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Abstract

We introduce an extension of dynamic programming �DP� we call �Coarse�to�Fine Dynamic
Programming� �CFDP�� ideally suited to DP problems with large state space� CFDP uses dynamic
programming to solve a sequence of coarse approximations which are lower bounds to the original
DP problem� These approximations are developed by merging states in the original graph into
�superstates� in a coarser graph which uses an optimistic arc cost between superstates� The
approximations are designed so that when CFDP terminates the optimal path through the original
state graph has been found� CFDP leads to signi	cant decreases in the amount of computation
necessary to solve many DP problems and can� in some instances� make otherwise infeasible
computations possible� CFDP generalizes to DP problems with continuous state space and we
o
er a convergence result for this extension� The computation of the approximations requires
that we bound the arc cost over all possible arcs associated with an adjacent pair of superstates�
thus the feasibility of our proposed method requires the identi	cation of such a lower bound� We
demonstrate applications of this technique to optimization of functions and boundary estimation
in mine recognition�

Index Terms� dynamic programming� A�star� mine recognition� brachistochrone� iterated com�
plete path� coarse to 	ne� global optimization

� Introduction

Many optimization problems can be recast as searches for the minimum cost path through a trellis
graph where the cost of a path is given by the sum of the costs of the arcs traversed in the path�
It is well�known that in such problems dynamic programming �DP� leads to a computationally
e
cient identi	cation of the globally optimal path� Examples of applications of DP to recognition
problems are numerous and include speech recognition ���� ���� ���� character recognition ���� ����
���� deformable template matching �������� soft decoding ������������������������ and road tracking
����� Such problems often lead to enormous state spaces� however� and the computations can be
infeasible� even with DP� To overcome this obstacle� we propose a variation on DP we call coarse�
to��ne dynamic programming �CFDP�� We demonstrate two applications of CFDP that emphasize
the generality and utility of this technique�
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The essential idea of our algorithm is to form a series of coarse approximations to the orig�
inal DP trellis by aggregating trellis states into �superstates�� For each coarse approximation�
the optimal path is found using DP with �optimistic� arc costs between the superstates� The
superstates along this optimal path are re	ned and the process is iterated until a demonstrably
globally optimal path is found� In many cases this global optimum is achieved with considerably
less computational expenditure than straight DP�

Our CFDP algorithm is similar to the A� or �Branch and Bound� algorithm familiar from
the AI literature ����� ����� ����� In the A� algorithm� one maintains a tree structure of �pre	xes�
which are partial paths through the graph beginning with the start state� along with the costs
of these pre	xes� The leaf nodes of this tree can be thought of as the �frontier� of exploration�
and for each frontier state one computes a lower bound on the cost of all paths connecting the
frontier state to the 	nal state� The sum of these two costs� the lower bound and the pre	x cost�
is a lower bound on all complete paths beginning with the pre	x� and the pre	xes partition the
collection of complete paths� The algorithm proceeds by �expanding� the frontier state with the
lowest estimated complete cost� thereby advancing the frontier� and updating the pre	x tree to
retain the best pre	x paths found so far� The process of estimating optimal costs and advancing
the frontier continues until the frontier reaches the 	nal node� At this point the optimal path has
been found�

Kam has built upon the idea of A� in his �Iterated Complete Path� �ICP� algorithm ����� �����
In an attempt to compute as few arc costs as possible� one begins by substituting a cheap lower
bound for each arc cost� Next the optimal path through the trellis is found using DP and along
this optimal path the true arc costs are computed� This procedure is iterated until the optimal
path is composed entirely of true arc costs� At this point we have found the optimal path through
the original graph�

While CFDP� A�� and ICP are all similar in spirit� their domains of useful application di
er�
ICP is intended for a dynamic programming problem with a small trellis in which arc costs are
expensive to compute� thus� it is not surprising that ICP o
ers nothing in particular to problems
with large state space� A� is also not particularly well�suited for large state space since large state
spaces lead to large pre	x trees� Our CFDP algorithm is particularly well�suited to DP problems
with large state spaces� In fact� CFDP generalizes naturally to continuous state space as our
examples illustrate�

Our CFDP bears a resemblance to hierarchical motion planning strategies popular in the
robotics literature ��������������� ���������� In this work a large state space of possible robot con�
�gurations is represented through a recursive partitioning into cells analogous to our superstates�
Successive re	nements of the state space into smaller and smaller cells are examined until one
produces a realizable path� Our work di
ers from algorithms presented for hierarchical motion
planning in that CFDP produces a provably optimal con	guration on the original state space� In
contrast� the hierarchical motion planning algorithms are generally suboptimal� or optimal only
with respect to the approximation of the original objective function associated with the state space
partition� We believe CFDP could make a signi	cant contribution to robot motion planning in
problems where an optimal solution is of paramount importance�

The following contains a careful development of our CFDP algorithms along with two applica�
tions� Section � gives a precise description of the algorithms with 	nite state space� demonstrates
the correctness of the algorithm� and generalizes of CFDP to continuous state space� Sections �
and � demonstrate applications of the algorithm to optimization of functions and mine detection
with the hope of suggesting the wide range of problems that can bene	t from CFDP� The Appendix
provides a convergence proof for our CFDP algorithm in the continuous state space case�
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� The CFDP Algorithm

We begin by sketching our algorithm� a more precise description follows� By trellis� we mean
a graph in which each node has an associated level� and arcs can can only connect nodes at
adjacent levels� Consider the trellis diagram in the upper�left panel of Figure � in which we seek
the minimum cost path from the left�most �state� to the right�most �state�� We solve a sequence
of approximations to this problem which is guaranteed to result in the optimal path�

In the 	rst approximation we partition the states� at each trellis level� into a small collection
of subsets or superstates� We de	ne an �optimistic� graph on the superstates using the following
two rules� Two superstates are connected if any of the pairs of states in their cross product are
connected� the cost of an arc between two superstates is the minimal cost over all arcs connecting
the superstates� The optimistic graph obtained using these rules is shown in the upper�right panel
of Figure �� The optimal path through this graph can be found using DP� this path is shown in
solid black lines�

Our second approximation is formed by re	ning the superstates along the optimal path as
shown in the middle�left panel of Figure �� The graph is then redrawn� using the same two rules
as before� and we 	nd the optimal path through this somewhat less optimistic graph� again using
DP� This optimal path is also shown in solid black�

The process of 	nding the optimal path and re	ning the superstates along the optimal path
continues until we 	nd an optimal path composed entirely of singleton superstates as in the bottom�
right panel of Figure �� This path must be the optimal path through the original graph as we will
argue presently�

More formally� let G � �S� E � C� be a weighted trellis graph where S is a set of nodes� E is a
set of edges� and C is a cost function de	ned on the edges� Thus every node s � S has a �level�
��s� � f�� � � � � Ng and we assume that E � f�s� t� � s� t � S� ��s� � � � ��t�g� The cost of an edge
�s� t� � E is given by C�s� t�� For simplicity�s sake we assume with no loss of generality that s� and
sN are the unique nodes having ��s�� � � and ��sN � � N and we de	ne the collection of paths
through G as

��G� � f�s�� s�� � � � � sN � � �sn� sn��� � E � n � �� � � � � N � �g
The cost of a path is then given by C�s�� s�� � � � � sN � �

PN��
n�� C�sn� sn��� and we seek the globally

minimal cost path through the trellis graph� It is well known that this minimal cost path can be
found through DP by recursively de	ning

C��s� �

�
� if s � s�
minft�S��t�s��EgC

��t� � C�t� s� otherwise

for s � S and
B�s� � arg min

ft�S��t�s��Eg
C��t� � C�t� s�

for s � S with ��s� � �� The optimal path is then �s��� � � � � s
�
N � where s�N � sN and s�n � B�s�n���

for n � �� � � � � N � ��
Our CFDP is now de	ned� In what follows� by a partition of a set R �jRj � �� we mean a

collection of at least two nonempty disjoint subsets whose union is R� If jRj � � the only possible
partition is fRg�
CFDP Algorithm

Initialization� Let Pn be a partition of fs � S � ��s� � ng� Let G� � �S�� E�� C�� where

S� �
N�
n��

Pn
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Figure �� The upper�left �gure is the original dynamic programming setup� The �ve remaining �gures
show a possible progression of our coarse�to��ne dynamic programming algorithm� The optimal path
�shown in bold lines	 in the �nal �gure in the lower�right must also be the optimal path in the original
trellis�






E� � f�S� T � � S� T � S� and there exists �s� t� � E � s � S� t � Tg
C��S� T � � min

�fs�t��s�S�t�T��s�t��Eg
C�s� t�

�S�
� � � � � � S

�
N � � arg min

f�S������SN ����G��g
C��S�� � � � � SN �

Iteration� For k � �� �� � � � de	ne Gk � �Sk� Ek� Ck� where

Sk � Sk�� � �
N�
n��

P �Sk��n �� n fSk��� � � � � � Sk��N g

Ek � f�S� T � � S� T � Sk and there exists �s� t� � E � s � S� t � Tg
Ck�S� T � � min

f�s�t��s�S�t�T��s�t��Eg
C�s� t�

�Sk� � � � � � S
k
N � � arg min

f�S������SN ����Gk�g
Ck�S�� � � � � SN�

where P �Skn� is any partition of Skn� Note that �Sk� � � � � � S
k
N � de	ned above can be computed

through DP�
Proposition� If jSj �� let

k� � minfk � jSknj � �� n � �� � � � � Ng

and let Sk
�

n � fsk�n g� n � �� � � � � N � Then

C�sk
�

� � � � � � sk
�

N � � min
f�s������sN ����G�g

C�s�� � � � � sN �

Proof� Since jSj �� only a 	nite number of iterations are possible before Sk is composed entirely
of singleton sets so k� is well�de	ned�

Let �s�� � � � � sN � � ��G�� Then there exist Sn � Sk� � n � �� � � � � N such that sn � Sn since
Sk� partitions S� Also note that �sn� sn��� � E for n � �� � � � � N � � implies �Sn� Sn��� � Ek� and
�S�� � � � � SN � � ��Gk��� Then

C�s�� � � � � sN � � Ck��S�� � � � � SN � � Ck��Sk
�

� � � � � � Sk
�

N � � C�sk
�

� � � � � � sk
�

N � �

It is worth noting that one can substitute a lower bound� �Ck�S� T �� for the true minimum arc
cost� Ck�S� T �� between two superstates without a
ecting the correctness of the algorithm� as long
as �Ck�S� T � � Ck�S� T � when jSj � jT j � �� In fact� the proof is identical to the above with �Ck

taking the place of Ck� In many applications� lower bounds are easy to compute from problem�
speci	c information� and often they come at considerably less computational cost than the true
minimum� Also we note that the sequence of DP problems generated by our CFDP algorithm are
quite similar to one another� so they needn�t be solved from scratch� In fact� each solution can be
obtained by updating a data structure common to all of the DP problems�

For trellis graphs� the computational complexity of any dynamic programming iteration is
O�jEj�� In CFDP� with typical superstate partitioning rules� the number of edges grows linearly
with the iteration� Thus the computational complexity of performing K iterations of CFDP
is O�K��� The actual number of iterations before the algorithm terminates is highly problem�
dependent and not amenable to simple complexity analysis� In the worst case� CFDP re	nes the
entire trellis graph before solving the DP problem that was originally presented� thus requiring
considerably more computation �O�jEj��� than straight DP �O�jEj��� In the best case� CFDP
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continually re	nes the optimal path found on the previous iteration� resulting in a computation
of O�log jEj�� While the e
ciency of CFDP varies in practice� we have found that judicious
application of CFDP can lead to considerable savings as demonstrated in our examples�

The essential idea of CFDP can be extended to a particular class of optimization problems on
functions of real variables� Suppose we want to minimize

f�x�� � � � � xN � �
N��X
n��

fn�xn� xn��� ���

where xn � Rn for n � �� � � � � N with Rn some d�dimensional rectangle of 	nite volume� �a�n� b
�
n��

� � �� �adn� b
d
n�� We can create a corresponding graph so that each possible solution �x�� � � � � xN � is

identi	ed with a path through the graph and f�x�� � � � � xN � is the cost of the path� We then can
express the optimization problem as a search for the minimal cost path through the graph�

Let G � �S� E � C� where

S �
N�
n��

f�x� n� � x � Rng

E � f�s� t� � s� t � S� ��s� � � � ��t�g
C�s� t� � f��s��x�s�� x�t��

where the components of s � S are given by s � �x�s�� ��s��� The CFDP algorithm can be applied
directly to this situation� For example� for each n � �� � � � � N we could de	ne the initial partition
at the nth level to be Pn where S � Pn has components S � �X�S�� n� with �S�PnX�S� � Rn and
the fX�S� � S � Png are disjoint rectangles� The algorithm would proceed exactly as given above�
For each iteration k we 	nd the optimal sequence of superstates �Sk� � � � � � S

k
N� through dynamic

programming and then partition these superstates into smaller superstates� For example� each
partition P �Skn� could be such that �S�P �Skn�

X�S� � X�Skn� with fX�S� � S � P �Skn�g being

disjoint subrectangles of X�Skn�� For de	niteness one could imagine forming P �Skn� out of �d

superstates obtained by splitting X�Skn� in two across all d dimensions�

In this continuous version of CFDP while the volume of the fX�Skn�g might shrink to �� the
fX�Skn�g will never degenerate into singleton sets� thus there is no obvious stopping criterion
for continuous CFDP� We do show in the Appendix� however� that in a suitably de	ned sense
the approximations given by the �X�Sk� �� � � �X�SkN �� collapse around the optimal solution� thus
showing that CFDP converges to the globally optimal solution�

� Optimization of Functions

In a famous calculus problem� the Brachistochrone Problem� one seeks the minimum time path
between two points on a vertical plane �x�� y��� �xN � yN �� with �xN � yN � lower than �x�� y��� It is
assumed that gravity is the only force acting on an object as it traverses the path� The solution�
a cycloid �Figure � left�� can be derived using the Calculus of Variations ���� � thus our interest
in this problem is for illustrative purposes�

We consider a discretization of the problem in which we seek a piecewise�linear path with knots
at �xn� yn� where n � �� �� � � � � N � The values of the fxng are 	xed by the design of the problem�
as well as the initial and 	nal heights� y�� yN � and we wish to minimize the time to traverse the
path de	ned by the remaining heights� y�� y�� � � � � yN�� �Figure �� right��
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Figure �� Left� For each panel the leftmost point of the curve is �x�� y�	 and the rightmost point is
�xN � yN 	� The optimal solution to the Brachistochrone problem 
 a cycloid� Right� The approximate
optimal solution to a piecewise linear approximation to the Brachistochrone problem�
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Assuming the object begins with velocity � at �x�� y�� � the velocity at any point� �x� y�� can
be calculated by the principle of conservation of energy� regardless of the path leading to �x� y��
This velocity is given by v�x� y� �

p
�g�y� � y� where g is the acceleration due to gravity� Thus

the time it takes to travel from� say� �x�� y�� to �x�� y�� along a straight line is given by

C�x�� y�� x�� y�� �
q
��g

p
�y� � y��� � �x� � x���p
y� � y� �

p
y� � y�

���

and the total time needed to traverse the path is given by summing the times over the individual
line segments�

C�x�� y�� � � � � xN � yN � �
N��X
n��

C�xn� yn� xn��� yn���

as in Eqn� ��

With a suitable discretization of the possible heights this problem would be well�suited to
DP� however� the discretization might need to be very 	ne before we achieve su
cient accuracy�
Also� we might wish to achieve the maximum accuracy for 	xed computing time and 	xing the
discretization a priori makes this impossible� Instead we apply our continuous CFDP algorithm�

We begin by de	ning the initial discretization into superstates which in this case are intervals�
Speci	cally� we let ymin be the minimum path height we are willing to consider and for each
n � �� � � � � N � � we partition the interval �ymin� y�� into I intervals�

Pn � f�ymin� ymin ���� �ymin ��� ymin � ���� � � � � �ymin � �I � ���� ymin � I��g

where � � �y� � ymin��I� Since the initial and 	nal heights are 	xed� for n � � and n � N we
de	ne P� � fy�g and PN � fyNg� We take our initial collection of superstates to be S� � �Nn��Pn
where� for the sake of clarity of notation� we drop the more formal notion of a superstate as a
rectangle and level pair and simply refer to the rectangle as the superstate�

We de	ne the graph on these superstates by forming all possible arcs between superstates
at levels n and n � � for n � �� � � � � N � �� For an arc between superstates Sn � �ln� un� and
Sn�� � �ln��� un��� at levels n and n� �� we de	ne the optimal cost

C��Sn� Sn��� � min
�yn�yn����Sn�Sn��

C�xn� yn� xn��� yn���

This cost can be computed in closed form as follows� First note that the minimal cost must be
achieved at a point �yn� yn��� � Sn � Sn�� with either yn � ln or yn�� � ln��� thus reducing the
problem to one of minimizing a function of one variable� Consider the case in which we assume
yn � ln� the case in which yn�� � ln�� is treated analogously� Then

C�xn� yn� xn��� yn��� �
q
��g

p
�yn�� � ln�� � �xn�� � xn��p

y� � ln �
p
y� � yn��

�
q
��g

p
s	 � r	 � �s�r� � d�

r � s

by substituting r� � y� � ln� s
� � y� � yn��� and d� � �xn�� � xn�

�� Di
erentiating with respect
to s and setting the derivative to zero gives

s	 � �s
r � �sr
 � r	 � d� � �

�



and the minimizing root is given by

yroot � y� �
�
�r
�
�
B

�
�

p
�

�

s
�r�A��


p
B � �

p
BA��
 � �

p
Bd� � ��r
A��


A��

p
B

�
A

�

where

A � ��r�d� � �

�

p
��d� � ��r	d	

and

B �
�r�A��
 � �A��
 � ��d�

A��


with the help of symbolic computation� Thus� for the case when yn � ln we must have

C��Sn� Sn��� �

�
min�C�xn� ln� xn��� ln���� C�xn� ln� xn��� un���� yroot 	� �ln��� un���
C�xn� ln� xn��� yroot� otherwise

Finding the path through this trellis graph using the arc cost function C� can be accomplished
using dynamic programming� Suppose that the optimal sequence of superstates in the kth iteration
of the algorithm is found to be Sk� � � � � � S

k
N�� with Skn � �lkn� u

k
n� for n � �� � � � � N � �� We then

create the superstates at iteration k��� Sk�� by letting the partition at level n � �� � � � � N � � be

P k��
n � P k

n � f�lkn�
lkn � ukn

�
�� �

lkn � ukn
�

� ukn�g n f�lkn� ukn�g

and letting Sk�� � P� � PN � ��N��n�� P
k��
n �

The graph is then redrawn connecting each superstate at level n � �� � � � � N � � with each
superstate at level n��� again using C� to compute arc costs� The algorithm iterates the process
of 	nding the optimal path using dynamic programming and re	ning the partition along the
optimal path and redrawing the graph� The proof given in the Appendix guarantees that the
optimal superstates found at each iteration of the algorithm will eventually collapse around the
optimal path� provided one is willing to assume a priori that the optimal path always lies above
some number ymin�

We performed experiments on this problem with �� evenly spaced knots� x�� x�� � � � � x��� and
with �x�� y�� � ��� �� and �x��� y��� � ������ and a graph of the 	nal result is given in the right
panel of Figure �� We compare the relative e
ciency of continuous CFDP to straight DP as fol�
lows� For straight DP we consider discretizations d � �� �� � � � � �� where the dth discretization has
�d states� For each discretization we compute the number of arc cost calculations� DP�d�� neces�
sary to obtain a DP solution since the arc costs dominate the total computing time� To facilitate
comparisons we ran the CFDP with the same target discretizations as used above� In seeking a
CFDP solution at level d we do not allow any state to divide beyond the level d discretization� thus
producing exactly the same solution as would be obtained with straight DP� We denote the num�
ber of arc cost computations in this case by CFDP�d�� Figure � shows log���CFDP�d��DP�d�� for
various values of d demonstrating the increasing value of CFDP at progressively 	ner discretiza�
tions� At the 	nest discretization the 	gure demonstrates a ����fold decrease in the number of arc
cost computations� Since the arc cost computations require a constant amount of time for both
straight DP and CFDP� the 	gure suggests an increasingly bigger win for CFDP as one seeks a
solutions at progressively 	ner discretizations�
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Figure �� The �gure shows log���CFDP�d	�DP�d		 at levels d � �� 
� � � � � ��� The index d represents a
discretization into �d states�

� Boundary Estimation in Mine Recognition

In our formulation of a mine recognition problem we are given a collection of images containing
mine�like objects� These objects can be recognized as areas of relatively lighter pixel values coming
from a known library of possible shapes � parallelograms and ellipses in the data presented
here� Our approach has four stages� 	nding candidate locations� estimating mine boundaries�
optimizing over the boundary estimates using the shape library information� and accepting only
the mine hypotheses whose likelihood exceeds a threshold� We focus here on boundary estimation
which we believe to be the most di
cult stage� Since all of the shapes in our library are convex�
we formulate the boundary estimation problem as one of 	nding the mostly likely convex set
containing the candidate location� This is the problem we discuss here� for a complete discussion
see �����

We begin by developing a representation of the class of convex sets containing a 	xed reference
point x� Such a set can be thought of as a pair of ���periodic functions �r�	�� t�	�� representing
the radius and tangent direction at every angle in a coordinate system with origin x �see Figure
��� Thus r�	� � � and ���� 
 t�	� 
 ��� for 	 � ��� ���� In practice� we will only specify
�r�	�� t�	�� at a 	nite number of angles 	�� 	�� � � � � 	N��� typically N � �� or N � �� in our
experiments� Additionally we will restrict our attention to convex sets whose boundaries are
contained in an annulus centered around x� Thus we seek �r�	n�� t�	n�� � �rmin� rmax�������� ����
for n � �� � � � � N � ��

Consider the problem of specifying values �r�	n�� t�	n��� n � �� �� � � � � N � � in a manner
consistent with convexity� Our choice of �r�	��� t�	��� is unconstrained� however� convexity imposes
constraints on the choices at other angles� as follows� Consider any adjacent pair of angles� say 	�
and 	�� In a convex set the tangent angle must continue to rotate counter�clockwise as we move
counter�clockwise through the possible angles� As a result� the maximum possible value for r�	���
as dictated by our choice of �r�	��� t�	���� is the length at which the ray emanating from �	�� r�	���
in the t�	�� direction intersects the line containing x and �	�� r�	��� �see Figure �� right�� For
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Figure 
� Left� A convex set containing x can be described in terms of the function r��	 giving the
distance to the boundary as a function of �� t��	 is the relative orientation of the tangent direction to
the convex set at the boundary point ��� r��		� Right� The �rst of the two conditions for a legal arc is
described pictorially� For convexity� t��	 must rotate counter�clockwise as � moves counter�clockwise�
This places a constraint on r���	� r���	� and t���	�

instance� the con	guration depicted in Figure � is consistent with convexity� A similar relation
obtained by observing the way �r�	��� t�	��� constrains r�	�� leads to another inequality� So� for
any n � �� �� � � � � N � �� a �legal� con	guration of r�	n�� t�	n�� r�	n���� t�	n��� satis	es

cos�t�	n�� �	n�� � 	n��

cos�t�	n��

 r�	n�

r�	n���

 cos�t�	n����

cos�t�	n��� � �	n�� � 	n��
���

where the subscript addition is always taken to be modulo N � If we de	ne the �states� sn �
�r�	n�� t�	n��� then the convexity constraints operate on adjacent pairs of states so the possible
convex sets can be identi	ed with paths through a trellis� The last state choice� at 	N��� must
satisfy two pairs of constraints� one for sN��� sN�� and one for sN��� s�� so our trellis �wraps
around� on itself�

Our data model is de	ned for a circular window of pixel data centered around x as follows
�Figure ��� The pixel data y are partitioned into N �pie�slices� y�� y�� � � � � yN�� bounded by the
f	ng as in Figure �� We then assume� given a convex set s � �s�� s�� � � � � sN���� the fyng are
generated independently and with only local dependence on the fsng� That is�

P �yjs� �
N��Y
n��

P �ynjsn� sn���

We have experimented with a number of di
erent data models� some corresponding to generative
models with straightforward probabilistic assumptions� and others simply being quantities that
seem reasonable to optimize� The actual experiments were performed with this latter kind of
�data model� de	ned by

log�P �ynjsn� sn���� �
 
in �  
out

 �

where  
in and  
out are the empirical mean values for the �inside� and �outside� regions de	ned by
the triangle associated with sn and sn�� and  � is a pooled standard deviation estimate assuming
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Figure �� The circular data window� y� is divided into N �pie�slices� y�� y�� � � � � yN��� Given a convex
set hypothesis� s � s�� s�� � � � � sN��� we assume the y�� y�� � � � � yN�� are conditionally independent�
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Figure �� Left� The �rst iteration of CFDP for convex sets� Right� The second iteration of CFDP�

the inside and outside regions contain homogeneous pixel values of di
ering means but constant
variance� Here we have assumed that mines are regions of high pixel values on a lower pixel value
background� The log likelihood of a convex set can then be expressed as a sum of arc scores over
the associated trellis path�

If we discretize the state space a priori� then 	xing s�� the maximum likelihood convex set con�
taining s� can be found by traditional DP� We� of course� must consider all possible starting points
for s�� so the computation increases by an order of magnitude� See ���� for a more computationally
elegant solution to this problem�

To apply continuous CFDP� we partition the radius�tangent space� �rmin� rmax�� ������������
into a collection of rectangles as in the left panel of Figure �� Each subrectangle in this 	gure
represents a range of possible radii and tangent values� We call this initial partition P � and let
Pn � P � for n � �� � � � � N � �� Our initial collection of superstates is then S� � �N��n�� Pn�

In creating the kth superstate graph� Gk � �Sk� Ek� Ck�� k � �� �� � � �

Ek � f�Sn� Sn��� � Sn� Sn�� � Sk� ��Sn� � n� ��Sn��� � n� �� ���

there exists �sn� sn��� � Sn � Sn�� with L�sn� sn��� � �g
where L�sn� sn��� is � or � as Eqn� � is satis	ed or not� If Sn � �rln� r

u
n� � �tln� t

u
n� and Sn�� �

�rln��� r
u
n���� �tln��� t

u
n���� then this condition can be described by the constraints

cos�tln � ���N�

cos�tln�

 run

rln��

���

cos�tun���

cos�tun � ���N�
� rln

run��

���

��



tln�� � ���N � tun ���

The 	rst two constraints above are simply restatements of Eqn� � while the last constraint forces
the tangent angle to be a nondecreasing function of the angle� When dealing with isolated states
the monotonicity of the tangent angle is a direct byproduct of Eqn� �� however� when dealing with
superstates we must explicitly include this constraint�

Ideally� the arc score between two superstates Sn and Sn��� �Sn� Sn��� � Ek� k � �� �� � � ��
would be

C�Sn� Sn��� � max
�sn�sn����Sn�Sn��

log�L�sn� sn���P �ynjsn� sn��� ���

The e
ort necessary to perform this computation would defeat the purpose of CFDP� however�
Instead we use the upper bound for C�Sn� Sn����

�C�Sn� Sn��� � max
�sn�sn����Sn�Sn��

log�L�sn� sn���� � max
�sn�sn����Sn�Sn��

log�P �ynjsn� sn���� ���

The left term on the right hand side is just the computation of Eqns� � ! �� while the right
term� depending only on the two radius ranges� is readily approximated by maximizing over a
discretization of the possible values� More speci	cally� we approximate the right term of Eqn� �
by maximizing P �ynjsn� sn��� over the states corresponding to triangles �x� r�	n�� r�	n���� where
r�	n� � r�	n�� � � � rln� � � � � r

h
n �c� f� Figure ���

For the kth iteration of our algorithm� the legal paths� ��Gk�� are the sequences �S�� � � � � SN���
such that �Sn� Sn��� � Ek and S� � SN�� � a convex set must end in the same state in which it
begins� The cost of a path is then

�C�S�� � � � � SN��� �
N��X
n��

�C�Sn� Sn���

As usual� the optimal path in the kth iteration is de	ned to be

�Sk� � � � � � S
k
N��� � arg max

f�S������SN������Gk�g

�C�S�� � � � � SN���

which can be is found by solving a dynamic programming problem for each S� � SN�� and taking
the maximizing path�

The algorithm then proceeds as follows� We de	ne the depth of a superstate S � �rl� ru���tl� tu�
by

depth�S� � log�
rmax � rmin

ru � rl

and let L be our �target� depth� For a superstate S � �rl� ru�� �tl� tu�� de	ne

P �S� �

������	
�����


fSg if depth�S� � L
f�rl� �rl � ru����� �tl� �tl � tu����g �
f��rl � ru���� ru�� �tl� �tl � tu����g �
f�rl� �rl � ru����� ��tl � tu���� tu�g �
f��rl � ru���� ru�� ��tl � tu���� tu�g otherwise

After having found the optimal path at the kth iteration we let

Sk�� � Sk � �
N���
n��

P �Skn�� n fSk� � � � � � SkN��g

�




and then repeat the process of redrawing the graph according to Eqn� � and computing the edge
costs according to Eqn� �� The algorithm terminates when depth�Skn� � L for n � �� � � � � N � ��

For illustrative purposes� the left panel of Figure � shows a possible optimal sequence of su�
perstates found in the G�� As described above� we re	ne the superstates along this optimal path
and construct G�� A possible optimal path through G� is shown in the right panel of Figure ��

Although the convergence of CFDP is not guaranteed by the result in the Appendix� since the
objective function is discontinuous� the algorithm still remains plausible and seems to work well
in practice� In our experiments we chose the f	ng to be �� equally spaced locations and iterated
the CFDP algorithm until all superstates along the optimal path had reached depth �� superstates
were not allowed to divide beyond depth �� At this point the superstates are about � pixel by ����
radians in size� The top image of Figure � shows the candidate mine locations that we consider
and the bottom image shows the optimal convex sets located by CFDP�

Figure � shows results from our boundary estimation experiments describing the savings in
computation due to using CFDP� The top panel gives log���CFDP�l��DP�l�� for levels l � � � � � � �
for three di
erent boundary estimation problems where CFDP�l� and DP�l� are the total number of
DP comparisons using CFDP and DP� This is the calculation that dominates the total computation
of our algorithm� We could not compute DP��� and DP��� directly� so in each of the three examples
the last two points represent estimates of the total log speedup� These estimates are based on the
observation that DP�l��DP�l��� should converge to a constant as l increases� The bottom panel
of Figure � shows the discretization of the superstate space for a particular angle after 	nding the
optimal boundary at level �� Note that the majority of the superstate space remains unexplored
�c� f� Figure ���

� Discussion

The basic idea of CFDP is simple� however� as the preceding might suggest� its application is
not always straightforward� For CFDP to work e
ectively one must identify superstates with the
following properties

�� The superstates must be easily partitioned into smaller superstates�

�� One must be able to e
ciently compute an optimum over all possible arc costs between two
connected superstates� or a good bound for that optimum�

�� The superstate arc scores should be homogeneous� That is� for connected superstates� S�� S��
C�S�� S�� should be close to C�s�� s�� for any �s�� s�� � E �

The necessity of the 	rst two properties is clear� the third property� homogeneity of arc costs�
ensures that the superstate arc costs are reasonable proxies for the constituencies they represent�
When arc costs are not homogeneous the superstate arc score will be signi	cantly di
erent from
some of the constituent arc scores and can make the arc appear to be unrealistically attractive�
Thus time is wasted in re	ning superstates before they can be veri	ed to be suboptimal�

Often the above objectives compete with one another to some extent� Typically simple super�
states �shapes� such as rectangles are the easiest to to represent and split� however such superstates
do not necessarily give the most homogeneous arc scores� On the other hand� superstates de	ned
with homogeneity in mind might have complex shapes and therefore be di
cult to represent and
split�

Occasionally it is possible to 	nd a representation of superstates for which one can e
ciently
compute a optimum for the cost between superstates as in Section �� More often there is a tradeo
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Figure �� Top� The candidate locations� Bottom� Optimal convex sets�
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between the quality of the bound on arc costs and the cheapness with which it can be computed�
The �art� of using CFDP lies in navigating these tradeo
s e
ectively� We can o
er no prescription
for identifying the right choice of superstate for any given problem� or any guarantee that such a
choice exists� However� we hope that the examples demonstrate that situations exist that do lend
themselves to CFDP� In fact� we believe them to be plentiful�

Successful results with CFDP depend also on aspects of the application domain having nothing
to do with the choice of superstates� Speci	cally� the ideal domain is one in which there are
relatively few paths that give nearly optimal scores� In such a problem� CFDP wastes little time
re	ning superstates that do not lie on the eventual optimal path and proceeds directly to the
optimal solution thereby realizing a signi	cant savings in computation�

The correctness of our CFDP algorithm relies on bounding the cost of all possible arcs between
superstates� In each of the applications we have presented� a genuine upper or lower bound for
this arc cost was computed� As a 	nal comment� we remark that good results might be obtained
by relaxing this constraint and using a near upper or lower bound� or perhaps even an average
arc cost� With this relaxation� we lose the guarantee of eventually identifying an optimal path�
however� good paths can be found this way in some problems in which �true� CFDP is impractical�

� Appendix

The continuous version of CFDP introduced in Section � and exempli	ed in Sections � and �
generates a sequence of approximations to the optimal path through a trellis with a 	nite number
of levels and continuous state space� The approximations are obtained by solving a 	nite state
distillation of the continuous state problem with an �optimistic� version of the objective function�
Each approximate solution gives a rectangle for each trellis level that� we hope� contains the
optimal state� We show here that� under suitable assumptions� the rectangles collapse around the
optimal solution� thus continuous CFDP converges to the optimal solution�

Suppose we have a closed subset " � �N with diameter D�"� � �� Let H � " 
 � be a
continuous function we wish to maximize and assume that x� is the unique maximizer in "� We
assume the existence of an extension of H to rectangular subsets X � " such that H�x� 
 H�X�
for all x � X and such that for every 
 � � there is a � � � with

D�X� � � � jH�X��H�x�j � 


for all x � X � "� Consider the following process which describes the essential behavior of CFDP�
We begin with some initial partition of " into a 	nite number of subsets we denote by P� and we
generate the subsequent partitions� fPmg� by letting

Xm � arg max
X�Pm

H�X�

and recursively de	ning Pm from Pm�� by subdividing Xm�� into sets of half the diameter of
Xm��� Other elements of Pm�� may also be subdivided to obtain Pm but it is not required�

Proposition� If fxmg is a sequence of points chosen so that xm � Xm for m � �� �� � � � where
the fXmg are de	ned as above� then xm 
 x��

Before we give the proof of the proposition we make two remarks about the way the proposition
relates to CFDP� First of all� the proposition makes no reference to how the fXmg are found� Of
course we do this in CFDP with dynamic programming but this is not relevant to the argument
presented here� Secondly� we clarify the relationship between the fPmg of our proposition and the

��



partitions of CFDP� In CFDP� at each iteration� m� we have a partition on the state space for
each of the N levels of the trellis� Any set that can be formed as an N �fold cross product of these
partitions will be an element of Pm� Thus H is our upper bound on path scores�

Proof� Since for any � � � we can only have D�Xm� � � 	nitely many times� we must have
D�Xm�
 � and hence

H�Xm��H�xm�
 �

Also H�xm� 
 H�x�� 
 H�Xm� so H�xm� 
 H�x��� Fix 
 and observe that� since x� is the
unique maximizer of the continuous function H�

max
x��B�x����

H�x�
def
� H� � H�x��

where B�x� 
� is the open 
�radius ball around x� Choose m such that for k � m�

H�x���H�xk� � H�x���H�

Then H�xk� � H� so xk � B�x�� 
��
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