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Abstract

In classical planning, cost partitioning is a method for admis-
sibly combining a set of heuristic estimators by distributing
operator costs among the heuristics. An optimal cost parti-
tioning is often prohibitively expensive to compute. Saturated
cost partitioning is an alternative that is much faster to com-
pute and has been shown to offer high-quality heuristic guid-
ance on Cartesian abstractions. However, its greedy nature
makes it highly susceptible to the order in which the heuris-
tics are considered. We show that searching in the space of or-
ders leads to significantly better heuristic estimates than with
previously considered orders. Moreover, using multiple or-
ders leads to a heuristic that is significantly better informed
than any single-order heuristic. In experiments with Cartesian
abstractions, the resulting heuristic approximates the optimal
cost partitioning very closely.

Introduction
A∗ search with an admissible heuristic is one of the most
prominent methods for optimal classical planning. Because
a single heuristic is often unable to capture all relevant as-
pects of a planning task, it is desirable to combine informa-
tion from multiple heuristics. One way of doing so admissi-
bly is to maximize over multiple heuristic estimates in each
state (Holte et al. 2006). However, this method does not re-
ally combine multiple heuristics but merely selects the most
informative one in each state.

Cost partitioning (CP) (Katz and Domshlak 2008; Yang et
al. 2008) is a more sophisticated way of combining heuris-
tics that often produces higher estimates than any single
estimator can provide. By distributing the operator costs
among the heuristics, cost partitioning allows to sum the
heuristic estimates admissibly. An optimal cost partition-
ing (OCP) is usually too expensive to compute (e.g., Pom-
merening, Röger, and Helmert 2013), but multiple approxi-
mations with varying time vs. accuracy tradeoffs have been
proposed, such as uniform CP (Katz and Domshlak 2007b),
zero-one CP (e.g., Edelkamp 2006), and post-hoc optimiza-
tion (Pommerening, Röger, and Helmert 2013).

Recently, Seipp and Helmert (2014) introduced the sat-
urated cost partitioning (SCP) algorithm, which iteratively
computes an abstraction, determines the minimum operator
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costs needed to preserve all abstract goal distances, and then
repeats this process with the remaining operator costs.

Saturated cost partitioning assigns costs greedily and is
therefore susceptible to the order in which the abstractions
are computed. Seipp and Helmert considered two orders
based on Bonet and Geffner’s hadd heuristic (2001) as well
as a random order. Their experimental evaluation was in-
conclusive, as none of the three orders consistently outper-
formed the others. In this paper, we study the problem of
ordering abstractions for SCP in more depth.

Our analysis reveals that just changing the order of ab-
stractions in SCP can make the difference between a per-
fect distance estimate and a blind one. To find good orders,
we propose a hill climbing search in the space of all orders.
The optimized orders found by hill climbing significantly
improve over Seipp and Helmert’s results. However, the re-
sults also indicate that it is often impossible to find a single
order that provides good guidance across the state space: or-
ders that are accurate on a given set of states often turn out
to be poor in all others.

Maximizing over SCP heuristics for multiple random or-
ders allows us to use accurate heuristics for many different
states and significantly improves over single-order heuris-
tics. This approach is similar to the one by Karpas, Katz,
and Markovitch (2011), who maximize over multiple pre-
computed OCP heuristics instead of multiple SCP heuris-
tics. Our method has the advantage that we never have to
compute an OCP, which can be prohibitively expensive even
for a single computation.

We show that our sets of SCP heuristics often contain
heuristics that do not contribute any information during
search. Similar to other work on heuristic subset selection
(e.g., Lelis et al. 2016), we try to pick a subset of heuris-
tics that complement each other well by actively searching
for multiple diverse orders. Our strongest heuristic closely
approximates the optimal cost partitioning and compares fa-
vorably to the state of the art for optimal classical planning.

Background
We consider optimal planning in the classical setting with a
SAS+-like (Bäckström and Nebel 1995) representation with
non-negative operator costs. The details of the planning task
representation do not matter for the technical contribution
of this paper; all that matters is that we compute heuristic



estimates based on abstractions that are represented as (ab-
stract) transition systems.

A transition system is a directed, labelled graph T =
〈S,O, T, S?〉 consisting of finitely many states S, a set of
operators O used to label transitions in T , a set of transi-
tions T ⊆ S × O × S, and a set of goal states S? ⊆ S.
A triple 〈s, o, s′〉 ∈ T represents a transition from state s to
state s′ via operator o.

Given such a transition system and an (operator) cost
function c : O → R, we can define the goal distance hTc (s)
of a state s ∈ S in T as the shortest path from s to the near-
est goal state in the weighted digraph obtained from T by
assigning weight c(o) to all transitions with label o. Note
that even though we assume operator costs of planning tasks
to be non-negative, we permit arbitrary real-valued costs in
the context of transition systems.

The transition systems we study in this paper are induced
by abstraction functions α (abstractions for short) that map
states of a planning task to abstract states of a smaller tran-
sition system T α. Given an operator cost function c, this de-
fines the abstraction heuristic hαc (s) := hT

α

c (α(s)), which
is an admissible and consistent heuristic if c does not exceed
the operator cost function of the planning task.

Cost Partitioning
For challenging planning tasks, using a single abstraction of-
ten does not lead to a very informative heuristic. Therefore,
it can be beneficial to build multiple abstractions that focus
on different aspects (e.g., Holte et al. 2006).

Cost partitioning distributes the operator costs of a task
among multiple abstractions in such a way that the sum of
abstraction heuristics is guaranteed to be admissible (Katz
and Domshlak 2008). Following Pommerening et al. (2015),
we allow negative costs for the component abstractions.

Definition 1. Cost partitioning.
Let A = 〈α1, . . . , αn〉 be a tuple of abstractions of a plan-
ning task with operator cost function c. A cost partitioning
over A is a tuple C = 〈c1, . . . , cn〉 of cost functions whose
sum is bounded by c:

∑n
i=1 ci(o) ≤ c(o) for all o ∈ O.

The cost-partitioned heuristic hAC is defined as hAC (s) :=∑n
i=1 h

αi
ci (s). A cost partitioning C∗ is optimal for state s

if hAC∗(s) ≥ hAC (s) for all cost partitionings C. We write
hOCP
A (s) for this optimal cost-partitioned heuristic value.

Intuitively, since each abstraction yields an admissible es-
timate for the planning task, their sum is also admissible due
to the way C divides the operator costs among the abstrac-
tions. Computing optimal cost partitionings can already be
prohibitively expensive for abstractions of modest size (e.g.,
Pommerening, Röger, and Helmert 2013). One approxima-
tion that is fast to compute and often yields accurate heuris-
tics is the saturated cost partitioning algorithm proposed by
Seipp and Helmert (2014). It is based on the observation that
high operator costs are “wasted” on a component abstraction
if they do not contribute to the heuristic estimate from this
abstraction.

Definition 2. Saturated cost function.
Let α be an abstraction of a planning task and let c be a

cost function. The saturated cost function for α and c is the
minimal cost function ĉ ≤ c that satisfies hαĉ = hαc .

Seipp and Helmert showed for the case of non-negative
cost functions that such a minimum always exists and can
be computed efficiently from the abstract transition system
T α. Their restriction to non-negative cost functions is easy
to lift: the saturated cost function can be computed by setting
ĉ(o) = max〈s,o,s′〉(h

Tα

c (s) − hT
α

c (s′)) for every operator
o. For example, if an operator o only induces self-looping
transitions in the abstract transition system, its saturated cost
will be 0, reflecting the intuition that o contributes nothing
to the solution under this abstraction.

Seipp and Helmert proposed the following iterative satu-
rated cost partitioning (SCP) procedure:

1. Initialize the remaining cost function c to the cost function
of the planning task.

2. Compute an abstraction α.
3. Let ĉ be the saturated cost function for α and c.
4. Set c := c− ĉ and repeat from step 2.

The procedure can terminate after computing a given
number of abstractions or once no further useful abstrac-
tion heuristics can be found. The sequence of abstractions
and saturated cost functions computed by the procedure then
forms a cost-partitioned abstraction heuristic.

Due to the changing cost function, the order in which the
SCP algorithm generates the abstractions can have a strong
influence on the resulting heuristic.
Definition 3. Saturated cost partitioning and orders.
LetA = {α1, . . . , αn} be a set of abstractions of a planning
task. The set of orders ofA, denoted by Ω(A), consists of all
permutations of 〈α1, . . . , αn〉, i.e., all tuples of abstractions
obtained by ordering A in any way.

Given an order ω ∈ Ω(A), hSCP
ω is the saturated cost parti-

tioning heuristic for the sequence of abstractions ω, as com-
puted by the algorithm described in the preceding text.

The optimal saturated cost partitioning estimate of a state
s is hSCP*

A (s) := maxω∈Ω(A) h
SCP
ω (s). We say that ω ∈

Ω(A) is an optimal order for s if hSCP
ω (s) = hSCP*

A (s).
Seipp and Helmert computed the abstractions “just-in-

time”, guiding the choice of abstraction functions in step 2.
by the current remaining cost function. In contrast to their
approach, in this paper we fix the abstractions A to be con-
sidered at the start and focus on finding good orders in Ω(A).

While our approaches work with any set of abstrac-
tions, in our experiments we consider Cartesian abstractions
(Seipp and Helmert 2013) of the landmark and goal task de-
compositions by Seipp and Helmert (2014). The abstraction
construction process is guided by the original cost function
of the planning task.

Single Orders
We begin our analysis by discussing the relationship of SCP
and OCP. It follows directly from Definition 1 that an opti-
mal cost partitioning dominates all saturated cost partition-
ings, including optimal ones. We now show that there are
cases where the dominance is strict.
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Figure 1: Abstractions for the transition system used in the
proof of Theorem 1.
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Figure 2: Abstractions α1 (left) and α2 (right) for the tran-
sition system used in the proof of Theorem 2. Circles depict
concrete states, abstract states are rounded rectangular, and
abstract self loops are dotted.

Theorem 1.
There exist planing tasks with abstractions A and states s
such that hOCP

A (s) > hSCP*
A (s).

Proof. Consider a planning task in which three binary state
variables x, y and z have to be changed from 0 (in state s) to
1 (in the goal). There are three operators with cost 1 (without
preconditions), each setting a different pair of variables to 1.
Figure 1 shows three abstractions of the task. Regardless of
the abstraction order ω, we have hSCP

ω (s) = 1. By dividing
costs fractionally among the abstractions, an optimal cost
partitioning yields hOCP

A (s) = 0.5 + 0.5 + 0.5 = 1.5.

Note that the optimal cost partitioning for the task in
Figure 1 is actually a uniform cost partitioning (Katz and
Domshlak 2007a), so saturated cost partititioning does not
in general dominate uniform cost partititioning.

The abstraction order is very important for the accuracy
of the resulting SCP heuristic: two orders of the same ab-
stractions can make the difference between a blind heuristic
(estimate 0) and a perfect heuristic (estimate h∗(s)).

Theorem 2.
There exist planning tasks with abstractions A and state s
such that hSCP

ω (s) = h∗(s) > 0 and hSCP
ω′ (s) = 0 for two

orders ω, ω′ ∈ Ω(A).

Proof. Consider the example shown in Figure 2, where o2

has cost 1 and o1 and o3 have cost 0. For the two abstractions
α1 and α2 shown, we have hSCP

〈α1,α2〉(s1) = 1 = h∗(s1) and
hSCP
〈α2,α1〉(s1) = 0.

Note that we can arbitrarily enlarge the accuracy gap be-
tween two heuristics resulting from two different orders. In
our example, it suffices to adjust the cost of o2, and similar
examples can be constructed for unit-cost problems.

Although Theorem 2 highlights the importance of choos-
ing good orders, previous work on saturated cost partition-
ing only considered two orders, called hSCP

add↑ and hSCP
add↓ (Seipp

and Helmert 2014). Seipp and Helmert compared these or-
ders to a randomly selected order and observed that nei-
ther hSCP

add↑ nor hSCP
add↓ consistently outperformed the other or

the random order, a result we could reproduce on a slightly
larger benchmark set. As in all experiments below, we use
the 1667 benchmark tasks from the optimization tracks of
the 1998–2014 International Planning Competitions (IPC)
and limit time and memory by 30 minutes and 2 GiB.

In our experiment, hSCP
add↑ and hSCP

add↓ solve 789 and 800 of
the 1667 tasks, and selecting a random order leads to solving
759.33 tasks on average over 100 runs (with a sample stan-
dard deviation of 7.92). (Differences to the results of Seipp
and Helmert are due to the altered abstraction generation.)

Even though the random orders are outperformed by both
hadd orders, a closer look at the data reveals that better orders
than hSCP

add↑ and hSCP
add↓ are fairly common: more than 25% of

runs using a random order result in an SCP heuristic that
requires fewer expansions to solve a task than both hSCP

add↑ and
hSCP

add↓; and even though only 692 tasks are solved by all 100
random orders, 866 tasks are solved by at least one random
order, significantly more (66 tasks) than hSCP

add↓. This suggests
that finding better orders could have a positive impact on
performance.

Optimized Orders
There are two challenges for finding good orders for satu-
rated cost partitioning: first, we need to deal with a com-
binatorial search space of n! possible orders for a set of n
abstractions. Second, we are looking for orders that provide
good guidance in all states visited during search and not only
in a single state.

Except for very small n, it is obviously impossible to con-
sider all n! orders. We therefore address the first challenge
by performing a hill climbing search in the space of orders.
To deal with the second challenge, we use a set of sample
states to evaluate each considered order.

We use the sampling procedure of Haslum et al. (2007) to
generate a set Ŝ of 1000 sample states, using hSCP

add↓ to esti-
mate the plan cost and to exclude states swith hSCP

add↓(s) =∞
from the sample set. We start the hill climbing search
with a random incumbent order ω and assess its quality as
the sum of heuristic values on the samples, i.e., q(ω) =∑
s∈Ŝ h

SCP
ω (s). Afterwards, we generate the set of neighbor-

ing orders by switching any two positions in the incumbent
order. This two-exchange neighborhood is common for local
search optimization algorithms (Pisinger and Ropke 2010)
and guarantees that all orders can be reached from any ini-
tial order. The first neighbor ω′ with q(ω′) > q(ω) becomes
the new incumbent. We repeat this procedure until no neigh-
bor improves on the incumbent. The final incumbent is then
used as the basis of our SCP heuristic, which we call hSCP

HC .
The fourth column in Table 1 shows results from 10 hSCP

HC
runs with different random seeds. On average, hSCP

HC solves
884.9 tasks with a sample standard deviation of 4.7, amount-



Coverage hSCP
rand1 hSCP

add↑ hSCP
add↓ hSCP

HC hSCP
rand200 hSCP

div hSEQ +
LM-cut

airport (50) 23.4 23 24 25.0 25.0 25.0 29
barman (34) 4.0 4 4 4.0 4.0 4.0 4
blocks (35) 18.7 20 18 24.5 23.6 26.7 29
childsnack (20) 0.0 0 0 0.0 0.0 0.0 0
depot (22) 6.6 7 6 11.0 11.0 11.0 7
driverlog (20) 10.8 14 10 13.9 14.0 14.0 13
elevators (50) 33.6 35 31 38.0 44.0 44.0 35
floortile (40) 2.0 2 2 2.0 2.0 2.0 11
freecell (80) 35.8 43 68 68.0 64.7 67.5 31
ged (20) 15.0 15 15 15.0 15.0 15.0 13
grid (5) 2.3 3 2 3.0 3.0 3.0 2
gripper (20) 7.0 7 7 7.0 7.0 7.0 6
hiking (20) 11.5 11 12 12.7 13.0 13.0 8
logistics (63) 26.6 27 28 30.4 38.8 39.0 26
miconic (150) 75.7 70 70 98.3 144.0 144.0 141
movie (30) 30.0 30 30 30.0 30.0 30.0 30
mprime (35) 25.2 25 26 26.0 26.0 26.0 22
mystery (30) 17.0 17 17 17.0 17.0 17.0 16
nomystery (20) 15.3 14 14 19.9 20.0 20.0 12
openstacks (100) 45.0 47 45 45.0 45.0 45.0 35
parcprinter (50) 22.4 30 38 36.9 35.6 38.1 49
parking (40) 0.2 0 0 5.7 6.3 7.0 5
pathways (30) 4.0 4 4 4.0 4.0 4.0 5
pegsol (50) 45.0 46 46 46.0 46.0 48.0 46
pipes-nt (50) 17.3 19 18 20.2 22.0 22.5 14
pipes-t (50) 12.9 14 14 14.0 14.0 15.9 10
psr-small (50) 49.0 49 49 49.0 49.0 49.0 50
rovers (40) 7.0 7 7 7.0 7.0 7.0 7
satellite (36) 6.0 6 6 6.0 7.0 7.0 7
scanalyzer (50) 22.1 23 21 23.0 23.0 23.0 23
sokoban (50) 41.4 43 41 43.2 42.9 44.0 49
storage (30) 16.0 16 16 16.0 16.0 16.0 15
tetris (17) 7.0 7 7 7.0 7.0 7.0 11
tidybot (40) 22.0 22 22 22.0 22.0 22.0 10
tpp (30) 6.2 6 6 7.0 8.0 8.0 8
transport (70) 23.0 23 23 23.0 24.0 24.0 23
trucks (30) 9.6 12 12 12.0 12.0 12.0 10
visitall (40) 12.1 13 12 13.0 14.0 14.0 34
woodwork (50) 18.7 23 17 27.2 27.1 32.0 37
zenotravel (20) 12.0 12 12 12.0 13.0 13.0 12

Sum (1667) 759.3 789 800 884.9 947.0 966.7 895
Stddev. 7.92 – – 4.7 1.7 0.82 –

Table 1: Number of solved tasks. Results for randomized
configurations are averaged over 10 runs.

ing to 95.9 and 84.9 more tasks than hSCP
add↑ and hSCP

add↓. This
is a huge improvement in the optimal classical planning set-
ting, where task difficulty tends to scale exponentially.

Furthermore, almost all tasks solved by hSCP
add↑, h

SCP
add↓ or

any of the 100 random orders are also solved by at least one
hSCP

HC run, with only 3 counterexamples. These results show
that our optimization procedure is able to reliably find high-
quality orders.

Multiple Orders
So far, we have focused on finding a single order that pro-
vides good guidance for all states encountered during search.
However, such an order does not always exist.

s1 s2 s3 s4
o1 o2 o1, o2

s1 s2 s3

s4

o1

o2

o 1
,o

2

s2 s1 s3

s4

o2

o1

o1, o2

Figure 3: Concrete transition system T (above) with abstrac-
tions α1 (bottom left) and α2 (bottom right) used in the proof
of Theorem 3. Circles depict concrete states, abstract states
are rounded rectangular, and abstract self loops are dotted.

Orders 1 2 5 10 100 200 500 1000

Coverage 759.3 797.3 866.3 907.5 942.8 947.0 936.3 879.5
Stddev. 7.92 6.34 2.79 4.01 2.3 1.7 1.42 3.03

Table 2: Number of solved tasks when maximizing over
multiple orders. Results are averaged over 10 runs.

Theorem 3.
There exist planning tasks with abstractions A and states
s, s′ such that hSCP

ω (s) > 0, hSCP
ω′ (s′) > 0, and hSCP

ω′′ (s) =
hSCP
ω′′′(s

′) = 0 for two orders ω and ω′ and all orders ω′′ 6= ω
and ω′′′ 6= ω′ of A.

Proof. Consider the example task and corresponding ab-
stractions α1 and α2 in Figure 3. All operators cost 1. We
have hSCP

〈α1,α2〉(s1) = 1, hSCP
〈α2,α1〉(s1) = 0, hSCP

〈α1,α2〉(s2) = 0,
and hSCP

〈α2,α1〉(s2) = 1.

Theorem 3 can be generalized to an arbitrary number of
states and abstractions. Unfortunately, this means that there
are planning tasks where all orders lead to heuristics that
degenerate to the blind heuristic on all but a few states,
and hence there is no single order that gives good guidance
across the board. Computing a good order in every evalu-
ated state overcomes this dilemma, but the increased heuris-
tic accuracy usually does not compensate for the additional
computation time (e.g., Karpas, Katz, and Markovitch 2011;
Seipp, Pommerening, and Helmert 2015).

Instead, we pursue an alternative with a good tradeoff be-
tween heuristic accuracy and computation time by generat-
ing heuristics for multiple orders and using the maximum
over their estimates in each state. Table 2 shows the number
of solved tasks when maximizing over a set of random or-
ders Ω for an increasing size of Ω. With up to 200 random
orders, the number of solved tasks increases steadily and
reaches the maximum with a coverage of 947.0 on average



– an improvement of 187.7 tasks compared to the configura-
tion that uses only a single random order, of 147.0 compared
to the best order of Seipp and Helmert (2014) and of 62.1 in
comparison to hSCP

HC .
Unfortunately, this approach does not turn out to be com-

plementary to the hill-climbing optimization approach de-
scribed in the previous section. Using multiple optimized
orders instead of random ones did not increase performance
on the evaluated benchmarks. A possible explanation is that
most random orders are well-suited to guide an A∗ search in
at least some states and a sufficiently large set of random or-
ders covers all (or at least sufficiently many) evaluated states
in this way.

The same hypothesis could explain the fact that using
more than 200 orders leads to fewer solved tasks: we know
that adding an order to an existing set of orders can only
increase the accuracy of the resulting heuristic. Since cov-
erage decreases when using more than 200 random orders,
the gain in accuracy from including additional orders must
be outweighed by the increased computational and memory
cost. Since these costs are modest, this suggests that the gain
in accuracy becomes negligible after a certain point.

To test this hypothesis, we measure the number of indi-
vidual orders that actually contribute to the overall heuristic.
For this purpose, we keep track of the sets of orders that
induce the highest heuristic estimates for each encountered
state. We say that all orders in the minimal hitting set1 of
these sets are useful for the search, and all others are use-
less. The intuition behind this definition is that a search with
a heuristic that discards all heuristics based on useless or-
ders evaluates exactly the same states as a search with all
heuristics.

As the computation of a minimum hitting set is NP-
complete (Karp 1972), we approximate it by using a greedy
algorithm that treats the set of orders Ω as a sequence
〈ω1, . . . , ωn〉 (any order suffices). Then an order ωi is prob-
ably useful for state s ∈ S if it is the first order in the se-
quence that maximizes the heuristic value, i.e., hSCP

ωi (s) >

hSCP
ωj (s) for all j < i, and hSCP

ωi (s) ≥ hSCP
ωj (s) for all j > i.

We call all orders that are probably useful for at least one
state encountered during search probably useful. The set of
probably useful orders is a hitting set, but not necessarily a
minimal one. It therefore serves as an upper bound on the
number of orders that contribute to the search.

Figure 4 compares the percentage of probably useful or-
ders for two different heuristics. For the moment, we are
only interested in the hSCP

rand200 configuration on the x-axis,
which shows the percentage of probably useful orders in Ω
with |Ω| = 200. There are only a few planning tasks where
more than 40% of the orders are probably useful, and many
where less than 20% of the orders contribute to the search. If
we take into account that these numbers are an upper bound
on the real number of useful orders, we can confirm that it is
rarely useful to add another random order to an already large
set of orders.

1We can break ties arbitrarily, so for the sake of simplicity, we
assume that there is exactly one minimal hitting set.
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Figure 4: Percentage of probably useful orders for 200 ran-
dom orders (hSCP

rand200) and diverse orders (hSCP
div ). We exclude

tasks for which any of the two heuristics uses fewer than
1000 expansions. Results are averaged over 10 runs.

Time 0.1s 1s 10s 100s 200s 500s 1000s 1200s

Coverage 928.3 948.0 962.3 965.3 966.7 966.5 962.3 956.3
Stddev. 2.79 2.05 0.95 1.34 0.82 0.97 0.95 1.25

Table 3: Number of solved tasks by hSCP
div for different

amounts of time for finding orders. Results are averaged
over 10 runs.

Diverse Orders
The analysis of probably useful orders not only explains why
additional orders lead to a lower coverage once Ω reaches a
certain size, but it also shows that the convincing results of
hSCP

rand200 are obtained despite having a large number of use-
less orders in Ω. Removing the useless orders from Ω would
result in faster heuristic evaluation without loss of informa-
tion, and replacing them with useful orders would result in a
more accurate heuristic.

Unfortunately, we can only decide whether an order is
useful once the search has terminated. We therefore sam-
ple a set Ŝ of 1000 sample states and use it as a proxy for
the real set of states that is encountered during the search.

We propose the following diversification algorithm for
finding a set of useful orders Ω: first, we initialize Ω to
be the empty set. Afterwards, until a given time limit T
is reached, we iteratively generate a random order ω, add it
to Ω if hSCP

ω (s) > maxω′∈Ω h
SCP
ω′ (s) for at least one state

s ∈ Ŝ, and discard it otherwise.
Table 3 shows the total number of tasks solved by the

resulting heuristic hSCP
div for various time limits T used for

diversification. The algorithm solves more tasks with in-
creasing T until it reaches its peak at T = 200 seconds. At
the peak, hSCP

div has a total average coverage of 966.7 tasks,
solves at least as many tasks as hSCP

rand200 in every domain and
has a higher coverage than hSCP

rand200 in 10 domains. It further-
more outperforms all single-order SCP techniques signifi-
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Figure 5: Number of expansions before the last f layer for
hOCP and hSCP

div . Results for hSCP
div are averaged over 10 runs.

cantly, and solves another 19.7 tasks on average compared
to hSCP

rand200. hSCP
div therefore refers to the version with T = 200

seconds below.
We believe that one of the reasons for the increase in cov-

erage is that the selected orders are more diverse, and hence
there are fewer relevant states where the heuristic guidance
of hSCP

div is poor. This is true even though the average size
of Ω is slightly lower for hSCP

div (81.26 orders when using the
time limit of 200 seconds, compared to 200 for hSCP

rand200). On
some tasks, only a single order is useful, and on some more
than 1000 useful orders are detected during diversification.
Even though the percentage of useful orders can be expected
to be larger if Ω is smaller, the difference does not make up
for the vastly superior impression that can be seen in Fig-
ure 4: the percentage of probably useful orders of hSCP

div is
higher than for hSCP

rand200 in almost all tasks. Moreover, most
of the data points show that more than 60% of the orders
of hSCP

div are probably useful, and there is even a significant
amount of tasks where almost all orders of hSCP

div improve the
overall heuristic in at least one relevant state.

Comparison to Other Approaches
The preceding experiments have shown three significant im-
provements in quality for SCP-based heuristics: first, by op-
timizing the abstraction order; second, by considering mul-
tiple orders; and finally, by explicitly searching for diversity
among orders. This naturally raises the question how close
our best configuration approximates the heuristic quality of
an optimal cost partitioning.

Figure 5 compares the number of expansions of hOCP and
hSCP

div . For almost all commonly solved tasks, hSCP
div is about

as accurate as hOCP. However, since hSCP
div is much faster

to evaluate than hOCP, hSCP
div solves significantly more tasks

in 30 minutes using at most 2 GiB (966.7 tasks) than hOCP

solves in 24 hours using at most 3.5 GiB (531 tasks).
We also compare our SCP heuristics to some state-of-the-

art admissible heuristics from the literature, namely the op-

hSCP
div hSEQ +

LM-cut hLM-cut hiPDB
900s hpot

div hM&S hSEQ

Coverage 966.7 895 882 814 804 743 734
#Dom. hSCP

div better – 23 20 18 24 25 27
#Dom. hSCP

div worse – 10 10 9 8 6 7

Table 4: Overall and per-domain comparison of hSCP
div to the

strongest Fast Downward heuristics.

erator counting heuristic with the state equation and LM-
Cut constraints (hSEQ +

LM-cut) (Pommerening et al. 2014), hLM-cut

(Helmert and Domshlak 2009), hiPDB (Haslum et al. 2007),
the diverse potentials heuristic (hpot

div ) (Seipp, Pommerening,
and Helmert 2015), merge-and-shrink using bisimulation
and the DFP merge strategy (hM&S) (Helmert et al. 2014;
Sievers, Wehrle, and Helmert 2014), and the state-equation
heuristic (hSEQ) (Bonet 2013). The approach by Karpas,
Katz, and Markovitch (2011), who describe the method that
comes closest to ours, is inapplicable in our setting, as there
are already 211 tasks solved by hSCP

div for which computing
even a single optimal cost partitioning takes more than 30
minutes.

Due to space reasons, Table 3 lists per-domain coverage
results only for hSEQ +

LM-cut, which has the highest total coverage
among the mentioned heuristic from the literature. We sum-
marize the results for the other heuristics in Table 4. The
hSCP

div heuristic significantly outperforms all other heuristics,
solving 71.7 more tasks than the best of them (hSEQ +

LM-cut).
Beyond total coverage, hSCP

div also outperforms the other
heuristics in most individual domains. Table 4 shows that
out of the 40 tested domains, hSCP

div solves more tasks than
hLM-cut in 20 domains, while the opposite is true in only 10
domains.

This significant increase in solved tasks compared to other
admissible heuristics raises the question how hSCP

div compares
to the winner of the IPC 2014 sequential optimization track,
the symbolic search planner SymBA∗2 (Torralba, Linares
López, and Borrajo 2016). To allow for an unbiased com-
parison, we evaluate a version of hSCP

div that uses h2 mutexes
to prune irrelevant operators (Alcázar and Torralba 2015),
a preprocessing technique that is an important ingredient of
SymBA∗2 and can be combined with any planning algorithm.
We compare it to a version of SymBA∗2 that differs from the
IPC version only in some bug-fixes. Both planners perform
equally in a per-domain comparison, with each having an
edge over the other in 17 domains. In terms of total cover-
age, our hSCP

div -based planner has a very slight edge, solving
1017.4 tasks compared to 1008 for SymBA∗2.

Conclusion
We showed both theoretically and in experiments that the
order in which saturated cost partitioning considers a set of
abstractions greatly influences the quality of the resulting
heuristic.

Orders optimized by a hill-climbing search result in sig-
nificantly more accurate heuristics than those obtained with
previously proposed orders. Maximizing over heuristics



from multiple orders leads to further improvements, espe-
cially when explicitly diversifying the set of orders to in-
clude only those that prove useful on a set of sample states.

Our best heuristic based on saturated cost partitioning
solves significantly more tasks than other state-of-the-art
heuristics for explicit-state search and is also competitive
with the currently strongest symbolic-search planner.

In future work, we would like to investigate the relation-
ship between SCP and other cost partitioning algorithms be-
sides optimal cost partitioning.
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We would like to thank Álvaro Torralba for providing us
with the fixed SymBA∗2 version.

This work was supported by the European Research
Council as part of the project “State Space Exploration:
Principles, Algorithms and Applications”.

References
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Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proc. ICAPS 2014, 289–297.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New op-
timization functions for potential heuristics. In Proc. ICAPS
2015, 193–201.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Gener-
alized label reduction for merge-and-shrink heuristics. In
Proc. AAAI 2014, 2358–2366.
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