Coarse-to-Fine Dynamic Programming*

Christopher Raphaelf

August 28, 2000
revised March 30, 2001

Abstract

We introduce an extension of dynamic programming (DP) we call “Coarse-to-Fine Dynamic
Programming” (CFDP), ideally suited to DP problems with large state space. CFDP uses dynamic
programming to solve a sequence of coarse approximations which are lower bounds to the original
DP problem. These approximations are developed by merging states in the original graph into
“superstates” in a coarser graph which uses an optimistic arc cost between superstates. The
approximations are designed so that when CFDP terminates the optimal path through the original
state graph has been found. CFDP leads to significant decreases in the amount of computation
necessary to solve many DP problems and can, in some instances, make otherwise infeasible
computations possible. CFDP generalizes to DP problems with continuous state space and we
offer a convergence result for this extension. The computation of the approximations requires
that we bound the arc cost over all possible arcs associated with an adjacent pair of superstates;
thus the feasibility of our proposed method requires the identification of such a lower bound. We
demonstrate applications of this technique to optimization of functions and boundary estimation
in mine recognition.

Index Terms: dynamic programming, A-star, mine recognition, brachistochrone, iterated com-
plete path, coarse to fine, global optimization

1 Introduction

Many optimization problems can be recast as searches for the minimum cost path through a trellis
graph where the cost of a path is given by the sum of the costs of the arcs traversed in the path.
It is well-known that in such problems dynamic programming (DP) leads to a computationally
efficient identification of the globally optimal path. Examples of applications of DP to recognition
problems are numerous and include speech recognition [1], [2], [3]; character recognition [4], [5],
[6]; deformable template matching [7],[8]; soft decoding [9],[10],[11],[12],[13]; and road tracking
[14]. Such problems often lead to enormous state spaces, however, and the computations can be
infeasible, even with DP. To overcome this obstacle, we propose a variation on DP we call coarse-
to-fine dynamic programming (CFDP). We demonstrate two applications of CFDP that emphasize
the generality and utility of this technique.

*This research was partly supported by a National Science Foundation Postdoctoral Fellowship, Award 92-06369.
"Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003-4515,
raphael@math.umass.edu

The essential idea of our algorithm is to form a series of coarse approximations to the orig-
inal DP trellis by aggregating trellis states into “superstates.” For each coarse approximation,
the optimal path is found using DP with “optimistic” arc costs between the superstates. The
superstates along this optimal path are refined and the process is iterated until a demonstrably
globally optimal path is found. In many cases this global optimum is achieved with considerably
less computational expenditure than straight DP.

Our CFDP algorithm is similar to the A* or “Branch and Bound” algorithm familiar from
the Al literature [15], [16], [17]. In the A* algorithm, one maintains a tree structure of “prefixes”
which are partial paths through the graph beginning with the start state, along with the costs
of these prefixes. The leaf nodes of this tree can be thought of as the “frontier” of exploration,
and for each frontier state one computes a lower bound on the cost of all paths connecting the
frontier state to the final state. The sum of these two costs, the lower bound and the prefix cost,
is a lower bound on all complete paths beginning with the prefix, and the prefixes partition the
collection of complete paths. The algorithm proceeds by “expanding” the frontier state with the
lowest estimated complete cost, thereby advancing the frontier, and updating the prefix tree to
retain the best prefix paths found so far. The process of estimating optimal costs and advancing
the frontier continues until the frontier reaches the final node. At this point the optimal path has
been found.

Kam has built upon the idea of A* in his “Iterated Complete Path” (ICP) algorithm [18], [19].
In an attempt to compute as few arc costs as possible, one begins by substituting a cheap lower
bound for each arc cost. Next the optimal path through the trellis is found using DP and along
this optimal path the true arc costs are computed. This procedure is iterated until the optimal
path is composed entirely of true arc costs. At this point we have found the optimal path through
the original graph.

While CFDP, A*, and ICP are all similar in spirit, their domains of useful application differ.
ICP is intended for a dynamic programming problem with a small trellis in which arc costs are
expensive to compute; thus, it is not surprising that ICP offers nothing in particular to problems
with large state space. A* is also not particularly well-suited for large state space since large state
spaces lead to large prefix trees. Our CFDP algorithm is particularly well-suited to DP problems
with large state spaces. In fact, CFDP generalizes naturally to continuous state space as our
examples illustrate.

Our CFDP bears a resemblance to hierarchical motion planning strategies popular in the
robotics literature [22],[23],[24], [25],[26]. In this work a large state space of possible robot con-
figurations is represented through a recursive partitioning into cells analogous to our superstates.
Successive refinements of the state space into smaller and smaller cells are examined until one
produces a realizable path. Our work differs from algorithms presented for hierarchical motion
planning in that CFDP produces a provably optimal configuration on the original state space. In
contrast, the hierarchical motion planning algorithms are generally suboptimal, or optimal only
with respect to the approximation of the original objective function associated with the state space
partition. We believe CFDP could make a significant contribution to robot motion planning in
problems where an optimal solution is of paramount importance.

The following contains a careful development of our CFDP algorithms along with two applica-
tions. Section 2 gives a precise description of the algorithms with finite state space, demonstrates
the correctness of the algorithm, and generalizes of CFDP to continuous state space. Sections 3
and 4 demonstrate applications of the algorithm to optimization of functions and mine detection
with the hope of suggesting the wide range of problems that can benefit from CFDP. The Appendix
provides a convergence proof for our CFDP algorithm in the continuous state space case.

2 The CFDP Algorithm

We begin by sketching our algorithm; a more precise description follows. By trellis, we mean
a graph in which each node has an associated level, and arcs can can only connect nodes at
adjacent levels. Consider the trellis diagram in the upper-left panel of Figure 1 in which we seek
the minimum cost path from the left-most “state” to the right-most “state.” We solve a sequence
of approximations to this problem which is guaranteed to result in the optimal path.

In the first approximation we partition the states, at each trellis level, into a small collection
of subsets or superstates. We define an “optimistic” graph on the superstates using the following
two rules: Two superstates are connected if any of the pairs of states in their cross product are
connected; the cost of an arc between two superstates is the minimal cost over all arcs connecting
the superstates. The optimistic graph obtained using these rules is shown in the upper-right panel
of Figure 1. The optimal path through this graph can be found using DP; this path is shown in
solid black lines.

Our second approximation is formed by refining the superstates along the optimal path as
shown in the middle-left panel of Figure 1. The graph is then redrawn, using the same two rules
as before, and we find the optimal path through this somewhat less optimistic graph, again using
DP. This optimal path is also shown in solid black.

The process of finding the optimal path and refining the superstates along the optimal path
continues until we find an optimal path composed entirely of singleton superstates as in the bottom-
right panel of Figure 1. This path must be the optimal path through the original graph as we will
argue presently.

More formally, let G = (S,&,C) be a weighted trellis graph where S is a set of nodes, £ is a
set of edges, and C is a cost function defined on the edges. Thus every node s € S has a “level”
v(s) € {0,...,N} and we assume that £ C {(s,t) : s,t € S,v(s) + 1 = v(t)}. The cost of an edge
(s,t) € € is given by C(s,t). For simplicity’s sake we assume with no loss of generality that sp and
sy are the unique nodes having v(sg) = 0 and v(sy) = N and we define the collection of paths
through G as

m(G) = {(s0,51,---,5N) : (5n,5n41) €E,n=0,...,N — 1}
The cost of a path is then given by C(sg, s1,...,8n5) = 2{:—01 C(8n, sn+1) and we seek the globally
minimal cost path through the trellis graph. It is well known that this minimal cost path can be
found through DP by recursively defining

C*() . 0 if s = S0
8= minges.t5)ce) CF(t) + C(t,s) otherwise
for s € S and

B(s) =ar n C*(t)+C(ts)

g mi

{teS:(t,s)e€}
for s € S with v(s) > 0. The optimal path is then (sg,...,s}) where s} = sy and s;, = B(s}, 1)
forn=0,...,N — 1.

Our CFDP is now defined. In what follows, by a partition of a set R (|R| > 1) we mean a
collection of at least two nonempty disjoint subsets whose union is R. If |R| = 1 the only possible
partition is {R}.

CFDP Algorithm
Initialization: Let P, be a partition of {s € S : v(s) = n}. Let G° = (S, £, C°) where

N
s = Urp
n=0

Figure 1: The upper-left figure is the original dynamic programming setup. The five remaining figures
show a possible progression of our coarse-to-fine dynamic programming algorithm. The optimal path
(shown in bold lines) in the final figure in the lower-right must also be the optimal path in the original
trellis.

EY = {(8,T):8,T € S° and there exists (s,t) € £,5s € S,t € T}
c%s,T) = C(s,t)

CO(SO, e aSN)

min
({s,t):5€8,teT,(s,t)eE}

SO) R SO = ;
(So N) arg {(SO,...,E'I}\:?EW(QO)}

Iteration: For k = 1,2, ... define G¥ = (8%, &%, C*) where

st = sty (L]j P(SE) \ {So -, Sy 1

n=0

¥ = {(S,T):8,T € S* and there exists (s,t) € £,s € S,t € T}
ck(S,T) = min C(s,t)
{(s;t):s€S,teT,(s,t) €€}

Sk ...,8%) = ar min Cc*(Sy,...,S
(5o v) B (Son B n(giy C (50 v)

where P(SF) is any partition of SX. Note that (S%,...,S%) defined above can be computed
through DP.
Proposition: If |S| < oo let

k* = min{k: |S¥| =1,n=0,...,N}
and let S¥" = {s¥"}, n=0,...,N. Then

C(s’g*,...,s]ﬁ): C(s0y---,8N)

min
{(s0;.--s)Em(9)}
Proof: Since |S| < oo only a finite number of iterations are possible before S* is composed entirely
of singleton sets so k* is well-defined.
Let (so,--.,55) € 7(G). Then there exist S, € ¥, n = 0,..., N such that s, € S, since
S*" partitions S. Also note that (s,,s,11) € £ forn =0,...,N — 1 implies (S, Sp+1) € E¥ and
(So,--.,Sn) € m(GF"). Then

C(s0,...,5n8) > CF (So,...,Sn) > C¥ (S¥',...,8k)=C(sF,...,s%) O

It is worth noting that one can substitute a lower bound, é’k(S, T), for the true minimum arc
cost, C*(8, T), between two superstates without affecting the correctness of the algorithm, as long
as C*(S8,T) = C*(8,T) when |S| = [T| = 1. In fact, the proof is identical to the above with C*
taking the place of C*. In many applications, lower bounds are easy to compute from problem-
specific information, and often they come at considerably less computational cost than the true
minimum. Also we note that the sequence of DP problems generated by our CFDP algorithm are
quite similar to one another, so they needn’t be solved from scratch. In fact, each solution can be
obtained by updating a data structure common to all of the DP problems.

For trellis graphs, the computational complexity of any dynamic programming iteration is
O(|€]). In CFDP, with typical superstate partitioning rules, the number of edges grows linearly
with the iteration. Thus the computational complexity of performing K iterations of CFDP
is O(K?). The actual number of iterations before the algorithm terminates is highly problem-
dependent and not amenable to simple complexity analysis. In the worst case, CFDP refines the
entire trellis graph before solving the DP problem that was originally presented, thus requiring
considerably more computation (O(|€|?)) than straight DP (O(|€])). In the best case, CFDP

5

continually refines the optimal path found on the previous iteration, resulting in a computation
of O(log|€]). While the efficiency of CFDP varies in practice, we have found that judicious
application of CFDP can lead to considerable savings as demonstrated in our examples.

The essential idea of CFDP can be extended to a particular class of optimization problems on
functions of real variables. Suppose we want to minimize

N-1
f(zo,...,zN) = Z frn(Zn, Tni1) (1)

n=0
where z, € R, for n =0,..., N with R, some d-dimensional rectangle of finite volume: [a},, b}b] X
. % [ad,b3]. We can create a corresponding graph so that each possible solution (zo, ..., zy) is

identified with a path through the graph and f(zo,...,zn) is the cost of the path. We then can
express the optimization problem as a search for the minimal cost path through the graph.
Let G = (S,€&,C) where

N
S = U{(m,n):mGRn}

n=0

E = {(s,t):s5,t € S,v(s)+1=v(t)}
Cls,t) = fus)(x(s),(t))

where the components of s € S are given by s = (z(s),v(s)). The CFDP algorithm can be applied
directly to this situation. For example, for each n = 0,..., N we could define the initial partition
at the n't level to be P, where S € P, has components S = (X(S),n) with Usecp, X (S) = R, and
the {X(S) : S € P,} are disjoint rectangles. The algorithm would proceed exactly as given above:
For each iteration k& we find the optimal sequence of superstates (S(’f, ceey S]’%) through dynamic
programming and then partition these superstates into smaller superstates. For example, each
partition P(S¥) could be such that Usep(styX (S) = X (SF) with {X(S) : S € P(S*)} being
disjoint subrectangles of X (S¥). For definiteness one could imagine forming P(S*) out of 2¢
superstates obtained by splitting X (S¥) in two across all d dimensions.

In this continuous version of CFDP while the volume of the {X(S*)} might shrink to 0, the
{X(S*¥)} will never degenerate into singleton sets; thus there is no obvious stopping criterion
for continuous CFDP. We do show in the Appendix, however, that in a suitably defined sense
the approximations given by the (X (S§),...X(S%)) collapse around the optimal solution, thus
showing that CFDP converges to the globally optimal solution.

3 Optimization of Functions

In a famous calculus problem, the Brachistochrone Problem, one seeks the minimum time path
between two points on a vertical plane (2o, o), (zn, yn), with (zn,yn) lower than (zg,yo). It is
assumed that gravity is the only force acting on an object as it traverses the path. The solution,
a cycloid (Figure 2 left), can be derived using the Calculus of Variations [20] — thus our interest
in this problem is for illustrative purposes.

We consider a discretization of the problem in which we seek a piecewise-linear path with knots
at (zn,Yn) where n =0,1,..., N. The values of the {z,} are fixed by the design of the problem,
as well as the initial and final heights, yo,yn, and we wish to minimize the time to traverse the
path defined by the remaining heights, y1,ya,...,ynv-1 (Figure 2, right).

6

|
0.0
|

05
|

0
-1.0

-15
|

Figure 2: Left: For each panel the leftmost point of the curve is (zg,yo) and the rightmost point is
(zn,yn). The optimal solution to the Brachistochrone problem — a cycloid. Right: The approximate
optimal solution to a piecewise linear approximation to the Brachistochrone problem.

Assuming the object begins with velocity 0 at (zo,yo) , the velocity at any point, (z,y), can
be calculated by the principle of conservation of energy, regardless of the path leading to (z,y).
This velocity is given by v(z,y) = 1/29(yo — y) where g is the acceleration due to gravity. Thus
the time it takes to travel from, say, (z1,y1) to (z2,y2) along a straight line is given by

2
— .'L’ — X
C(wlayl,wz,yz \/ \/ y2 y1 2 1) (2)

\/yo—y1+\/yo—y2

and the total time needed to traverse the path is given by summing the times over the individual

line segments:
N-1

C(mOa Yo,-- -, TN, yN) = Z C("ETH Yn, Tn+1, yn+1)
n=0
as in Eqn. 1.

With a suitable discretization of the possible heights this problem would be well-suited to
DP, however, the discretization might need to be very fine before we achieve sufficient accuracy.
Also, we might wish to achieve the maximum accuracy for fixed computing time and fixing the
discretization a priori makes this impossible. Instead we apply our continuous CFDP algorithm.

We begin by defining the initial discretization into superstates which in this case are intervals.
Specifically, we let ymin be the minimum path height we are willing to consider and for each
n=1,...,N — 1 we partition the interval [ymin,yo) into I intervals,

P, = {[yminaymin + A)’ [ymin + Aaymin + 2A), sy [ymin + (I - 1)A;ymin + IA)}

where A = (Yo — Ymin)/I. Since the initial and final heights are fixed, for n = 0 and n = N we
define Py = {yo} and Py = {yn}. We take our initial collection of superstates to be S® = UN_; P,
where, for the sake of clarity of notation, we drop the more formal notion of a superstate as a
rectangle and level pair and simply refer to the rectangle as the superstate.

We define the graph on these superstates by forming all possible arcs between superstates
at levels n and n+ 1 for n = 0,...,N — 1. For an arc between superstates S, = [l,,u,) and
Sn+1 = [ln+1,Un+1) at levels n and n + 1, we define the optimal cost

C*(Sn, Sn+1) = min C(xna Yns Tn+1, yn+1)
(Yn,ynt1)€Sn X Snt1
This cost can be computed in closed form as follows. First note that the minimal cost must be
achieved at a point (yn,Yn+1) € S X Spt1 with either y, = I, or yp,+1 = lp41, thus reducing the
problem to one of minimizing a function of one variable. Consider the case in which we assume
Yn = lp; the case in which y, 11 = 41 is treated analogously. Then

/ \/ yn+1 (wn—‘,—l)2
C(mnaynaxn-Fl’yTH-l) = \/m_'_\/m

/st +rt—2s2r2 4+ {2
- 2/9 r+s

by substituting 2 = yo — I, $2 = Yo — Yn+1, and d? = (x4 1 — z,)?. Differentiating with respect
to s and setting the derivative to zero gives

sa+283r—2sr® —r*t —d? =0

and the minimizing root is given by

2

2
[T B V3 [6r2A1/3v/B — 3V BA?/3 + 4v/Bd? + 18r3A1/3
Yroot = Yo 6 6 AI/S\/E

where)
A= —2r2d% + 5 48d8 + 81rtd4

and
9r2A/3 1+ 9A2%/3 — 1242
AL/3

with the help of symbolic computation. Thus, for the case when y,, = [, we must have

B =

C*(Sn, Sn+1) _ { mm(C(iL'n, ln7 LTn+1, ln+1), C(iL'n, ln7 Tn+1, Un+1)) Yroot g .[ln+1, un+1)
C(zn, ln, Tnt1, Yroot) otherwise
Finding the path through this trellis graph using the arc cost function C* can be accomplished
using dynamic programming. Suppose that the optimal sequence of superstates in the k*® iteration
of the algorithm is found to be S¥,...,S% | with S¥ = [ik uF) forn = 1,...,N — 1. We then
create the superstates at iteration k4 1, S¥*1 by letting the partition at level n = 1,..., N —1 be

1 puk 1k 4ok
Pyt =Py U{{ln,), [up) P\ {lin un)}

and letting S¥*1 = Py U Py U (UN PE+1)

The graph is then redrawn connecting each superstate at level n = 0,..., N — 1 with each
superstate at level n+ 1, again using C* to compute arc costs. The algorithm iterates the process
of finding the optimal path using dynamic programming and refining the partition along the
optimal path and redrawing the graph. The proof given in the Appendix guarantees that the
optimal superstates found at each iteration of the algorithm will eventually collapse around the
optimal path, provided one is willing to assume a priori that the optimal path always lies above
some number Ymin.

We performed experiments on this problem with 20 evenly spaced knots, g, z1,...,T19, and
with (zo,y0) = (0,0) and (z19,y19) = (5,—1) and a graph of the final result is given in the right
panel of Figure 2. We compare the relative efficiency of continuous CFDP to straight DP as fol-
lows. For straight DP we consider discretizations d = 3,4, ...,12 where the dth discretization has
24 states. For each discretization we compute the number of arc cost calculations, DP(d), neces-
sary to obtain a DP solution since the arc costs dominate the total computing time. To facilitate
comparisons we ran the CFDP with the same target discretizations as used above. In seeking a
CFDP solution at level d we do not allow any state to divide beyond the level d discretization, thus
producing exactly the same solution as would be obtained with straight DP. We denote the num-
ber of arc cost computations in this case by CFDP(d). Figure 3 shows log;,(CFDP(d)/DP(d)) for
various values of d demonstrating the increasing value of CFDP at progressively finer discretiza-
tions. At the finest discretization the figure demonstrates a 100-fold decrease in the number of arc
cost computations. Since the arc cost computations require a constant amount of time for both
straight DP and CFDP, the figure suggests an increasingly bigger win for CFDP as one seeks a
solutions at progressively finer discretizations.

0.0

05

log ratio
-1.0

-15
|

20

Figure 3: The figure shows log,,(CFDP(d)/DP(d)) at levels d = 3,4, ...,12. The index d represents a
discretization into 2¢ states.

4 Boundary Estimation in Mine Recognition

In our formulation of a mine recognition problem we are given a collection of images containing
mine-like objects. These objects can be recognized as areas of relatively lighter pixel values coming
from a known library of possible shapes — parallelograms and ellipses in the data presented
here. Our approach has four stages: finding candidate locations, estimating mine boundaries,
optimizing over the boundary estimates using the shape library information, and accepting only
the mine hypotheses whose likelihood exceeds a threshold. We focus here on boundary estimation
which we believe to be the most difficult stage. Since all of the shapes in our library are convex,
we formulate the boundary estimation problem as one of finding the mostly likely convex set
containing the candidate location. This is the problem we discuss here; for a complete discussion
see [21].

We begin by developing a representation of the class of convex sets containing a fixed reference
point z. Such a set can be thought of as a pair of 27-periodic functions (r(6),t(6)) representing
the radius and tangent direction at every angle in a coordinate system with origin z (see Figure
4). Thus r(f) > 0 and —7/2 < t(f) < «/2 for § € [0,2x]. In practice, we will only specify
(r(0),t(6)) at a finite number of angles 6y,6q,...,0n_1, typically N = 16 or N = 32 in our
experiments. Additionally we will restrict our attention to convex sets whose boundaries are
contained in an annulus centered around z. Thus we seek (r(6,,),t(6,)) € [P™®, r™3X| x [—71/2,7/2]
forn=0,...,N — 1.

Consider the problem of specifying values (r(6,),t(6,)), n = 0,1,...,N — 1 in a manner
consistent with convexity. Our choice of (r(6p),¢(6p)) is unconstrained, however, convexity imposes
constraints on the choices at other angles, as follows. Consider any adjacent pair of angles, say 6;
and 0. In a convex set the tangent angle must continue to rotate counter-clockwise as we move
counter-clockwise through the possible angles. As a result, the maximum possible value for r(62),
as dictated by our choice of (r(61),%(01)), is the length at which the ray emanating from (6;,7(61))
in the t(6:1) direction intersects the line containing z and (f2,7(62)) (see Figure 4, right). For

10

// N
t(az) \\ // \\\
/7 N\
N\ /\ \\\
AN
r(62) \
AN
AN
AN
\\
N 2(61)
\<
|
7‘(01) LT

Figure 4: Left: A convex set containing = can be described in terms of the function r(6) giving the
distance to the boundary as a function of 6. ¢(6) is the relative orientation of the tangent direction to
the convex set at the boundary point (6,7(0)). Right: The first of the two conditions for a legal arc is
described pictorially. For convexity, ¢(6) must rotate counter-clockwise as # moves counter-clockwise.
This places a constraint on r(6;), r(62), and t(6;).

instance, the configuration depicted in Figure 4 is consistent with convexity. A similar relation
obtained by observing the way (r(62),t(f2)) constrains r(6;) leads to another inequality. So, for
anyn=20,1,...,N — 1, a “legal” configuration of r(6,),t(0,),7(0n+1),t(0nt1) satisfies

cos(t(0n) — (Ont1 — 0)) < 7(0n) < cos(t(6n+1))
cos(t(6)) " 7(Ont1) T cos(t(Ont1) 4 (Bni1 — b))

where the subscript addition is always taken to be modulo N. If we define the “states” s, =
(r(6,),t(6r)), then the convexity constraints operate on adjacent pairs of states so the possible
convex sets can be identified with paths through a trellis. The last state choice, at y_1, must
satisfy two pairs of constraints, one for sy _2,sy_1 and one for sy_1,s0, so our trellis “wraps
around” on itself.

Our data model is defined for a circular window of pixel data centered around x as follows
(Figure 5). The pixel data y are partitioned into N “pie-slices” yp,y1, - --,yn—1 bounded by the
{6.} as in Figure 5. We then assume, given a convex set s = (so,s1,...,5n_1), the {y,} are
generated independently and with only local dependence on the {s,}. That is,

(3)

N-1
P(yls) = I] P(ynlsn,sn+1)

n=0

We have experimented with a number of different data models, some corresponding to generative
models with straightforward probabilistic assumptions, and others simply being quantities that
seem reasonable to optimize. The actual experiments were performed with this latter kind of
“data model” defined by
/lin - llout
log(P(yn|3naSn+l)) = T
where [i;n, and fioyt are the empirical mean values for the “inside” and “outside” regions defined by
the triangle associated with s,, and s,11 and & is a pooled standard deviation estimate assuming

11

Figure 5: The circular data window, y, is divided into N “pie-slices” yo,¥1,---,yn_1.- Given a convex
set hypothesis: s = sg, s1,...,5ny_1, we assume the yg,v1,...,yn_1 are conditionally independent.

12

tan tan

Erad =u I
= m g

" B - St
= . mom L s
. :

Figure 6: Left: The first iteration of CFDP for convex sets. Right: The second iteration of CFDP.

the inside and outside regions contain homogeneous pixel values of differing means but constant
variance. Here we have assumed that mines are regions of high pixel values on a lower pixel value
background. The log likelihood of a convex set can then be expressed as a sum of arc scores over
the associated trellis path.

If we discretize the state space a priori, then fixing sg, the maximum likelihood convex set con-
taining sg can be found by traditional DP. We, of course, must consider all possible starting points
for sg, so the computation increases by an order of magnitude. See [21] for a more computationally
elegant solution to this problem.

To apply continuous CFDP, we partition the radius-tangent space, [r™®, 7™ x [—7/2, +7/2],
into a collection of rectangles as in the left panel of Figure 6. Each subrectangle in this figure
represents a range of possible radii and tangent values. We call this initial partition P° and let
P,=P%forn=0,...,N — 1. Our initial collection of superstates is then S° = Ufy:—Oan.

In creating the k*® superstate graph, G*¥ = (S*, &%, C*), k= 0,1,...

E¥ = {(SnySn+1) : SnySni1 € S*5v(Sn) = n,v(Spi1) =1+ 1; (4)
there exists (sp, Sp+1) € Sn X Sp+1 with L(sp, snt1) = 1}
where L(sy,s,+1) is 1 or 0 as Eqn. 3 is satisfied or not. If S, = [rl,r¥] x [t,,t*] and S,11 =

[l 1, 7¥ 4] X [thy1,t% 4], then this condition can be described by the constraints

cos(tl, — 27 /N) < re (5)
cos(t) - rfwl

cos(ty 1) ril (6)
cos(ty +2m/N) — rpy

13

thii+2m/N > o (7)

The first two constraints above are simply restatements of Eqn. 3 while the last constraint forces
the tangent angle to be a nondecreasing function of the angle. When dealing with isolated states
the monotonicity of the tangent angle is a direct byproduct of Eqn. 3, however, when dealing with
superstates we must explicitly include this constraint.

Ideally, the arc score between two superstates S, and Sp.1, (Sn,Sni1) € €, k = 0,1,...,
would be

C(Sn, Sn+1) = max log(L(sn, $n+1)P(Yn|Sn, Sn+1) (8)
(snysn+1)€Sn X Sn+41

The effort necessary to perform this computation would defeat the purpose of CFDP, however.
Instead we use the upper bound for C(Sy, Sn11):

C(SuySni1) = max _ log(L(smsns1)) + max _ log(P(galsmsn) (9)
(8ny8n+1)ESn X Sn+1 (8n38n+1)ESn X Snt1

The left term on the right hand side is just the computation of Eqns. 5 — 7, while the right
term, depending only on the two radius ranges, is readily approximated by maximizing over a
discretization of the possible values. More specifically, we approximate the right term of Eqn. 9
by maximizing P(yy|Sn, Sn+1) over the states corresponding to triangles (z,7(6y),7(0n+1)) where
7(0n) =7 (Ons1 =p €7, ..., 7" (c. f. Figure 5).

For the k*® iteration of our algorithm, the legal paths, 7(G*), are the sequences (So, ..., Sy 1)
such that (Sy, Sp+1) € &k and Sy = Sy_1 — a convex set must end in the same state in which it
begins. The cost of a path is then

N-2
C(SCH RS SN—l) = Z C(S’n’ Sn+1)
n=0

As usual, the optimal path in the k! iteration is defined to be

Sk ... 8%)=ar max C(So,--.,Sn_1
(So N-1) g{(So,...,SN_1)E7r(gk)} ()
which can be is found by solving a dynamic programming problem for each Sy = Sy_1 and taking
the maximizing path.

The algorithm then proceeds as follows. We define the depth of a superstate S = [r!, %] x [t!, #¥]
by

max min
T 4

depth(S) = 10g2 W

and let L be our “target” depth. For a superstate S = [r!,7%] x [t!,#"]. define

{S} if depth(S) = L
{[7}, (v + %) /2] x [, (¢ +t+)/2]} U
P(S) = q {l(r' +r*)/2,7] x [¢, (¢ +¢4)/2]} U
{[*}, (v + %) /2] x [(¢* +t*)/2,t*]} U
{[(r' 4+ 74) /2,74 x [(¢* +t*)/2,t*]} otherwise

After having found the optimal path at the k*! iteration we let

N-1
S =8*u (| P(S¥) \ {Sk,...,S% 1}
n=0

14

and then repeat the process of redrawing the graph according to Eqn. 4 and computing the edge
costs according to Eqn. 8. The algorithm terminates when depth(S¥) = L forn =0,...,N — 1.

For illustrative purposes, the left panel of Figure 6 shows a possible optimal sequence of su-
perstates found in the G°. As described above, we refine the superstates along this optimal path
and construct G1. A possible optimal path through G' is shown in the right panel of Figure 6.

Although the convergence of CFDP is not guaranteed by the result in the Appendix, since the
objective function is discontinuous, the algorithm still remains plausible and seems to work well
in practice. In our experiments we chose the {6, } to be 16 equally spaced locations and iterated
the CFDP algorithm until all superstates along the optimal path had reached depth 6; superstates
were not allowed to divide beyond depth 6. At this point the superstates are about 1 pixel by 7/64
radians in size. The top image of Figure 7 shows the candidate mine locations that we consider
and the bottom image shows the optimal convex sets located by CFDP.

Figure 8 shows results from our boundary estimation experiments describing the savings in
computation due to using CFDP. The top panel gives log,,(CFDP(l)/DP(l)) for levels I =2...,6
for three different boundary estimation problems where CFDP(!) and DP(!) are the total number of
DP comparisons using CFDP and DP. This is the calculation that dominates the total computation
of our algorithm. We could not compute DP(5) and DP(6) directly, so in each of the three examples
the last two points represent estimates of the total log speedup. These estimates are based on the
observation that DP(1)/DP(l 4 1) should converge to a constant as [increases. The bottom panel
of Figure 8 shows the discretization of the superstate space for a particular angle after finding the
optimal boundary at level 6. Note that the majority of the superstate space remains unexplored
(c. f. Figure 6).

5 Discussion

The basic idea of CFDP is simple, however, as the preceding might suggest, its application is
not always straightforward. For CFDP to work effectively one must identify superstates with the
following properties

1. The superstates must be easily partitioned into smaller superstates.

2. One must be able to efficiently compute an optimum over all possible arc costs between two
connected superstates, or a good bound for that optimum.

3. The superstate arc scores should be homogeneous. That is, for connected superstates, S, Sa,
C(S1, S2) should be close to C(s1, s2) for any (s1,s2) € €.

The necessity of the first two properties is clear; the third property, homogeneity of arc costs,
ensures that the superstate arc costs are reasonable proxies for the constituencies they represent.
When arc costs are not homogeneous the superstate arc score will be significantly different from
some of the constituent arc scores and can make the arc appear to be unrealistically attractive.
Thus time is wasted in refining superstates before they can be verified to be suboptimal.

Often the above objectives compete with one another to some extent. Typically simple super-
states “shapes” such as rectangles are the easiest to to represent and split, however such superstates
do not necessarily give the most homogeneous arc scores. On the other hand, superstates defined
with homogeneity in mind might have complex shapes and therefore be difficult to represent and
split.

Occasionally it is possible to find a representation of superstates for which one can efficiently
compute a optimum for the cost between superstates as in Section 3. More often there is a tradeoff

15

Figure 7: Top: The candidate locations. Bottom: Optimal convex sets.

16

seg,

1ogl0 (speedup)
N
w
T

2 3 4 5 6
discretization

Figure 8: Top: log,,(CFDP(l)/DP(l)) for levels I = 2...,6. Bottom: The final discretization into
superstates for a typical angle at level 6.

17

between the quality of the bound on arc costs and the cheapness with which it can be computed.
The “art” of using CFDP lies in navigating these tradeoffs effectively. We can offer no prescription
for identifying the right choice of superstate for any given problem, or any guarantee that such a
choice exists. However, we hope that the examples demonstrate that situations exist that do lend
themselves to CFDP. In fact, we believe them to be plentiful.

Successful results with CFDP depend also on aspects of the application domain having nothing
to do with the choice of superstates. Specifically, the ideal domain is one in which there are
relatively few paths that give nearly optimal scores. In such a problem, CFDP wastes little time
refining superstates that do not lie on the eventual optimal path and proceeds directly to the
optimal solution thereby realizing a significant savings in computation.

The correctness of our CFDP algorithm relies on bounding the cost of all possible arcs between
superstates. In each of the applications we have presented, a genuine upper or lower bound for
this arc cost was computed. As a final comment, we remark that good results might be obtained
by relaxing this constraint and using a near upper or lower bound, or perhaps even an average
arc cost. With this relaxation, we lose the guarantee of eventually identifying an optimal path,
however, good paths can be found this way in some problems in which “true” CFDP is impractical.

6 Appendix

The continuous version of CFDP introduced in Section 2 and exemplified in Sections 3 and 4
generates a sequence of approximations to the optimal path through a trellis with a finite number
of levels and continuous state space. The approximations are obtained by solving a finite state
distillation of the continuous state problem with an “optimistic” version of the objective function.
Each approximate solution gives a rectangle for each trellis level that, we hope, contains the
optimal state. We show here that, under suitable assumptions, the rectangles collapse around the
optimal solution, thus continuous CFDP converges to the optimal solution.

Suppose we have a closed subset 2 C RY with diameter D(2) < co. Let H : @ — R be a
continuous function we wish to maximize and assume that x* is the unique maximizer in 2. We
assume the existence of an extension of H to rectangular subsets X C € such that H(z) < H(X)
for all x € X and such that for every € > 0 there is a § > 0 with

DX)<déd=|H(X)—H(z)|<e

for all z € X C 2. Consider the following process which describes the essential behavior of CFDP.
We begin with some initial partition of 2 into a finite number of subsets we denote by P; and we
generate the subsequent partitions, {P,,}, by letting

Xm = arg max H(X)
and recursively defining P,, from P,, 1 by subdividing X,, 1 into sets of half the diameter of
Xm—1. Other elements of P,,—1 may also be subdivided to obtain P,, but it is not required.

Proposition: If {z,,} is a sequence of points chosen so that z,, € X,, for m = 1,2,... where
the {X,,} are defined as above, then z,, — z*.

Before we give the proof of the proposition we make two remarks about the way the proposition
relates to CFDP. First of all, the proposition makes no reference to how the {X,,} are found. Of
course we do this in CFDP with dynamic programming but this is not relevant to the argument
presented here. Secondly, we clarify the relationship between the {P,,} of our proposition and the

18

partitions of CFDP. In CFDP, at each iteration, m, we have a partition on the state space for
each of the N levels of the trellis. Any set that can be formed as an N-fold cross product of these
partitions will be an element of P,,. Thus H is our upper bound on path scores.
Proof: Since for any A > 0 we can only have D(X,,) > A finitely many times, we must have
D(X,,) — 0 and hence
H(X,,) — H(zpy) — 0

Also H(z,,) < H(z*) < H(X,,) so H(z,,) — H(z*). Fix € and observe that, since z* is the
unique maximizer of the continuous function H,

def
H(z) = H. < H(z"
2Bt 1) T He < A

where B(z,€) is the open e-radius ball around z. Choose m such that for k > m,
H(z*) — H(zx) < H(z*) — He

Then H(zy) > H, so x, € B(z*,€).

References

[1] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition,” Proceedings of the IEEE, 77, 257—286.

[2] L. Bahl, F. Jelinek, P. Mercer, “A Maximum Likelihood Approach to Continuous Speech
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-(52),
179-90, 1983.

[3] K. F. Lee, “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The
Sphinx System,” Ph.D. Thesis, Computer Science Dept. Carnegie Mellon Univ. Pittsburgh,
PA, 1988.

[4] Bazzi I, Schwartz R., Makhoul J., (1999), “An Omnifont Open-Vocabulary OCR System for
English and Arabic,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
21, No. 6, 495-504.

[5] Mohamed M. and Gader P. (1996), “Handwritten Word Recognition Using Segmentation-
Free Hidden Markov Modeling and Segmentation-Based Dynamic Programming Techniques,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 5, 294-302.

[6] G. Kopec and P. Chou, “Document Image Decoding Using Markov Source Models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16, 602—617.

[7] Geiger D., Gupta A., Costa L., and Vlontzos J. (1995), “Dynamic Programming for Detecting,
Tracking, and Matching Deformable Contours,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 17, No. 3, 294-302.

[8] Khaneja N., Miller M. and Grenander U., (1998), “Dynamic Programming Generation of
Curves on Brain Surfaces,” IEEFE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 20, No. 11, 294-302.

[9] Muder D. (1988), “Minimal Trellises for Block Codes,” IEEE Transactions on Information
Theory, Vol IT-34, No. 5, 1049-1053.

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[22]

23]

24]

[25]

[26]

Wolf J. (1978), “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a
Trellis,” IEEE Transactions on Information Theory, Vol IT-24, No. 1, 76-80.

Fujiwara T., Yamamoto H, Kasami T., Lin S. (1998), “A Trellis-Based Recursive Maximum-
Likelihood Decoding Algorithm for Binary Linear Block Codes,” IEEE Transactions on In-
formation Theory, Vol IT-44, No. 2, 714-728.

Kockanek K. (1998), “Dynamic Programming Algorithms for Maximum Likelihood decod-
ing,” Ph.D. Dissertation, Division of Applied Mathematics, Brown University, 1998.

Kasami T., Takata T., Fujiwara T., and Lin S. (1993), “On Complexity of Trellis Structure
of Linear Block Codes,” IEEE Transactions on Information Theory, Vol IT-39, No. 3, 1057—
1064.

Merlet N. and Zerubia J. (1996), “New Prospects in Line Detection by Dynamic Program-
ming,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 4,
426-431.

Nilsson N. (1980), “Principles of Artificial Intelligence,” Tioga Publishing Co., Palo Alto,
CA, pp. 74-84.

Hart P., Nilsson N., and Raphael B. (1968), “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEFE Transactions of Systems Science and Cybernetics, Vol. SSC-
4, No. 2, 98-107.

Pearl J., (1984), “Heuristics: Intelligent Search Strategies for Computer Problem Solving,”
Addison-Wesley Publishing Co., pp. 61-65

Kam A., (1993), “Heuristic Document Image Decoding Using Separable Markov Models,”
M.S. Thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Com-
puter Science.

Kam A. and Kopec G. (1994), “Heuristic Image Decoding Using Separable Models,” IEEE
International Conference on Acoustics, Speech and Signal Processing Vol. 5, 145-8.

Akhijezer N. (1962), “The Calculus of Variations,” Blaisdell Publishing Co., New York, pp.
180-182.

Raphael C. and Geman S. (1997), “A Grammatical Approach to Mine Detection,” Proceedings
of SPIE, April, 1997, Orlando, FL, SPIE Vol. 3079, Detection and Remediation Technologies
for Mines and Minelike Targets 1I, 1997, 316-332.

Barbehenn M., Hutchinson S. (1995), “Efficient Search and Hierarchical Motion Planning
by Dynamically Maintaining Single-Source Shortest Paths Trees,” IFEE Transactions on
Robotics and Automation, Vol. 11, num 2, 198-214.

Kambhampati S., Davis L. (1986), “Multiresolution Path Planning for Mobile Robots,” IEEE
Transactions on Robotics and Automation, Vol. RA-2, num 3, 135-145.

Chen P. C., Hwang Y. K. (1998), “SANDROS: A Dynamic Graph Search Algorithm for
Motion Planning,” IEEE Transactions on Robotics and Automation, Vol. 14, num 3, 390-
403.

Zhu D., Latombe J.-C. (1991), “New Heuristic Algorithms for Efficient Hierarchical Path
Planning,” IEEE Transactions on Robotics and Automation, Vol. 7, num 1, 9-20.

Fujimura K., Samet H. (1989), “A Hierarchical Strategy for Path Planning Among Moving
Obstacles,” IEEE Transactions on Robotics and Automation, Vol. 5, num 1, 61-69.

20

Biography

Christopher Raphael was born in Hayward, CA in 1960. He received his MS in Computer and
Information Science from the University of CA at Santa Cruz in 1984 and his Ph.D. in Applied
Mathematics from Brown University in 1991. He has been an NSF Postdoctoral Research fel-
lowship and is currently on the faculty in the Mathematics and Statistics Department at the
University of Massachusetts at Amherst.

21

