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Abstract

Symbolic search has proven to be a competitive approach
to cost-optimal planning, as it compactly represents sets of
states by symbolic data structures. While heuristics for sym-
bolic search exist, symbolic bidirectional blind search empiri-
cally outperforms its heuristic counterpart and is therefore the
dominant search strategy. This prompts the question of why
heuristics do not seem to pay off in symbolic search. As a
first step in answering this question, we investigate the search
behaviour of symbolic heuristic search by means of BDDA?.
Previous work identified the partitioning of state sets accord-
ing to their heuristic values as the main bottleneck. We the-
oretically and empirically evaluate the search behaviour of
BDDA? and reveal another fundamental problem: we prove
that the use of a heuristic does not always improve the search
performance of BDDA?. In general, even the perfect heuristic
can exponentially deteriorate search performance.

Introduction
Over the past decade, both explicit search and symbolic
search have proven to be strong and competitive approaches
to cost-optimal planning. While explicit search is mainly
based on variations of A? (Hart, Nilsson, and Raphael 1968)
in combination with strong and efficient heuristics (Franco
et al. 2018; Seipp, Keller, and Helmert 2020), the dominant
search strategy of modern symbolic planners is bidirectional
search without any heuristic (Torralba, Linares López, and
Borrajo 2016; Speck, Geißer, and Mattmüller 2018b). In
symbolic search, sets of states are represented by compact
data structures, such as binary decision diagrams (BDDs)
(Bryant 1986), which make it possible to perform an exhaus-
tive search. Clearly, an important question is whether sym-
bolic search can be further improved with heuristics like it is
the case with explicit search. Interestingly, there exist a vari-
ety of generalizations of A? based on different symbolic data
structures (Edelkamp and Reffel 1998; Hansen, Zhou, and
Feng 2002; Speck, Geißer, and Mattmüller 2018a). In addi-
tion, multiple heuristics can be computed and represented
with symbolic data structures, resulting in state-of-the-art
heuristics for explicit heuristic search (Edelkamp 2002;
Franco et al. 2017; Moraru et al. 2019). Thus, all the in-
gredients are present to allow a symbolic planner utilizing
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heuristics, as explicit planners do. However, empirical eval-
uations of symbolic heuristic search show that the use of
heuristics in symbolic search can improve, but also impair
the performance, depending on the domain (Torralba 2015;
Torralba et al. 2017). In the literature, this is often explained
by the effort required to perform additional symbolic (arith-
metic) operations that divide the states according to the
corresponding heuristic values (Jensen, Veloso, and Bryant
2008). While this is indeed a problem of symbolic heuris-
tic search, it is still not clear why in general the benefits of
pruning states based on heuristic values not outweigh the ad-
ditional effort required to incorporate heuristics. This is the
question we address in this paper. We expose another fun-
damental problem of symbolic heuristic search: good dis-
tance estimations are not the correct quantity to improve the
search performance of symbolic heuristic search. More pre-
cisely, we show that heuristics, even the perfect heuristic,
can increase the representation size of sets of states and thus
impair the search performance of symbolic search.

Edelkamp and Reffel (1998) presented the first symbolic
version of A?, called BDDA?. The underlying idea is to rep-
resent a heuristic function with multiple BDDs. For each
heuristic value h, a separate BDD is used to represent the
states Sh with heuristic value h. In BDDA?, all states Sg

reachable with cost g are partitioned according to their
heuristic value by computing the intersections of Sg and Sh

for each heuristic value h. This was identified as a bottleneck
because multiple arithmetic operations have to be performed
during search (Jensen, Veloso, and Bryant 2008). Therefore,
multiple extensions to BDDA? have been published such as
Lazy BDDA? (Torralba 2015), which delays the heuristic
evaluation as long as possible, or SetA? (Jensen, Veloso, and
Bryant 2008), which encodes the heuristic values as precon-
ditions of actions resulting in multiple actions with costs ac-
cording to the heuristic values. While this saves expensive
arithmetic operations during search, it may blow up the ac-
tion space. Empirical evaluations show that all versions of
BDDA? perform better than blind search in some domains
and worse in other domains. Overall, the dominant search
strategy for symbolic planning remains bidirectional search
without any heuristic (Torralba, Linares López, and Borrajo
2016; Speck, Geißer, and Mattmüller 2018a).

We focus on symbolic heuristics based on BDDs, more
precisely on BDDA? and show that pruning states based



on heuristic values can deteriorate the search performance
when representing sets of states as decision diagrams. Most
of our results generalize to the most prominent variations
of BDDA?, as well as symbolic A? based on other types
of decision diagrams. In contrast to explicit A?, where every
consistent heuristic can only reduce the number of necessary
node expansions (up to tie breaking) and thus the search ef-
fort compared to blind search, we show that in BDDA? no
such guarantee exists. More precisely:
In symbolic search, the search effort is not directly related
to the number of explicit states that have to be expanded.
Rather, the size of expanded BDDs, i.e., number of BDD

nodes, representing expanded states determines the search
effort and thus the runtime. Torralba (2015) showed empir-
ically that the correlation between BDD nodes and repre-
sented states is less significant than the correlation of BDD
nodes and runtime. In this paper, we prove that in theory
even under the best possible and unrealistic circumstances,
namely the perfect heuristic, the search effort of BDDA? can
be exponentially larger than the search effort of symbolic
search without heuristic, and vice versa. This shows that
heuristics in symbolic search can exponentially increase or
decrease search performance. In particular, it is not the case
that the use of a heuristic always improves search perfor-
mance of symbolic search. Our empirical evaluation is con-
sistent with these theoretical results. Understanding sym-
bolic heuristic search is an important step in understand-
ing why symbolic bidirectional search without heuristics is
the dominant symbolic search strategy in planning. Finally,
we discuss the implications of our theoretical and empiri-
cal findings and possible directions to improve BDDA?. Our
theoretical and practical results show why recent advances
in explicit bidirectional heuristic search cannot be applied
directly to symbolic bidirectional heuristic search (Holte et
al. 2016; Chen et al. 2017).

Preliminaries
We consider classical planning tasks that are characterized
by the SAS+ formalism (Bäckström and Nebel 1995).
Definition 1 (Classical Planning Task). A classical plan-
ning task is a tuple Π = 〈V, I,O,G〉 consisting of the fol-
lowing four components: V is a finite set of state variables,
each associated with a finite domain Dv = {0, . . . , |Dv| −
1}. A fact is a pair (v, d), where v ∈ V and d ∈ Dv . If
variable v is a binary variable (Dv = {0, 1}), we refer with
¬v to (v, 0) and with v to (v, 1). A partial variable assign-
ment over V is a consistent set of facts. If s assigns a value
to each v ∈ V , s is called a state. States and partial variable
assignments are functions which map variables to values,
i.e., s(v) is the value of variable v in state s (analogous for
partial variable assignments). O is a set of operators, where
an operator is a pair o = 〈preo, eff o〉 of partial variable as-
signments called preconditions and effects, respectively. The
state I is called the initial state and the partial state G speci-
fies the goal condition, which defines all possible goal states
S?. With S we refer to the set of all possible states defined
over V , and with |Π| we refer to the size of planning task Π,
i.e., the number of operators and facts.

We call an operator o ∈ O applicable in state s iff preo is
satisfied in s, i.e., s |= preo. Applying operator o in state s
results in a state s′ where s′(v) = eff o(v) for all variables
v ∈ V for which eff o is defined and s′(v) = s(v) for all
other variables. We also write s[o] for s′. The objective of
classical planning is to determine a plan which is defined as
follows.
Definition 2 (Plan). A plan π = 〈o0, . . . , on−1〉 for plan-
ning task Π is a sequence of applicable operators which gen-
erates a sequence of states s0, . . . , sn, where s0 = I, sn ∈
S? is a goal state and si+1 = si[oi] for all i = 0, . . . , n− 1.
Such a plan is considered to be optimal if there is no shorter
plan.1

A set of states S ⊆ S can be represented by its charac-
teristic function χS : S 7→ {0, 1}. More precisely, the char-
acteristic function χS characterizes the set of states S by
determining whether a state belongs to S or not, mapping
each state s ∈ S to true and all other states to false, i.e.,
χS(s) = 1 if s ∈ S and χS(s) = 0 otherwise (s /∈ S).
Similarly, operators can be represented as so-called tran-
sition relations (TRs) which are sets of state pairs, namely
predecessor and successor states. The characteristic func-
tion of a transition relation T representing a set of operators
O ⊆ O is a function χT : V × V ′ 7→ {0, 1} which maps
all pairs of states (s, s′) to true iff successor s′ is reachable
from predecessor s by applying an operator o ∈ O. Given
a set of states S and a TR T , the image (preimage) operator
computes the set of successor (predecessor) states S′ of S
through T . The most common data structure for the repre-
sentation of characteristic functions and the efficient appli-
cation of (pre-)image operations are (reduced and ordered)
binary decision diagrams (Bryant 1986).
Definition 3 (Binary Decision Diagram). A binary deci-
sion diagram (BDD) is a directed acyclic graph with a single
root node and two terminal nodes: the 0-sink and the 1-sink.
Each inner node corresponds to a binary2 variable v ∈ V
and has two successors, where the low edge represents that
variable v is false, while the high edge represents that vari-
able v is true. By traversing the BDD according to a given
assignment, the represented function can be evaluated. We
denote with |B| the size of BDD B, i.e., the number of inner
nodes of B.

A BDD is called ordered if on all paths from the root
to a sink variables appear in the same order. A BDD is
called reduced if isomorphic subgraphs are merged and any
node is eliminated whose two children are isomorphic. For
fixed variable orders, reduced and ordered BDDs are unique.
From now on we only talk about reduced and ordered BDDs
and assume a fixed variable order.

Symbolic Search
Symbolic search is a state space exploration technique that
uses efficient data structures to represent and manipulate
sets of states (McMillan 1993). Like explicit A?, BDDA?

1We consider unit costs without loss of generality.
2Each finite-domain variable v ∈ V can be represented by

dlog2 |Dv|e binary variables.



(Edelkamp and Reffel 1998) expands states s ∈ S in as-
cending order of their f-values f(s) = g(s) + h(s), where
the g-value g(s) denotes the cost of reaching state s and the
h-value h(s) denotes a heuristic estimate of state s. In con-
trast to explicit A?, in BDDA?, sets of states with the same
g and h-value are represented as one BDD and expanded
at once.3 Heuristic functions h are precomputed and repre-
sented as multiple BDDs Hi, one per heuristic value i. A
heuristic is a function h : S 7→ N ∪ {∞}, which depend-
ing on the search direction estimates the cost to reach a goal
state (forward search) or the initial state (backward search)
from a state s ∈ S. The perfect heuristic h? maps each state
s to the cost of the cheapest path from s to any goal state
(the initial state) and the blind heuristic h0 maps each state
s to 0. Heuristic h is called admissible if h never overes-
timates the cost of reaching a goal state (the initial state),
i.e., h(s) ≤ h?(s) for all s ∈ S. Heuristic h is called con-
sistent if h(s) ≤ h(s[o]) + 1 for all s ∈ S and o ∈ O
where s[o] is defined, and h(s) = 0 for all s ∈ S? (for
s = I). Note that every consistent heuristic is also admis-
sible (Pearl 1984). Heuristics h0 and h? are two examples
of consistent heuristics. Explicit A? and BDDA? are guaran-
teed to find optimal solutions when using a consistent heuris-
tic. As usual, we assume that BDDA? is equipped with a
consistent heuristic and uses a tie-breaking rule in favor of
states with smaller g-values (Kissmann and Edelkamp 2011;
Torralba 2015). The tie-breaking rule ensures a determinis-
tic expansion order and avoids the expansion of two BDDs
with the same g and h-values. Thus, in each expansion step,
the corresponding set of states represented as BDD can be
uniquely described by the corresponding g and h-values.

Forward BDDA? is carried out from the initial state to-
wards a goal state and backward BDDA? is carried out from
the goal states towards the initial state. In each expansion
step, the BDD with minimum f -value (preferably lower g-
values) is expanded, resulting in a BDD B that represents
all successor (predecessor) states. First, all states already ex-
panded (stored in the corresponding closed list) are removed
from B before the BDD B is partitioned based on the BDDs
Hi representing the heuristic values. Finally, BDDA? termi-
nates once a BDD is found whose intersection with the goal
(initial state) is not empty (Kissmann and Edelkamp 2011;
Torralba 2015). In bidirectional BDDA?, both forward and
backward BDDA? are performed simultaneously, thus main-
taining two BDDA? searches with separate open and closed
lists. A search step consists either of a backward or a forward
search step (and modifies the respective open and closed
lists). If a state of the current search direction is expanded
which is already contained in the closed list of the search
in the opposite direction, a goal path is found. In general,
all strategies which switch iteratively between both search
directions guarantee optimality if the termination criterion
is chosen accordingly (Pohl 1969). To simplify terminology,
from here on we refer with BDDA? to forward BDDA?.

3In practice, sometimes more than one BDD is used to represent
all states with the same g and h-values (Torralba et al. 2014).

Theoretical Results
This section is structured as follows. First, we introduce the
concept of expansion size of BDDA?, which determines the
search effort. Second, we show that a heuristic, even the per-
fect heuristic, can improve or impair the search performance
of unidirectional BDDA?. Finally, we generalize those re-
sults to the case of bidirectional BDDA?.

Search Performance of BDDA?

The performance of explicit heuristic search, such as A?, is
usually measured by the number of expanded search nodes
(Helmert and Röger 2008). In general, each of these search
nodes represents a single explicit state. In contrast, in sym-
bolic search whole sets of states are expanded at once by
performing BDD operations. The runtime of such opera-
tions depends on the size of the involved BDDs (Kissmann
and Edelkamp 2011). Since the image and preimage opera-
tions are usually the most time-consuming process in sym-
bolic search (Torralba 2015), we estimate the search effort in
terms of expanded BDDs rather than generated BDDs. This
is why we can approximate the performance of BDDA? by
the cumulative sizes of the BDDs that are expanded during
search. In the bidirectional case this approximation is based
on the cumulative sizes of the BDDs which are expanded by
both search directions. Similar to Helmert and Röger (2008),
we are interested in lower bounds and estimate the search ef-
fort of BDDA? conservatively based on the cumulative size
of BDDs, which must always be expanded by BDDA? be-
fore an optimal solution is found. Since BDDA? breaks ties
in favor of states with smaller g-values, the number of ex-
panded states represented as BDDs is larger than strictly
necessary. However, this does not affect the results of this
paper.
Definition 4 (BDDA? Expansion Size). We denote with
BΠ,h(i, j) the unique BDD that is expanded by BDDA? with
g-value i and h-value j for a planning task Π = 〈V, I,O,G〉
and heuristic function h. With sizeΠ,h(i, j) we refer to the
size of this BDD, i.e., sizeΠ,h(i, j) = |BΠ,h(i, j)|. Finally,
with effort(Π, h) we refer to the expansion size of BDDA?,
i.e., the sum of the sizes of all BDDs BΠ,h(i, j) with the
property i+ j ≤ h?(I) and i < h?(I).

In particular, it is possible that BDD BS′ can be exponen-
tially larger than BDD BS although the set of states S′ is a
strict subset of S, i.e., S′ ( S. This is one of the reasons
why theoretical results from explicit A? cannot be directly
transferred to its symbolic counterparts.

The Unidirectional Case
It is known that, up to tie breaking, A? never expands more
search nodes using any consistent heuristic instead of the
blind heuristic h0 (Pearl 1984). A consistent heuristic never
impairs the search performance of explicit A? in terms of
so-called “must-expand” nodes n with the property f(n) <
h?(I). In BDDA?, determining the heuristic values of states
by partitioning the corresponding BDDs was identified as
a main problem that reduces search performance (Jensen,
Veloso, and Bryant 2008). While this is indeed a bottleneck
of BDDA?, we show in the following another fundamental
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Figure 1: Visualization of the induced transition system of
the family of planning tasks Πn. Nodes represent states
where the top row denotes the values of the x variables in
ascending order and the bottom row denotes the values of
the v variables in ascending order.

problem: we prove that even when equipped with the per-
fect heuristic h? the expansion size of BDDA? can be expo-
nentially larger than the expansion size of BDDA? equipped
with the blind heuristic h0. In order to prove this statement
we introduce the following family of planning tasks Πn.
Definition 5 (Planning Task Family Πn). Πn =
〈Vn, In,On,Gn〉 is a family of planning tasks with binary
variables and the following components.

• Vn = {vi | 1 ≤ i ≤ 2n} ∪ {xi | 0 ≤ i ≤ 2n+ 1}
• On = {oi, oi | 1 ≤ i ≤ 2n} ∪ {gi | 1 ≤ i ≤ n}

– oi = 〈xi−1 ∧ ¬xi, xi ∧ vi〉
– oi = 〈xi−1 ∧ ¬xi, xi ∧ ¬vi〉
– gi = 〈x2n ∧ vi ∧ vn+i, x2n+1 ∧

∧
1≤j≤2n ¬vj〉

• In = {x0}
• Gn = x2n+1

Figure 1 depicts the induced transition system of Πn,
which shows that the only reachable goal state4 is reachable
with minimal cost of 2n+ 1. Note that the size of Πn is lin-
ear in n. Next, we prove that BDDA? with h0 expands the
same amount of BDDs as BDDA? with h?.
Lemma 1. Given a planning task Πn, BDDA? with h0 ex-
pands the same number of BDDs as BDDA? with h?.

Proof. The only reachable goal state is reachable with cost
2n + 1. Thus, BDDA? with h0 expands a total of 2n + 1
BDDs, i.e., BΠn,h0(0, 0), BΠn,h0(1, 0), . . . , BΠn,h0(2n, 0).
BDDA? with h? expands the BDDs BΠn,h?(0, 2n +
1), BΠn,h?(1, 2n), . . . , BΠn,h?(2n, 1), which are again a to-
tal of 2n+ 1 BDDs.

While Lemma 1 shows that the numbers of expanded
BDDs using h? and h0 solving Πn are equal, we now prove

4Due to the single reachable goal state, all theoretical results
are independent of whether the check for goal states is performed
when states are expanded or generated.
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Figure 2: BDDs BΠ3,h0(6, 0) and BΠ3,h?(6, 1) which are
expanded last by BDDA? solving planning task Π3.

that in every expansion, the size of the expanded BDD us-
ing h0 is less than or equal to the size of the expanded BDD
using h?. Lemmas 1 and 2 show that using a heuristic does
not necessarily improve search performance, even under the
best possible circumstances, the perfect heuristic h?.

Lemma 2. Given planning task Πn, in each expansion, the
BDD expanded using h0 is at most as large as the BDD ex-
panded using h?, i.e., sizeΠn,h0(i, 0) ≤ sizeΠn,h?(i, 2n +
1− i) for all 0 ≤ i ≤ 2n.

Proof. The BDD BΠn,h0(0, 0), which represents the initial
state, has size sizeΠn,h0(0, 0) = |Vn|, because the initial
state is a fully specified state and exactly one node is re-
quired for each variable to determine whether this variable
is true or false. BDDBΠn,h0(i, 0) has size sizeΠn,h0(i, 0) =
|Vn|− i, since in each step, the nodes determining the values
of variables v≤i are no longer necessary. With h?, however,
in every step, all states are “removed” which do not lead to a
goal state. Thus, the corresponding BDDBΠn,h?(i, 2n+1−
i) either represents the same set of states asBΠn,h0(i, 0) or a
subset of states. However, every non-empty subset requires
additional nodes branching over variables vi which can only
increase the size of the BDD.

Lemmas 1 and 2 are independent of the variable order
and show that, in general, the search performance can de-
teriorate when using h? instead of h0. Finally, Theorem 3
shows that the search performance of BDDA? for a given
variable order can be exponentially worse if h? is used over
h0. It is extremely difficult to determine a (static) variable
order that leads to small BDDs a priori. In practice, it is “al-
most impossible” to predict the size of BDDs before creating
them (Kissmann and Hoffmann 2014). Furthermore, there
are functions which require exponentially many nodes to
represent independent of the variable ordering (Bryant 1986;
Edelkamp and Kissmann 2011).

Theorem 3. Using h? instead of h0 can increase the expan-
sion size of BDDA? exponentially in the size of the planning
task |Π| for a given variable ordering.



Proof. Consider the family of planning tasks Πn and the
variable ordering x0 � · · · � x2n+1 � v1 � · · · � v2n.
BDDA? with h0 and BDDA? with h? expand 2n+ 1 BDDs
(Lemma 1). In addition, in each step, the BDD expanded
with h0 has a linear size in n and is at most as large as the
BDD expanded with h? in the same step (Lemma 2). Thus, it
is sufficient to show that the BDD expanded in the last step
by BDDA? with h? is exponentially larger than the BDD
expanded by BDDA? with h0. Considering BDDA? with
h0, the size of BDD BΠn,h0(2n, 0) is sizeΠn,h0(2n, 0) =
|Vn| − 2n as depicted in Figure 2 for n = 3 and explained
in the proof of Lemma 2. Considering BDDA? with h?,
we observe that only states where at least one pair vi and
vn+i is true can lead to a goal state. Thus, the function
f := (v1∧vn+1)∨· · ·∨ (vn∧v2n) has to be represented by
BΠn,h?(2n, 1). Under the given variable order, representing
f as a BDD requires exponentially many nodes (Kissmann
2012) in n, as depicted in Figure 2 for n = 3.

Theorem 3 also holds for other versions of BDDA?, such
as Lazy BDDA? and SetA?, because the expanded sets of
states are exactly the same as for BDDA?. The delayed eval-
uation of Lazy BDDA? has no impact because at any step
all states of the open list have the same g-values. SetA? only
differs from BDDA? in that the state partitioning according
to the heuristic values is encoded in the preconditions, but
the expanded sets of states are exactly the same. Further-
more, Theorem 3 holds also for symbolic A? based on other
decision diagrams. The functioning of ADDA? (Hansen,
Zhou, and Feng 2002) and EVMDDA? (Speck, Geißer, and
Mattmüller 2018a) is the same as BDDA? for planning tasks
with unit costs and all decision diagrams have the same size
when representing the relevant sets of states as characteristic
functions.

Finally, for unidirectional BDDA?, it can be shown that
a heuristic can also improve the search performance. In par-
ticular, we prove that the search effort of BDDA? can also
be exponentially improved using h? instead of h0.

Theorem 4. Using h? instead of h0 can decrease the expan-
sion size of BDDA? exponentially in the size of the planning
task |Π| for a given variable ordering.

Proof. Consider a family of planning tasks Πn with exactly
one plan π with a cost of 2n + 2. Furthermore, the size of
the BDD, which represents the set of states S2n+1 reach-
able with a cost of 2n + 1, is exponential in the number of
variables. It is possible to construct such a family of plan-
ning tasks with the same idea we have used for Πn by 1)
adding new variables yi, 0 ≤ i ≤ 2n+ 2, of which initially
only y0 is true, 2) adding operators ωi = 〈yi−1 ∧ ¬yi, yi〉,
1 ≤ i ≤ 2n+ 2, forming a new path of length 2n+ 2 from
the initial state to a new goal state described by the new goal
condition Gn = y2n+2, and 3) modifying the operators gi
to have the single effect x2n+1. BDDA? with h? expands,
in each step, a BDD representing the explicit states along
the sequence induced by the new operators ωi. The size of
BDDs representing explicit states is linear in the number of
variables. BDDA? with h0 expands a BDD representing the

set of states S2n+1 in step 2n+1, which is exponential in the
number of variables given a certain variable ordering.

Theorems 3 and 4 prove that even under the best possible
and unrealistic circumstances the search effort of BDDA?

can be exponentially larger than the search effort of sym-
bolic blind search and vice versa. Most importantly, it is
not the case that the use of a heuristic always improves
the search performance of BDDA?. Heuristics can, to the
same extent, harm and improve the search performance of
BDDA?. In general, the presented theoretical results also
generalize to the case where multiple BDDs are used to rep-
resent the set of states with the same g and h-values (Tor-
ralba et al. 2014), because maintaining a single BDD for ev-
ery pair of g and h-values is a special case of this. Finally, it
is worth mentioning that also the BDDs which represent the
heuristic function can be exponential in size.

The Bidirectional Case
In general, there are multiple selection strategies to de-
termine which search front should be expanded next in
BDDA?. Our goal is to show that for different reasonable
and practical selection strategies, our theoretical results of
unidirectional BDDA? generalize to bidirectional BDDA?

as well. We consider two selection strategies: random, which
randomly selects a search direction, and alternating, which
begins with the the forward search direction and then alter-
nates between both search directions.
Theorem 5. Using h? instead of h0 can increase or de-
crease the expansion size of bidirectional BDDA?, with the
random selection strategy, exponentially in the size of the
planning task |Π| for a given variable ordering.

Proof. A possible behaviour of the random selection strat-
egy is to always select forward expansions, which results in
forward BDDA?. Thus, the results of Theorems 3 and 4 hold
also in this case.

Theorem 6. Using h? instead of h0 can increase or de-
crease the expansion size of bidirectional BDDA?, with the
alternating selection strategy, exponentially in the size of the
planning task |Π| for a given variable ordering.

Proof Sketch. The idea is to slightly modify the family of
planning tasks we considered in the proofs of Theorems 3
and 4. It is possible to “append” a sequence of explicit states
to the original goal state, which is no longer a goal state,
leading to a new single goal state, so that each backward
expanded BDD represents a single state and both search
directions meet exactly at the old goal state. Bidirectional
BDDA? with the alternating selection strategy expands in
backward direction only BDDs representing single states in-
dependently of the heuristic and the forward direction has
the search effort that we proved in Theorems 3 and 4.

In practice, there exist multiple selection strategies with
the goal of choosing the most promising search front next.
SYMBA? (Torralba et al. 2014), a state-of-the-art symbolic
planner, for example, tries to estimate the search time and
BDD sizes of the next step in order to predict the search
effort of both search directions.
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Figure 3: A comparison of forward BDDA? with the blind heuristic h0 and with a given fraction perfect heuristics (c ∈
{1, 3

4 ,
1
2}) which includes the search effort (left), the cumulative time of the image operation (center) and the overall search

time (right).

Empirical Results
We have seen theoretical results about the search behaviour
of unidirectional and bidirectional BDDA?. In this section,
we investigate whether we can observe this search behaviour
in practice as well. To answer this question, we conducted
experiments with the SYMBA? planner (Torralba et al. 2014;
2017), which is based on the FAST DOWNWARD planning
system (Helmert 2006). We compare BDDA? with the blind
heuristic h0 with BDDA? with fraction perfect heuristics. A
heuristic c · h? is called fraction perfect if it assigns to all
states the values of the perfect heuristic multiplied by a con-
stant 0 ≤ c ≤ 1. Note that 0h? = h0 and 1h? = h? are
important special cases. The benchmark set on which we
evaluate BDDA? consists of all domains that do not con-
tain axioms, conditional effects or zero-cost actions from
the optimal track from the International Planning Compe-
titions between 1998 and 2018.5 In addition, we only report
instances where it was possible to precompute the perfect
heuristic. The perfect heuristic was computed with symbolic
blind search with a time limit of 30 minutes and a mem-
ory limit of 4 GB. The closed list of unidirectional symbolic
blind search represents the perfect heuristic for the opposite
search direction. Overall, we compared forward and bidi-
rectional BDDA? with the blind heuristic against BDDA?

with different fraction perfect heuristics. Analogous to our
theoretical results, all states with the same g and h-values
are represented by a single BDD. Furthermore, we disabled
mutex pruning (Alcázar and Torralba 2015) and used the de-
fault variable order of SYMBA? which is based on the work
of Kissmann and Edelkamp (2011). We examine the search
effort of BDDA?, i.e., the cumulative size of the BDDs rep-
resenting the states that BDDA? must expand to determine
an optimal plan. The cumulative image time, i.e., the total

5In general, these concepts can be efficiently supported by
symbolic planners (Kissmann, Edelkamp, and Hoffmann 2014;
Speck et al. 2019), but they can also have a significant impact on
the search behaviour.
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Figure 4: A comparison of the represented (“must-expand”)
states of forward BDDA? with the blind heuristic h0 and
with a given fraction perfect heuristics (c ∈ {1, 3

4 ,
1
2}).

time required for the image and preimage operation, indi-
cates that the search effort is an adequate quantity that af-
fects the search performance of BDDA?. Finally, the overall
runtime is taken into account to compare the actual perfor-
mance of BDDA? with the different heuristics. Regardless
of the experiment we set a time limit of 30 minutes and a
memory limit of 4 GB and ignore the resources to calculate
the perfect heuristic.

The Unidirectional Case
Figure 3 (left) compares the search effort of forward BDDA?

with the blind heuristic and the search effort of forward
BDDA? with fraction perfect heuristics. In practice, the per-
fect heuristic almost always reduces the search effort. In
some cases, however, there is no improvement or slight dete-
rioration. It’s hard to find an explanation why in practice the
optimal heuristic helps to almost always reduce the search
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Figure 5: A comparison of bidirectional BDDA? with the blind heuristic h0 and a given fraction perfect heuristics (c ∈
{1, 3

4 ,
1
2}) which includes the search effort (left), the cumulative time of the image operation (center) and the overall search

time (right).

effort without analysing each case individually. A possible
explanation is that there are only a few optimal plans in
some domains; and the BDDs, which represent those ex-
plicit states on the induced state sequences, are compact. We
were able to confirm this explanation only for a couple of
domains (e.g. airport or blocks) using the top-k planner by
Speck, Mattmüller, and Nebel (2020), which calculates the
best k plans. Nevertheless, a perfect heuristic is an unrealis-
tic assumption that is not achievable in practice. If we con-
sider fraction perfect heuristics, namely 3

4h
? and 1

2h
?, we

can observe that the search effort of forward BDDA? can
improve or deteriorate to the same extent. These empirical
results are consistent with the presented theoretical results.
Figure 4 shows that the number of “must-expand” states rep-
resented by the BDDs in BDDA? is always less than or equal
when using fractional perfect heuristics, and that explicit A?

would benefit from using such heuristics.
Figure 3 (center) shows the expansion time of BDDA?.

More precisely, the cumulative time it takes to generate all
successors with the image operation. It is possible to ob-
serve a correlation between the search effort and the expan-
sion time, which also empirically shows that the search ef-
fort is an adequate quantity that influences the performance
of BDDA?.

Figure 3 (right) shows the overall runtime of BDDA?

without the time to compute the corresponding heuristic.
If we compare the expansion time with the overall running
time, we notice that BDDA? with fraction perfect heuristics
has a higher time increase than BDDA? with h0. Clearly,
this can be traced back to the partitioning of sets of states
according to heuristics values (Jensen, Veloso, and Bryant
2008), which can be time-consuming, since this procedure
includes multiple conjunctions after each expansion.

Finally, Table 1 compares the search of BDDA? with and
without heuristics per domain. We only consider instances
which were solved by all configurations. An entry shows by
which factor the corresponding heuristic has improved (< 1)
or impaired (> 1) the search effort of BDDA? in that do-

Algorithm fwd. BDDA? bid. BDDA?

Domain (#Tasks) / Heuristic h? 1
2h

? h? 1
2h

?

AGRICOLA (1) 0.005 0.322 0.007 0.314
AIRPORT (20) 0.593 0.636 1.042 1.110
BARMAN (5) 0.001 1.289 0.001 1.192
BLOCKS (18) 0.001 0.062 0.004 0.039
DEPOT (2) 0.037 0.435 0.057 0.579
DRIVERLOG (8) 0.009 1.152 0.061 4.894
FLOORTILE (16) 0.000 0.045 0.010 1.069
FREECELL (14) 0.008 0.691 0.018 0.254
GRID (1) 0.058 0.288 1.237 2.221
GRIPPER (20) 0.354 1.375 0.794 1.239
HIKING (13) 0.012 0.631 0.055 2.096
LOGISTICS (18) 0.028 1.261 0.086 2.950
MICONIC (72) 0.098 4.060 0.399 2.838
MOVIE (30) 1.082 1.864 2.064 1.409
MPRIME (4) 0.051 0.186 0.400 1.031
MYSTERY (5) 0.118 0.289 0.535 0.923
NOMYSTERY (11) 0.000 0.005 0.002 0.128
OPENSTACKS (10) 0.081 4.279 0.082 2.984
ORGANIC (17) 0.870 0.870 0.585 0.585
PATHWAYS (4) 0.080 0.809 0.072 0.703
PIPESWORLD (14) 0.014 0.257 0.114 0.396
PSR-SMALL (50) 0.961 1.204 1.081 1.184
ROVERS (10) 0.018 5.180 0.046 4.163
SATELLITE (7) 0.004 0.511 0.045 2.048
SCANALYZER (21) 0.002 1.225 0.008 2.104
STORAGE (12) 0.006 0.119 0.018 0.301
TERMES (1) 0.011 0.513 0.098 2.568
TETRIS (2) 0.036 0.247 0.116 0.283
TIDYBOT (5) 0.008 0.193 0.337 0.462
TPP (8) 0.075 5.414 0.070 4.374
TRANSPORT (10) 0.014 0.432 0.048 1.888
TRUCKS (9) 0.001 0.178 0.001 0.156
VISITALL (14) 0.033 1.386 0.128 2.479
WOODWORKING (25) 0.009 2.166 0.026 0.395
ZENOTRAVEL (7) 0.018 0.392 0.155 2.191
GEOM. MEAN 0.134 1.142 0.280 1.530

Table 1: Per domain comparison: an entry shows by which
factor the corresponding heuristic has improved (< 1) or
impaired (> 1) the search effort of BDDA? in that domain.



main. This comparison shows that it appears to be domain
dependent whether a heuristic helps BDDA?. This points
to the fact that the structure of the reachable search space
plays a central role if a heuristic helps or impairs BDDA?.
However, as Kissmann and Hoffmann (2014) already inves-
tigated, it appears to be “almost impossible” to predict the
size of the relevant BDDs a priori.

The Bidirectional Case
In bidirectional search, SYMBA?’s selection strategy pre-
dicts whether a forward search step or a backward search
step takes less time and results in smaller BDDs. We have
used this selection strategy for our final empirical evalua-
tion to be as close as possible to the state of the art of sym-
bolic bidirectional search. Experiments with an alternating
selection strategy showed a similar picture with regard to
the comparison between blind and heuristic search. Figure
5 (left) shows the search effort of BDDA? with and without
heuristics. The results of bidirectional BDDA? are similar to
the results of unidirectional BDDA? (Figure 3). However, in
the bidirectional case the perfect heuristic helps less, espe-
cially with regard to the number of tasks that BDDA? could
only solve with the perfect heuristic.

The expansion time (center) shown in Figure 5 empiri-
cally shows that the sizes of the BDDs also have an impor-
tant influence on the runtime for bidirectional BDDA?.

Figure 5 (right) shows the total runtime of bidirectional
BDDA? ignoring the time to compute the corresponding
heuristic. We can observe that all heuristics, even the per-
fect heuristic, can help or harm in some instances.

The right column of Table 1 shows that the effect of a
heuristic in bidirectional BDDA? depends on the domain.
Looking at the geometric mean, we see that fraction per-
fect heuristics perform worse in bidirectional search than in
unidirectional search. This can be traced back to the explicit
case in which many bidirectional heuristic search algorithms
are often not superior to bidirectional blind search (Kaindl
and Kainz 1997; Barker and Korf 2015).

Discussion
We have seen a theoretical and empirical analysis of the
search behavior of BDDA? and revealed a fundamental
problem: the use of a heuristic does not always improve the
search performance of BDDA?. In general, even the perfect
heuristic can exponentially impair search performance. The
most important finding is that good distance estimations are
not the correct quantity to improve the search performance
of symbolic heuristic search. This is due to the fact that the
search effort of symbolic search is not directly related to the
number of explicit states that have to be expanded. There-
fore, it is unlikely that the concept of distance estimators
is generally as helpful in symbolic search as it is in explicit
search. The important question is: how can we use heuristics
in symbolic search in a way that they usually pay off?

We believe that the overall goal is to keep the search ef-
fort, i.e., the cumulative size of the BDDs representing the
states that BDDA? must expand, to determine an optimal
plan, as small as possible. In BDDA?, a heuristic partitions

a set of states into several sets of states. One possible idea
is to see heuristics as a new flexible method of partitioning
a set of states. Interestingly, partitioning has already been
successfully applied to merge transition relations (Torralba,
Edelkamp, and Kissmann 2013). Another direction is the use
of heuristics and decision diagrams that provide size guaran-
tees. For example, potential heuristics (Pommerening et al.
2015) always have a linear-size representation using edge-
valued multi-valued decision diagrams.

Finally, it makes sense to consider heuristic search algo-
rithms other than BDDA?. To capture the worst-case perfor-
mance of bidirectional heuristic search, the idea of must-
expand states was generalized to must-expand state pairs
where at least one of the two states has to be expanded. Holte
et al. (2016) have introduced a bidirectional heuristic search
algorithm that always meets in the middle. Chen et al. (2017)
presented Near-Optimal Bidirectional Search (NBS), which
has the guarantee of having at most twice as many expan-
sions as the minimum number of expansions necessary to
cover all must-expand pairs. However, explicit A? and ex-
plicit NBS have guarantees on node expansions that repre-
sent single explicit states. Therefore, these results cannot be
generalized for symbolic heuristic search and it is unlikely
that a symbolic version of NBS has any guarantees highly
relevant to symbolic search.

Conclusion
We theoretically and empirically evaluated the search be-
haviour of BDDA?. In general, we proved that the use of a
heuristic does not always improve the search performance
of BDDA? and can improve or impair search performance
exponentially. The most important finding is that good dis-
tance estimations are not the correct quantity to improve the
search performance of symbolic heuristic search. This shows
that it is unlikely that the concept of distance estimators, i.e.,
heuristics, is generally as helpful in symbolic search as it is
in explicit search. Possible other ways to use heuristics in
symbolic search are to consider heuristics as new degrees of
freedom that allow multiple different partitions of a set of
states, or to use “size-aware” heuristics that provide guaran-
tees which keep the representation size small.
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Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
AIJ 242:52–79.
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