
Gotta Catch ’Em All! Sequence Flaws in CEGAR for
Classical Planning

Martín Pozoa, Álvaro Torralbab and Carlos Linares Lópeza

aComputer Science and Engineering Department – Universidad Carlos III de Madrid, Madrid, Spain
bAalborg University, Aalborg, Denmark

Abstract. Counterexample-Guided Abstraction Refinement
(CEGAR) is a prominent technique to generate Cartesian abstrac-
tions for guiding search in cost-optimal planning. The core idea is
to iteratively refine the abstraction, by finding a flaw in the current
optimal abstract plan. Previous works find only a single flaw, by
executing the abstract plan in the concrete state space and stopping
when such execution cannot be continued.

We show, however, that many flaws can be identified on a single
plan. To that end, we introduce sequence flaws, which execute the
plan in a Cartesian relaxation of the task to characterize issues be-
yond the first flaw found along its execution. This greatly increases
the flexibility of CEGAR regarding how to refine the abstraction.

Our experiments show that a high number of sequence flaws exist
in most abstract plans across existing benchmarks. We observe that
the selected flaw has a high impact on the resulting heuristic, opening
new research opportunities for better selection strategies.

1 Introduction

Abstractions are commonly employed in optimal planning to gen-
erate domain-independent admissible heuristics, as they offer great
flexibility to define well-informed heuristics for the planning task at
hand [8, 13, 28]. However, such flexibility raises the question of how
to efficiently compute the right abstraction. A very promising method
is Counterexample-Guided Abstraction Refinement (CEGAR), suc-
cessfully used for Cartesian abstractions [25], PDBs [22] and domain
abstractions [14]. CEGAR starts with a trivial abstraction, where all
states in the problem are considered equivalent to each other. Then,
it iteratively refines the abstraction trying to improve the heuristic
value of the initial state. To do so, it selects an optimal abstract plan
and executes it on the original state space. If the plan works, then an
optimal plan has been found and the task is solved. If the plan fails, a
flaw is identified at the point where the plan execution could not con-
tinue. Then, the abstraction is refined to distinguish states in which
such a step is possible from those where it is not [24].

Recent work introduced regression flaws [19]. Instead of executing
the abstract plan forwards, it proceeds backwards from the goals.
This flaw is often very different from its forward counterpart. Indeed,
using regression flaws greatly improves the quality of the resulting
heuristics. This shows the importance of considering new ways of
computing flaws, and brings up the question whether there are other
flaws that could be identified.

Indeed, CEGAR was originally introduced in the context of pro-
gram verification [1, 4, 10, 15, 29], where the notion of refinement is

based on sequence interpolation, used to find flaws in several steps
of the sequence. Inspired by this, we consider whether the same is
true in the planning setting.

In this paper, we show that multiple flaws can be identified in a
single abstract plan, opening multiple alternative ways for refining
the abstraction. Consider a problem where a counter c must be in-
creased from 1 to 6 and an abstract plan 〈inc(c, 2, 3), inc(c, 4, 5)〉.
Clearly, there are three separate issues with this plan: (1) c “jumps”
from 1 to 2 before the first action; (2) c “jumps” from 3 to 4 before
the last action; and (3) the last state is not a goal state (5 instead of
6). But current methods will only find flaw (1) forwards and flaw
(3) backwards, as they are the first one in each direction. Further-
more, some flaws are inherent to the abstraction and independent of
the initial state and the goals. For example, if two consecutive ac-
tions 〈inc(c, 1, 2), inc(c, 3, 4)〉 are somewhere in the middle of an
abstract plan, a flaw should be detected in any direction.

We introduce sequence flaws, a new type of flaw that allows the
identification of multiple issues in the same abstract plan. Our exper-
iments show that abstract plans have many different sequence flaws
that can be repaired. As a single flaw is refined, strategies to deter-
mine the flaw to select are paramount. The results support previous
findings, and refining closer to the goal is typically best. But there
are also promising results, and we observe that different selection
strategies can sometimes lead to better heuristic functions.

2 Background

We consider tasks in SAS+ representation [3], where states are de-
scribed in terms of a tuple of variables V = 〈v0, . . . , vn〉, and each
v ∈ V has a finite domain, Dv . A partial state p is a partial variable
assignment over some variables vars(p) ⊆ V . A (concrete) state s is
a full assignment, vars(s) = V . We write p[v] for the value assigned
to the variable v ∈ vars(p) in the partial state p. Two partial states p
and c are consistent if p[v] = c[v] for all v ∈ vars(p) ∩ vars(c). We
denote by [p] ⊆ S the set of states consistent with p.

A SAS+ task Π is a tuple 〈V,O, s0, G〉 where s0 is the initial
state, G is a partial state that describes the goals, and O is a set
of operators. An operator o ∈ O has preconditions pre(o) and ef-
fects eff (o), both of which are partial states, and a non-negative
cost cost(o) ∈ R

+
0 . An operator o is applicable in progression in

a state s if s is consistent with pre(o). The result of applying o to s
is a state s�o� where s�o�[v] = eff (o)[v] if v ∈ vars(eff (o)) and
s�o�[v] = s[v] otherwise. We write s

o−→ s′ as a shorthand whenever
o is applicable on s and s′ = s�o�. The post-conditions of an opera-

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241003

4287



tor o in progression are defined for v ∈ vars(pre(o))∪vars(eff (o))
and post(o)[v] = eff (o)[v] for v ∈ vars(eff (o)) and post(o)[v] =
pre(o)[v] otherwise. The state space of a task Π is a transition
system, Θ = 〈S,O, T, s0, SG〉, where S is the set of all states,
SG = {s ∈ S | s is consistent with G} is the set of goal states,
and T = {(s, o, s′) | s ∈ S, o applicable in s, s′ = s�o�} is
the set of transitions. A plan π for s is a sequence of operators
〈o1, o2, . . . , on〉, s.t. the trace s

o1−→ . . .
on−−→ sn reaches a goal state

sn ∈ SG. The cost of π is the summed up cost of its operators. The
goal distance from s to the goal h∗(s) is the minimum cost of any
plan for s, or∞ if no plan exists. A plan for Π is a plan for s0.

A common approach to find optimal plans is to use A∗ search with
an admissible heuristic [7]. A heuristic is a function h : S 
→ R

+
0 ∪

{∞}. The heuristic is admissible if h(s) ≤ h∗(s) for all s ∈ S.
Regression starts from a partial state p and gets from which states

we can reach some s ∈ [p] via an operator o [2, 21]. An operator o is
applicable in regression in p if p is consistent with prer (o)=post(o).
The successor partial state p′ is defined for (vars(p)\vars(eff (o)))∪
vars(pre(o)) and regr(p, o)[v] = pre(o)[v] for v ∈ vars(pre(o))
and regr(p, o)[v] = p[v] otherwise. We write p o←− p′ as a shorthand.

An abstraction α for a transition system Θ = 〈S,O, T, s0, SG〉 is
a function α : S 
→ Sα, where Sα is a finite set of abstract states.
The abstract state space Θα = 〈Sα, O, Tα, sα0 , S

α
G〉 is a homomor-

phism of the state space, i.e., Tα = {(α(s) o−→ α(t) | s o−→ t ∈ T )},
sα0 = α(s0), Sα

G = {α(s) | s ∈ SG}. Each abstraction induces a
heuristic function where hα(s) is the distance from α(s) to the goal
in Θα. Each abstract state sα ∈ Sα is identified with the set of states
mapped to it, [sα] = {s | s ∈ S, α(s) = sα}.

Cartesian abstractions are a type of abstractions where the set of
states [sα] is Cartesian ∀sα ∈ Sα [25]. A set of states is Cartesian if
it is of the form A1×A2×· · ·×An, where Ai ⊆ Dvi∀vi ∈ V . Given
a Cartesian set a, we denote by a[vi] the set of values that vi can take
in a, i.e., a[vi] = Ai ⊆ Dvi . The intersection of two Cartesian sets
is a Cartesian set, where a′[v] = a1[v] ∩ a2[v] ∀v ∈ V . Figure 1
shows a Cartesian plan, where for example, in a1, v1 = {1} and
v2={2, 3}. Also, for any (partial) state p, we can build a Cartesian
set C(p) such that [C(p)]=[p], by making C(p)[v]={C(p)[v]} if
v∈vars(p) and C(p)[v]=Dv otherwise. We will use this conversion
of (partial) states into Cartesian sets implicitly, so with a slight abuse
of notation we define operations such as the intersection of a partial
state p and a Cartesian set a as the Cartesian set p ∩ a:=C(p) ∩ a.

The most successful technique to obtain Cartesian abstractions is
CEGAR [24, 25]. It starts with the trivial abstraction, which consists
of a single abstract state a s.t. a[v]=Dv ∀v∈vars(v). Then, it is itera-
tively refined until reaching a termination condition or finding a con-
crete plan. The refinement loop finds an optimal abstract plan trace
τα = a0

o1−→ . . .
on−−→ an, and it is executed in the concrete space,

resulting in a trace s0
o1−→ . . .

on−−→ sn. If this execution succeeds
and sn ∈ SG, then it is an optimal plan for the task. Furthermore,
we say that τα is mappable if each concrete state is included in the
corresponding abstract state, i.e. si ∈ [ai] ∀i ∈ [0, n].

If the abstract plan trace is not mappable, a flaw is reported and
the abstraction is refined by splitting an abstract state of the plan into
two, in such a way that the same flaw cannot happen again. A flaw
is a tuple 〈si, c〉 of a state si ∈ S and a Cartesian set c. We can
distinguish a different type of flaw for each reason that can cause
the execution of τα to fail at step i: (1) si is the first state in which
oi+1 is inapplicable and c is the set of states in ai in which oi+1 is
applicable, i.e. c = ai ∩ pre(oi+1). (2) si is the first state where
oi+1 is applicable but si�oi+1� is not mapped to ai+1, and c is the

set of states in ai from which ai+1 is reached when applying oi, i.e.,
ai ∩ regr(ai+1, oi). (3) The trace can be executed but sn /∈ SG,
resulting in the flaw 〈sn, sn ∩G〉.

A flaw 〈s, c〉 is repaired by splitting α(s) into two abstract states
d and e with s ∈ d and c ⊆ e. Usually, multiple possible splits exist
in different variables to fix the flaw. A split selection strategy is a
criterion to choose one of them [24, 25]. The process refines the ab-
straction until solving the problem either by finding an optimal plan
or proving the task unsolvable (an abstract plan cannot be found). It
can be stopped by some termination condition (usually a time or size
limit), resulting in a Cartesian abstraction that induces a heuristic.

Recent work has introduced regression flaws, found by executing
the abstract plan in regression from the goals, with better results than
progression flaws [19]. They are similar to progression flaws, with
the difference of not requiring that the Cartesian state of the par-
tial state is included in the abstract state, but their intersection is not
empty, since the former would be too restrictive. So, there are three
types of flaws: (1) pi is the first partial state in regression in which
oi is not backward applicable, and c is the set of states in ai where
oi is backward applicable. (2) pi is the first partial state in regression
where oi is backward applicable but the intersection of its successor
and ai−1 is empty; then, c is the set of states in ai reached from ai−1

when the oi is applied in progression, i.e., ai ∩ ai−1�oi�. (3) The
sequence can be executed but s0 /∈ p0, and c is the Cartesian set of
s0. The strength of this technique is maximizing h for states closer
to the goals, increasing the average h despite getting lower heuristic
values for s0 and requiring more iterations to find a plan during the
refinement loop.

Another concept introduced by this work is splitting strategies: for
progression flaws the split value is the one inside c (the Cartesian set
in which the flaw does not happen), but for regression flaws splitting
the value in the partial state (the value producing the flaw) gets better
results. Hence, this work defines two strategies: wanted for splitting
the value in c and unwanted for splitting the value in the state [19].
This corresponds to put the values of the variable not contained in c
nor the state into the child state d for wanted splits and the child state
e for unwanted splits.

3 Sequence Flaws

Our main contribution is the definition of sequence flaws. This allows
us to find more flaws in the abstract plan.

Consider a planning task in which a worker must get a package
out of a building, passing through three rooms separated by doors,
all open or closed. A button carried by the worker opens all doors,
and all doors are automatically closed when somebody leaves the
building. Initially, the worker is in the first room with doors closed,
and the goal is to bring the package out of the building leaving all
doors open. Let v1 denote the state of the doors (1 means open, 0
means closed), and v2 the room where the package is located (1, 2, 3
for the rooms and 4 for the street). o1 opens doors, and o2, o3, o4
move the package, with oi moving it from (i− 1) to i. Formally,

V={v1, v2} with Dv1={0, 1} and Dv2={1, 2, 3, 4},
O={o1, o2, o3, o4} with

pre(o1)={v1 
→ 0}, eff (o1)={v1 
→ 1},
pre(o2)={v1 
→ 1, v2 
→ 1}, eff (o2)={v2 
→ 2},
pre(o3)={v1 
→ 1, v2 
→ 2}, eff (o3)={v2 
→ 3},
pre(o4)={v1 
→ 1, v2 
→ 3}, eff (o4)={v1 
→ 0, v2 
→ 4}.
s0={v1 
→ 0, v2 
→ 1}, G={v1 
→ 1, v2 
→ 4}.

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning4288



a0start

{0, 1} × {1}

a1

{1} × {2, 3}

o2 a2

{0, 1} × {4}

o4

Figure 1: Abstract plan with sequence flaws in v2 detected neither by
forward nor backward first-flaws.

In the abstract plan shown in Figure 1, the first progression flaw is
that o2 is inapplicable in s0 because v1 
→0 (the doors are closed) and
the first regression flaw is that o4 cannot be applied in regression be-
cause v1 
→1 in the goals but o4 closes them. However, this plan also
has two additional progression sequence flaws: in v2 because o4 is
not applicable in the state reached after applying o2 (mapped to a1),
since the worker is not in the correct room (o3 must be applied before
o4), and in v1 in the final state because doors are not open as required
in the goal. It also has two additional regression sequence flaws: in
v2 because o2 is not backward applicable in the state reached after
applying o4 in regression (mapped to a1), as the worker is not in the
correct room, and in v1 in the initial state because doors are left open
but in s0 they are closed. So, among other problems, stopping at the
first flaw completely ignores the existence of problems in the other
goal (v2 
→4).

Sequence flaws can capture issues not detected until repairing all
the first-flaws happening before them. In previous work, flaws are
found by executing the operators of the abstract plan on the concrete
(partial in regression) state space, generating a trace s0

o1−→ . . .
on−−→

sn (pn
on←−− . . .

o0←− p0 in regression). Instead, we consider a relax-
ation of this approach, that results in a sequence of Cartesian sets.

An operator is applicable in a Cartesian set c if pre(o) ∩ c �=∅,
and applying o to c results in another Cartesian set c�o� where
c�o�[v]=post(o)[v] if v∈vars(post(o)) and c�o�[v]=c[v] otherwise.
In the resulting Cartesian set, the variables of effects and precondi-
tions of o have a single value. This corresponds to all states reach-
able by applying o from any state in c: [c�o�]={s′|s∈[c] ∧ s

o−→ s′}.
An operator o is applicable in regression in c if prer (o)∩c �=∅, and
applying o in regression to c produces a Cartesian set regr(c, o)
where regr(c, o)[v]=pre(o)[v] for v∈vars(pre(o)), {Dv} for
v∈vars(eff (o))\vars(pre(o)) and c[v] otherwise. We define c�o�!

and regr !(c, o) as the application of an operator o on a Cartesian set
c in progression and regression even when o is inapplicable in c.

3.1 Progression Sequence Flaws

To define progression sequence flaws, we first introduce which con-
ditions must be fulfilled by the relaxed execution of abstract plans.

Definition 1 (Relaxed Plan Execution). A relaxed plan execution
r = r0, r1, . . . , rn, for an abstract plan τα = a0

o1−→ a1
o2−→

. . .
on−−→ an is a sequence of Cartesian sets ri so that:

(A) s0 ∈ [r0],
(B) if oi+1 is applicable on ri, then ri�oi+1� ∩ ai+1 ⊆ ri+1,
(C) if oi+1 is not applicable on ri, then ri�oi+1�

! ∩ ai+1 ⊆ ri+1,
(D) ri ∩ ai �= ∅.

Each Cartesian set ri in a relaxed plan execution represents the
states of the abstract plan that could be reached by applying the prefix
plan. The execution is relaxed, meaning that at any step in the plan,
more states can be added into ri depending on the relaxation chosen.
For example, this allows to execute a plan while ignoring some of
the variables altogether to detect flaws on the remaining variables.
These conditions keep the execution coherent with the application of

the operators in the plan. Specifically, (A) and (B) ensure that if the
abstract plan trace is executable and mappable in the concrete state
space, then no flaw can be found. Condition (C) aims to keep some
coherence in the execution even when an operator is not applicable:
variables not affected by the operator must keep their values, and the
resulting state must satisfy the post-conditions of the operator. The
intuition is that the remaining part of the execution will check if the
suffix of the plan could work if the prefix were fixed, reporting flaws
in the suffix otherwise. Condition (D) ensures that any flaw we find
at any step can be used to refine the corresponding abstract state ai.

Definition 2 (Progression Sequence Flaw). Let τα = a0
o1−→ a1

o2−→
. . .

on−−→ an be an abstract plan and r = r0, r1, . . . , rn a relaxed
plan execution for τα. A progression sequence flaw in τα is a tuple
〈ri, c〉 consisting of two Cartesian sets ri and c such that (one of):

(1) oi+1 is not applicable from ri, and c is the set of states in ai in
which oi+1 is applicable, i.e. c = ai ∩ pre(oi+1);

(2) oi+1 is applicable from ri, but its successor does not intersect
to ai+1, i.e. ri�oi+1� ∩ ai+1=∅, and c is the states in ai from
which ai+1 is reached by applying oi+1;

(3) i = n, and rn ∩G = ∅, producing the flaw 〈rn, an ∩G〉.
Note that, to determine if there is a flaw at step i, only the prefix of

the execution r0, r1, . . . , ri is relevant, as the relaxed execution can
always be continued, e.g., by setting rj = aj for j ∈ [i+ 1, . . . , n].

Theorem 1. Let τα = a0
o1−→ a1 . . .

on−−→ an be an abstract plan
trace. Then, τα is mappable iff τα has no progression sequence flaw.

Proof. On the one hand, assume τα has no progression sequence
flaw. Then, we show by induction that the plan is mappable. Consider
the relaxed execution r0, . . . , rn where [ri] = {si}. As there is no
flaw of type (1) oi is applicable on si−1, resulting in some si. As
there is no flaw of type (2), the intersection of ri with ai is not empty,
so si ∈ [ai]. Finally, as there is no flaw of type (3), rn ∩G �= ∅, so
sn is a goal state. Then, s0

o1−→ s1
o2−→ . . .

on−−→ sn is a plan, where
si ∈ [ri] ∀i ∈ [0, n− 1] and sn ∈ [G].

On the other hand, assume that τα is mappable. Then s0
o1−→

. . .
on−−→ sn is a valid plan such that si ∈ [ai] for all i ∈ [0, n]. Con-

sider any arbitrary relaxed plan execution r0, r1, . . . , rn. By condi-
tion (A), s0 ∈ [r0]. By induction, oi is applicable in ri−1 because
it is applicable in si−1, so no flaw of type (1) exists. By condition
(B) ri�oi+1� ∩ ai+1 ⊆ ri+1, so si ∈ [ri] and ri ∩ ai �= ∅ : ∀i ∈
[0, n − 1], so no flaw of type (2) exists. Finally, no flaw of type (3)
exists because sn is a goal state and sn ∈ [rn].

Theorem 2. Let τα=a0
o1−→ . . .

on−−→ an be an abstract plan trace.
Then, 〈o1, . . . , on〉 may be a plan even if τα has progression se-
quence flaws of type (2).

Proof. The example used in [19] applies. Consider a task with bi-
nary variables V={v1, v2}, s0={v1 
→0, v2 
→0}, G={v2 
→1} and
operators O={o1}, pre(o1)={v2 
→0}, eff (o1)={v2 
→1}, and an
abstraction with states Sα={a0=〈{0, 1}×{0}〉, a1=〈{0}×{1}〉,
a2=〈{1}×{1}〉}. τα=a0

o1−→ a2 has a progression sequence flaw
of type (2) in o1 but 〈o1〉 is a plan in the trace τα = a0

o1−→ a1

Though our definition allows arbitrarily big Cartesian sets along
the relaxed execution, doing so results in fewer flaws. In the extreme
case, if all ri are fully relaxed, all operators are applicable on ri
and no flaws are found. In Figure 1, r1 could be the Cartesian set
〈{0, 1}×{1, 2, 3, 4}〉, but then no flaw is found in o4 due to v2 
→3 ∈
r1, while if r1=〈{1}×{2}〉, o4 is inapplicable due to v2 
→2.

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning 4289



Algorithm 1: Find Progression Sequence Flaws
Data: Π=〈V,O, s0, G〉, τα ; // task, abstract plan trace
Parameters: r=s0, i=0 ; // r and i, with default values
Result: flaws ; // Progression sequence flaws for τα

1 flaws ← ∅

2 while i < n− 1 do
3 if not applicable(r, oi) then
4 flaws ← flaws ∪ {〈r, ai ∩ pre(oi)〉}
5 r ← r�oi�

! ; // Apply oi even if it is not applicable
6 if r ∩ ai+1 = ∅ then

7 flaws ← flaws ∪ {〈r, ai ∩ regr(ai+1, oi)〉}
// Undeviate the Cartesian set

8 forall v ∈ V do

9 if r[v] ∩ ai+1[v] = ∅ then

10 r[v]← ai+1[v]

11 i← i+ 1

12 if r ∩G = ∅ then

13 flaws ← flaws ∪ {〈r, a ∩G〉}
14 return flaws

Theorem 3. Let r=r0, r1, . . . , rn be a relaxed execution for τα =
a0

o1−→ a1 . . .
on−−→ an. Let zi be a Cartesian set such that zi ∩

ai �= ∅, ri−1�oi� ∩ ai ⊆ zi, and [zi] ⊂ [ri]. Then, there exists
another relaxed execution z=r0, r1, . . . , ri−1, zi, zi+1, . . . , zn such
that [zj ] ⊆ [rj ] for j ∈ [i, n] and any progression sequence flaw of
r is a progression sequence flaw of z.

Proof. Any flaw found at step i on ri, is a flaw for zi as well:

(1) If oi+1 is not applicable on ri, then there is some precondition
vi 
→ x of oi+1 such that x �∈ ri[v]. As [zi] ⊂ [ri], then x �∈
zi[v], and the flaw is also found in zi.

(2) If ri�oi+1�∩ai+1=∅, then there exist some v such that ai+1[v]∩
ri�oi+1� = ∅. As [zi] ⊂ [ri], then zi�oi+1�[v] ⊆ ri�oi+1�[v] =
∅, so a flaw is found for z as well.

(3) If i = n and ri ∩G = ∅, then zi ∩G = ∅.

For the rest of the execution, note that applying zj = rj for j ∈
[i+1, n] results in a valid execution. However, it is worth noting that
other continuations where [zj ] ⊂ [rj ] may result in more flaws.

3.2 Progression Sequence Flaws Collection

Algorithm 1 shows the proposed procedure to collect a set of se-
quence forward flaws of an abstract plan. Contrary to the standard
procedure that executes the abstract plan on the concrete state space,
we consider the execution over Cartesian sets. The algorithm is al-
ways called with the default parameters, r = s0 and i = 0, except
for special strategies explained in the next section, so it starts at s0.
Initially, the Cartesian set r contains a single state, and therefore the
first flaw found by Algorithm 1 will be the same flaw reported by the
standard procedure. However, instead of returning the flaw immedi-
ately, Algorithm 1 continues looking for more flaws until the end of
the abstract plan trace.

We apply operators even when they are not applicable, and when
flaws of the second type occur, we “undeviate” the resulting Carte-
sian set by resetting ri+1[v] to all values compliant with the abstract
state ai+1. When a flaw with respect to v has been found, we allow
v to take any value consistent with the next abstract state.

Theorem 4. All flaws returned by Algorithm 1 are progression se-
quence flaws.

Proof. Flaws are accumulated in lines 4, 7 and 13. In line 4, the flaw
〈ri, ai∩pre(oi+1)〉 is added if the operator is not applicable, as flaw
(1) in Definition 2 does. In line 7, the flaw 〈ri, ai ∩ regr(bi, oi+1)〉
is added if r ∩ b = ∅, exactly as flaw (2) does. In line 13, the flaw
〈rn, a ∩G〉 is added if rn ∩G = ∅, exactly as flaw (3) does.

Algorithm 1 does not find all forward sequence flaws. As Theo-
rem 3 shows, this would require always keeping each ri as small as
possible. Yet, there are two points in Algorithm 1 where r keeps val-
ues that could be removed in an attempt of finding only flaws that
are relevant. In line 5, we could replace r by r ∩ ai+1. However, this
simply insists on keeping the relaxed execution fully aligned with the
abstract plan trace, which could lead to finding flaws in cases where
the plan is valid through other abstract states (as Theorem 2 shows).
Also, in line 9, assigning a single value from ai+1[v] instead of all
of them would suffice to keep property (D). However, at that point,
the algorithm has already found a flaw with respect to v so, by con-
tinuing the relaxed execution with all values in ai+1, we seek to only
report another flaw if the execution fails from all those values. Note
that a second flaw involving the same variable v may be reported,
e.g., if somewhere in the remaining abstract plan two operators are
applied with contradicting preconditions over v.

3.3 Regression Sequence Flaws

A relaxed plan backward execution can be defined analogously to
Definition 1 but replacing s0 by G and progression by regression.

Definition 3 (Relaxed Plan Backward Execution). A relaxed
plan backward execution r=rn, rn−1, . . . , r0 for an abstract plan
τα=a0

o1−→ . . .
on−−→ an is a sequence of Cartesian sets ri so that:

(A) G ⊆ [rn],
(B) if oi is regressable on ri, regr(ri, oi) ∩ ai−1 ⊆ ri−1,
(C) if oi is not regressable on ri, regr !(ri, oi) ∩ ai−1⊆ri−1,
(D) ri ∩ ai �= ∅.

Definition 4 (Regression Sequence Flaw). Let τα = a0
o1−→ a1

o2−→
. . .

on−−→ an be an abstract plan and r = rn, rn−1, . . . , r0 a relaxed
plan backward execution for τα. A regression sequence flaw in τα

is a tuple 〈ri, c〉 consisting of two Cartesian sets ri and c such that
(one of):

(1) oi is not regressable from ri, and c is the set of states in ai in
which oi is applicable, i.e. c = ai ∩ prer (oi);

(2) oi is regressable from ri, but its successor does not intersect to
ai−1, i.e. regr(ri, oi) ∩ ai−1=∅, and c is the states in ai from
which ai−1 is reached by regressing oi;

(3) i = 0, and s0 /∈ [r0], producing the flaw 〈r0, s0〉.
Theorem 5. Let τα = a0

o1−→ . . .
on−−→ an be an abstract plan.

Then, 〈o1, . . . , on〉 is a plan if τα has no regression sequence flaw.

Proof. If no regression sequence flaw exists in the abstract plan,
there is no flaw of type (3), so that s0 ∈ [r0]. For the inductive case,
if si ∈ [ri] and ri = regr(ri+1, oi+1), by the definition of regres-
sion there must exist si+1 ∈ [ri+1] such that si�oi� = si+1. Finally,
sn ∈ [G] due to condition (A), so the sequence is a plan.

The algorithm to collect regression flaws is like Algorithm 1 but
interchanging s0 and G and using regression semantics.

Progression flaws in the state ak are different to regression flaws in
the state ak+1 [19]. Therefore, identifying all flaws requires search-
ing in both directions.

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning4290



0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 195)

F
(l

ow
er

fo
r6

9)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 114)

B
(l

ow
er

fo
r1

63
)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

Fit (lower for 198)

B
i
t

(l
ow

er
fo

r8
8)

0 101 103 105 107 uns.
0

101

103

105

107

uns.

BCGr (lower for 145)

B
(l

ow
er

fo
r1

43
)

Figure 2: Expansions until last f -layer of selected single-abstraction strategies.

4 Flaw Selection Strategies

Using sequence flaws allows us to identify a possibly large set of
flaws for a single abstract plan. The next step is then to refine the ab-
straction, splitting an abstract state according to one of the flaws, so
that the same abstract plan is no longer applicable in the refined ab-
straction. While it would be possible to refine the abstraction accord-
ing to multiple flaws, that results in less fine-grained refinements,
since after refining a flaw the rest of the flaws may not be part of
an optimal abstract plan, so the time to build the abstraction is lower
but at the cost of a lower heuristic quality. Still, repairing the right
flaw at each step becomes paramount, since finding many flaws in
the abstract plan is even harmful if the chosen refinement is worse
than repairing the first flaw.

We collect all flaws either in the forward (progression flaws), back-
ward (regression flaws), or both directions (bidirectional strategies).
Next, we pick one flaw according to one of the following strategies:

Default Choose the first flaw found along the abstract plan, which
coincides with the previous definition of flaw used in previous work,
since sequence flaws are a generalization of the first flaw.

Last flaw (last) Choose the last flaw found along the abstract
plan. This is specially interesting for forward refinements, as flaws
are found closer to the goal.

Most refined flaw (ref) Choose the most refined state, i.e., the
one with the lowest number of values for the flawed variable respect
the size of its domain. It deeps into states refined in previous steps,
which results in more focused refinements. This criterion was used
to choose splits among abstract plans with good results [30].

Highest cost operator (cost) Choose the flaw at step i if oi+1 is
the operator with the highest cost among flaws. The aim is to refine
at points where more cost is being spent, which could be specially
relevant with cost partitioning, as the cost of many operators is low.

Causal Graph Variable Ordering (CG and CGr) Given a fixed
ordering on V , choose the flaw related to the lowest variable in the
ordering. We consider two orders based on topological order of the
causal graph [11, 12], which have been used before as merge strate-
gies in merge-and-shrink heuristics [13]. CG selects first the variables
with the most indirect influence over the goals, whereas the reverse
ordering, CGr, attempts to select variables close to the goal first.

Iterative abstract flaws (it) In the forward direction, this strategy
starts to search flaws at the end of the plan (Algorithm 1 parameters
r = an, i = n) and it iteratively calls the algorithm from the previ-
ous step of the plan until finding a flaw. Finally, if no flaw is found
from the initial abstract state, then it is searched from the concrete
initial state. In the backward direction, this strategy is like the first
flaw but starting from the goal abstract state instead of the goal par-
tial state, returning the first flaw from the goal partial state if no flaw
is found from the goal abstract state.

Closest to goal flaw (clo) Choose the flaw closer to the goal, only
relevant in the bidirectional case, as it is equivalent to the default
strategy backwards and equivalent to last in the forward direction.

On all strategies, whenever more than one flaw could be selected,
we break ties according to ref.

After selecting the flawed state ai, one must decide how to split it
to refine the abstraction. Typically, several possible splits exist, that
divide ai into a′

i and a′′
i according to a variable so that ri ∩ a′

i = ∅

and c ∩ a′′
i = ∅.

The best split at each flawed state is chosen by using split selection
strategies [30]. The default strategy maximizes the amount of flaws
covered, breaking ties in favor of the most refined split.

Some flaw selection strategies depend on the splits to be accu-
rate, so the split selection strategy must use the same criterion. These
strategies are ref, CG, CGr and cost. In these cases, ties are broken
in favour of the most refined split. For these strategies, splits must
be computed in all the flawed states before choosing one of them.
Otherwise, the best split is computed only in the chosen flawed state.

To save the expensive computations of splits, we cache the best
split for each abstract state. Unfortunately, the cached values are of-
ten invalidated, each time a connected abstract state is refined.

5 Experiments

We implemented the sequence refinement within the Scorpion plan-
ner [26]. Our experiments run on the Autoscale 21.11 benchmark
set [31], which contains the 42 domains of the International Plan-
ning Competitions (IPC) up to 2018 with 30 tasks scaled with the
number of objects each, so for optimal planning runtime typically
scales exponentially. All experiments are limited to 30 minutes and
8 GB of RAM and run in a Debian 10.2 server with an AMD EPYC
7551 CPU at 2.5 GHz.

We enable the Scorpion’s optimizations for the CEGAR proce-
dure, e.g., using incremental search for finding the optimal abstract
plans [27]. In Scorpion’s implementation, goals are refined before
starting the main CEGAR loop as an optimization. We keep this only
for forward refinements, where it improves the results, but it is dis-
abled on all configurations using sequence flaws to compute all flaws
in all steps. Another optimization, kept on all configurations, is refin-
ing all unreachable facts before goal on tasks with a single goal. They
are found using the relaxed planning graph [6]. All experiments re-
ported here use the “wanted” splitting strategy for progression flaws
and the “unwanted” strategy for regression flaws, since this setting
got the best results in previous work [19].

For single abstraction experiments, we stop the refinement loop
when the abstraction has 10 million non-looping transitions because
the default value of 1 million is too low for a single abstraction and
for a better measurement of the performance penalty of computing
sequence flaws. Then, we use the resulting heuristic in an A∗ search.

Code and experiments data are available in Zenodo [20].

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning 4291



Table 1: Coverage of forward, backward and bidirectional strategies for a single abstraction. The ∗ variant is the best strategy at each domain.
The cell in row x and column y is the number of domains where x solved more tasks than y. “Cov” is the total number of tasks solved.

F Flast Fref Fcost FCG FCGr Fit Cov

F∗ 23 23 24 25 24 18 11 456

F – 7 2 5 8 11 5 416
Flast 9 – 8 9 10 11 4 421
Fref 2 6 – 5 6 11 4 413
Fcost 1 6 2 – 4 11 4 410
FCG 4 8 4 4 – 12 5 411
FCGr 11 13 11 12 13 – 7 405
Fit 19 16 9 21 20 16 – 437

BBlast Bref Bcost BCG BCGr Bit Cov

B∗ 15 29 18 21 28 15 15 478

B – 24 5 9 23 14 6 451
Blast 0 – 4 3 9 5 0 400
Bref 2 21 – 6 20 12 5 432
Bcost 0 21 1 – 18 9 4 433
BCG 1 10 4 4 – 7 1 412
BCGr 11 22 12 13 20 – 12 438
Bit 5 23 8 9 21 12 – 445

DDlast Dref Dcost DCG DCGr Dit Dclo Cov

D∗ 28 30 18 23 29 15 22 23 470

D – 24 6 13 24 13 13 9 452
Dlast 0 – 4 4 9 5 2 2 401
Dref 2 21 – 12 21 13 9 11 422
Dcost 1 17 2 – 16 9 8 9 413
DCG 1 10 4 6 – 8 6 8 407
DCGr 11 23 14 15 20 – 14 15 425
Dit 0 20 3 9 18 8 – 7 428
Dclo 0 17 4 10 19 8 3 – 427

Table 2: Statistics for heuristics with a single abstraction. ‘Sol. in loop’ is the number of tasks solved in the CEGAR loop, ‘Abs. time (h)’ is
the time in hours to build all abstractions. ‘Ref.’ is the number of refinements, F/B. Flaws are the flawed states found for all tasks, and the
percentage respect the states of the abstract plan. ‘F/B. Pos.‘ is the relative position of the selected flawed state respect to the plan length.

Forward Sequence Flaws Backward Sequence Flaws Bidirectional Sequence Flaws
F Flast Fref Fcost FCG FCGr Fit B Blast Bref Bcost BCG BCGr Bit D Dlast Dref Dcost DCG DCGr Dit Dclo

Sol. in loop 173 110 173 152 146 149 140 133 146 145 145 139 145 144 142 145 144 139 152 130 120 109
Abs. time (h) 20.3 18.1 59.0 52.9 47.2 37.7 25.3 26.8 26.3 57.5 62.8 58.5 60.5 28.3 46.5 31.5 97.7 94.9 86.6 90.2 43.5 39.6
Cost (M) 0.19 0.14 0.16 0.08 0.19 0.06 0.20 0.30 0.17 0.24 0.29 0.26 0.06 0.30 0.31 0.17 0.24 0.26 0.18 0.05 0.11 0.13
Ref. (G) 0.30 0.17 0.28 0.28 0.28 0.16 0.21 0.30 0.14 0.27 0.27 0.26 0.16 0.32 0.29 0.14 0.26 0.27 0.28 0.14 0.19 0.18
F. Flaw (G) 0.3 1.3 1.5 1.4 1.5 1.2 0.2 – – – – – – – 0.3 1.0 1.8 1.8 1.5 1.6 0.2 1.3
B. Flaw (G) – – – – – – – 0.3 0.8 1.6 1.5 1.5 1.4 1.4 0.8 0.8 1.5 1.5 1.6 1.4 0.6 0.6
F. Flaw (%) 8.0 49.0 38.0 40.8 47.6 50.8 14.2 – – – – – – – 9.3 50.5 47.9 47.6 49.4 72.2 14.4 49.2
B. Flaw (%) – – – – – – – 9.6 39.7 36.4 34.8 42.3 51.4 9.59 9.3 39.7 36.3 35.9 44.2 56.8 11.4 27.5
F. Pos. (%) 45.7 51.2 46.4 45.6 45.9 49.0 51.8 – – – – – – – 7.2 3.7 34.4 13.0 41.0 42.1 48.3 49.6
B. Pos. (%) – – – – – – – 45.9 39.9 46.6 46.7 43.9 43.4 45.9 47.2 39.9 46.9 45.5 44.2 45.8 45.4 46.4

5.1 Single Abstraction Experiments

Table 1 shows a comparison of the total coverage (and number of
domains with more tasks being solved) of forward, backward and
bidirectional strategies. Per-domain results are shown in the supple-
mentary material [20]. The default strategy represents the previous
definition of flaw, the state-of-the-art baseline. B is the best strategy,
and the best non-default strategy in all directions is it, which in the
forward direction solves 21 more problems than F and only 6 fewer
problems backwards. Flast also solves 5 more tasks than F , but its
performance is far from Fit. On the other hand, BCGr favors the vari-
ables more causally related to goals, which solves only 7 fewer prob-
lems than Bit and has a very complementary behavior to the other
strategies, being the best in blocksworld , data-network , depots ,
pathways , pipesworld , scanalyzer , snake and storage domains. In
fact, although the best non-default backward strategy solves 6 fewer
tasks, some strategies perform better in some domains, and choosing
the best sequence strategy for each domain in any direction would
solve 483 problems (32 more problems than B). So better criteria to
choose flaws could solve more problems than the state of the art.

The impact of computing sequence flaws is huge, as shown in Ta-
ble 2 (much higher build time). It is larger in domains with long
plans like airport and agricola , since more splits must be computed
in each refinement step for those. It is also higher in strategies that
enlarge the abstract plan, like ref, and lower in strategies that do not
need to compute the splits in all states: last and clo, with the draw-
back for Dclo of computing and comparing flaws in both directions.

Expansions until the last f -layer are a good indicator of how good
the heuristic is during the search, and Figure 2 shows the most repre-
sentative comparisons. Fit is better than F and a bit worse than B,
since most of the points are above the diagonal in the first plot and
below in the second one. A surprising result is that Fit is much bet-
ter in expansions than Bit, despite solving one fewer task. BCGr, the

second-best backward non-default strategy, is similar in expansions
to B, so the coverage gap is mostly by the abstractions build time
penalty, as total time plots show in the supplementary material [20].

Table 2 shows statistics to analyze the behavior of each strategy.
Per-domain details are omitted for space reasons.

One interesting observation is how many times the cost of the ab-
stract plan has been increased, since this describes the preferences
of each strategy for refining states: strategies that increase the cost
of the abstract plan many times are more focused on getting the ac-
tual plan, while strategies with few increments are more focused in
increasing the h value of other states. ref improves the cost more
often in almost all domains, although it gets a lower total improve-
ment due to parcprinter . Results vary on the domain, but it has
the highest number of increments for progression flaws, and CG and
cost get more improvements than last, clo and CGr. So ref is
very focused in increasing the plan length while last, clo and CGr

perform more width-like refinements. it refines close to the goal but
enlarging the plan, so its refinements are very useful. A similar be-
havior is observed in the tasks solved during the loop, where F , Fref,
Blast and DCG are the best strategies, but it is not equivalent because
refining closer to s0 is more relevant for this than increasing the cost.

Another interesting point is the total number of refinements, an
indicator of the number of states of the abstraction and a proxy for
the density of transitions because the loop ends when it has 10M
non-looping transitions. The results vary on the domain, but cost,
ref and CG are the strategies with the highest number of refinements,
while CGr, last and clo are the strategies with fewest refinements.

Two related features are the total number of flaws and the percent-
age of states with a flaw in an abstract plan. The first one is correlated
with the length of the plan, as the more states in the abstract plan, the
more flawed states can exist. The second feature is inversely corre-
lated to the first one, as the shorter the plan, the more likely it is to
have flaws in a higher percentage of the states. ref is the strategy

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning4292



Table 3: Per-domain coverage for additive abstractions. The ∗ variant is the best strategy at each domain.

F Flast Fref Fcost FCG FCGr Fit Cov

F∗ 13 12 12 23 19 14 14 507

F – 5 1 4 11 7 5 479
Flast 6 – 5 8 14 11 3 487
Fref 5 5 – 4 12 10 7 483
Fcost 8 7 4 – 9 10 9 478
FCG 6 6 4 4 – 7 5 456
FCGr 5 6 4 5 9 – 7 466
Fit 6 6 7 9 14 10 – 491

BBlast Bref Bcost BCG BCGr BCGr Cov

B∗ 8 13 7 9 16 10 10 500

B – 7 1 3 12 7 0 489
Blast 1 – 0 3 10 4 1 477
Bref 2 6 – 4 13 8 2 492
Bcost 2 7 1 – 11 8 2 487
BCG 1 5 1 1 – 5 1 458
BCGr 4 6 5 5 9 – 4 474
Bit 0 7 1 3 12 7 – 489

DDlast Dref Dcost DCG DCGr Dit Dclo Cov

D∗ 15 15 8 8 18 11 11 8 502

D – 7 0 5 12 10 1 1 492
Dlast 0 – 0 3 9 7 0 0 476
Dref 1 8 – 5 12 10 2 2 493
Dcost 5 9 4 – 12 10 5 5 491
DCG 3 6 3 3 – 8 2 2 458
DCGr 6 7 5 5 10 – 6 6 466
Dit 2 9 2 5 13 12 – 0 492
Dclo 9 9 2 5 13 12 0 – 492

with the highest number of flawed states and the lowest percentage
of flawed states because its plans are the longest ones. But the behav-
ior per domain is very diverse, and CGr has a low number of flawed
states overall but many more flaws than the rest in elevators , hiking ,
micomic and rovers . CGr, last and clo have the highest percent-
age of flawed states because their plans are shorter.

The last analysis is the relative position of the refined state with re-
spect to the plan length. That is, 0% means the initial state and 100%
means the goal state, while in a plan of 3 states the state of the mid-
dle would be the 50%, and so on. The average in the total of domains
is dominated by Fit, though Flast and Dclo are very close and they
win in some domains. It may seem strange that Dclo refines states
less close to the goal, but the abstract plans found in each iteration
depend on previous refinements, so refining a state closest to the goal
can lead to not finding flaws as close in next iterations. The values
seem low but, as their plans are short, not finding flaws in the last
states decreases the average by a high amount.

5.2 Additive Abstraction Experiments

Table 3 shows results for additive abstractions via saturated cost par-
titioning [26]. Per-domain coverage is shown in the supplementary
material [20].

The best strategy is Dadd
ref , which solves 493 tasks (4 more tasks

than the state of the art) and 14 more problems than F add. Dadd
clo solves

492 tasks, and it is better than other strategies in more domains. Badd
ref

also solves 492 tasks, and it is better than Badd in 2 domains and
worse in only one. F add

it is the best forward strategy, solving 12 more
problems than F add and even 2 more problems than Badd.

507 problems can be solved by choosing the best forward strategy
in each domain, interesting because they are worse separately.

Sequence flaws are more useful in additive abstractions than in a
single abstraction, as regression flaws turned out to be not so good in
partitioned problems, and better strategies could get better results.

No solution is found in the loop because the problem is partitioned,
but all other statistics can be compared [20]. Abstractions build time
is very low for all strategies because problems and transitions limits
are smaller, but it is lower for some strategies than for the first re-
gression flaw. Generally, all features are lower. The behavior among
strategies is like for a single abstraction with small differences.

6 Related Work

Model Checking is a research area that aims to automatically ver-
ify the correctness of hardware and software programs. In symbolic
model checking, the transition relation of a system is represented
with a first-order logic formula. A program is incorrect if the error
location is reachable [16, 32]. CEGAR is one of the most successful
techniques in Model Checking, and it was the inspiration for the use
of CEGAR in Classical Planning [1, 10, 15, 24].

Our work is inspired by sequence interpolation approaches in the
context of model checking [1, 16]. Sequence interpolants are a well-
known technique to prove the unreachability of error states in sym-
bolic model checking [17, 32]. Given a sequence of formulas Γ =
A1, . . . , An, Â0, . . . , Ân is an interpolant for Γ when (i) Â0 = �
and Ân = ⊥ and (ii) for all 1 ≤ i ≤ n, Âi−1 ∧ Ai implies Âi and
(iii) for all 1 ≤ i < n, Âi ∈ (L(A1, . . . Ai) ∩ L(Ai+1 . . . An)),
where L(Σ) denotes the set of well-formed formulas of first-order
logic over a vocabulary Σ. There are direct similarities between se-
quence interpolants and our sequence flaws. In particular, our relaxed
execution states ri, as well as their Âi+1 formulas, correspond to sets
of states that include all states that could be reached by a prefix of
the execution of the abstract plan. However, our setting on Cartesian
abstractions of SAS+ tasks is a lot simpler. This allows us to use
Cartesian sets instead of arbitrary first-order logic formulas. We ex-
ploit this to extract multiple sequence flaws efficiently, without hav-
ing to compute the interpolants from unsatisfiability proofs of logic
formulas.

In the context of planning, there are multiple works that explore
how to conduct CEGAR in different ways [9, 25], or how to combine
multiple abstractions using cost partitioning [23]. The closest work
to ours is the refinement strategies by [30], which also aims at iden-
tifying multiple flaws, but focusing on finding flaws from multiple
abstract plans instead of only one.

Another topic in planning with similarities to our work is Partial-
Order Causal-Link [5, 18, 33], which refines partial plans by detect-
ing flaws in them. Flaws can be an open precondition not protected
by a causal link or an operator that can delete a precondition before
it is needed. Open preconditions are resolved adding a causal link
and threats are resolved moving the operator before the variable is
produced or after the operator that needs it. Similarities are that mul-
tiple flaws exist at each step of the refinement loop and that the flaw
selection is critical to reduce the steps required to get a correct plan,
but the flaws and the refinements are completely different.

7 Conclusions

CEGAR is a method to iteratively refine abstractions by identifying
flaws in optimal abstract plans. But previous work find a single flaw
per plan, the first one along its execution. Our main contribution is a
new type of flaw that allows to search flaws after the first one. This
enables identifying flaws that could not be found before, and it opens
research opportunities for new refinement strategies.

We have experimentally shown that different selection flaw strate-
gies result in very different behaviour, and that each strategy is better
than the others in some domains. We have also shown that iterative
strategies and strategies based on the most refined state can get better
heuristics than regression flaws, especially in additive abstractions,
opening research opportunities for smarter flaw selection strategies.

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning 4293



Acknowledgements

This work was partially funded by grant PID2021-127647NB-C21
from MCIN/AEI/10.13039/501100011033, by the ERDF “A way of
making Europe”, and by the Madrid Government under the Multian-
nual Agreement with UC3M in the line of Excellence of University
Professors (EPUC3M17) in the context of the V PRICIT (Regional
Programme of Research and Technological Innovation).

References

[1] A. Albarghouthi. Software Verification with Program-Graph Interpola-
tion and Abstraction. PhD thesis, University of Toronto, Canada, 2015.
URL http://hdl.handle.net/1807/69199.

[2] V. Alcázar, D. Borrajo, S. Fernández, and R. Fuentetaja. Revisiting re-
gression in planning. In F. Rossi, editor, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2013), pages
2254–2260. AAAI Press, 2013.

[3] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Computational Intelligence, 11(4):625–655, 1995.

[4] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian ab-
straction for model checking C programs. In T. Margaria and W. Yi,
editors, Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2001),
volume 2031 of Lecture Notes in Computer Science, pages 268–283.
Springer-Verlag, 2001.

[5] P. Bercher. A closer look at causal links: Complexity results for delete-
relaxation in partial order causal link (POCL) planning. In R. P.
Goldman, S. Biundo, and M. Katz, editors, Proceedings of the Thirty-
First International Conference on Automated Planning and Scheduling
(ICAPS 2021), pages 36–45. AAAI Press, 2021.

[6] A. Blum and M. L. Furst. Fast planning through planning graph analy-
sis. Artificial Intelligence, 90(1–2):281–300, 1997.

[7] R. Dechter and J. Pearl. Generalized best-first search strategies and the
optimality of A∗. Journal of the ACM, 32(3):505–536, 1985.

[8] S. Edelkamp. Planning with pattern databases. In A. Cesta and D. Bor-
rajo, editors, Proceedings of the Sixth European Conference on Plan-
ning (ECP 2001), pages 84–90. AAAI Press, 2001.

[9] R. Eifler and M. Fickert. Online refinement of Cartesian abstraction
heuristics. In V. Bulitko and S. Storandt, editors, Proceedings of the
11th Annual Symposium on Combinatorial Search (SoCS 2018), pages
46–54. AAAI Press, 2018.

[10] Á. Hajdu and Z. Micskei. Efficient strategies for cegar-based model
checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020.

[11] M. Helmert. A planning heuristic based on causal graph analysis.
In S. Zilberstein, J. Koehler, and S. Koenig, editors, Proceedings of
the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), pages 161–170. AAAI Press, 2004.

[12] M. Helmert. The Fast Downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[13] M. Helmert, P. Haslum, J. Hoffmann, and R. Nissim. Merge-and-shrink
abstraction: A method for generating lower bounds in factored state
spaces. Journal of the ACM, 61(3):16:1–63, 2014.

[14] R. Kreft, C. Büchner, S. Sievers, and M. Helmert. Computing domain
abstractions for optimal classical planning with counterexample-guided
abstraction refinement. In S. Koenig, R. Stern, and M. Vallati, editors,
Proceedings of the Thirty-Third International Conference on Automated
Planning and Scheduling (ICAPS 2023). AAAI Press, 2023.

[15] S. Löwe. Effective Approaches to Abstraction Refinement for Auto-
matic Software Verification. PhD thesis, University of Passau, Ger-
many, 2017. URL https://opus4.kobv.de/opus4-uni-passau/frontdoor/
index/index/docId/481.

[16] K. L. McMillan. Applications of craig interpolants in model checking.
In N. Halbwachs and L. D. Zuck, editors, Lecture notes in computer
science, volume 3440 of Lecture Notes in Computer Science, pages 1–
12. Springer, 2005. doi: 10.1007/978-3-540-31980-1_1. URL https:
//doi.org/10.1007/978-3-540-31980-1_1.

[17] K. L. McMillan. Lazy abstraction with interpolants. In T. Ball and
R. B. Jones, editors, Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Pro-
ceedings, volume 4144 of Lecture Notes in Computer Science, pages
123–136. Springer, 2006. doi: 10.1007/11817963_14. URL https:
//doi.org/10.1007/11817963_14.

[18] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial
order planner for ADL. In B. Nebel, C. Rich, and W. Swartout, edi-
tors, Proceedings of the Third International Conference on Principles

of Knowledge Representation and Reasoning (KR 1992), pages 103–
114. Morgan Kaufmann, 1992.

[19] M. Pozo, Á. Torralba, and C. Linares López. When CEGAR meets
regression: A love story in optimal classical planning. In Proceedings
of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI
2024), pages 20238–20246. AAAI Press, 2024.

[20] M. Pozo, Á. Torralba, and C. Linares López. Gotta catch ’em all! se-
quence flaws in CEGAR for classical planning. supplementary mate-
rial, code, experimental results and scripts. 10.5281/zenodo.13378665,
2024.

[21] J. Rintanen. Regression for classical and nondeterministic planning. In
M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI 2008), pages 568–572. IOS Press, 2008.

[22] A. Rovner, S. Sievers, and M. Helmert. Counterexample-guided ab-
straction refinement for pattern selection in optimal classical planning.
In N. Lipovetzky, E. Onaindia, and D. E. Smith, editors, Proceedings of
the Twenty-Ninth International Conference on Automated Planning and
Scheduling (ICAPS 2019), pages 362–367. AAAI Press, 2019.

[23] J. Seipp. Better orders for saturated cost partitioning in optimal classical
planning. In A. Fukunaga and A. Kishimoto, editors, Proceedings of the
10th Annual Symposium on Combinatorial Search (SoCS 2017), pages
149–153. AAAI Press, 2017.

[24] J. Seipp and M. Helmert. Counterexample-guided Cartesian abstraction
refinement. In D. Borrajo, S. Kambhampati, A. Oddi, and S. Fratini,
editors, Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2013), pages 347–351.
AAAI Press, 2013.

[25] J. Seipp and M. Helmert. Counterexample-guided Cartesian abstrac-
tion refinement for classical planning. Journal of Artificial Intelligence
Research, 62:535–577, 2018.

[26] J. Seipp, T. Keller, and M. Helmert. Saturated cost partitioning for op-
timal classical planning. Journal of Artificial Intelligence Research, 67:
129–167, 2020.

[27] J. Seipp, S. von Allmen, and M. Helmert. Incremental search for
counterexample-guided Cartesian abstraction refinement. In J. C. Beck,
E. Karpas, and S. Sohrabi, editors, Proceedings of the Thirtieth Inter-
national Conference on Automated Planning and Scheduling (ICAPS
2020), pages 244–248. AAAI Press, 2020.

[28] S. Sievers and M. Helmert. Merge-and-shrink: A compositional theory
of transformations of factored transition systems. Journal of Artificial
Intelligence Research, 71:781–883, 2021.

[29] J.-G. Smaus and J. Hoffmann. Relaxation refinement: A new method to
generate heuristic functions. In D. A. Peled and M. J. Wooldridge, edi-
tors, Proceedings of the 5th International Workshop on Model Checking
and Artificial Intelligence (MoChArt 2008), pages 147–165, 2009.

[30] D. Speck and J. Seipp. New refinement strategies for Cartesian abstrac-
tions. In S. Thiébaux and W. Yeoh, editors, Proceedings of the Thirty-
Second International Conference on Automated Planning and Schedul-
ing (ICAPS 2022), pages 348–352. AAAI Press, 2022.

[31] Á. Torralba, J. Seipp, and S. Sievers. Automatic instance generation for
classical planning. In R. P. Goldman, S. Biundo, and M. Katz, editors,
Proceedings of the Thirty-First International Conference on Automated
Planning and Scheduling (ICAPS 2021), pages 376–384. AAAI Press,
2021.

[32] Y. Vizel and O. Grumberg. Interpolation-sequence based model check-
ing. In Proceedings of 9th International Conference on Formal Meth-
ods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009,
Austin, Texas, USA, pages 1–8. IEEE, 2009. ISBN 978-1-4244-4966-8.
doi: 10.1109/FMCAD.2009.5351148.

[33] H. L. S. Younes and R. G. Simmons. VHPOP: Versatile heuristic partial
order planner. Journal of Artificial Intelligence Research, 20:405–430,
2003.

M. Pozo et al. / Gotta Catch ’Em All! Sequence Flaws in CEGAR for Classical Planning4294


