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Abstract

Symbolic representations have attracted significant attention
in optimal planning. Binary Decision Diagrams (BDDs) form
the basis for symbolic search algorithms. Closely related
are Algebraic Decision Diagrams (ADDs), used to repre-
sent heuristic functions. Also, progress was made in deal-
ing with models that take state-dependent action costs into
account. Here, costs are represented as Edge-valued Multi-
valued Decision Diagrams (EVMDDs), which can be expo-
nentially more compact than the corresponding ADD repre-
sentation. However, they were not yet considered for sym-
bolic planning.
In this work, we study EVMDD-based symbolic search
for optimal planning. We define EVMDD-based represen-
tations of state sets and transition relations, and show how
to compute the necessary operations required for EVMDD-
A?. This EVMDD-based version of symbolic A? general-
izes its BDD variant, and allows to solve planning tasks
with state-dependent action costs. We prove theoretically that
our approach is sound, complete and optimal. Additionally,
we present an empirical analysis comparing EVMDD-A? to
BDD-A? and explicit A? search. Our results underscore the
usefulness of symbolic approaches and the feasibility of deal-
ing with models that go beyond unit costs.

Introduction
The motivation for this paper comes from two related
sources. First, symbolic search has proven to be a use-
ful approach to optimal classical planning, as the results
of the sequential optimal track of the International Plan-
ning Competition (IPC) 2014 show. Usually, Binary Deci-
sion Diagrams (BDDs) (Bryant 1986) are used as the under-
lying symbolic data structure (Edelkamp and Reffel 1998;
Edelkamp and Helmert 2001; Torralba et al. 2014a). The
second source of motivation is the observation that there are
alternative data structures that have advantages over BDDs
that we attempt to exploit in this paper.

In particular, we address the following three shortcom-
ings of BDDs: (a) They only allow branching over binary
variables, which necessitates representing a single multi-
valued variable from the planning task by several binary
BDD variables. While this is more of a nuisance than a
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big deal, it does complicate, e. g., the task of finding good
variable orderings. Luckily, this issue is trivial to address
by allowing decision diagrams to branch over multi-valued
variables. (b) BDDs only allow two output values. This is a
slightly more serious issue, since it necessitates complicated
techniques like bucketing of the open list into subsets with
identical g-values. While this already happens for constant-
cost tasks, we expect an even greater fragmentation into di-
verse, possibly often small, buckets for tasks with varying
and state-dependent costs (Geißer, Keller, and Mattmüller
2015). Again, in principle, it is easy to work around this is-
sue by allowing more than two output values. This is ex-
actly what multi-terminal decision diagrams, such as Alge-
braic Decision Diagrams (ADDs), do (Bahar et al. 1997).
However, (c) ADDs can be exponentially larger than equiv-
alent representations that do not carry the output values at
their terminal nodes, but in the form of edge values, such as
Edge-valued Binary (or: Multi-valued) Decision Diagrams
(EVBDDs/EVMDDs) (Lai, Pedram, and Vrudhula 1996;
Ciardo and Siminiceanu 2002). For example, the function
f : {0, 1}n+1 → {0, . . . , 2n+1 − 1} with f(x0, . . . , xn) =∑n

i=0 2ixi has an exponentially large ADD representation
for every possible variable ordering, since f takes 2n+1 dif-
ferent values, which means that an ADD representing f
needs 2n+1 different terminal nodes. An EVBDD represen-
tation of f , on the other hand, will be linear in size for every
possible variable ordering, as f is completely additively sep-
arable, and the EVBDD can handle the contributions by all
variables independently (Roux and Siminiceanu 2010).

In this paper, we want to address the question whether the
theoretical advantages of EVMDDs over BDDs can be put to
practical use in optimal symbolic planning, and if so, under
which conditions. We first define which EVMDD operations
are required, and show that EVMDDs not only represent
state sets, but also the costs required to reach these states.
We define how transition relations, and image or preim-
age operations can be represented with EVMDDs. On top
of this, we build a symbolic version of the A? algorithm,
EVMDD-A?, which we empirically compare to BDD-A?

and explicit-state A?. While BDD-A? is superior on many
unit-cost tasks, EVMDD-A? performs particularly well in
problems with state-dependent costs.



Preliminaries
Planning Tasks
We consider planning tasks with state-dependent action
costs, but point out that classical, unit-cost tasks, are an im-
portant special case.
Definition 1. A planning task is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables,
each with an associated finite domain Dv = {0, . . . , |Dv| −
1}. A fact is a pair (v, d), alternatively written as v .

= d,
where v ∈ V and d ∈ Dv , and a partial variable assignment
s over V is a consistent set of facts. If s assigns a value to
each v ∈ V , s is called a state. Let S denote the set of states
of Π. States and partial variable assignments are functions
which map variables to values, i.e. s(v) returns the value
of variable v in state s (analogous for partial variable as-
signments). A is a set of actions, where an action is a pair
a = 〈pre, eff〉 of partial variable assignments (or: sets of
facts), called preconditions and effects. By pre(a) we refer
to the precondition of a, by prevars(a) we refer to the cor-
responding variables. Similarly, eff(a) and effvars(a) refers
to the effect of a, and the variables, respectively. The state
s0 ∈ S is called the initial state, and the partial state s?
specifies the goal condition. Each action a ∈ A has an asso-
ciated cost function ca : S → N that assigns the application
cost of a to all states.

An action a is applicable in state s iff pre ⊆ s. Applying a
to s yields the state ŝ with ŝ(v) = eff(a)(v) where eff(a)(v)
is defined, and ŝ(v) = s(v) otherwise. We write s[a] for ŝ.
A state s is a goal state iff s? ⊆ s. We denote the set of
goal states by S?. Let π = 〈a0, . . . , an−1〉 be a sequence
of actions from A. We call π applicable in s0 if there exist
states s1, . . . , sn such that ai is applicable in si and si+1 =
si[ai] for all i = 0, . . . , n − 1. We call π a plan for Π if it
is applicable in s0 and if sn ∈ S?. The cost of plan π is the
sum of action costs along the induced state sequence, i.e.,
cost(π) =

∑n−1
i=0 cai

(si).

Symbolic Search Planning
State space search is a state-of-the-art approach to finding
(optimal) plans. While explicit state space search operates
on individual states, symbolic search, originally introduced
in the area of model checking (McMillan 1993), operates on
sets of states by performing operations on a representation of
their characteristic function. Given a set of states S ⊆ S, its
characteristic function fS : S → {0,∞} represents whether
s ∈ S (then fS(s) = 0) or s /∈ S (then fS(s) =∞).1

Actions are represented by so-called transition relations
(TRs). The TR Ta of action a is the binary relation over S
consisting of all pairs (s, t) where a is applicable in s and
s[a] = t. Just like sets of states can be represented by their
characteristic function, so can TRs. However, since TRs talk
about two states at once, we need two sets of variables: the
source set is represented by unprimed variables v ∈ V . The

1For us, fS maps to 0 or∞, because we will interpret its values
as costs. In a propositional setting, when dealing with BDDs, we
would let fS map to truth values 1 if s ∈ S, and 0 if s /∈ S, instead.

target set is represented by primed variables v′: for each v ∈
V we add a primed version v′ withDv = Dv′ . Conceptually,
the source set encodes the action precondition and the target
set its effects. Given a set of states S and a TR Ta, the image
operation image(fS , Ta) produces a representation of the set
of successor states that can be reached from S with a.

The most prominent representation of characteristic func-
tions and transition relations in symbolic planning are (re-
duced and ordered) Binary Decision Diagrams (BDDs)
(Bryant 1986). A BDD is a directed acyclic graph with a
single root node and two terminal nodes, the 0-sink and the
1-sink. Internal nodes correspond to binary2 variables, and
each node has two successors: the low edge represents that
the current variable is false, while the high edge represents
that the current variable is true. Evaluation of a function then
corresponds to traversal of the BDD according to the assign-
ment of the variables. Fig. 1a shows the BDD for the charac-
teristic function f{s∈S | s(x)=1 and s(y)=0}. For planning tasks
where actions do not have unit costs, we are interested in
the cost required to reach a set of states. For constant ac-
tion costs, it is common to represent multiple actions with
the same cost i by one (or more) transition relation(s) (i.e.
one or more BDDs) Ti. During search, open and closed list
are also represented as a list of BDDs, one BDD for each
g-value (Edelkamp and Kissmann 2009).

For planning tasks with state-dependent action costs, it is
not clear how to represent transition relations with BDDs,
as the resulting successor state set may have different costs
for each state. Hansen, Zhou, and Feng (2002) use an-
other form of decision diagrams: Algebraic Decision Dia-
grams (Bahar et al. 1997) represent functions of the form
f : S → N ∪ {∞} (again, multi-valued variables have bi-
nary encodings). Informally, while BDDs only have two sink
nodes, ADDs have one sink node for each evaluation of f .
ADDs are closely related to BDDs, and they can be trans-
formed to a sequence of BDDs in polynomial time with at
most polynomial overhead (Torralba 2015). However, in the
work of Hansen, Zhou, and Feng (2002) additional improve-
ments would be desirable, such as: (a) supporting zero action
costs, (b) providing a solution for reconstructing plans after
finding a goal state and (c) an empirical evaluation regard-
ing actual planning. In the following, we will show how to
realize these improvements with EVMDDs.

Edge-Valued Multi-Valued Decision Diagrams
Edge-valued Multi-valued Decision Diagrams (EVMDDs)
(Ciardo and Siminiceanu 2002) represent functions of the
form f : S → N ∪ {∞} and have gained attention in plan-
ning with state-dependent action costs (Geißer, Keller, and
Mattmüller 2015; 2016; Mattmüller et al. 2018).
Definition 2. An EVMDD over V is a tuple E = 〈κ, f〉,
where κ ∈ Z is a constant and f is a directed acyclic graph
consisting of two types of nodes: (i) there is a single ter-
minal node denoted by 0. (ii) A nonterminal node v is a
tuple (v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a vari-
able, k = |Dv| − 1, children χ0, . . . , χk are terminal or

2Each finite-domain variable v ∈ V can be represented by
dlog2 |Dv|e binary variables.
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(b) EVMDD ES representing S.

Figure 1: Representations of S = {s| s(x) = 1∧ s(y) = 0}.

nonterminal nodes of E , and w0, . . . , wk ∈ N ∪ {∞} s.t.
mini=0,...,k wi = 0 are the weights assigned to the edges to
the children. The weight of an edge from v to child χi is wi.

By f we also refer to the root node of E . Edges of E be-
tween parent and child nodes are implicit in the definition of
the nonterminal nodes of E . The following definition speci-
fies the arithmetic function denoted by a given EVMDD.

Definition 3. An EVMDD E = 〈κ, f〉 denotes the arith-
metic function κ + f where f is the function denoted by
f . The terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the arithmetic function
over S given by f(s) = fs(v)(s) + ws(v), where fs(v) is the
arithmetic function denoted by child χs(v). We write E(s) for
κ+ f(s).

For fixed variable orders, reduced and ordered EVMDDs
(Def. 4) are unique (Lai, Pedram, and Vrudhula 1996).

Definition 4. An EVMDD E is reduced if (i) there is no in-
ternal node (v, χ0, . . . , χk, 0, . . . , 0) with χ0 = . . . = χk,
and (ii) there are no two nonterminal nodes n and n′ such
that n = n′. An EVMDD is ordered if it satisfies the require-
ment that variables on each path from root to sink always
appear in the same order.

From now on we only talk about reduced and ordered
EVMDDs and assume a fixed variable order. In the graphical
representation of an EVMDD E = 〈κ, f〉, f is represented by
a rooted directed acyclic graph and κ by a dangling incom-
ing edge to the root node of f . The terminal node is depicted
by a rectangular node labeled 0. Edge labels d are written
next to the edges, edge weights wd in boxes on the edges. In
the following, we define the EVMDD representation of the
characteristic function for a set of states.

Definition 5. Let S ⊆ S and fS its characteristic function.
We say ES represents fS and write s ∈ ES , iff ES(s) 6=∞.

Fig. 1b shows the EVMDD for the characteristic func-
tion f{s∈S | s(x)=1 and s(y)=0}. Since we are interested in per-
forming operations on characteristic functions we consider
plus, minus (Lai, Pedram, and Vrudhula 1996) and the ex-
tension of union and intersection for EVMDDs (Ciardo and
Siminiceanu 2002). Additionally, we rename variables.

Definition 6. Given functions f, g : S → N ∪ {∞}. Plus
(+) and minus (−) are defined as usual: Ef + Eg = Ef+g
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Figure 2: Visualization of the restrict operator for EVMDDs.

and Ef − Eg = Ef−g . IntersectionMax (max
∧ ) and union-

Min (min
∨ ) are defined as follows: Ef max

∧ Eg = Emax(f,g), and
Ef min

∨ Eg = Emin(f,g). The operator [V ′ ↔ V] renames the
primed variables into unprimed ones and vice versa.

Intuitively, for S, Ŝ ⊆ S, the union ESmin
∨ EŜ assigns∞ to

s iff s 6∈ S ∪ Ŝ. Regarding symbolic planning, we require
additional operators, which have been generalized for ADDs
(Hansen, Zhou, and Feng 2002), but were not yet introduced
for EVMDDs.

Additional EVMDD Operations
We define the additional operations: existential quantifica-
tion, restrict, preserve minimum and complement. Imple-
mentation of these operations is realized by specialization
of the apply procedure (Lai, Pedram, and Vrudhula 1996).

Existential Least-Cost Quantification. Existential quan-
tification for a propositional formula ψ is realized by the
expression ∃vψ := ψ|v=0 ∨ ψ|v=1, where ψ|v=i restricts
the value of v to i. Hansen, Zhou, and Feng (2002) extend
this concept to ADDs, which they call existential least-cost
quantification. Given an arithmetic function f , the existen-
tial least-cost quantification over a variable v, written as
∃LC
v (f), corresponds to the minimal cost of f for all values

of v. We generalize this concept to multi-valued domains.
Furthermore, if V is a set of variables, ∃LC

V (f) performs
least-cost quantification for all variables v ∈ V :

∃LC
v (E) := E|v=0

min
∨ E|v=1

min
∨ · · · min

∨ E|v=|D(v)|−1 (1)

∃LC
V (E) := ∃LC

v1 (∃LC
v2 (· · · (∃LC

v|V |
(E)) · · · )) (2)

Computing existential least-cost quantification over vari-
able v requires |D(v)| calls of the restrict operator, and
dlog2 (|D(v)|)e calls of applying UnionMin. Generalizing
the restrict operator for EVMDDs is straightforward: Ap-
plying E|v=i to a node v = (v, χ0, . . . , χk, w0, . . . , wk) re-
places v with χi. The weight wi is pulled up and added to
the corresponding edge weight connecting v with its parent.
Fig. 2 depicts EVMDDs E and E|y=0.



Preserve-min. In EVMDD-based planning, the preserve-
min operation can be used to extract states with lowest cost
from an EVMDD. Given f : S → N ∪ {∞}, we define
pmin(f) : S → N ∪ {∞} with pmin(f)(s) = f(s) if
f(s) = mins∈S f(s) and pmin(f)(s) =∞, otherwise.

Complement. For arithmetic functions, no traditional
complement exists; we define the complement of function
f : S → N ∪ {∞} as the function ¬f(s) = 0, if f(s) =∞
and ¬f(s) = ∞, otherwise. Note that this definition of the
complement is not self inverse.

EVMDD-based Planning
In BDD-based symbolic planning, each BDD represents a
set of states, and multiple BDDs are required to encode at
what cost the states are reachable. With EVMDDs, we may
encode the information about costs in the same diagram that
encodes reachability. Consider Fig. 4b. The EVMDD rep-
resents the set of states S = {s|s(x) = 1}, since all other
states are mapped to∞. At the same time, the EVMDD en-
codes the cost of these states: s1 = {x .

= 1, y
.
= 0} has a

cost of 3 while s2 = {x .
= 1, y

.
= 1} has a cost of 8. In the

following, we introduce formal definitions which form the
basis for a symbolic EVMDD variant of the A? algorithm.

Transition Relation. Recall that a transition relation for
action a is defined over the source and target set, repre-
sented by unprimed variables V and primed variables V ′.
Unlike BDDs, transition relations represented by EVMDDs
also encode the cost of the action, and can represent actions
with state-dependent action costs. The domain of cost func-
tion ca is extended by primed variables V ′, and for any state
t′ defined over V ′ we have ca(s ∪ t′) = ca(s), for all s ∈ S.

Definition 7. The transition relation (TR) for an action a ∈
A is defined as follows.

Ta :=
∧max

〈v,d〉∈pre(a)
E{(s,t′)|s(v)=d} (3)

max
∧

∧max

〈v,d〉∈eff(a)
E{(s,t′)|t′(v′)=d} (4)

max
∧

∧max

V\effvars(a)
E{(s,t′)|s(v)=t′(v′)} (5)

max
∧ Eca (6)

Intuitively, construction of the transition relation consists
of the intersection (i.e. intersectionMax for EVMDDs) of
different sets of states. Term 3 encodes the precondition:
all facts of the precondition are encoded by the EVMDD
of their characteristic function over the unprimed variables.
Term 4 encodes the effects, but over primed variables. Ad-
ditionally, we have to encode that variables not affected by
the action keep their former values. Term 5 encodes the so
called frame axioms. Up to now, states are either assigned a
cost of 0 or a cost of ∞. Finally, we “add” the action cost
to the representation (Term 6); states that were mapped to 0
are now mapped to the cost of the action, other states still
map to∞. Fig. 3 shows the transition relation for an action
a = 〈x .

= 0, x
.
= 1〉 with ca = 5y + 1. Note that it is in
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Figure 3: EVMDD Ta representing action a with cost ca.

general possible to represent multiple actions A′ ⊆ A with
a single transition relation T =

∨min
a∈A′ Ta.

Recall that we write s ∈ E iff E(s) 6= ∞. Given state s,
s′ is its corresponding primed version, with s(v) = s′(v′)
for all v ∈ V . Let s be a state over V and t′ a state over V ′,
then (s, t′) is the state over V ∪ V ′ with (s, t′)(v) = s(v)
and (s, t′)(v′) = t′(v′) for v ∈ V , v′ ∈ V ′. In the following,
we show that Ta correctly encodes a.3

Lemma 1. Let (s, t′) be an arbitrary state over V ∪ V ′. For
any action a it holds that (s, t′) ∈ Ta iff a is applicable in s
and t = s[a]. �

Lemma 2. Let (s, t′) ∈ Ta. Then Ta(s, t′) = ca(s).

Proof. The intermediate EVMDD T ′a of Terms (3) to (5)
of Def. 7 contains only states with 0 or infinite cost (Def.
5). Since (s, t′) ∈ Ta, we have T ′a(s, t′) = 0. Then,
Ta(s, t′) = (T ′a

max
∧ Eca)(s, t′) = max(T ′a(s, t′), ca(s, t′)) =

max(0, ca(s, t′)) = ca(s, t′) = ca(s).

Image. The image operation takes a symbolic state and
a transition relation, and computes the symbolic successor
state. It consists of a sequence of basic algebraic operations.
We also define the preimage, required for backward and bi-
directional search algorithms.
Definition 8. The image and preimage operations for
EVMDDs are defined as follows:

image(E , T ) := (∃LC
V (E + T ))[V ′ ↔ V]

preimage(E , T ) := ∃LC
V′ (E [V ↔ V ′] + T )

The image operation consists of three steps: First, E + T
encodes the action application. States where the precondi-
tion does not hold will be mapped to infinite costs; the action
cost is added for the other states, and effects are applied (still
encoded over V ′). In the second step we apply ∃LC

V , i.e. we
fix the unprimed variables with their minimum cost. This in-
termediate representation consists only of primed variables.
Finally, we have to rename the primed variables, such that
the symbolic successor state is again defined over V , instead

3Full proofs of all Lemmas and Theorems are available as a
technical report (Speck, Geißer, and Mattmüller 2018).
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Figure 4: Visualization of the image operator for EVMDDs.

of V ′ ([V ′ ↔ V]). Figs. 3 and 4 show an example of the
image operator, computing the image of symbolic state S
(Fig. 4a) with transition relation Ta (Fig. 3), resulting in
Fig. 4b. In the following we show the correctness of the op-
erator, i.e. it computes successor states and preserves mini-
mal costs. Theorems 1 and 2 follow from Lemmas 1 and 2
and the definitions of T , ∃LC

V and [V ′ ↔ V].

Theorem 1. Let t be an arbitrary state over V . Then t ∈
image(E , Ta) iff there exists a state s ∈ E such that a is
applicable in s and t = s[a]. �

Theorem 2. Let Ê = image(E , Ta). Then Ê(t) =

mins(E(s) + ca(s)) for all states t ∈ Ê . �

Given an EVMDD Ê representing states Ŝ, and given
transition relation Ta, the preimage operator computes the
set of predecessors S, with s[a] ∈ Ŝ for s ∈ S. However, the
costs associated with S are slightly different than one might
expect: preimage(Ê , Ta)(s) = ca(s) + Ê(s[a]), i.e. the cost
of t = s[a] plus the cost of applying a in s. This will be re-
quired for backward search algorithms, where we start with
the set of goal states, associated with a cost of 0. Then the
preimage operator computes the minimal cost of reaching a
goal state. The following two theorems can be derived simi-
larly to Theorems 1 and 2.

Theorem 3. Let s be an arbitrary state over V . Then s ∈
preimage(Ê , Ta) iff there exists a state t ∈ Ê such that a is
applicable in s and t = s[a]. �

Theorem 4. Let E = preimage(Ê , Ta). For any state s ∈ E
it holds that E(s) = Ê(s[a]) + ca(s). �

EVMDD-based A?

A? search (Hart, Nilsson, and Raphael 1968) is a best-first
search algorithm used to generate optimal plans. Beginning
from the initial state, it expands states according to their f -
value, until a goal state is found, where f(s) = g(s) + h(s)
for state s ∈ S. The g-value g(s) corresponds to the cost
necessary to reach s, and the heuristic value h(s) estimates
the cost to reach the goal from state s. Heuristic h is called
consistent if (1) h(s) ≤ h(s[a]) + ca(s) for all s ∈ S and
a ∈ Awhere s[a] is defined, and (2) h(s) = 0 for all s ∈ S?.
If h is consistent, then A? is guaranteed to expand states

pmin(Open)
= Closedi

Open at step i

Open
at step i+ 1

2 3 4 8 3 5 8

3 4 5 8

∨min
a∈A image(pmin(Open),Ta)

UnionMin

Figure 5: One iteration step of the EVMDD-A? algorithm.

only once and to generate an optimal plan. Typically, al-
ready expanded states are stored in the closed list (Closed),
states that are queued for expansion are stored in the open
list (Open).

In EVMDD-A?
, the EVMDD variant of A?

, we expand not
a single state, but the set of states with the lowest f -value.
For this, Closed and Open are represented as EVMDDs.
If s ∈ Open, then there exists a path from s0 to s with
cost Open(s), otherwise Open(s) = ∞. The closed list
is divided into multiple EVMDDs, Closedi, where each
EVMDD corresponds to a single expansion step i. This is re-
quired for plan reconstruction. To understand EVMDD-A?

without plan reconstruction, one may think of a single closed
list, containing all states which have already been explored
together with their g-values. In general, if h is represented as
an EVMDD Eh (cf. Conclusion), computing f(s) is a simple
addition of two EVMDDs.

EVMDD-A?. Before we explain the algorithm in detail,
we give a high-level description of a single iteration, de-
picted in Fig. 5. The top left part depicts the open list at step
i. It contains states with cost 2, 3, 4 and 8, i.e. the EVMDD
Openmaps the corresponding states to their cost values, and
all other states to∞. In each iteration, we extract the set of
states with the current cheapest cost, here 2, from the open
list by applying the preserve-min and the image operator.
The resulting set of states is depicted to the right. Finally,
we merge the remaining states of the open list (i.e. states
that were not yet expanded) with the newly generated set,
resulting in the open list at step i+ 1. The picture omits that
we do not add already expanded states to the open list (these
are included in the closed list). The algorithm iterates until a
goal is reached or the complete state space is explored.

In detail, EVMDD-A? (Alg. 1) works as follows: first, the
open list is initialized with the EVMDD representing the ini-
tial state (line 2). The algorithm continues as long as any
state in the open list has finite cost with respect to its f -
value (line 4). In line 5, the EVMDD with minimal f -values



Algorithm 1: Pseudocode for EVMDD-A?.
1 Function EVMDD-A?(Π)
2 Open← E{s0}
3 i← 0
4 while (Open+ Eh) 6=∞ do
5 E ← pmin(Open+ Eh)− Eh
6 Closedi ← E
7 if Emax

∧ ES? 6=∞ then
8 return ConstPlan(Π, Emax

∧ ES? , Closed0:i)

9 Open← Openmin
∨
∨min

a∈A image(E , Ta)

10 Open← Openmax
∧ ¬(

∨min
j=0:i Closedj)

11 i← i+ 1

12 return “no plan”

is computed; Eh is subtracted again, such that E only repre-
sents the g-values of all states with minimal f -value.4 These
states are stored in the closed list for iteration i (line 6), and
are expanded next. If any state of E is a goal state, the plan is
reconstructed and returned (line 7/8) with Alg. 2. Otherwise,
the states represented with E are expanded, by calculating
the image for every action a ∈ A. The newly explored states
are merged with the open list; if a state was already rep-
resented by Open, only the minimal cost is considered (line
9). Finally, already explored states (contained inClosed) are
removed from Open by setting their cost to∞ (line 10).

Plan reconstruction. For explicit A? search, constructing
the plan after a goal was found is easy, since each state keeps
track of its predecessor state. For symbolic planning, regard-
less of the data structure, we have to do more work. Func-
tion ConstPlan (Alg. 2) is a backward greedy search with
perfect heuristic h? = g?, which is obtained by Closed. Its
runtime is negligible with respect to the actual search. Its in-
put is, besides Π, the EVMDD E? representing all goal states
found in iteration i (with the same cost) and all closed lists
up to iteration i. First, an arbitrary found goal state is chosen
and the empty plan is initialized (lines 2&3). In each step,
the algorithm iterates over all actions, until the initial state
is reached. For each action a, the EVMDD representing the
predecessor states of st (line 6) is computed. In line 7, these
predecessor states are associated with their g-value (repre-
sented by Closed). Afterwards, the cost of a is added to the
g-value and only the cheapest states are preserved in Emin

(line 8). The condition in line 9 checks that the cost of these
remaining states corresponds to the g-value of st. If this is
not the case, a was not part of the optimal plan and the next
action has to be checked. Otherwise, a predecessor state is
assigned to st (line 11), i is set to the (unique) iteration step
at which st was expanded (line 12), and a is prepended to
the current plan π (line 13).

In the following, we show that, given a consistent heuris-
tic, EVMDD-A? is sound, complete, and optimal.

4We define x−∞ = x for x ∈ N ∪ {∞}.

Algorithm 2: Pseudocode for Plan Reconstruction.
1 Function ConstPlan(Π, E?, Closed0:i)
2 st ← selectAnyState(E?)
3 π ← [ ]
4 while st 6= s0 do
5 foreach a ∈ A do
6 E ← E{s|s[a]=st, where s[a] is defined}
7 E ← Emax

∧ (
∨min

j=0:i−1 Closedj)

8 Emin ← pmin(E + Eca)
9 if min(Emin) 6= Closedi(st) then

10 continue
11 st ← selectAnyState(Emin)
12 i← the unique i with Closedi(st) 6=∞
13 π ← a ; π
14 break

15 return π

Theorem 5. Given a consistent heuristic h, EVMDD-A? is
sound and complete.

Proof sketch. Follows from Theorem 1 and consistency of
h. States reachable from s0 are expanded until a goal state s
is found or all states have been expanded. Plan reconstruc-
tion only considers states on the closed list leading to s.

Theorem 6. Given a consistent heuristic h, EVMDD-A? is
optimal.

Proof sketch. A state s is expanded iff there exists no state
with smaller f -value in the open list. By Theorem 2 and con-
sistency of h, the cost of s at expansion is the cheapest cost
with which state s is reachable from s0. Therefore, once a
goal state is expanded, its cost is the cheapest cost reaching
the goal from s0.

Bidirectional search. Most successful symbolic planners
nowadays use symbolic bidirectional search (Torralba et al.
2014a), which combines forward and backward search. We
give a brief summary how bidirectional search can be re-
alized with EVMDDs. Backward search is implemented by
the preimage operator (Def. 8). For that purpose, EVMDD-
A? replaces the initial state with the goal formula s?. Plan
reconstruction has to be modified accordingly, in particular,
ca has to be added to E{st}, since the cost depends on the
state the action is applied to. For bidirectional search, we
have separate open and closed lists for forward (Openfwd,
Closedfwd) and backward (Openbwd, Closedbwd) search. A
search step consists either of a backward or a forward search
step (and modifies the respective open and closed lists). If a
state of the current search is expanded and was already con-
tained in the closed list of the search in the opposite direc-
tion, a goal path is found. Its cost is determined by adding
the respective EVMDDs. As such a goal path is not neces-
sary optimal, search has to continue, until it is proven that
there is no cheaper goal path. Let Efwd be the EVMDD rep-
resenting the currently expanded states in forward direction.



A collision of the search fronts can be detected by comput-
ing Ebd = Efwd + Closedbwd. If there exists a state s ∈ Ebd,
a collision was found and Ebd(s) corresponds to the cost
of the detected goal path. To prove that the currently best
goal path with cost c is optimal, it is sufficient to check if
c ≤ min(Openfwd) + min(Openbwd), as this proves that
no cheaper collision (goal path) is possible. Finally, plan re-
construction is executed for both directions and the returned
plans are combined.

Empirical Evaluation
This section describes the technical aspects of our new plan-
ning system (SYMPLE) in detail and evaluates its perfor-
mance against state-of-the-art optimal planning systems. We
conduct two types of experiments: first, we evaluate its per-
formance regarding optimal planning with constant action
costs by analyzing the IPC-2014 benchmark set (Vallati et
al. 2015). The second part of the evaluation considers opti-
mal planning with state-dependent action costs. Regardless
of the benchmark set, all experiments have the usual time
limit of 30 minutes and a 4 GB memory limit.

The SYMPLE Planning System
SYMPLE is based on the Fast Downward Planning Sys-
tem (Helmert 2006).5 The preprocessing is taken from
SYMBA, winner of the IPC-2014 (Torralba et al. 2014a).
This includes GAMER’s (Kissmann, Edelkamp, and Hoff-
mann 2014) SAS+ encoding, its h2 invariant computa-
tion and pruning of spurious actions (Alcázar and Torralba
2015); we set a time limit of 300 seconds for this part of the
preprocessing. Additionally, we took advantage of GAMER’s
and SYMBA’s variable ordering algorithm (Kissmann and
Edelkamp 2011), which plays a crucial role in symbolic
planning based on decision diagrams. Regarding the repre-
sentation of actions, the SYMPLE planning system combines
as many actions as possible into a transition relation, un-
til the representation exceeds 100k nodes. This size limita-
tion also holds for invariants, which are joined together and
separately represented as EVMDDs (similar to BDDs). We
evaluate EVMDD-A? (Alg. 1) with progressive and bidirec-
tional search using the blind heuristic. For the latter, in order
to decide if a forward search step or a backward search step
appears to be more promising, we compare the runtime of
the last forward step to the runtime of the last backward step.
Conditional effects are encoded by extending the transition
relations (Kissmann, Edelkamp, and Hoffmann 2014). The
underlying library for EVMDD operations is an extended
version of MEDDLY-0.14 (Babar and Miner 2010). The ex-
tension consists of the implementation of the operations de-
scribed in the Preliminaries section. Finally, we extended
MEDDLY to support EVMDDs with infinite costs.

Planning with Constant Action Costs
Table 1 shows the performance of SYMPLE in comparison
to Fast Downward with A?

blind, A?
lmcut (Helmert and Domsh-

lak 2009) and SYMBA2 on the IPC-2014 benchmark set.
5Available online: https://gkigit.informatik.

uni-freiburg.de/dspeck/symple
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BARMAN (14) 0 0 3 6 6 0 / 0
CAVEDIVING (20) 6 3 ∗(3) ∗ 7 6 / 7
CHILDSNACK (20) 0 0 2 1 4 0 / 0
CITYCAR (20) 9 0 18 18 18 8 / 8
FLOORTILE (20) 8 17 13 20 20 14 / 14
GED (20) 15 15 ∗ ∗ 19 13 / 15
HIKING (20) 8 8 14 15 15 11 / 12
MAINTENANCE (5) 5 5 ∗ ∗ 5 5 / 5
OPENSTACKS (20) 2 2 16 19 20 15 / 15
PARKING (20) 0 3 0 3 3 0 / 0
TETRIS (17) 7 9 3 11 10 3 / 3
TIDYBOT (20) 0 13 0 13 11 0 / 0
TRANSPORT (20) 4 6 6 8 9 4 / 6
VISITALL (20) 3 5 5 6 6 4 / 6
TOTAL COV. (256) 67 86 83 120 153 83 / 91

Table 1: Coverage of planning systems for the IPC-2014
benchmark set. SYMPLE is evaluated with progression
(prog.) and bidirectional (bd.) search. (C)GAMER: results
from IPC-2014 (∗ indicates parsing errors).

All planners use the the same translation and preprocessing
procedure described above. Although SYMPLE was devel-
oped with a focus on domains containing actions with state-
dependent costs, its performance is notable. SYMPLE out-
performs A?

blind, and performs similar to A?
lmcut and the IPC-

2014 results of the symbolic planner GAMER and CGAMER
(Torralba et al. 2014b). Note that GAMER and CGAMER
had a parsing bug which led to fewer solved instances
(CAVEDIVING, GED and MAINTENANCE). The difference
between SYMPLE and SYMBA2 can be traced back to multi-
ple reasons. While both planning systems use symbolic state
representation, SYMBA2 is clearly much more sophisticated
by integrating additional techniques: e.g. abstraction heuris-
tics (Torralba, López, and Borrajo 2016) and e-deletion (Tor-
ralba et al. 2017), which have not yet been taken into account
in SYMPLE. In addition, SYMBA2 is based on the CUDD
(Somenzi 2017) library to perform BDD operations, while
EVMDD operations in SYMPLE are based on MEDDLY.
To the authors’ best knowledge, MEDDLY is currently the
only decision diagram library supporting EVMDDs. Unfor-
tunately, there is no comparison of MEDDLY with other deci-
sion diagram libraries due to lack of functionality (Dijk et al.
2015). We performed some small-scale experiments using
BDDs, which indicate that CUDD is superior to MEDDLY in
speed and memory regarding basic operations (union and in-
tersection), roughly by a factor of two. The main advantage
of SYMBA2 over SYMPLE is the image operation which is
the bottleneck in symbolic planning (Torralba 2015). While
SYMPLE uses a basic implementation, SYMBA2 applies the
relational product (Burch et al. 1994) to compute the image,
which is more efficient. Concluding, using EVMDDs can
lead to unnecessary overhead for solving unit cost planning
tasks where Boolean representations are sufficient to distin-
guish between reached and unreached states. Half of the do-



Domain (#Tasks) A?
blind

SYMBA2 SYMPLE
(exp / cost) (prog. / bd.)

ASTERIX (30) 9 26 / 30 30 / 30
C-GRIPPER (30) 7 3 / 10 9 / 11
GR-PEG-08 (30) 29 0 / 25 27 / 27
GR-PEG-11 (20) 19 0 / 15 17 / 18
SDAC-OS-08 (30) 6 19 / 9 15 / 15
SDAC-OS-11 (20) 3 20 / 10 20 / 20
SDAC-OS-14 (20) 0 17 / 0 7 / 7
TSP-MH (30) 19 1 / 16 15 / 15
TOTAL COV. (21) 92 86 / 115 140 / 143

Table 2: Comparison of different planner systems using
benchmarks containing state-dependent action costs. SYM-
PLE is evaluated with prog. and bd. search. For SYMBA2,
we compare two compilations to tasks with constant action
cost: exponential (exp) and cost-based (cost).

mains (7 out of 14) included in the IPC-2014 benchmark are
unit cost tasks.

Planning with State-Dependent Action Costs
Table 2 summarizes our experimental results for domains
containing actions with state-dependent costs. We analyzed
210 tasks of eight different domains. Due to lack of domains
with state-dependent action costs we created a new bench-
mark set6, which contains six modified domains from former
IPCs and two novel domains. It follows a short description
of each domain.

In ASTERIX, the task is to collect an Edelweiss, located
on top of a mountain. The cost to climb the mountain
depends on its slope. Additionally, it can be necessary to
“knock out” some Romans. COLORED GRIPPER is based
on the GRIPPER domain. In this version, balls and rooms
are either red or blue. Initially, all balls are located in the
blue room and each move action is penalized by the number
of balls located in a room with different color. GREEDY-
PEGSOL is a modified version of the PEGSOL domain.
The only difference is that the cost of action end-move is
state-dependent: its cost is equal the number of remaining
pegs on the board. SDAC-OPENSTACKS is based on the
IPC domain OPENSTACKS. Unlike its constant cost version,
the plan cost depends on the number of open stacks in every
time step. TSP-MH is a version of the traveling salesman
problem with the Manhattan distance metric. Every task
consists of a 256 × 256 grid with an increasing number of
randomly placed cities. There is a visit-city action for every
city. Its cost depends on the current location of the salesman.

Unfortunately, there are not many planning systems sup-
porting actions with state-dependent costs – especially in op-
timal planning. EVMDD-A? is a novel approach to natively
support state-dependent action costs in optimal planning. To
evaluate our approach for state-dependent action costs, we
compare SYMPLE, Fast Downward with A?

blind, and the IPC-
2014 winner SYMBA2. For A?

blind, we represent action costs

6Available online: https://gkigit.informatik.
uni-freiburg.de/dspeck/SDAC-Benchmarks

as EVMDDs with MEDDLY. For SYMBA2, we provide two
compilations to tasks with constant action costs: the expo-
nential compilation generates an action for every assignment
of variables contained in the corresponding cost function,
with cost according to evaluation of the cost function under
this assignment. The cost-based compilation is based on the
representation of the cost functions as EVMDDs. It gener-
ates sub-actions, corresponding to the edges in the EVMDD,
and subsequent applications of sub-actions reflect the eval-
uation of the cost function (Geißer, Keller, and Mattmüller
2015). Note that the first compilation is exponential in the
number of cost function variables, and therefore often not
feasible. For example, in GREEDY-PEGSOL the cost func-
tion of action end-move depends on all pegs, resulting in 232

possible assignments and 232 newly generated actions (ob-
viously not feasible). Again, all planning systems apply the
same preprocessing; however, since compilation results in
an increased number of variables and actions, SYMBA2 re-
quires more preprocessing time.

Table 2 shows that SYMPLE outperforms the other
approaches. Interestingly, on domains such as GREEDY-
PEGSOL and TSP-MH, the explicit search approach A?

blind
performs best, whereas in combinatorially more challenging
problems like ASTERIX or SDAC-OPENSTACKS, symbolic
approaches work best. SYMBA only outperforms SYMPLE
in the OPENSTACKS domains. The reason for this is that
all cost functions in these domains only depend on a sin-
gle variable, therefore the exponential encoding only has a
small blow-up and is compensated by SYMBA’s better per-
formance. The good results of A?

blind on the PEGSOL do-
mains is due to the greedy character of optimal plans (greed-
ily removing as many pegs in order to generate long moves).
Overall, the results show that SYMPLE is superior regarding
state-dependent action costs and indicate that EVMDD-A?

is a promising step to generalize planning and natively sup-
port actions with unit, constant and state-dependent costs.

Conclusion
In this work, we applied Edge-valued Multi-valued Decision
Diagrams to symbolic planning, which is a novel approach.
We defined EVMDD-based representations of state sets,
transition relations and showed how to compute the neces-
sary operations required for EVMDD-A?, a sound, complete
and optimal symbolic search algorithm. While the empirical
evaluation showed that BDD-A? is superior on many tasks
with unit-costs, EVMDD-A? outperforms other approaches
in domains with state-dependent costs.

For future work, we plan to represent heuristics, such
as Merge-and-Shrink abstraction (Helmert et al. 2014), as
EVMDDs, similar to how it is done for ADDs (Torralba,
López, and Borrajo 2013). Contrary to explicit-state search,
applying ADD-based heuristic representations to symbolic
planning does not always pay off. We want to investigate
if the structural advantage of EVMDDs carries over to the
representation of heuristic functions, and if it is thus possi-
ble to reinforce heuristic symbolic search. Furthermore, we
will revisit the implementation of the image operation for
EVMDDs by drawing on results for efficient implementa-
tion of the relational product for BDDs (Burch et al. 1994).
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Abstract

This report contains the proof of correctness, soundness and optimality
for EVMDD-A? presented in the paper Symbolic Planning with Edge-
Valued Multi-Valued Decision Diagrams (Speck, Geißer, and Mattmüller
2018).

1 Transition Relation

Lemma 1. Let (s, t′) be an arbitrary state over V ∪ V ′. For any action a it
holds that (s, t′) ∈ Ta iff a is applicable in s and t = s[a].

Proof. Let T ′a be the intermediate EVMDD of Terms (3) to (5). By construction
of T ′a: a state (s, t′) ∈ T ′a iff a is applicable in s and t = s[a]. Furthermore, it
holds that (s, t′) ∈ Eca for all (s, t′) ∈ V ∪ V ′ (Def. 1). Thus, (s, t′) ∈ Ta iff
(s, t′) ∈ (T ′a

max
∧ Eca) iff (s, t′) ∈ T ′a iff a is applicable in s and t = s[a].

Lemma 2. Let (s, t′) ∈ Ta. Then Ta(s, t′) = ca(s).

Proof. The intermediate EVMDD T ′a of Terms (3) to (5) contains only states
with 0 or infinite cost (Def. 4 & Def. 5). Since (s, t′) ∈ Ta, it holds that
T ′a(s, t′) = 0. Then, Ta(s, t′) = (T ′a

max
∧ Eca)(s, t′) = max(T ′a(s, t′), ca(s, t′)) =

max(0, ca(s, t′)) = ca(s, t′) = ca(s).

2 Image

Note that we sometimes use “min” instead of min
∨ . This simplifies the notations.

If “min” is used for partial functions, we mean min
∨ .

Theorem 1. Let t be an arbitrary state over V. Then t ∈ image(E , Ta) iff there
exists a state s ∈ E such that a is applicable in s and t = s[a].

1



Proof.

t ∈ image(E , Ta)

⇔ t ∈ (∃LCV (E + Ta))[V ′ ↔ V] (Definition 7)

⇔ t′ ∈ ∃LCV (E + Ta) (Substitution Lemma)

⇔ t′ ∈ ∃LCv1,...,vn(E + Ta) (Definition ∃LC)

⇔ ∃s : (s, t′) ∈ (E + Ta) (Transformation)

⇔ ∃s : (s, t′) ∈ E and (s, t′) ∈ Ta (Definition 4)

⇔ ∃s : s ∈ E and (s, t′) ∈ Ta (Transformation)

⇔ ∃s : s ∈ E and a is applicable in s and t = s[a] (Lemma 1)

⇔ there exists a state s ∈ E s.t. a is applicable in s (Transformation)

and t = s[a]

From Theorem 1, Lemma 1 and Lemma 2 follows Corollary 1 which will be
used to prove Theorem 2.

Corollary 1. Let t be an arbitrary state over V with t ∈ image(E , Ta). Then
there exists a state s ∈ E such that (s, t′) ∈ Ta.

Proof. By definition t ∈ image(E , Ta). Thus, by Theorem 1 there is a state s ∈ E
such that a is applicable in s and t = s[a]. It follows that there exists a state
s ∈ E such that (s, t′) ∈ Ta (Lemma 1).

Theorem 2. Let Ê = image(E , Ta). Then Ê(t) = mins(E(s) + ca(s)) for all
states t ∈ Ê.

Proof.

Ê(t) = (image(E , Ta))(t)

= ((∃LCV (E + Ta))[V ′ ↔ V])(t) (Definition 7)

= (∃LCV (E + Ta))(t′) (Substitution Lemma)

= (∃LCv1,...,vn(E + Ta))(t′) (Definition ∃LC)

= ( min
v1,...,vn

(E + Ta))(t′) (Definition ∃LC)

= (min
s

(E + Ta))(t′) (Transformation)

= (min
s

(E(s, ∗) + Ta(s, ∗)))(t′) (Transformation)

= min
s

(E(s, t′) + Ta(s, t′)) (Transformation)

= min
s

(E(s) + Ta(s, t′)) (Transformation)

= min
s

(E(s) + ca(s)) (Corollary 1 + Lemma 2)

2



3 Preimage

Theorem 3. Let s be an arbitrary state over V. Then s ∈ preimage(Ê , Ta) iff
there exists a state t ∈ Ê such that a is applicable in s and t = s[a].

Proof.

s ∈ preimage(Ê , Ta)

⇔ s ∈ ∃LCV′ (Ê [V ↔ V ′] + Ta) (Definition 7)

⇔ s ∈ ∃LCv′
1,...,v

′
n
(Ê [V ↔ V ′] + Ta) (Definition ∃LC)

⇔ ∃t : (s, t′) ∈ (Ê [V ↔ V ′] + Ta) (Transformation)

⇔ ∃t : (s, t′) ∈ Ê [V ↔ V ′] and (s, t′) ∈ Ta (Transformation)

⇔ ∃t : (t, s′) ∈ Ê and (s, t′) ∈ Ta (Substitution Lemma)

⇔ ∃t : t ∈ Ê and (s, t′) ∈ Ta (Transformation)

⇔ ∃t : t ∈ Ê and a is applicable in s and t = s[a] (Lemma 1)

⇔ there exists a state t ∈ Ê s.t. a is applicable in s (Transformation)

and t = s[a]

From Theorem 3, Lemma 1 and Lemma 2 follows Corollary 2 which will be
used to prove Theorem 4.

Corollary 2. Let s be an arbitrary state over V with s ∈ preimage(Ê , Ta). Then
there exists a state t ∈ Ê such that (s, t′) ∈ Ta.

Proof. By definition s ∈ preimage(Ê , Ta). Thus, by Theorem 3 there is a state
t ∈ Ê such that a is applicable in s and t = s[a]. It follows that there exists a
state t ∈ Ê such that (s, t′) ∈ Ta (Lemma 1).

Theorem 4. Let E = preimage(Ê , Ta). For any state s ∈ E it holds that E(s) =
Ê(s[a]) + ca(s).
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Proof.

E(s) = (preimage(Ê , Ta))(s)

= (∃LCV′ (Ê [V ↔ V ′] + Ta))(s) (Definition 7)

= (∃LCv′
1,...,v

′
n
(Ê [V ↔ V ′] + Ta))(s) (Definition ∃LC)

= ( min
v′
1,...,v

′
n

(Ê [V ↔ V ′] + Ta))(s) (Definition ∃LC)

= (min
t′

(Ê [V ↔ V ′] + Ta))(s) (Transformation)

= (min
t

(Ê [V ↔ V ′](∗, t′) + Ta(∗, t′)))(s) (Transformation)

= min
t

(Ê [V ↔ V ′](s, t′) + Ta(s, t′)) (Transformation)

= min
t

(Ê(t, s′) + Ta(s, t′)) (Substitution Lemma)

= min
t

(Ê(t) + Ta(s, t′)) (Transformation)

= min
s[a]

(Ê(s[a]) + ca(s)) (Cor. 2 + Lem. 2 + Thm. 3)

= Ê(s[a]) + ca(s) (Definition 1)

4 EVMDD-A?

Lemma 3. Let Π be a planning task and h be a consistent heuristic. EVMDD-
A? expands states in the same order and with the same g-values as A? with
FIFO tie-breaking rule.

Proof. Let Sf be all states with minimum f -value of an open list Open. Re-
call that in A? the tie-breaking between different states with minimum f -value
in Open can be arbitrary. Let’s assume the tie-breaking rule is “first in first
out (FIFO)”. The difference between EVMDD-A? and A? is that EVMDD-A?

expands all states of Sf at once while A? iteratively (|Sf | iterations) extracts
these states. It is not possible that any other state is expanded before the |Sf |
iterations are finished, because h is consistent and therefore all newly generated
successors have at least the f -value of all states in Sf .

• Goal check. Any ordering of expanding states in Sf is possible in A?.
Thus, it is equivalent to first check if any state in Sf is a goal state.

• Closed list. Any ordering of expanding states in Sf is possible in A?.
Thus, it is equivalent to first add all states Sf to the closed list and then
expand all states Sf .

• Open list. By Theorem 1, in EVMDD-A?, all successors of Sf are gener-
ated and added to the open list if they are not contained in the closed list.
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This is equivalent to adding them iteratively to Open. By Theorem 2 the
cost of a successor ŝ is the minimum cost with which ŝ is reachable from
any state in Sf applying action a. In line 9 (Algorithm 1), the minimum
cost is taken from the current cost of ŝ in Open or the minimum cost with
which ŝ is reachable from Sf applying any actions a ∈ A. Thus, the cost
of a state ŝ in Open is only updated iff it is reachable with lower cost
from any expanded state in Sf . Again, this is equivalent to A? after |Sf |
iterations.

Therefore, EVMDD-A? and A? expand nodes in the same order and with the
same g-values.

Lemma 4. Let Π be a planning task and h be a consistent heuristic. EVMDD-
A? returns “no plan” iff A? returns “no plan”.

Proof. In EVMDD-A?, “no plan” is returned iff the open list is empty. By
Lemma 3, the open list in EVMDD-A? is found empty iff the open list in A? is
found empty.

Lemma 5. Let Π be a planning task and h be a consistent heuristic. If a plan
exists for Π, EVMDD-A? returns the same plan as A? with FIFO tie-breaking
rule.

Proof. EVMDD-A? expands states in the same order and with the same g-
values as A? (Lemma 3). Heuristic h is consistent, therefore all states in the
closed list have minimum g-values g∗, i.e. the minimum cost with which they
can be reached from s0. ConstPlan is a version of backward greedy search with
perfect heuristic h∗ = g∗ where the g∗-values are stored in the closed list. Thus,
ConstPlan and therefore EVMDD-A? returns an optimal plan from s0 to any
goal state expanded in EVMDD-A?. EVMDD-A? expands the same goal state
as A? (Lemma 3). Thus, EVMDD-A? returns a plan iff A? returns a plan and
EVMDD-A? returns the same plan as A? (if a plan exists).

Theorem 5 & 6. EVMDD-A? is complete, sound and optimal for consistent
heuristics.

Proof. Let Π be a planning task and h be a consistent heuristic. EVMDD-A?

returns “no plan” iff A? returns “no plan” (Lemma 4). If a plan exists for Π,
EVMDD-A? returns the same plan as A? (Lemma 5). EVMDD-A? is complete,
sound and optimal for consistent heuristics because A? is it too.
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