all three distances can be solved for agive

more diverse set of solutions. On an average, the greedy afd, k), thend, takes less time; this can be due to tighter con-

straints (more pruning power for the global constraintg) an

®log-easy=prob1, rocket-a=prob2, log-a = prob3, log-b =bgro  simpler global constraint setting.

log-c=prob5, log-d=prob6. To testH2, in Table 6, we show the cross-validation be-
8Increments of 0.01 from 0.01 to 0.1 and of 0.05 thereafter. tween different distance measurgsd,, andd... In this table,



| [0 [3ds [9oc

from the reference plamy. Each cost term iy is computed

gZ e using a relaxed temporal plak [Gerevini, Saetti, & Serina,
¢ 0.461 0.938 - 2003
] — . The nr plans are computed by an algorithm, callRe-
Table 6: Cross-validation of distance measuigs;, andd..  |axedplan, formally described and illustrated iiGerevini,

Saetti, & Serina, 2003that we have slightly modified to pe-
nalize the selection of actions decreasing the plan distanc
from the reference plan. The specific changétaxedPlan

for computing diverse plans is very similar to the change de-
scribed in[Fox et al, 2004, and it concerns the heuristic
function for selecting the actions for achieving the suligjoa
in the relaxed plans. In the modified function feelaxed-
Plan, we have an extra 0/1 term that penalizes an actifam

mr If its addition decreases the distancerof g from 7y (in

the plan repair context investigated[ifox et al., 2004, b is
C%enalized if its additioincreasesuch a distance).

The last term of the modified evaluation functiéhis a
measure of the decrease in plan distance caused by adding or
removinga: |(mo —m) N7k| Or |(mo — ™ — a) Nwg|, whererg
contains the new actiom The«-coefficients of theF-terms
are used to weigh their relative importaric&he values of
hthe first 3 terms are automatically derived from the expogssi

defining the plan metric for the problefGerevini, Saetti, &

Serina, 2008 The coefficient for the fourth new term &

(ap) is automatically set during search to a value propor-

- . . tionaltod/d,(m, 7o), wherer is the current partial plan under

4 Finding Diverse Planswith L PG construct{on.( The )general idea is to dynamically increhse t

LPG is a local-search-based planner, that incrementally modvalue of ap according to the number of plansthat have

ifies a partial plan in a search for a plan that contains ndeen generated so far:sifis much higher thaw, the search

flaws [Gerevini, Saetti, & Serina, 2003 The behavior of ~process consists of finding many solutions with not enough

LPG is controlled by an evaluation function that is used todiversification, and hence the importance of the kserm

select between different plan candidates in a neighborhooshould increase.

generated for local search. At each search step, the elemen .

in the search neighborhood of the current partial ptaare }2 Making L PG Return a Set of Plans

the alternative possible plans repairing a selected flaw. in In order to compute aet of k& d-distant plans solving a

The elements of the neighborhood are evaluated according toISTANCELSET problem, we run the PG search multiple

an action evaluation functio® [Gerevini, Saetti, & Serina, times, until the problem is solved, with the following two-ad

2003. This function is used to estimate the cost of eitherditional changes to the standard versiorLet: (i) the pre-

adding or of removing an action nodein the partial plan  processing phase computing mutex relations and other+each

7 being generated. In the next two subsections, we prese@bility information exploited during the relaxed plan con-

some modifications toPG for computing diverse plans using struction is done only once for all runs; (ii) we maintain an

the action-based plan distance. incremental set of valid plans, and we dynamically seleet on
of them as the reference plap for the next search. Concern-

4.1 Revised Evaluation Function for Diverse Plans ing (ii), let P = {54, ..., S} be the set of valid plans that

In order to managebISTANCELSET problems, the function have been computed so far, a@®langS;) the subset of?

E has been extended to include an additional evaluation terreontaining all plans that have a distance greater than alequ

that has the purpose of penalizing the insertion and removab d from a reference play; € P. The reference plang

of actions thatlecreasehe distance of the current partial plan used in the modified heuristic functidnis a planS,,,.. € P

7 under adaptation from a reference plan In general,  which has a maximal set of diverse plangini.e.,
consists of four weighted terms, evaluating four aspectsef

quality of the current plan that are affected by the addition Smaz = ARGM AX (5,cpy {| CPlans(S;)|} .

(E(a)") orremoval {(a)") of a Somaz 1S incrementally computed each time the local search
i . i ) i finds a new solution. In addition to being used to identify the
E(a)’ = ag- Brecution-cost(a) TOCT Temporal'co‘gt(?_) * reference plan i, S, is also used for defining the initial
+ as - Search_cost(a)’ + ap - [(mo — m) N 7g| state (partial plan) of the search process. Specificallynwe
, _ , , tialize the search using a (partial) plan obtained by rargom
E(a)" = ap-EBrecution_cost(a)" +ar-Temporalcost(a) +  yamoving some actions from a (randomly selected) plan in the
+ ag - Search_cost(a)” + ap - |(mo — ™ — a) N 7R|. setCPlang Syaz) U {Smaz -
The process of generating diverse plans starting from a dy-
namically chosen reference plan continues until at léast

cell (row, column = (¢’, 6" indicates that over all combina-
tions of (d, k) solved for distancé’, the average valué’ /d’
whered” andd’ are distance measured according’t@ndo’,
respectively ¢’ > d). For example{d,, d,) = 0.485 means
that over 462 combinations ¢4, k) solvable ford,, for each

d, the average distance betweesolutions measured by,

is 0.485 * ds. The results indicate that when we enfodc®r

04, We will likely find even more diverse solution sets accord-
ing to d, (1.26 * d,) andé, (1.98 x d,). However, when we
enforced for eitherd, or é., we are not likely to find a more
diverse set of solutions measured by the other two distan
measures. Nevertheless, enforcihgsingd. will likely give
comparable diverse degrééor §, (0.94 « d..) and vice versa.
We also observe that; is highly dependent on the difference
between the parallel lengths of plans in the sktseems to
be the smallest (i.€; < d, < d.) when allk plans have the
same/similar number of time steps. This is consistent wit
the fact that), andd. do not depend on the steps in the plan
execution trajectory whilé, does.

The first three terms of the two forms &f are unchanged
from the standard behavior aPG. The fourth term, used

only for computing diverse plans, is the new term estimating "These coefficients are also normalized to a valu@,in] using
how the proposed plan modification will affect the distancethe method described [iGerevini, Saetti, & Serina, 2003



plans that are ali-distant from each other have been pro- (k, d)-combinations;173 of them require less thah0 sec-
duced. The modified version oPG to compute diverse plans onds. The average CPU timeli&.1 seconds, and the average

is calledLpPG-d. 0%? is 0.69. We observed similar results when using the orig-
. o inal §, function or the parametrized, with v = 2 (in the
4.3 Experimental Analysiswith LPG-d second casa,Pc-d solves 198 problems, while the average
The distance functiof,, using set-difference, can be written CPU time and the average€’ are nearly the same as with
as the sum of two terms: v = 3).
1S; — S;| S; — S| The 3rd column of Figure 2 gives results for a middle-size
8a(Si, Sj) = 2 J problem in IPC-55t or age- Proposi ti onal . LPG-d solves
Sl + 1551 [Sil +155]- 225 (k, d)-combinations,39 of which require less than 10

The first term represents the contribution of the actions;in seconds, whild28 of them require less than 50 seconds. The
to the plan difference, while the second term indicates th@verage CPU time 1.1 seconds and the averag¥ is 0.88.
contribution ofS; to 6,. We experimentally observed that in With the originald, LPG-d solves240 (k, d)-combinations,
some cases the differences between two diverse plans coriie average CPU time is..8 seconds, and the averagf¢’ is
puted usings, are mostly concentrated in only one of the 0.87; with v = 3 LPG-d solves206 combinations, the average
5, components. This asymmetry means that one of the tw§PU time is69.4 seconds and the averagfe’ is 0.89.
plans can have many more actions than the other one, which The local search inpPG is randomized by a “noise” pa-
could imply that the quality of one of the two plans is much rameter that is automatically set and updated during search
worse than the quality of the other plan. In order to avoid thi [Gerevini, Saetti, & Serina, 2003 This randomization is
problem, we can parametrize by imposing the two extra one of the techniques used for escaping local minima, but
constraints it also can be useful for computing diverse plans: if we run
A B the search multiple times, each search is likely to consider
05 = d/yandd; = d/y different portions of the search space, which can lead to dif
wheres2 ands? are the first and second termsdf respec-  ferent solutions. It is then interesting to compares-d and
tively, andvy is an integer parameter “balancing” the diversity a method in which we simply run the standamic until &
of S; andsS;. d-diverse plans are generated. An experimental comparison
In this section, we analyze the performance of the modiof the two approaches show that in many cases-d per-
fied version ofLPG, calledLPG-d, in three different bench- forms better. In particular, the new evaluation functigns
mark domains from the 3rd and 5th IPEShe main goals of  especially useful for planning problems that are easy teesol
the experimental evaluation were (i) showing that-d can  for the standardrg, and that admit many solutions. In these
efficiently solve a large set @fl, k)-combinations, (i) inves-  cases, the origindl function produces many valid plans with
tigating the impact of thé, y-constraints on performance, not enough diversification. This problem is significantlgal
(iii) comparingLPG-d and the standandrG. viated by the new term iZ. An example of domain where
We testedPG-d using both the default and parametrizede observed this behaviorligi st i cs.?
versions ofé,, with v = 2 andy = 3. We give detailed
results fory = 3 and a more general evaluation for= 2 5 Related Work

and the _ongmatSq. We consider that varies fronD.05 to Researchers including Taf@ate, Dalton, & Levine, 1998
0.95, using0.05 increment step, and with = 2...5, 6, 8, gngd Myers[Myers, 2005; Myers & Lee, 199%have articu-
10, 12, 14, 16, 20, 24, 28, 32 (overall, a total of 286k)-  |ated the need for finding dissimilar plans. Myers, in partic
combinations). SincePG-d is a stochastic planner, we use yjar, presents an approach to generate diverse plans in the
the median of the CPU times (in seconds) and the mediaBontext of her HTN planner by requiring the meta-theory
of the average plan distances (over five runs). The averagss the domain to be available and using bias on the meta-
plan distance for a set df plans solving a specifi¢d, k)-  theoretic elements to control seariMyers & Lee, 1999
combination §*”) is the average of the plans distances be-The metatheory of the domain is defined in terms of pre-
tween all pairs of plans in the set. The tests were performegefined attributes and their possible values covering foles
on an AMD Athlon(tm) XP 2600+, 512 Mb RAM. The CPU-  features and measures. Our work differs from hers in two re-
time limit was 300 seconds. _ spects. First, we focus on domain-independent distance mea
The 1st column of Figure 2 gives results for the largesisyres. Second we consider the computation of diverse plans
problemin IPC-3x i ver Log- Ti ne (fully-automated track).  jn the context of state of the art domain independent planner
LPG-d solves109 (d, k)-combinations, including combina-  The problem of finding similar plans has been considered
tionsd < 0.4 andk = 10, andd = 0.95 andk = 2. The i the context of replanning. A recent effort in this directi
average CPU time (top plots) ig52.8 seconds. The aver- s [Fox et al, 2006. Our work focuses on the problem of
aged” (bottom plots) i).68, with 5 always greater than  finding diverse plans by a variety of distance measures.
0.4. With the originald, functionLpG-d solvesl10 (d, k)- Outside the planning literature, our closest connection is

combinations, the average CPU timel{#) seconds, and the 4 the work by Hebrard et al 2005, who solve the problem
average“’ is 0.68; while withy = 2 LPG-d solvesl 00 com-

binations, the average CPU time 1§9.5 seconds, and the °E g., forl ogi sti cs.a (prob3 of Table 3)LPG-d solved 128
averagey*’ is 0.69. instances, 41 of them in less than 1 CPU second and 97 of them in
The 2nd column of Figure 2 gives results for the largestess than 10 CPU seconds; the average CPU timelG:&sseconds
problem in IPC-3Satel lite-Strips. LPG-d solves211 and the averagé™” was0.38. While using the standandPG, only
e 78 instances were solved, 20 of them in less than 1 CPU seeoids
8We tested.pG-d with other domains and problems, obtaining 53 of them in less than 10 CPU seconds; the average CPU time was
generally good results, that we omit for lack of space. 23.6 seconds and the averag® was0.27.
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of finding similar/ dissimilar solutions for CSPs without-ad [Callan & Minka, 2002 Callan, J., and Minka, T. 2002. Novelty
ditional domain knowledge. It is instructive to note that un  and redundancy detection in adaptive filtering. Pioc. SIGIR

like CSP, where the number of potential solutions is finite ACM Press.

(albeit exponential), the number of distinct plans for eegiv  [Chafleet al, 200§ Chafle, G.; Dasgupta, K.; Kumar, A.; Mittal,
problem can be infinite (since we can have infinitely many S.; and Srivastava, B. 2006. Adaptation in Web Services Com-
non-minimal versions of the same plan). Thus, effective ap- position and Execution. IRroc. ICWS

proaches for generating diverse plans are even more &riticgpo & Kambhampati, 2000 Do, M. B., and Kambhampati, S.
The challenges in finding interrelated plans also bear some 2001. Planning as constraint satisfaction: Solving thamitag
tangential similarities to the work in information retrav graph by compiling it into CSPAI 132(2):151-182.

on finding similar or dissimilar documents (c.fCallan & [Foxetal, 2006 Fox, M.: Gerevini, A.; Long, D.; and Serina, I.

Minka, 2003). 2006. Plan stability: Replanning versus plan repair. Ploc.

. ICAPS
6 Conclusion - . . - .
[Gerevini, Saetti, & Serina, 2003Gerevini, A.; Saetti, A.; and Se-

In this paper, we focused on domain-independent approachesrina, I. 2003. Planning through stochastic local searchtand
for finding diverse plans. We articulated three different poral action graphsJournal of Artificial Intelligence Research
domain-independent distance measures for comparing.plans (JAIR)20:pp. 239-290.

We then developed effective approaches for using these di$Hebrardet al, 2009 Hebrard, E.; Hnich, B.; O’Sullivan, B.; and
tance measures to bias the performance of two state-of-the- Walsh, T. 2005. Finding diverse and similar solutions in-con
art planning approaches pP-cspandLPG. The approaches  straint programming. lProc. AAAI

we developed for supporting the generation of diverse plangautz & Selman, 1998 Kautz, H., and Selman, B. 1998. Black-
in GP-cspPare broadly applicable to other planners based on box: A new approach to the application of theorem proving to
bounded horizon compilation approaches for planning. Sim- problem solving. InWorkshop on Planning as Combinatorial
ilarly, the techniques we developed fiarG, such as biasing Search, AIPS-98, Pittsburgh, PA.

the relaxed plan heuristics in terms of distance measures, ajmyers & Lee, 1999 Myers, K., and Lee, T. J. 1999. Generat-
applicable to other heuristic planners. The experimertal r  ing qualitatively different plans through metatheoretiases. In
sults withGp-csp explicate the relative difficulty of enforc- Proc. AAAIL

ing the various dlstanc_e measures, as well as the Cormlat'QMyers, 2005 Myers, K. 2005. Metatheoretic plan summarization
among the individual distance measures (as assessed & term and comparison. IRroc. ICAPS WK. Mixed-initiative Planning
of the sets of plans they find). The experiments witic and Scheduling

demonstrate the potential of heuristic planning in prodgci

. ; [Srivastava, Vanhatalo, & Koehler, 200%rivastava, B.; Vanhat-
large sets of highly diverse plans.

alo, J.; and Koehler, J. 2005. Managing the life cycle of pldn
Proc. IAAIL, pg 1569-1575
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