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Abstract

Lifting a recent proposal by Moreno-Centeno and Karp, we
propose a general framework for so-called implicit hitting
set algorithms for reasoning beyond NP. The framework is
motivated by empirically successful specific instantiations
of the approach—based on interactions between a Boolean
satisfiability (SAT) solver and an integer programming (IP)
solver—in the context of maximum satisfiability (MaxSAT).
The framework opens up opportunities for developing im-
plicit hitting set algorithms for various important reasoning
problems in KR by implementing domain-specific reasoning
modules with SAT and IP solvers. We detail instantiations
of the framework for the minimum satisfiability problem—
as a natural dual of MaxSAT—and, as a central KR problem,
for propositional abduction, covering the second level of the
polynomial hierarchy. We show empirically that an imple-
mentation of the instantiation for propositional abduction sur-
passes the efficiency of an approach based on encoding and
solving propositional abduction instances as disjunctive logic
programming under answer set semantics. We also study key
properties of the general framework.

1 Introduction

A great majority of important decision and optimization
problems in knowledge representation and reasoning (KR)
and artificial intelligence are notoriously hard. In fact,
variants of various central KR problems, such as proposi-
tional circumscription, abduction, belief revision, and oth-
ers (Eiter and Gottlob 1992; 1993; 1995b; Stillman 1992;
1990; Gottlob 1992; Eiter and Lukasiewicz 2000) are hard
at least for the second level of the polynomial hierarchy,
and thus presumably go beyond NP. While NP-hard de-
cision and optimization problems are in the classical sense
intractable, the rise of surprisingly effective constraint solv-
ing technology, including e.g. Boolean satisfiability (SAT)
and integer programming (IP) solvers, enables finding opti-
mal solutions to complex NP-hard real-world problems in
a variety of domains. Furthermore, the use of SAT solvers
as practical NP oracles has proven a promising approach to
solving decision problems beyond NP.

In this work, we propose a general framework for solv-
ing reasoning tasks beyond NP. The framework builds on
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the idea of so-called implicit hitting set algorithms, as pro-
posed recently by (Moreno-Centeno and Karp 2013), with
an emphasis on classical NP-complete decision problems.
As outlined in (Moreno-Centeno and Karp 2013), implicit
hitting set algorithms work by iteratively ruling out an in-
creasing set of non(-optimal) solutions from further consid-
eration by obtaining hitting sets over the non-solutions, until
an actual (provably optimal) solution is found. From the
practical perspective, the framework is motivated by empiri-
cally successful applications in the context of maximum sat-
isfiability (Davies and Bacchus 2011; 2013b; 2013a), where
the MaxSAT solvers MaxHS and LMHS, implementing im-
plicit hitting set algorithms based on interacting SAT and IP
solvers, have taken top positions in recent MaxSAT Evalua-
tions (Argelich et al. 2015).

Motivated by this success, in this work we outline a gen-
eral framework for implicit hitting set algorithms. Specifi-
cally (but by no means restricted to), the framework is de-
veloped with instantiations based on SAT and IP solvers in
mind; the SAT solver acts (or, going beyond NP, multiple
SAT solvers act) the role of a “core extractor” used for ex-
tracting non-solutions, and the IP solver acts as a hitting
set optimizer, used for ruling out the thus far found non-
solutions from further consideration. The framework thus
provides novel algorithms for a variety of hard reasoning
tasks via modularly instantiating the core extraction and hit-
ting set modules in domain-specific ways via SAT and IP
solvers specifically well-suited for the respective tasks of
providing proofs of unsatisfiability and optimization. We
detail novel instantiations of the general framework, using
as a running example minimum satisfiability, the dual of
MaxSAT that has recently received increasing attention, and,
most interestingly, going beyond NP, for the problem of
propositional abduction that is hard for the second-level of
the polynomial hierarchy. To illustrate the practical poten-
tial of the framework, we present results from an empirical
evaluation of a prototype implementation of the instantiation
for abduction. We show empirically that the implementation
for propositional abduction surpasses the efficiency of an ap-
proach based on encoding and solving propositional abduc-
tion instances as disjunctive logic programming under an-
swer set semantics (Brewka, Eiter, and Truszczyński 2011).
Furthermore, from a more theoretical perspective, we dis-
cuss fundamental properties and correctness of the general
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framework, as well as motivate the instantiation for abduc-
tion via parameterized complexity arguments.

The rest of this paper is organized as follows. Af-
ter an overview of maximum satisfiability and the so-
called MaxHS implicit hitting set approach to solving
MaxSAT (Section 2), we describe the proposed general
framework for implicit hitting set algorithms and detail key
properties of the framework (Section 3). We then describe
in detail how the framework can be instantiated for proposi-
tional abduction (Section 4), and present an empirical eval-
uation of the efficiency of a prototype implementation of the
instantiation (Section 5). Finally, we discuss related work in
detail (Section 6).

2 A Hitting Set Approach to MaxSAT

The basis for the implicit hitting set framework is the re-
cent successful MaxHS algorithm for MaxSAT by Davies
and Bacchus (2011; 2013b; 2013a). The novelty of this al-
gorithm, compared to other successful MaxSAT algorithms,
is its hybrid nature. The key idea behind MaxHS is to sep-
arate the satisfiability and optimization parts of MaxSAT so
that a suitable method can be used to solve each part: an
integer programming (IP) solver generates candidate sets of
soft clauses by hitting a set of constraints in an optimal way,
while a state-of-the-art SAT solver tries to find a satisfying
assignment for the selected clauses.

Maximum Satisfiability

A literal is a variable y or a negated variable ¬y. A clause is
a disjunction of literals. A propositional formula in conjunc-
tive normal form (CNF) is a conjunction of clauses. A CNF
formula can be viewed as a set of clauses. A truth assign-
ment is a function τ from variables to {0, 1}, denoting false
and true, respectively. Satisfaction of a truth assignment for
a formula is defined as usual.

An instance ϕ = (ϕh, ϕs, c) of the (Weighted) Partial
MaxSAT problem consists of a formula ϕh in CNF, to which
we refer to also as hard clauses, a set ϕs of soft clauses,
and a cost function c : ϕs → R+. Any truth assignment
τ that satisfies every clause in ϕh is a solution to ϕ. The
cost of a solution τ to ϕ for the Partial MaxSAT problem is∑

x∈ϕs
c(x)·(1−τ(x)), i.e., the total cost of soft clauses not

satisfied by τ . A solution τ is optimal for ϕ if COST(ϕ, τ) ≤
COST(ϕ, τ ′) holds for any solution τ ′ to ϕ. Given ϕ, the
task for the Partial MaxSAT problem is to find an optimal
solution to ϕ. From here on, we refer to Partial MaxSAT
simply as MaxSAT.

Hitting Sets

For a set X , let K ⊆ 2X be a set of subsets of X . A
hitting set S ⊆ X of K is a set that intersects (hits) each
E ∈ K, i.e., S ∩ E �= ∅ for all E ∈ K. For K ⊆ 2X ,
the set of all hitting sets of K is HS(K) = {S ⊆ X |
S hitting set of K}. Attaching costs to elements in X by a
function c : X → R+, the set of minimum-cost hitting sets
is HSc(K) = argmin

S∈HS(K)

(c(S)), with c(S) =
∑

s∈S c(s).

The MaxHS Algorithm

A basic concept employed by the MaxHS algorithm is that
of an (unsatisfiable) core of a MaxSAT instance. An un-
satisfiable subset, or unsatisfiable core, of a MaxSAT in-
stance ϕ = (ϕh, ϕs, c) is a set of clauses C ⊆ ϕs such
that ϕh ∧

∧
x∈C x is unsatisfiable.

The MaxHS algorithm is based on the fact that a
minimum-cost hitting set for the unsatisfiable cores of a
MaxSAT instance corresponds to the set of falsified clauses
of an optimal MaxSAT solution. The intuition behind this
is simple: if we know every possible unsatisfiable subset of
clauses and a minimum-cost hitting set over these subsets,
there must exist a MaxSAT solution which satisfies every
clause not in the hitting set. Furthermore, because the hit-
ting set has minimum cost, this MaxSAT solution is optimal
among all solutions.

Figure 1 (left) illustrates the MaxHS algorithm. At each
iteration, a SAT solver is used to extract a new core of ϕh

conjoined with clauses in (ϕs \ S) until the hitting set S for
the resulting set of cores corresponds to an optimal solution.
When such an S is found, the SAT solver will return sat-
isfiable, and the found satisfying variable assignment is an
optimal solution to the MaxSAT instance. The minimum-
cost hitting set problem can be solved with an IP solver.
The IP solver only considers the set of cores found so far
(which can be incrementally added to the problem as they
are found) and the MaxSAT cost function; it does not re-
quire knowledge of the CNF formula. The SAT solver, on
the other hand, operates independently of the cost function.

3 A General Framework for Implicit Hitting

Set Procedures

In this section we generalize the MaxHS algorithm and its
components into a general framework for developing im-
plicit hitting set algorithms. As a core ingredient we need
a general problem setting suitable for many contexts, which
we introduce next. We assume a set of (domain) elements L
and a predicate p over subsets S ∈ 2L. The purpose of pred-
icate p is to define solutions for the problem represented by
p, i.e., if p(S) holds for S ⊆ L, then S is a solution. Finally,
a given cost function c : L → R+ induces minimum-cost
solutions. The function straightforwardly generalizes to sets
S ⊆ L by returning the sum, i.e., we have c(S) =

∑
s∈S s.

We note that the general framework developed in this paper
also allows for more sophisticated cost functions, e.g. non-
linear functions, as long as c(S) < c(S′) whenever S ⊂ S′.
Definition 1. Let L be a finite set, p a predicate over 2L,
and c : L → R+. We call P = (p, L, c) a minimization
problem. The solutions of P are given by Sol(P ) = {S ⊆
L | p(S) holds}. Further, we define minimum-cost solutions
as Solc(P ) = argmin

S∈Sol(P )

(c(S)).

For the rest of the paper, we will focus on minimization
problems; we note that the treatment naturally applies also
to maximization problems, essentially by inverting the cost
function in the standard way.

In detailing the general framework, we will exemplify all
notions on a natural counterpart of the MaxSAT problem,
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SAT Solver
ϕh ∪ (ϕs \ S)

IP Solver
S = HSc(K)

S

K := K ∪ {C}

UNSAT

Input

c : ϕs → R+ϕh, ϕs

Output
τ,
∑

x∈S c(x)

SAT

Predicate check
p(S)?

Hitting set

S = HSc(K)

S

K := K ∪ {C}

not p(S)

Input

c : L→ R+p

Output
S, c(S)

p(S)

Figure 1: The MaxHS algorithm (left) and the generic framework for implicit hitting set algorithms (right).

namely, minimum satisfiability (MinSAT). In Partial Min-
SAT (or simply MinSAT) instance ϕ = (ϕh, ϕs, c), solu-
tions are the same as for MaxSAT. However, cost is incurred
for satisfying clauses. In other words, for Partial MinSAT,
the cost of a solution τ to ϕ is

∑
x∈ϕs

c(x) · τ(x).
Example 1. Let ϕ = (ϕh, ϕs, c) be an instance of Min-
SAT. We translate ϕ into our general setting by defining the
minimization problem Pmin = (pmin , ϕs, c) so that pred-
icate pmin(S) holds for S ⊆ ϕs iff ϕh ∧

∧
x∈ϕs\S ¬x is

satisfiable, i.e., there is an assignment that satisfies the hard
clauses and does not satisfy the soft clauses in ϕs \ S. For
each minimum-cost solution S ∈ Solc(Pmin) there is an
optimal MinSAT solution τ to ϕ s.t. c(S) = c(τ) and vice
versa.

We note that there is a slight difference in the solutions to
MinSAT and the solutions to the corresponding minimiza-
tion problems as shown in the previous example: the former
has satisfying assignments as solutions, while the latter has
subsets of soft clauses as solutions. This is, however, not
a real obstacle, since by implementing the predicate checks
using SAT solvers, the SAT solver will also provide the cor-
responding truth assignment as a witness.

The next crucial definition lifts the unsatisfiable cores
used in MaxHS to our general setting.
Definition 2. Let P = (p, L, c) be minimization problem. A
set C ⊆ L is a core of P if C ∩ S �= ∅ for all S ∈ Sol(P ).

In words, a core C for a minimization problem P is a
subset of L for which every solution contains an element in
C. We denote the set of all cores of a minimization problem
P by Cores(P ).
Example 2. Consider again the minimization problem Pmin

from Example 1. A core C ∈ Cores(Pmin) implies that ev-
ery solution S ∈ Sol(Pmin) contains a soft clause from C. If
C ∈ Cores(Pmin), then ϕh →

∨
x∈C x is a tautology, i.e.,

every assignment that satisfies the hard clauses also satis-
fies at least one clause of C (i.e., no assignment falsifies all
clauses in C). Compared to unsatisfiable cores utilized in
MaxHS, these are in a sense “tautological cores”.

A General Framework

Equipped with the general concept of cores for minimization
problems, we now describe the general implicit hitting set
algorithm. Pseudocode for the general setting is presented
as Algorithm 1, and the general flow of the algorithm is il-
lustrated in Figure 1 (right). The minimum-cost hitting set
problem is now defined over a given cost function and the set
of (general) cores. The “satisfiability” part consists here of a
predicate check (Line 4) and, if this check fails to verify that
a candidate is an actual solution, core extraction (Line 5).
The basic idea of the algorithm is to guide the search by
maintaining a set of computed cores K of the given problem
and iteratively generating minimum-cost hitting sets of K.
The algorithm starts with the empty set of cores and asks in
each iteration for a minimum-cost hitting set S of the cur-
rent set of cores K (Line 3). We then check whether S is
a solution of P (Line 4). If S ∈ Sol(P ), we have found a
minimum-cost solution. Otherwise, we extract a core based
on the fact that S is not a solution and add the fresh core to K
(Line 5). In general, one can define extractcore(S) = L\S;
we give more refined procedures for extractcore later on.
We repeat the process until a solution is reached, and termi-
nate. The check for the empty core is a special case where
no solution exists, i.e., Sol(P ) = ∅. If ∅ is a core, then all
solutions would have to intersect with it, which is not pos-
sible. This is accounted for by the test for empty cores on
Line 2 which returns “no solution” in this case (Line 6).

Algorithm 1 Implicit Hitting Set Algorithm
Require: P = (p, L, c) a minimization problem
Ensure: returns S ∈ Solc(P ) if Sol(P ) �= ∅, and other-

wise “no solution”
1: K := ∅;
2: while ∅ /∈ K do
3: let S be s.t. S ∈ HSc(K);
4: if p(S) then return S;
5: K := K ∪ {extractcore(S)};
6: return “no solution”;
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Example 3. Consider Pmin from Example 1. Instantiat-
ing Algorithm 1 for MinSAT, Pmin results in a first iteration
of checking whether ∅ is a solution (the minimum-cost can-
didate that is a hitting set of the empty set). If ∅ is not a
solution, i.e., each assignment satisfying each hard clause
satisfies at least one soft clause, it follows that C = ϕs is
a core of Pmax , i.e., ϕh →

∨
x∈ϕs

is a tautology. In sub-
sequent iterations, minimum-cost hitting sets are generated
from the current set of cores.

We proceed with formal statements about the correctness
of Algorithm 1. We first show that no solution is “missed” at
any given iteration of the algorithm, i.e., no candidate with
smaller cost than the current can be a solution.

Lemma 1. Let P = (p, L, c) be a minimization problem
and K ⊆ Cores(P ) a set of cores for P . If S = HSc(K),
then for all S′ with S′ ⊂ S or c(S′) < c(S) it holds that
S′ /∈ Sol(P ).

Next, if a candidate S is not a solution, then L \ S is a
core of P and is not contained in previously found cores.

Lemma 2. Let P = (p, L, c) be a minimization problem
and K ⊆ Cores(P ) a set of cores for P . If S = HSc(K)
and S /∈ Sol(P ), then (L \ S) ∈ Cores(P ) and for any
C ⊆ (L \ S) with C ∈ Cores(P ) we have C /∈ K.

Proof. First, by Lemma 1, S′ ∈ Sol(P ) does not hold for
any S′ ⊂ S. Thus T ∩ (L \ S) �= ∅ for all T ∈ Sol(P ),
which implies that (L \ S) is a core of P .

Now assume C ⊆ (L\S) is a core of P . Suppose C ∈ K.
It follows that S does not hit C, which is a contradiction to
S being a hitting set of K. Thus C /∈ K.

Thus we can define extractcore(S) = (L \ S) to assign
a trivial core at each iteration. In practice, implicit hitting
set algorithms can compute smaller cores, i.e., C ⊆ (L \S).
The only requirement is that C is a core of the problem.

Example 4. Consider again Pmin from Example 1 and let
S be a candidate that is not a solution. An alternative
extractcore(S) procedure would be to minimize the unsatis-
fiable core. Let C = ϕs\S. It holds that C ∈ Cores(Pmin).
This means ϕh →

∨
c∈C c is a tautology. One can gen-

erate a subset-minimal core by searching for a cardinality-
minimal set C ′ ⊂ C s.t. ϕh →

∨
c∈C′ c is a tautology. Then

C ′ ∈ Cores(Pmin).

Finally, towards correctness, we show termination assum-
ing that HS and extractcore are terminating subcalls.

Corollary 3. Let P = (p, L, c) be a minimization problem
and S ⊆ L. If extractcore(S) returns a core C of P with
C ⊆ (L \ S), then Algorithm 1 terminates.

The next proposition builds upon the preceding results to
establish correctness of Algorithm 1 given that extractcore
provides a means to extract cores.

Proposition 4. Let P = (p, L, c) be a minimization problem
and S ⊆ L. Assume extractcore(S) returns a core C of
P with C ⊆ (L \ S). It holds that Algorithm 1 returns
S ∈ Solc(P ) if Sol(P ) �= ∅, and otherwise “no solution”.

Note that concrete instantiations of the general proce-
dures mainly require an implementation for verifying p(S),
extractcore, and searching for minimum-cost hitting sets.
In Section 4 we show how the predicate check and core ex-
traction for the propositional abduction problem can be im-
plemented with SAT solvers. The minimum-cost hitting set
can naturally be computed by an IP solver.

Properties of the General Framework

In this section we give basic properties of the general frame-
work, with an emphasis on the hitting-set relations between
solutions and cores of a problem.1 We start with a simple
observation: each solution of a problem is a hitting set of
some set of cores for the problem.
Lemma 5. Let P = (p, L, c) be a minimization problem
and K ⊆ Cores(P ). Every S ∈ Sol(P ) is a hitting set of
K.

In the following proposition we summarize the relations
between hitting sets of all cores for a problem and its so-
lutions. In particular, a useful property is that minimum-
cost (subset-minimal) hitting sets of all cores of a minimiza-
tion problem P are minimum-cost (subset-minimal) solu-
tions of P . The subset-minimal hitting sets and solutions
are HS⊆(K) = {S ∈ HS(K) | �S′ ∈ HS(K) s.t. S′ ⊂ S}
and Sol⊆(P ) = {S ∈ Sol(P ) | �S′ ∈ Sol(P ) s.t. S′ ⊂
S}, respectively.
Proposition 6. Let P = (p, L, c) be a minimization problem
and K = Cores(P ) the set of all cores of P . It holds that

1. HS(K) ⊇ Sol(P );
2. HS⊆(K) = Sol⊆(P );
3. HSc(K) = Solc(P ); and
4. S ∈ HS(K) iff ∃S′ with S′ ⊆ S s.t. S′ ∈ Sol⊆(P ).

In general, HS(K) = Sol(P ) does not hold, as shown in
the following example.
Example 5. Consider P = (p, L, c) with L = {a, b},
c(a) = c(b) = 1, and predicate p defined by p({a}) and
p({b}), i.e., Sol(P ) = {{a}, {b}}. We have Cores(P ) =
{{a, b}}. Then X = {a, b} hits the core in Cores(P ),
but X /∈ Sol(P ). Note that X /∈ HS⊆(Cores(P )) and
X /∈ HSc(Cores(P )).

Restricting to monotone predicates results in a 1-to-1 cor-
respondence between hitting sets of all cores and solutions.
Corollary 7. Let P = (p, L, c) be a minimization problem
and K = Cores(P ). If p is ⊆-monotone, then HS(K) =
Sol(P ).

Example 6. Regarding Pmin from Example 1, the predicate
pmin is ⊆-monotone.

In the following we consider the question of which sets
can be cores of a problem. The next lemma follows imme-
diately from the definition of a core.
Lemma 8. Let P = (p, L, c) be a minimization problem.

1All presented results hold also for maximization problems via
a dual definition for cores: a core C ⊆ L for a maximization prob-
lem P ′ is such that C ∩ (L \ S) �= ∅ for all S ∈ Sol(P ′).
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• If C ∈ Cores(P ) then C ′ ∈ Cores(P ) ∀C ′ ⊇ C.
• If S ∈ Sol(P ) then �C ∈ Cores(P ) with C ⊆ (L \ S).

Let PL be the set of all minimization problems over a
domain L. Let KL = {Cores(P ) | P ∈ PL} be the set
of all sets of cores of minimization problems over the set L.
We now show that a set K ⊆ 2L is a core of a minimization
problem P = (p, L, c) iff K is upward-closed w.r.t. ⊆, i.e.,
C ∈ K implies C ′ ∈ K with C ⊆ C ′.

Proposition 9. Let L be a set. It holds that KL = {K ⊆
2L | C ∈ K implies C ′ ∈ K with C ⊆ C ′}.
Solution Enumeration

Finally, we discuss how the general framework can be natu-
rally extended to cover solution enumeration problems.

Enumerating minimum-cost solutions Let P = (p, L, c)
be a minimization problem. Given an S ∈ Solc(P ), for
deriving a new minimum-cost solution, we add C = L \ S
to K and repeat the algorithm. Note that C is technically
not a core of P , but a core of P ′ with changed predicate p′
such that for any X ∈ 2L \{S} we have p(X) iff p′(X) and
p′(S) does not hold. The previously computed cores in K
remain cores for the new problem. Computation terminates
when a hitting set S′ with c(S) < c(S′) is derived.

Enumerating subset-minimal solutions Let P = (p, L, c)
be a minimization problem. If we want to compute all
subset-minimal solutions Sol⊆(P ), we search for an initial
solution S with minimum cardinality (which is also subset-
minimal). We then adopt a variant of the hitting set prob-
lem, in which additional constraints are allowed for exclud-
ing an element of a set X . We impose such a constraint on
S, which ensures that no candidate will be a superset of S.
The termination criterion is now that there is no solution to
the modified hitting set problem.

4 Case Study: Propositional Abduction

We now instantiate the generic implicit hitting set frame-
work (Algorithm 1) for propositional abduction. We start
with formal preliminaries and, additionally, give a novel
complexity result for abduction which suggests that harness-
ing the power of the implicit hitting set framework for the
problem is a reasonable approach.

Propositional Abduction

A propositional abduction problem (PAP) instance consists
of a set M of manifestations (or observations) which we are
to explain by a subset of a set H of hypotheses. Such a set
of hypotheses, together with a background theory T , is a
solution to the given abduction problem if (i) it entails the
manifestations and (ii) is consistent. Further, we are here in-
terested in minimum-cost explanations under a cost function
over the subsets of H .

Formally, a PAP is a quintuple P = (V,H,M, T, c) with
V a finite set of variables, H , M , and T are formulas over
V , and c : H → R+ a cost function. For S ⊆ H , we
have c(S) =

∑
s∈S s. We define abdP

S as a shorthand for
T ∧∧

s∈S s.

Definition 3. Let P = (V,H,M, T, c) be a PAP. The set
of explanations of P is given by Expl(P ) = {S ⊆ H |
abdP

S �|= ⊥, abdP
S |=

∧
m∈M M}. The minimum-cost solu-

tions of P are Explc(P ) = argmin
E∈Expl(P )

(c(E)).

Example 7. Consider the theory T = (r ∧ p → m) ∧ (r ∧
q → m) stating that r together with p or q explains the man-
ifestation M = {m}. The hypotheses are H = {p, q, r}.
Possible explanations are {p, r}, {q, r}, and {p, q, r}. Aug-
menting the instance with costs c(r) = c(p) = 1 and
c(q) = 2 means that {p, r} is the (in this case unique)
minimum-cost explanation.

Computational Complexity of Abduction

As for the complexity of propositional abduction, we recall
the most relevant results for our work from (Eiter and Gott-
lob 1995b). All hardness results hold even if H and M are
restricted to propositional variables, i.e., H,M ⊆ V . A lan-
guage is in DP iff it is the intersection of a language in NP
and a language in coNP. A problem is in ΣP

2 if it can be
decided with a non-deterministic polynomial time algorithm
with access to an NP oracle. A problem is in ΔP

3 if it can
be decided with a deterministic polynomial time algorithm
that may access a ΣP

2 oracle. If additionally the number of
ΣP

2 oracle calls is bounded by O(log n) for instance size n,
then the problem is in ΘP

3 .
It is DP-complete to verify whether a given S ⊆ H is

an explanation for a PAP. Deciding whether there exists an
explanation, i.e., whether Expl(P ) �= ∅, is ΣP

2 -complete.
For a given a ∈ H it is ΔP

3 -complete to decide the relevance
problem, i.e., whether there is an explanation S ∈ Explc(P )
for a given PAP P s.t. a ∈ S. If the costs are polynomially
bounded w.r.t. the input size of a PAP, then the complexity
of the relevance problem drops to ΘP

3 .
We now show a novel complexity result for abduction.

Using results and assumptions of fixed-parameter complex-
ity theory, we prove that there is no algorithm solving the
explanation existence problem that (i) can make a constant
number of NP oracle calls, and (ii) may be exponential in
the search space of explanations, i.e., in parameter |H|, but
is only polynomially influenced by the size of the abduction
instance. In the context of our general implicit hitting set
framework, this means that we cannot, in general, expect to
solve propositional abduction within a constant number of
NP checks (e.g. predicate checks) even when we may tra-
verse all subsets of hypotheses.

Towards the result, recall that FPT denotes the complex-
ity class of parameterized problems for which there exists
an algorithm that decides the problem in time f(k) · nO(1),
where f(·) is an arbitrary computable function that only de-
pends on the parameter k. A parameterized reduction of a
parameterized problem Π to a parameterized problem Π′ is
an FPT-algorithm that transforms an instance (I, k) of Π
to an instance (I ′, k′) of Π′ such that: (i) (I, k) is a yes-
instance of Π if and only if (I ′, k′) is a yes-instance of Π′,
and (ii) k′ = g(k), where g(·) is an arbitrary computable
function that only depends on k. Hardness and completeness
with respect to parameterized complexity classes is defined
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analogously to the concepts from classical complexity the-
ory, using parameterized reductions. The class FPTNP[f(k)]
was recently introduced by (de Haan and Szeider 2014b;
2014a; Endriss, de Haan, and Szeider 2015) and contains
all problems that can be solved by an FPT-algorithm that
can use f(k) many calls to an NP oracle.

We now show that deciding whether there is an explana-
tion for a given PAP is FPTNP[f(k)]-complete if parame-
terized by |H|. This means that, under complexity-theoretic
assumptions, there are no FPT reductions from this problem
to SAT (or a constant number of NP-oracle calls).

Proposition 10. Deciding whether there exists an explana-
tion for a given PAP is FPTNP[f(k)]-complete when param-
eterized by |H|.

Proof. Let P = (V,H,M, T, c) be a PAP. For membership,
verify for each S ∈ 2H whether S ∈ Expl(P ). Verifying
whether S ∈ Expl(P ) is in DP.

To establish hardness, we give a parameterized
reduction from the FPTNP[f(k)]-complete problem
BH(LEVEL)-SAT (de Haan and Szeider 2014a). Recall first
the definition of the unparameterized problem BHn-SAT.
An instance of this problem is I = (χ1, . . . , χn), where
each χi is a formula. For n = 1, I is a yes-instance iff
χ1 is satisfiable. For an odd n ≥ 3, I is a yes-instance
iff χn is satisfiable or (χ1, . . . , χn−1) is a yes-instance of
BHn−1-SAT. For an even n ≥ 2, I is a yes-instance iff
χn is unsatisfiable and (χ1, . . . , χn−1) is a yes-instance
of BHn−1-SAT. A problem instance of the parameterized
problem BH(LEVEL)-SAT (de Haan and Szeider 2014a) is
of the form I = (χ1, . . . , χk) with parameter k. The task is
to decide whether I is a yes-instance of BHk-SAT.

Let I = (χ1, . . . , χk) be an arbitrary instance of the pa-
rameterized BH(LEVEL)-SAT problem. W.l.o.g. we assume
disjoint vocabularies for each pair of formulas in I . Define
r(·) as a recursive function. If k = 1, then r(I) = h1. If
k ≥ 2 is odd, then r(I) = (hk ∨ (r(χ1, . . . , χk−1))). If
k ≥ 2 is even, then r(I) = (¬hk ∧ (r(χ1, . . . , χk−1))).
Define T = (r(I) → q) ∧ ∧

1≤i≤k

(
hi → χi), M = {q},

and V = var (T ) ∪ H ∪M . We show that there is an ex-
planation iff I is a yes-instance. First, we observe that if τ
is a satisfying assignment of T and χi is unsatisfiable, then
τ(hi) = 0. Second, I is a yes-instance if τ ′ satisfies r(I)
with τ ′(hi) = 1 iff χi is satisfiable.

Assume that I is a yes-instance. Then E = {hi |
χi satisfiable } is an explanation of the constructed abduc-
tion instance, since every satisfying assignment of T ∧∧

hi∈E also satisfies r(I) and in turn q. It is immediate that
T ∧∧

hi∈E is satisfiable.
Assume that E is an explanation of the constructed ab-

duction instance. Suppose I is not a yes-instance. Then
τ ′ defined as above does not satisfy r(I). It holds that
E ∩ {hi | χi unsatisfiable} = ∅ due to hi → χi in the-
ory T . Thus E ⊆ {hi | χi satisfiable}. It holds that τ ′ is a
satisfying assignment of T ∧ ∧

hi∈E . But then q is not en-
tailed by T ∧∧

hi∈E , which is a contradiction with E being
an explanation of the abduction instance.

Instantiating the Implicit Hitting Set Framework

We instantiate the general framework of implicit hitting
set algorithms for abduction. Finding a minimum-cost ex-
planation for a PAP P = (V,H,M, T, c) is seen as a
minimization problem in our setting. We define Pabd =
(pabd , H, c) as the corresponding minimization problem.
Predicate pabd(S) for S ⊆ H holds if S is an explanation
for P . It holds that Sol(Pabd) = Expl(P ). For the instan-
tiation of Algorithm 1, we need procedures for (i) checking
if a set S ⊆ H is an explanation, (ii) core extraction, and
(iii) finding minimum-cost hitting sets. We will apply SAT
solvers for (i) and (ii), and an IP solver for (iii).

Let P = (V,H,M, T, c) be a PAP. The function IP(K)
solves for K ⊆ 2H (with variables vh for h ∈ H)

MINIMIZE
∑

h∈H

c(h) · vh (1)

SUBJECT TO
∑

h∈C

vh > 0 for all C ∈ K, (2)

vh ∈ {0, 1} for all h ∈ H, (3)

and returns a solution as a set S (variables assigned 1).
Algorithm 2 shows the instantiation of Algorithm 1 for

abduction. We illustrate the workflow in Figure 2. We be-
gin with a simple abduction-specific addition, namely the
SAT call in Line 2 that checks whether the whole set of
hypotheses does not entail the manifestations.2 We denote
with (sat , τ) the result of a SAT-call, i.e., sat is true iff the
formula is satisfiable and in this case τ is a satisfying as-
signment. If the corresponding formula is satisfiable, then
no subset of hypotheses entails the manifestations, and thus
there are no explanations. In the main while-loop, we first
check if the current candidate set S entails the manifesta-
tions in Line 5. If not, we obtain a satisfying assignment τ
based on which we extract the core {h ∈ H | τ(h) = 0},
as S is not an explanation. This core encodes that every ex-
planation must contain a hypothesis assigned to 0 by τ . For
every S′ ⊆ {h ∈ H | τ(h) = 1}, i.e., every candidate that is
a subset of hypotheses assigned to 1 by τ , it holds that τ sat-
isfies abdP

S′∧∨m∈M ¬m, implying that S′ /∈ Expl(P ). The
second condition of explanation is checked next (Line 8). If
abdP

S is unsatisfiable, we know that S is not an explanation,
and extract the trivial core. If both conditions for explana-
tions hold for candidate S, we have found a minimum-cost
explanation. If not, we generate the next candidate expla-
nation by the IP call. In case S = H , we can return “no
solution” since the first check on Line 2 already has taken
care of the case that S = H is not an explanation.

To prove correctness of Algorithm 2, it suffices to show
that at each iteration of the main loop, if S is not a solution,
then the new set added to K is a core of the PAP.
Lemma 11. Let P be a PAP and K ⊆ Cores(Pabd) be a set
of cores for Pabd . Further, let S = IP(K). The following
statements hold.

1. If abdP
S is unsatisfiable, then (H \ S) ∈ Cores(Pabd);

and
2This is in analogy with first checking if the set of hard clauses

of a MaxSAT instance is satisfiable.
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Algorithm 2 AbHS
Require: PAP P = (V,H,M, T, c)
Ensure: returns S ∈ Explc(P ) if Expl(P ) �= ∅, and other-

wise “no solution”
1: K := ∅; S := ∅;
2: (sat , τ) := SAT(abdP

H ∧
∨

m∈M ¬m);
3: if sat then return “no solution”;
4: while S �= H do

5: (sat , τ) := SAT(abdP
S ∧

∨
m∈M ¬m);

6: if sat then K := K ∪ {{h ∈ H | τ(h) = 0}};
7: else
8: (sat , τ) := SAT(abdP

S );
9: if not sat then K := K ∪ {(H \ S)};

10: else return S;
11: S := IP(K);
12: return “no solution”;

2. if τ is a model of abdP
S ∧

∨
m∈M ¬m, then

{h ∈ H | τ(h) = 0} ∈ Cores(Pabd).
Note that from Lemma 2 and Lemma 11 it follows that

Algorithm 2 produces a fresh core in each iteration, or ter-
minates. Overall termination and correctness now straight-
forwardly follows from Proposition 4.
Corollary 12. Let P be a PAP. If Expl(P ) �= ∅ then Al-
gorithm 2 returns an S ∈ Explc(P ), and otherwise returns
with “no solution”.

Finally, we note that the IP formulation of the minimum-
cost hitting set problem can be strengthened via a simple
domain-specific observation. Namely, if abdP

S is unsatis-
fiable, and hence S is not a solution (Lines 8–9 of Algo-
rithm 2), then we also know that abdP

S′ is unsatisfiable for
any S′ ⊃ S. Hence no superset of S can be an explana-
tion. This allows for strengthening the IP formulation by
replacing the constraint

∑
h∈H\S vh > 0 with the constraint∑

h∈S vh < |S|. As a result, S and all its supersets are ruled

SAT Solver

abdP
S ∧

∨

m∈M

¬m

abdP
S

IP Solver
S = HSc(K)

unsat

S

K := K ∪ {C}
sat

unsat

Input

c : H → R+T,M

OutputS, c(S)

sat

Figure 2: Instantiation of the general implicit hitting set
framework for propositional abduction

out from the set of solutions to the IP. Furthermore, since
S was an optimal solution to the previous IP, we know that
no subset of S can be an optimal solution to the IP. These
together imply that all subsequent optimal solutions to the
IP must be incomparable to S w.r.t. ⊆. In the experiments
reported on in the following, we consider both the “original”
IP formulation and the strengthened version, referring to the
algorithm using the strengthened IP formulation as AbHS+.

5 Experiments
We proceed with an overview of empirical results on a pro-
totype implementation of the instantiation of the general
framework to propositional abduction.

We generated abduction instances based on crafted and in-
dustrial instances from MaxSAT Evaluation 2014 on which
the running time of the state-of-the-art MaxSAT solver
LMHS (http://www.cs.helsinki.fi/group/coreo/lmhs/) was at
most five minutes. For a MaxSAT instance with hard clauses
ϕh, soft clauses ϕs, and cost function c, we constructed an
abduction instance P = (V,H,M, T, c) as follows. Set the
soft clauses H = ϕs as the hypotheses, using the original
weight, and the hard clauses as the theory, i.e., T = ϕh. For
manifestations, compute the set M of literals entailed by the
formula ϕ′

s ∧ ϕh by the backbone solver minibones (Jan-
ota, Lynce, and Marques-Silva 2015), where ϕ′

s are the sat-
isfied clauses of the optimal MaxSAT solution τ found by
LMHS. Select at random a subset M ′ ⊆ M for each size
|M | = k ∈ {5, 10, 15}. (For nontrivial instances, we only
considered entailed literals whose variables do not occur in
soft clauses.) This construction ensures that the subset ϕ′

s
is an explanation for P , but potentially not a minimum-cost
one. This gave a total of 1641 abduction instances.

Our prototype implementation, AbHS, including the
AbHS+ variant, employs MiniSAT 2.2.0 as the SAT solver,
and CPLEX as the IP solver. We compare the performance
of AbHS and AbHS+ to a natural encoding of propositional
abduction as disjunctive logic programming under answer
set semantics (ASP). Our current implementation of AbHS,
the ASP encoding, and the benchmarks are made available
at http://cs.helsinki.fi/group/coreo/abhs/.

We encode an abduction instance via facts in ASP and de-
rive explanations via standard guess & check methodology,
i.e., we guess an explanation candidate and verify (i) consis-
tency by simple ASP constraints and (ii) entailment utiliz-
ing the so-called saturation technique requiring disjunctive
rules (see (Eiter and Gottlob 1995a) for details on this tech-
nique). Finally, weak constraints ensure that optimal answer
sets correspond to minimum-cost explanations.

For solving the ASP instances, we used the state-of-
the-art disjunctive ASP solver Clingo 4.5.3 (Gebser et
al. 2011). We tested both its default branch-and-bound
based algorithm as well as the unsatisfiable core based
algorithm the solver implements, invoked via the option
--opt-strategy=usc. The experiments were run on
2.83-GHz Intel Xeon quad-core machines with 32-GB RAM
under Debian Linux 8.0. A per-instance time limit of 1800
seconds was enforced.

Results are shown in Figure 3 for the default ASP ap-
proach (circle markers), the unsatisfiable core based ap-
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Figure 3: Comparison of AbHS and ASP.

proach ASP-u (triangle markers), AbHS (square markers),
and AbHS+ (cross markers). Results are split by number of
manifestations: |M | = 5 (dotted green lines), |M | = 10
(dashed black lines), or |M | = 15 (solid red lines). For
each solver and |M |, the plot gives the number of instances
(x-axis) for different per-instance time limits (y-axis). The
numbers of instances solved under the 1800-second time
limit are given in the plot key. Our base version AbHS is es-
sentially already on par with the disjunctive ASP approach.
The AbHS+ variant, however, clearly improves on the ASP
approach, solving approximately 35% (for |M | = 15) to
50% (for |M | = 5) more instances than Clingo (both the de-
fault branch-and-bound version as well as the unsatisfiable
core based version) on the disjunctive ASP encoding.

6 Related Work

We discuss connections to and differences with earlier work.
Due to the generality of the approach, we will aim at briefly
discussing these connections from various viewpoints. A
fundamental ingredient in our proposal is that we aim at a
general framework which allows for natural instantiations
using SAT and IP solvers to problems well beyond NP.
Furthermore, our instantiation to abduction yields to our
best knowledge the first practical implementation to propo-
sitional abduction based on implicit hitting set algorithms.

The idea of implicit hitting set algorithms can be traced
back to the classical work of Reiter (1987), who describes a
domain-specific approach to diagnosis based on the concepts
of conflict sets (cores) and hitting sets, mainly with theoret-
ical motivations. A more general view on implicit hitting
set algorithms was earlier proposed by Moreno-Centeno and
Karp (2013), who focused on tackling NP-problems based
on the idea of implicit hitting sets. In their proposal, the set
of sets Γ ⊂ 2U to hit is given implicitly, and an abstract sep-
aration oracle, a polynomial time algorithm, certifies for a
given H ⊆ U whether H is a hitting set of the implicitly

given set Γ to hit, or, otherwise, produces a set (called “cir-
cuit” in their approach) not hit by H . Their notion of circuits
is covered by our notion of cores, and their separation ora-
cle is covered by the predicate check and core extraction of
our proposal. However, while our motivations are on beyond
NP, Moreno-Centeno and Karp (2013) focused on problems
in NP. Moreno-Centeno and Karp (2013) provide a heuris-
tic instantiation of the idea to the NP-complete problem of
multigenome alignment, without relying on SAT solvers, in
contrast to our proposal.

In terms of other practical solvers arising from the pro-
posed general framework, the MaxHS algorithm proposed
for MaxSAT by Davies and Bacchus (2011; 2013a; 2013b),
as discussed in this paper, provides key motivation for our
work as a very successful approach to MaxSAT solving:
most recently, the LMHS and MaxHS solvers, implementing
these ideas, took top positions in the industrial and crafted
categories of the 2015 MaxSAT Evaluation. In contrast
to MaxHS, the more “typical” so-called core-guided ap-
proaches to MaxSAT solving (see, e.g., (Fu and Malik 2006;
Heras, Morgado, and Marques-Silva 2011; Narodytska and
Bacchus 2014; Martins et al. 2014; Morgado, Dodaro, and
Marques-Silva 2014)) are driven by unsatisfiable cores pro-
vided by a SAT solver, without relying on a hybridization
between SAT and IP solvers.

In terms of alternative general frameworks for tackling
decision problems beyond NP, a central approach, often
instantiated via SAT solvers, is counterexample-guided ab-
straction refinement (Clarke et al. 2003; Clarke, Gupta, and
Strichman 2004), based on which practical solvers for vari-
ous industrial and KR problems have been proposed (Jan-
ota et al. 2012; Janota and Marques-Silva 2011; Janota,
Grigore, and Marques-Silva 2010; Wintersteiger, Hamadi,
and de Moura 2010; de Moura, Ruess, and Sorea 2002;
Barrett, Dill, and Stump 2002; Flanagan et al. 2003; Dvořák
et al. 2014; Finkbeiner and Jacobs 2012).
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Specifically for abduction, perhaps the closest algorith-
mic proposal to ours is the abstract approach by Satoh and
Uno (2006) which, motivated by algorithms for the central
itemset mining problem in data mining, iteratively collects
subset-maximal unexplanations, i.e., sets that are not ex-
planations, and constructs explanations by hitting the set of
complements of the collected maximal unexplanations. The
proposal of Satoh and Uno has not been implemented to the
best of our knowledge, blocking a direct comparison.

There is a long line of research on other forms of ab-
duction, including abductive logic programming (Kakas,
Kowalski, and Toni 1992), the NP variants of cost-based
abduction (see e.g. (Santos 1994)) and model-based diag-
nosis (Reiter 1987; Marques-Silva et al. 2015), abduction in
system verification, e.g., abductive inference (Dillig and Dil-
lig 2013), and abduction with first-order Horn theories (Ng
and Mooney 1992). However, there is little work on systems
for the actual propositional abduction problem focused on
in this paper. This is why we provide a comparison with a
native ASP-approach building upon the state-of-the-art dis-
junctive ASP solver Clingo.

The implicit hitting set approach for the NP-problem of
minimum satisfiability (MinSAT) problem, outlined in this
paper, has not been proposed earlier to the best of our knowl-
edge. While not the main focus of this work, an interest-
ing question is whether this approach could yield a com-
petitive MinSAT solver, in analogy with the success of the
MaxHS approach to MaxSAT. Further work on this would
be motivated by the several recent works proposing differ-
ent algorithmic approaches to MinSAT (Li et al. 2010; 2011;
2012; Zhu et al. 2012; Ansótegui et al. 2012; Kügel 2012;
Heras et al. 2012; Ignatiev et al. 2013; Ignatiev, Morgado,
and Marques-Silva 2014; Argelich et al. 2013).

Our FPTNP[f(k)]-completeness result for abduction re-
lies on the FPTNP[f(k)] class recently introduced by (de
Haan and Szeider 2014b; 2014a; Endriss, de Haan, and Szei-
der 2015). Further related complexity results for abduction
are shown in (Fellows et al. 2012; Pfandler, Rümmele, and
Szeider 2013; Pfandler, Pichler, and Woltran 2015).

7 Conclusions

Motivated by the potential of lifting the successful MaxHS
implicit hitting set approach for MaxSAT to problems well
beyond NP, we outlined a general framework for implicit
hitting set algorithms. Central to the proposed framework
is that it allows for natural instantiations based on multiple
SAT solvers and an optimization solver (for examples, an in-
teger programming or a quadratic programming solver) for
various important hard decision and optimization problems.
As a case study, we detailed an instantiation of the frame-
work for propositional abduction, a central KR problem that
is hard for the second level of the polynomial hierarchy. The
framework naturally allows for incorporating weight in the
objective function, for example for weighted abduction. We
showed that a prototype implementation of the instantiation
outperforms a state-of-the-art disjunctive answer set solver
on a natural encoding of propositional abduction. As the
general framework allows for instantiations to various cen-

tral problems in KR and AI, we see great potential in fur-
ther instantiations of the framework for obtaining practically
competitive solvers for other problem domains beyond NP.
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Zhu, Z.; Li, C. M.; Manyà, F.; and Argelich, J. 2012. A new
encoding from MinSAT into MaxSAT. In Proc. CP, volume 7514
of Lecture Notes in Computer Science, 455–463. Springer.

113


