Compressing Pattern Databases with Learning

Mehdi Samadi' and Maryam Siabani’ and Ariel Felner ? and Robert Holte!

Abstract. A pattern database (PDB) is a heuristic function imple-
mented as a lookup table. It stores the lengths of optimal solutions
for instances of subproblems. Most previous PDBs had a distinct en-
try in the table for each subproblem instance. In this paper we apply
learning techniques to compress PDBs by using neural networks and
decision trees thereby reducing the amount of memory needed. Ex-
periments on the sliding tile puzzles and the TopSpin puzzle show
that our compressed PDBs significantly outperforms both uncom-
pressed PDBs as well as previous compressing methods. Our full
compressing system reduced the size of memory needed by a factor
of up to 63 at a cost of no more than a factor of 2 in the search effort.

1 Introduction and Overview

States in a search space are often represented using a set of state vari-
ables. An abstraction of the search space, called the pattern space,
can be defined by only considering a subset of the state variables
(called the pattern variables). A pattern is a state of the pattern space
which has an assignment of values to the pattern variables. A state
s in the original space is mapped to a pattern s’ by ignoring the
state variables in s that are not pattern variables. A pattern database
(PDB) stores the distance of each pattern to the goal pattern. The
value stored in the PDB for s’ is a lower bound on the distance from
s to the goal state, and thus serves as an admissible heuristic for
searching in the original search space.

A PDB contains one entry for each pattern in pattern space. In
general, the more entries a PDB contains, the more accurate it is as
a heuristic, and the more efficient is the search that uses the PDB as
a heuristic. The drawback of large PDBs is the amount of memory
they consume. One approach to mitigating this problem is to com-
press the PDB. For example, Felner et al. [3] compress a PDB by
simply merging several highly correlated (usually adjacent) entries
into one. They achieved a significant improvement on the 4-peg Tow-
ers of Hanoi and the TopSpin problems but only limited success for
the sliding tile puzzles. The main drawback of that work is that the
rule for deciding which PDB entries to merge was fixed throughout
the entire compressing process. Higher degree of compression sig-
nificantly degrades the performance.

We introduce a new, general and flexible compression method for
PDBs that is experimentally shown to improve uncompressed PDBs
as well as the compression methods reported in [3]. Improvement
takes the form of either reducing the amount of memory required for
the PDB without substantially increasing the number of generated
nodes, or reducing both the memory required and the number of gen-

1 Department of Computing Science, University of Alberta, Edmonton, Al-
berta, Canada T6G 2E8, {msamadi,holte } @cs.ualberta.ca

2 Electrical and Computer Engineering Department, Isfahan University of
Technology, Isfahan, Iran, siabani@ec.iut.ac.ir

3 Information Systems Engineering Dept.,Deutsche Telekom Labs,Ben Gu-
rion University,Beer-Sheva, Israel, felner@bgu.ac.il

erated nodes. The main idea underlying our work is to use techniques
from the machine learning literature to compress PDBs. In particu-
lar, we train an artificial neural network (ANN) so that it can be used
instead of the PDB. The neural network requires almost no memory.
However since the ANN’s output is not guaranteed to be less than or
equal to the PDB value (admissible), we use additional storage (in
the form of a hash table) for all the patterns whose value is overesti-
mated by the ANN. This basic idea is then improved with two steps.
Decision trees and a PDB-partitioning method are used to separate
the PDB entries into smaller subgroups with similar characteristics
and then training separate ANNs for each subgroup.

We tested our compression system on three search spaces: the 15-
puzzle, the 24-puzzle and TopSpin. Our results show that our full
compression system requires up to 63 times less memory than the
original PDB while increasing the number of nodes generated by no
more than a factor of two. The modest increase in search effort is
not a concern because the freed-up memory can be used in ways
that are known to substantially speed up search, e.g., for additional
PDBs [6], and/or for memory-based search algorithms such as A*,
perimeter search or memory-enhanced IDA*. We do not actually im-
plement any of these techniques in this paper, but are confident that
they would more than compensate for the small increase in search
effort caused by our compression technique.

2 Related Work

Symbolic PDBs [1] use binary decision diagrams (BDDs) to store
a PDB, and have been shown, for some search spaces, to signifi-
cantly reduce the memory needed to store the PDB entries compared
to traditional PDB tables. However, a recent unpublished study of
symbolic PDBs on a wide range of search spaces has shown that
symbolic PDBs do not always result in compression, they sometimes
require more memory than a table. In particular, symbolic PDBs for
the 15-puzzle require more memory than the traditional PDB rep-
resentation, whereas the experiments below show that our method
greatly reduces the memory required.

The idea of using learning and classification techniques in heuris-
tic search was suggested before. In [9], a feature vector for partition-
ing the state space to a number of classes is used. Learning tech-
niques were used for each class. In [10] the state space was parti-
tioned based on feature vector and then “generalized heuristic infor-
mation” is learned for each class. These ideas were only applied to
small domains and in contrast to our approach did not find the opti-
mal solution.

Recently, multi-layered ANN was used to represent heuristics for
the 15-puzzle [2]. Given a training set of states descriptions together
with their optimal solution, a learning system that predicts the length
of the optimal solution for an arbitrary state was built. They biased
their predicted values towards admissibility but unlike our approach
their system returned suboptimal solutions in about 50% of the cases.

415167 1011121314

8191011 1501617 [18] 19

Figure 1. The Top-spin and Sliding tile puzzles.

3 Search domains

The sliding tile puzzles such as the 15- and 24- puzzles (shown in
Figure 1) have been used as benchmark problems in many previous
papers. For clarity, we describe all our methods in the context of the
sliding tile puzzle, but our ideas are general and can be applied to
other problems as well. In our representation of the sliding tile puz-
zle, the variables are the tiles and the values are their locations. The
best existing method for solving the sliding tile puzzles optimally
uses additive PDBs [4]. The tiles are partitioned into disjoint sets,
and a PDB is built for each set. The PDB stores the cost of moving
the tiles in the pattern set from any given arrangement to their goal
positions, counting the moves of the pattern tiles. Under such cir-
cumstances the sum of the values from different disjoint PDBs is an
admissible heuristic [4]. We use the notation z — y — z to denote a
partitioning of the tiles into three disjoint groups with x, y and z tiles
in each group, respectively.

The N-TopSpin puzzle has N tokens arranged in a ring. Any set
of 4 consecutive tokens can be reversed (rotated 180 degrees in the
physical puzzle). Our encoding of this puzzle has N operators, one
for each possible reversal. In TopSpin more than one object is moved
in each move and simple additive PDBs are not applicable here. The
standard way to build a PDB for this domain is to specify a set of
pattern tokens, and to treat the remaining tokens as if they were in-
distinguishable from one another®.

4 Augmented compression

We introduce a method that compresses PDBs using learning tech-
niques and preserves the admissibility property. Our system includes
three independent steps, ANN learning , Decision tree classification
and pattern partitioning and we describe each of them in turn.

4.1 Compression with ANN

Our first idea is to build an ANN that learns the PDB. Assume a PDB
for the tile puzzle which consists of the set of tiles, S. The different
patterns are the different ways to permute all the tiles in .S into the
state space. Each pattern ¢ has an entry PDB(t) which stores its
heuristic value. We want to build a learning system that will be able
to predict PD B(t) for each given pattern ¢. For this we use Artifi-
cial Neural Networks (ANN) [8], a well-known learning technique.
Multi Layer Perceptron (MLP) neural network (ANN) with standard
modified back-propagation [8] algorithm is used for the prediction.
This system is called the basic ANN compressing in this paper.

4.1.1 Feature selection

We use two types of features for the ANN:
1) Description of the pattern: Each tile in S is a feature and its
position in pattern ¢ is the value for that feature.

4 Since this puzzle is cyclic, we can assume that token number 1 is always in
fixed position. Thus, for implementation, the total number of states can be
reduced by a factor of N.

2) Heuristic vector: We also construct K smaller PDBs each for
a subset of tiles S; C S. We denote the corresponding PDB heuris-
tic for a given pattern ¢t as h;(t). Note that each h;(t) is admis-
sible for t. We define a heuristic vector for pattern t as H(t) =
(h1(t), ha(t),...,hk(t)). Each member of the heuristic vector h;
is also used as a feature and h;(t) is the value of that feature. For
example, for a 6-tile PDB we used two different 2-4 partitionings to
a total of 4 smaller PDBs that are used in the heuristic vector.

The heuristic value of ¢ in the original PDB is the target function.

4.1.2 Training and using the ANN

The ANN is trained by iterating over all the entries of the original
PDB. For each pattern ¢ we construct its different features and feed
them to the ANN coupled with PD B(t) (the PDB heuristic for ¢).
Once the training process ends, we can delete the original PDB from
memory. Only the smaller PDBs which make up the heuristic vector
are left in memory. Similarly, the ANN itself is also kept in memory.
Then, during the search, given a pattern ¢, we calculate its features
(e.g., by looking up the smaller PDBs). The values of these features
are given an input to the ANN and the output ,denoted as ANN(t),
is used as the heuristic value for pattern ¢.

4.1.3 Correcting overestimations

Training an ANN to predict the exact desired value is NP-complete
[7]. Thus, learning systems in general and ANNS in particular are
not completely accurate by nature as they can deviate from the real
value for many of the instances. With heuristics, lower deviations are
not a problem as an admissible heuristic should be a lower bound.
However, if the ANN is overestimating, the heuristic will no longer
be admissible and non-optimal solutions might be returned.

We solved this problem as follows. After the ANN was built, we
iterated again on the entire set of patterns (as a test set). Each pattern ¢
whose ANN(t) > PDB(t) is inserted into a hash table H together
with its correct heuristic value P D B(t). During the search, we first
check to see whether ¢t € H. If indeed t € H we use its heuristic
value stored in H and do not even consult the ANN. As shown below,
for well trained ANNSs the set of overestimating patterns is small and
so is the memory requirements of H.

Traditionally, the training phase is stopped when the mean square
error (MSE) of the training data is below a predefined small thresh-
old. For our case it is defined as: M'SE = S;e7(E(t)?)/|T)|, where
T is the training set, E(t) = ¢(t) — PDB(t), PDB is the original
PDB value, and ¢ is the learned function.

E(t)? is symmetric, so overestimation and underestimation have
the same cost. Using this function with an ANN results in a heuris-
tic that tries to be close to the optimal value without discriminating
between being under (acceptable) or over (undesirable).

We modified the error function to penalize positive values of E(t)
(overestimation), biasing the ANN towards producing admissible
values. We used E'(t) = (a + yamrpmpyy) E(t) instead of E(t)
in the MSE calculations. The constants a and b were determined ex-
perimentally. E’(¢) reduces the number of overestimating instances
by a factor of 4 (over E(¢)) and was used in our experiments.

4.1.4 Experimental results

In this section, we evaluate our compression system on the 6-6-3 (of
tiles (4-9), (10-15) and (1-3)) additive PDB for the 15-puzzle; addi-
tional evaluation of the final system is given in Section 5. The com-
pression technique is applied to the two 6-tile PDBs individually;

Heuristic AvH Nodes | Time | Mem | Hash
6-6-3 40.06 6,323,187 2.39 | 11.00 -
(4-2)%-(4-2)2-3 | 37.84 | 50,818,284 | 19.71 0.18 -
DIV 2 38.88 | 19,204,184 7.92 5.50 -
basic ANN 39.20 | 11,676,726 | 10.44 1.30 8%
ANN+DT 39.75 9,550,754 5.42 0.84 | 4%
ADP 39.90 7,285,207 4.62 0.50 2%

Table 1. Results for the 6-6-3 PDBs of the 15-puzzle.

the 3-tile PDB is very small and is left uncompressed. The heuris-
tic vector for each 6-tile PDB contains four values, which are cre-
ated by using two sets of additive 4- and 2-tile PDBs. Table 1 shows
the results. All the values shown are averages over the first 100 ran-
dom initial states used in [4]. The first column is the heuristic used.
The next four columns present the average initial heuristic value, the
number of nodes generated by IDA*, the average time (in seconds),
and the amount of memory used (in Megabytes). The time needed to
precompute the PDB and train the ANN is not included in the times
reported. This is standard, since these operations are done just once,
no matter how many problems are solved. The final column shows
the percentage of entries in the original PDB that were stored in the
hash tables because the ANNs overestimated their value.

The first row presents the results of using the normal 6-6-3 PDB.
The second row shows the results of directly using the PDBs that
make up the heuristic vector inside our ANN system. The superscript
2 in the heuristic description indicates the use of two sets of 4-2 ad-
ditive PDBs for each 6-tile PDB in the 6-6-3. The maximum value
of the two sets is used instead of the 6-tile PDB value. The third row
shows the results of using the DIV2 method for compressing the
6-tile PDBs used in [3]. In this method, adjacent PDB entries are re-
placed by a single entry. The fourth row (basic ANN) is for the ANN
system just described. The total memory for this system is dominated
by the memory needed for the hash table; the memory needed for the
small PDBs used in the heuristic vector is small (reported in row 2),
and the memory needed for the ANN itself is negligible. The last two
rows are for the enhanced ANN systems described below. Again, the
total memory needed for them is mostly needed by the hash tables.

The direct use of the smaller PDBs that make up the heuristic vec-
tor of our ANN (row 2) dramatically reduces the memory but in-
creases the number of generated nodes by an order of magnitude. By
contrast, our basic ANN technique reduces the amount of memory
by a factor of 9 while increasing the number of generated nodes by a
factor of only 1.84. This is a significant improvement over the 2-fold
memory reduction of DIV2 compressing technique [3] which was
achieved at the cost of 3 times more generated nodes’.

In all the results of this paper the constant CPU time per node fa-
vors simple PDB construction. While we efficiently implemented all
our learning techniques, they could probably be made more efficient
and better optimized. We decided to also report the CPU time but it
should be taken with care.

4.2 Using decision tree to classify data

A major problem of using ANN for predicting the value of PDBs is
the size of the hash table used to store the patterns with overestimat-
ing ANN values. To address this we first construct a decision tree

5 In [3] sparse (multi dimensional array) mapping was used for the PDBs
and thus the DIV method compressed cliques. Here, we used their more
realistic compact mapping (a single dimensional array). The DIV method
does not compress cliques here and its performance is worse than DIV for
sparse mapping. See [3] for more details.

(DT) which classifies the patterns into two types. The ANN is only
used for one type while the other type will consult smaller PDBs.

As described above, each PDB is partitioned into smaller disjoint
PDBs. For example a 6-tile PDB, P D B is partitioned into two dis-
joint PDBs - PD B> and PDB,4. We want to classify the 6-tile pat-
terns into two classes: equal and larger. A pattern t is classified as
equal if PDBg(t) = PDB2(t)+PDBua(t). Itis classified as larger
if PDBs(t) > PDB3(t) + PDB4(t). Patterns in the equal class
need only to consult the smaller 2- and 4-tile PDBs and add their
values. For patterns in the larger class PD Bg has knowledge about
additional moves (over the sum of the two smaller PDBs) that are
needed. Thus, the ANN is built to learn these additional moves.

The benefit of using the DT before the ANN is twofold. First, it is
sufficient to train and use the ANN for patterns in the larger group
only. Thus, the ANN can be made more accurate as it needs to learn
the behavior of a special class of patterns only - the ones whom their
PDB values were larger than the sum of the smaller PDBs. Second,
for the equal group, there is no need to pass through the complex net-
work of the ANN and consulting the smaller PDBs is enough. Note
that deepening down a decision tree is rather cheap as it is usually
implemented as a series of nested ¢ f — then — else statements.

Adding the DT proved useful. For example, for the 6-6-3 PDBs of
the 15 puzzle, nearly 58% of the patterns were classified as equal®
and only 42% are larger patterns that trained the ANN.

4.2.1 Building the Decision Tree

A decision tree is built by examining various attributes of the training
data. The entire set of features used by the ANN (described above)
were used as attributes for the DT and the entire set of patterns were
used to train and build the DT. We used ID3 [8], a common algorithm
for building DT. Classic ID3 stops growing the DT when each leaf
contains items that should be classified to one class only. Since we
had a very large set of patterns we stopped growing the tree as soon
as the percentage of patterns of one of the groups (larger or equal)
in the given tree node exceeded a predefined threshold thi (classic
ID3 uses thy1 = 100%). The exact value for th; was determined ex-
perimentally for the various domains. Similarly, once the number of
patterns in a node was smaller than another threshold tho we stopped
growing the DT. In nodes with mixed patterns we used the majority
function to determine the class of this node.

4.2.2 Misclassification of the decision tree

Because of the early stopping condition, some of the patterns can be
misclassified by the decision tree. There is no problem if a pattern
of the larger group was misclassified as equal. In this case, we use
the sum of the smaller PDBs. This value is admissible but might be
smaller than the real value of the larger PDB. The other direction is
more problematic. Here equal patterns were misclassified as larger.
This will cause the ANN to have such patterns in its training set. But,
recall that to preserve admissibility, all patterns with overestimated
ANN values are stored in a hash table so admissibility is kept.

4.2.3 Experimental results

Line 5 in Table 1 shows the results of using the ANN+DT to com-
press the 6-6-3 additive PDB of the 15-puzzle. It shows that aug-
menting the basic ANN with the DT technique reduces the number

6 In fact, as described earlier, we had two sets of smaller PDBS. We classified
a pattern as equal if its heuristic was equal to the maximum of the sums of
the two sets of smaller disjoint partitioning.

of nodes generated by roughly 20% (from 11,676,726 to 9,550,754)
and reduces the memory requirements by 35% (from 1.3 to 0.84
Megabytes). The ANN now only handles the larger patterns. Not
only it has fewer patterns to classify, these patterns have similar at-
tributes. This allows it to be more accurate for the same amount of
training. Consequently, the hash tables can be smaller because fewer
patterns have their values overestimated by the ANN. Indeed the hash
table percentage dropped from 8% to 4%.

4.3 Partitioning the patterns into groups (PART)

To properly train the ANN to have a reasonable error range it is nec-
essary to feed it with the entire set of training instances at least 500
times. This can increase the total amount of training time especially
if very large PDBs are used where data is saved on the disk.

To address this, we add another step before building the DT. The
basic idea is to partition the patterns into smaller groups (for very
large PDBs this can be done in the disk) and then (load each group
into the memory and) build a separate DT+ANN system for each
group. In order to classify these groups we use a k smaller heuris-
tics (e.g., members of the heuristic vector). We call them the pivor
heuristics. We then classify the patterns according to the values of
the k pivot heuristics, For example assume that two members of the
heuristic vector h1 and ho are used. Pattern ¢ with hq(t) = x and
ha(t) = y will belong to the group labeled (x,y). Each such group
contains patterns with similar attributes as they had similar values
for the pivot heuristics. Each group will have a separate DT+ANN
and the prediction will be more accurate due to similarities of the
patterns inside each group. Another advantage is that for very large
PDBs, which cannot be stored in memory, we can partition the large
PDB into smaller groups which can fit in memory. Then, we build a
DT+ANN for each group. Our full system of ANN+DT+Partitioning
will be refereed to as ADP in the reminder of this paper.

Line 6 in Table 1 shows the results of using the full ADP sys-
tem to compress the 6-6-3 PDBs. We used exactly the same heuristic
vector as used for previous lines. Partitioning is done based on two
heuristic values, each is the sum of 2- and 4-tile PDBs. Augment-
ing the ANN+DT system with the partitioning technique reduces
the number of nodes generated by roughly 25% (from 9,550,754 to
7,285,207) and reduces the memory requirements by 40% (from 0.84
to 0.5 Megabytes). Compared to the original 6-6-3 PDB (line 1 in Ta-
ble 1), ADP compression reduces the memory required by over 95%,
while increasing the number of nodes generated by only 15%. It also
significantly outperforms the DIV2 compression method of [3] in
all aspects - nodes, time and memory.

4.4 The general framework for ADP

To summarize, the following preprocessing steps should be taken to
build the full three-step ADP learning system:

e Create the original PDB.

e Create small PDBs for the heuristic vector and choose the pivot
heuristics.

e Partition the patterns of the original PDB into small groups ac-
cording to values of the pivot heuristics.

e Create a DT for each group of the partition and classifying patterns
to equal or to larger.

e Train an ANN for patterns that were classified as larger.

e Test the ANN and build the hash table for overestimating patterns.

To obtain a heuristic value for a state s during the search we do
the following:

e Extract the values of the heuristic vector for s and we find appro-
priate group according to the pivot heuristics.

e Traverse the relevant DT and see if it is a larger or equal node.

e If it is an equal node, add up the smaller PDB heuristics. If it is a
larger node consult the relevant hash table and the relevant ANN
and retrieve the heuristic value.

5 Experimental results

We now present additional experimental results for the full ADP sys-
tem for the the 15- and 24-puzzles and for the TopSpin puzzle.

5.1 15-Puzzle

ADP was used to compress the 7- and 8-tile PDBs of the 7-8 additive
PDB for the 15-puzzle (used in [4]). The two PDBs were compressed
individually. The heuristic vector for each consisted of four values
based on two 6 — 2 additive PDBs, for the 8-tile PDB and on 6 — 1 for
the 7-tile PDB. These heuristics are also used as the pivot heuristics.

Heuristic AvH Nodes | Time | Mem | Hash

7-8 44.08 157,553 | 0.07 | 549 0

7-6-2 4170 | 1,486,038 | 0.54 61 0

DIV 2 4243 950,473 | 033 | 274 0

ADP (6-1)2-(6-2)% | 43.03 307,332 | 021 46 | 2.9%
ADP (4-3)%-(4-4)% | 41.96 899,516 | 0.57 16 | 2.2%

Table 2. ADP compression of the 7-8 additive PDB.

Table 2 presents the results in the same format as Table 1. The first
row presents the results when using the normal, uncompressed addi-
tive 7-8 PDB. The second row is for an uncompressed 7-6-2 additive
PDB. The next row is for the DIV 2 compressing of [3]. The next
row is for ADP using heuristic vectors containing two 6 — 1 additive
PDBs for the 7-tile PDB and 6 — 2 for the 8-tile PDB. The final row is
for ADP using heuristic vectors containing two 4 — 3 additive PDBs
for the 7-tile PDB and two 4 — 4 additive PDBs for the 8-tile PDB.

The last two lines show that varying the PDBs used in ADP’s
heuristic vector produces an interesting time-space tradeoff. How-
ever, both of these systems use less memory than the uncompressed
7-6-2 additive PDB and the DIV 2 compressing method and generate
significantly fewer nodes. The ADP with (6—1)% — (6—2) was even
faster in CPU time. Compared to the state-of-the-art uncompressed
7-8 PDB, this ADP reduces the memory required by over 90%, at a
cost of less than doubling the number of nodes generated.

100 T T T T T
E Regular PDB —+—
ANN+DT+PART -->--

Nodes (in Millions - log scale)

- X

0.1 1 1 1 1
0 20 40 60 80 100 120

Memory (Megabytes)
Figure 2. Nodes generated by both compression and regular systems.

Figure 2 brings together the data for uncompressed PDBs (solid
line) and compressed PDBs using ADP (dashed line) from Tables
1 and 2 in order to compare the number of generated nodes as a
function of the memory used. It also includes two data points not
shown in those tables of 7-7-1 additive PDBs. This figure clearly

shows that for any given amount of memory it is far better to use a
compressed PDB than a regular uncompressed PDB.

5.2 24-puzzle

The best existing heuristic for 24-puzzle uses a 6-6-6-6 additive PDB,
and takes the maximum of the normal PDB lookup (1), its reflection
about the main diagonal (r*), the dual lookup (d), and the reflection of
the dual (d*) [5]. All values for regular lookup can be extracted from
two 6-tile PDBs. For dual lookup, we need six additional PDBs [5].
ADP is applied to all these 6-tile PDBs. As in the 15-puzzle, the
heuristic vector for the 6-tile PDB contains two additive 4-2 PDBs
and they were also used for the partitioning step.

PDB Lookups Nodes Time | Mem | Hash
r,r* 43,454,810,045 | 15,861 244 0
r,r¥,d,d* 13,549,943,868 8,441 972 0
r,r* (ADP) 69,527,696,072 | 31,843 41 1.6%
r,r*,d,d* (ADP) | 19,781,408,283 | 15,971 37 | 1.9%

Table 3. Results for the 24-puzzle.

Table 3 shows the experimental results. The values are averages
over the first 25 random instances used in [5]. Lines 1-2 are for
the uncompressed PDBs, lines 3-4 are for the compressed PDBs.
The first line in each group shows the results when only the regu-
lar lookup and its reflection are done. The second line in each group
shows the results when the dual lookup and its reflection are done
in addition to the regular lookups. By using two lookups, ADP de-
creased the size of PDB by a factor of 63 while increasing the number
of nodes generated by only a factor of 1.6. For four lookups ADP de-
creased the size of PDB by a factor of 27 while increasing the number
of generated nodes only by a factor of 1.45.

5.3 Top-spin

We also applied the ADP system on the N-TopSpin puzzle. A PDB
of t tokens has actually N different ways of being used. A PDB of to-
kens [1 ... t] can also be used as a PDB of [2...t+1], [3...t+2], etc. with
the appropriate mapping of tokens. Thus, a single PDB allows up to
N different lookups. In separate experiments we applied ADP to a
9-token PDB and a 10-token PDB for the 17-TopSpin. The heuristic
vector in each case contained 3 values corresponding to 3 different
lookups in a PDB based on 7 tokens, for the 9-token PDB, and based
on 8 tokens for the 10-token PDB. The partitioning of the 9- and
10-token PDBs useed all the PDBs from their heuristic vectors.

PDB | AVH | Nodes | Time | Mem | Hash
1 Lookup
9 10.61 43,496,120 74.18 494 0
8 9.58 | 394,922,925 | 589.10 54 0
9 MOD 9.30 61,709,097 | 104.38 54 0
9 ADP 9.97 48,335,470 97.44 48 | 2.6%
2 Lookups
9 10.96 664,966 1.62 494 0
8 10.01 5,777,064 11.29 54 0
9 MOD 9.68 6,489,343 14.71 54 0
9 ADP 10.20 1,475,642 4.29 48 | 2.6%
10 11.94 84,772 0.21 | 3,959 0
10 ADP | 11.32 194,252 0.92 484 | 2.4%

Table 4. Results for (17,4)-TopSpin.

The experimental results are shown in Table 4, where each value
is an average over a set of 100 random instances. Lines 1-4 show

the results of solving 17-Topspin if just one lookup is made in the
PDB, while rows 5-8 show the results if two lookups are made. The
first two lines in each group show the results of using an uncom-
pressed 9-token or 8-token PDB. The third line shows the results of
the best compression technique used in [3] for 17-TopSpin, which
compresses the table for the 9-token PDB using the MOD operator.
The final row in each group is for our ADP compression technique.
For both one and two lookups ADP clearly generates fewer nodes
than the other techniques with similar amount of memory (the 8-
token PDB and the 9-Token PDB compressed by the MOD operator.
With two lookups it was even faster in CPU time. In fact, when two
lookups are made the MOD method actually generates more nodes
than an uncompressed PDB of the same size, the 8-token PDB.

The last two rows show the results of using regular and com-
pressed 10-token PDB and with two lookups. ADP reduces the mem-
ory required by 87% while increasing the number of generated nodes
by a factor of 2.3. The compressed version of the 10-token PDB re-
quires slightly less memory than the uncompressed 9-token PDB but
generates only 30% of the nodes and 56% of the time.

6 Summary and Conclusions

We presented a new technique that better utilizes memory by com-
pressing PDBs with learning techniques and we applied it to different
domains. A three step mechanism to construct the system was intro-
duced but any subset of them can be separately used. A significant
reduction in memory was achieved over the uncompressed PDB at a
cost of a small increase in the search effort. Furthermore, our com-
pressing idea usually outperforms previous compressing techniques
in both memory and number of nodes and many times in CPU time
as well. For a given amount of memory it is beneficial to use our
compressing technique over uncompressed PDB of the same size.

An advantage of our system is that PDBs that are much larger
than the available memory can be generated on disk and can be com-
pressed to fit the memory. In fact, we used this method to compress
10-token PDB for 17-TopSpin.

Future work will continue these ideas as follows. First we would
like to compress much larger PDBs as well as trying to solve larger
versions of these puzzles. Second, other classifier techniques (like
oblique tree and SVM [8]) might perform better that the ADP sys-
tem. Finally, this approach can be applied in compressing PDBs in
planning domains.

REFERENCES

[1] S. Edelkamp, ‘Symbolic pattern databases in heuristic search
planning’, AIPS, 274-293, (2002).

[2] M. Ernandes and M. Gori, ‘Likely-admissible and sub-symbolic
heuristics.”, in ECAI, pp. 613-617, (2004).

[3] A. Felner, R. Korf, R. Meshulam, and R. Holte, ‘Compressed
pattern databases’, JAIR, 30, 213-247, (2007).

[4] A. Felner, R. E. Korf, and S. Hanan, ‘Additive pattern database
heuristics’, JAIR, 22, 279-318, (2004).

[5] A. Felner, U. Zahavi, R. Holte, and J. Schaeffer, ‘Dual lookups
in pattern databases’, in Proc. IJCAI, pp. 103-108, (2005).

[6] R. C. Holte, A. Felner, J. Newton, R. Meshulam, and D. Furcy,
‘Maximizing over multiple pattern databases speeds up heuristic
search’, Artificial Intelligence, 170, 1123-1136, (2006).

[71 J.S.Judd, Neural network design and the complexity of learning,
MIT Press, Cambridge, MA, USA, 1990.

[8] T. Mitchell, ‘Machine learning and data mining’, Communica-
tions of the ACM, 42(11), 30-36, (1999).

[9]1 George Politowski, On the construction of heuristic functions,
Ph.D. dissertation, University of California at Santa Cruz, 1986.

[10] S. Sarkar, P. Chakrabarti, and S. Ghose, ‘A framework for learn-
ing in search-based systems’, IEEE Transactions on Knowledge
and Data Engineering, 10(4), 563-575, (1998).

