
On Decomposability and Interaction Functions

Knot Pipatsrisawat and Adnan Darwiche1

Abstract. A formal notion of a Boolean-function decomposition

was introduced recently and used to provide lower bounds on various

representations of Boolean functions, which are subsets of decom-

posable negation normal form (DNNF). This notion has introduced a

fundamental optimization problem for DNNF representations, which

calls for computing decompositions of minimal size for a given parti-

tion of the function variables. We consider the problem of computing

optimal decompositions in this paper for general Boolean functions

and those represented using CNFs. We introduce the notion of an in-

teraction function, which characterizes the relationship between two

sets of variables and can form the basis of obtaining such decompo-

sitions. We contrast the use of these functions to the current practice

of computing decompositions, which is based on heuristic methods

that can be viewed as using approximations of interaction functions.

We show that current methods can lead to decompositions that are

exponentially larger than optimal decompositions, pinpoint the spe-

cific reasons for this lack of optimality, and finally present empirical

results that illustrate some characteristics of interaction functions in

contrast to their approximations.

1 Introduction

Decomposability has been identified as a fundamental property

that underlies many tractable languages in propositional logic, such

as disjunctive normal form (DNF), ordered binary decision dia-

grams (OBDD) and the widely encompassing decomposable nega-

tion norma form (DNNF). Decomposability is a property of con-

junctions, requiring that conjuncts share no variables [4]. Given de-

composability, one can devise polynomial time algorithms for many

queries that are known to be generally intractable. Satisfiability is

one such example, which can be tested for efficiently once we have

decomposability [6].

Establishing decomposability lies at the heart of many reasoning

systems such as model counters [2, 1, 11] and knowledge compil-

ers [5, 7, 8]. In many of these systems, decomposability is established

by instantiating enough variables in order to syntactically discon-

nect the underlying formula into sub-formulas that no longer share

a variable. This process can then be applied recursively until each

sub-formula become trivial or sufficiently simple.

Recently, a restricted version of decomposability has been iden-

tified, which requires decomposable formulas to adhere to a data

structure known as a vtree [9]. The vtree is simply a full binary tree

whose leaves are in one-to-one correspondence with the variables of

interest. Hence, each internal vtree node corresponds to a set of vari-

ables and to a particular partition of these variables (defined by the

variables in its two children). A decomposable formula adheres to a

1 Computer Science Department, University of California, Los Angeles,
email: {thammakn,darwiche}@cs.ucla.edu

vtree if every sub-formula is decomposable across the partition de-

fined by the corresponding vtree node over its variables. This type

of decomposability is called structured decomposability and leads

to stronger properties than plain decomposability. A number of lan-

guages based on structured decomposability have been identified and

studied in [9], including the influential OBDD.

The process of decomposing a formula with respect to a variable

partition has been formulated more explicitly recently using the for-

mal notion of a decomposition [10]. In particular, different types of

decompositions have been defined and then shown to underlie corre-

sponding subsets of decomposable negation normal forms (DNNF).

This formalization, which we will review next, has crystalized a fun-

damental optimization problem in automated reasoning, which is the

problem of computing an optimal decomposition of a formula across

a given variable partition. None of the existing systems, however, try

to optimize the process of constructing decompositions as they rely

mostly on heuristic methods for computing such decompositions.

The goal of this paper is to introduce a new notion, which we call

an interaction function, that can shed light on the limitation of cur-

rent decomposition techniques, and that can provide a basis for more

principled and optimal decomposition techniques. Intuitively, an in-

teraction function is a formula α that captures precisely the knowl-

edge encoded by another formula β on the relationship between two

sets of variables X and Y. Hence, if the goal is to compute a decom-

position of formula β across the partition (X,Y), then it is sufficient

to only obtain a decomposition of the corresponding interaction func-

tion for these variables.

This paper is based on a number of contributions. First, a formal

definition of the interaction function and its properties. Second, a re-

sult showing that optimal decompositions of the interaction function

can be converted into optimal decompositions of the original for-

mula. Third, a result which shows that current syntactic techniques

for generating decompositions of CNF can be viewed as working

with an approximation of the interaction function, where we formu-

late precisely the distinction between what is currently used and the

interaction function. Fourth, we show examples where these syntac-

tic decomposition techniques can be exponentially worse than opti-

mal. Fifth, we suggest a method for computing interaction functions,

albeit impractical, and use it to provide some empirical results on the

nature of interaction functions, in comparison to the original formu-

las we are trying to decompose, and the syntactic techniques used by

some systems to compute decompositions.

We start next by providing some technical preliminaries. We then

review the newly formulated notion of a decomposition, followed by

the fundamental concept in this paper: the notion of an interaction

function. The following sections explicate the various results dis-

cussed earlier. We provide some proofs in the appendix and leave the

others for the full version of the paper because of space limitations.

R S

Q

V U

Tv1

v2

v3

v4

v5

(a)

VT

orQ

R S

or

and

and

U

andand

or

and

or

(b)

Figure 1. A vtree (a) and a respecting structured DNNF (b).

2 Basic Definitions

In this section, we provide definitions of basic concepts that will be

used throughout the paper. A Boolean function (or simply function)

over a set of variables Z is a function that maps each complete as-

signment of variables Z to either true or false (most of our definitions

will be based on Boolean functions instead of Boolean formulas).

The conditioning of function f on variable assignment x (of vari-

ables X) is defined as f |x = ∃X(f ∧ x). If f is represented by a

formula, we can obtain f |x by replacing each occurrence of variable

X ∈ X by its value in x. We also refer to x as an instantiation of

variables X. A function f depends only on variables Z iff for any

variable X /∈ Z, we have f |X = f |¬X . We will write f(Z) to

mean that f is a function that depends only on variables Z. Note that

f(Z) may not necessary depend on every variable in Z.

A conjunction is decomposable if each pair of its conjuncts share

no variables. A negation normal form (NNF) is a DAG whose inter-

nal nodes are labelled with disjunctions and conjunctions and whose

leaf nodes are labeled with literals or the constants true and false. An

NNF is decomposable (called a DNNF) iff each of its conjunctions

is decomposable; see Figure 1(b). We use vars(N) to denote the set

of variables mentioned by an NNF node N .

Figure 1(a) depicts an example vtree. Given an internal node v
in a vtree for variables Z, we use vl and vr to refer to its left and

right children, use vars(v) to denote the set of variables at or below

v in the tree. A DNNF respects a vtree iff every and-node has ex-

actly two children N l and Nr , and we have vars(N l) ⊆ vars(vl)
and vars(Nr) ⊆ vars(vr) for some vtree node v. The DNNF in

Figure 1(b) respects the vtree in Figure 1(a).

We use an upper case letter to denote a variable (e.g., X) and a

lower case letter to denote its instantiation (e.g., x). Moreover, we

use a bold upper case letter to denote a set of variables (e.g., X) and

a bold lower case letter to denote their instantiations (e.g., x).

3 Decompositions of Boolean Functions

We review in this section the key notion of a decomposition, which

was formulated recently [10]. This notion provides an abstraction of

many of the tractable logical representations that have been proposed

and studied in the literature. For example, this notion has been used

in [10] to establish lower bounds on the sizes of these representations,

highlighting the problem of constructing optimal decompositions as

the central problem in optimizing the size of these representations.

In the following definition and the rest of the paper, we will assume

that variables X and Y form a partition of variables Z.

Definition 1 An X-decomposition of function f(Z) is a collection

of functions (a.k.a. elements) f1(Z), . . . , fm(Z) such that (i) f =
f1 ∨ . . . ∨ fm and (ii) each f i can be expressed as follows:

f i(Z) = gi(X) ∧ hi(Y).

The number m is called the size of the decomposition in this case.

A decomposition is minimal if no other decomposition has a smaller

size.

Note that an X-decomposition for f(Z) is also a Y-

decomposition for f(Z). We will typically just say “decomposition”

when variables X and Y are explicated.

Consider the boolean function f = (X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨
(X2∧Y3) and the partition X = {X1, X2},Y = {Y1, Y2, Y3}. The

following are two decompositions of this function:

g(X) h(Y)

X1 Y1

X2 Y2 ∨ Y3

g(X) h(Y)

X1 Y1

¬X1 ∧X2 Y2 ∨ Y3

X1 ∧X2 ¬Y1 ∧ (Y2 ∨ Y3)

Each row corresponds to an element of the decomposition. More-

over, we present each element in terms of its X and Y components;

the corresponding element can be obtained by simply the conjoining

these components together.

The notion of a decomposition was used in [10] to characterize

various subsets of decomposable negation normal form, and to es-

tablish lower bounds on the sizes of these subsets depending on the

sizes of their corresponding optimal decompositions. Algorithm 1

provides pseudocode for constructing a structured DNNF represen-

tation for a given Boolean function and a given vtree. The size and

type of resulting DNNF is completely determined by the size and

type of the decompositions computed by the algorithm on Lines 3-

5.2

Algorithm 1 does not assume any particular representation of the

given Boolean function. Hence, as is, this algorithm is only meant

to highlight the central role of decompositions in characterizing the

size and type of DNNFs.

4 The Interaction Function

In this section, we introduce a new notion, called interaction func-

tion, that captures the logical interactions between two sets of vari-

ables in a given boolean function.

Definition 2 (Interaction) Let (X,Y) be any partition of set Z.

The (X,Y) interaction function of function f(Z) is a function de-

fined as follows:

fXY = f ∨ ¬(∃Xf) ∨ ¬(∃Yf).

The notion of interaction function allows us to view any boolean

function f(Z) as a conjunction of three components: (i) one that cap-

tures constraints on the values of variables X: ∃Yf (ii) one that cap-

tures constraints on the values of variables Y: ∃Xf and (iii) one

that captures the constraints between variables X and Y: fXY . The

following proposition formalizes these properties and goes further to

state that the interaction function, as defined above, is in fact the most

general function for this purpose.

2 The vtree also determines the type of DNNF generated. For example, a
linear vtree (which encodes a total variable order), leads to OBDD repre-
sentations.

Algorithm 1: DNNF (v, f): keeps a cache cache(., .) where

the first argument is a vtree node and the second argument is a

function. The cache is initialized to nil.
input:

v: vtree node

f : function that depends only on vars(v)

output: DNNF for function f respecting vtree rooted at node v

main:

1: If f = true or f = false or v is a leaf node, return f
2: If cache(v, f) 6= nil, return cache(v, f)
3: X← variables in the vtree rooted at vl

4: Y← variables in the vtree rooted at vr

5: g1(X) ∧ h1(Y), . . . , gm(X) ∧ hm(Y)← a decomposition

of f
6: α←false

7: for i = 1 to m do

8: α←α ∨ (DNNF (vl, gi(X)) ∧DNNF (vr, hi(Y)))
9: end for

10: cache(v, f)←α
11: return α

Proposition 1 The interaction function fXY satisfies the following

properties:

1. f = (∃Xf) ∧ (∃Yf) ∧ fXY

2. ∃XfXY = true

3. ∃YfXY = true

4. fXY is the weakest function satisfying the above properties.3

Moreover, fXY 6= false and if f = false or f = true, then fXY =
true .

Note here that every instantiation x is consistent with fXY and

every instantiation y is consistent with fXY , because fXY puts no

restriction on variables X or on variables Y per se. We illustrate

these properties with the following examples.

Consider the CNF f = (¬A ∨B) ∧ (¬B ∨ C) ∧ (¬C ∨D) and

let X = {A, B} and Y = {C, D}. One can verify that

∃Xf = (¬C ∨D)

∃Yf = (¬A ∨B)

fXY = (¬B ∨ C)

Consider the CNF f = (¬A ∨ B) ∧ (A ∨ C) and let X = {A}
and Y = {B, C}. One can verify that

∃Xf = (B ∨ C)

∃Yf = true

fXY = (¬A ∨ ¬C ∨B) ∧ (A ∨ ¬B ∨ C)

Notice that in the first example above, the interaction function con-

tains exactly the clause that mention both variables in X and Y.

However, as illustrated by the second example, in general, the inter-

action function of a CNF may not correspond to any subset of clauses

from the original CNF.

We now present a key result that relates decompositions of inter-

action functions to those of the original functions. Because the inter-

action function captures the relationship between X and Y, it should

come as no surprise that the size of the minimal X-decomposition of

the interaction function is roughly the same as the size of the minimal

X-decomposition of the function itself.

3 Any function with any additional model will fail to satisfy these properties.

Proposition 2 Let k be the size of a minimal X-decomposition for

function f(Z) and let kXY be the size of a minimal X-decomposition

for interaction function fXY . Then k ≤ kXY ≤ k + 2.

This is an important result because it shows us that being able to

find a compact decomposition of the interaction function is just as

good as the ability to find a compact decomposition for the func-

tion itself. This result does not make any assumptions on the specific

syntax of any of the involved functions. However, the proof of the

result is constructive, showing how one can convert a decomposition

of function f into a decomposition of interaction function fXY and

vice versa.

5 CNF Decompositions

One is typically interested in decomposing functions that are rep-

resented as CNFs. We will next review one of the key methods for

decomposing CNFs, which is usually utilized by knowledge compil-

ers (e.g., [5]), and show that it can be viewed as working with an

approximation of the interaction function. We will also show that the

method could be far from being optimal, while pinpointing the spe-

cific reason for this lack of optimality.

Consider a CNF ∆ and suppose that we partition its clauses into

two sets ∆l and ∆r and then consider the variables V shared be-

tween these sets. The CNF is then conditioned on each instantiation

v of these variables, which leads to disconnecting the components

∆l and ∆r from each other since ∆l|v and ∆r|v will no longer

share variables. The decomposition computed will then be:

(∆l|v1) ∧ (∆r|v1) ∧ v
1, . . . , (∆l|vm) ∧ (∆r|vm) ∧ v

m, (1)

where v1, . . . ,vm are the instantiations of variables V. This CNF

decomposition method has been proposed more than a decade ago [3]

and has been used extensively since then. We will later discuss some

variations on this method, but our goal next is to show its relation to

interaction functions.

Proposition 3 Consider CNF ∆(Z) and any clause partition

(∆l, ∆r). Let (X,Y) be any partition of variables Z such that

X ⊆ vars(∆l) and Y ⊆ vars(∆r). The decomposition given in

(1) is then an X-decomposition of ∆.

Note that the CNF decomposition method does not explicitly target

a particular variable partition (X,Y). Instead, these variable parti-

tions are determined mainly by the chosen clause partition. Still, the

outcome is a decomposition in the sense of Definition 1.

We will next show that conditioning on variables V, as done

above, is meant to eliminate the interaction between variables X and

Y in a very specific way and then relate this to decomposing the in-

teraction function. Let ∆(X) be the clauses that mention only vari-

ables X, ∆(Y) be the clauses that mention only variables Y, and

∆(X,Y) be the remaining clauses. We can then write CNF ∆ as

follows:

∆(Z) = ∆(X) ∧∆(X,Y) ∧∆(Y).

We will refer to ∆(X,Y) as the cutset clauses and show later that

they are related in a very specific way to the (X,Y) interaction func-

tion. But first the following result.

Proposition 4 Given a CNF ∆(Z) and any clause partition

(∆l, ∆r), let V be the set of variables shared between ∆l, ∆r

and (X,Y) be any partition of Z such that X ⊆ vars(∆l) and

Y ⊆ vars(∆r). For every clause α in ∆(X,Y) and any instantia-

tion v of V, we have that vars(α|v) ⊆ X or vars(α|v) ⊆ Y.

Hence, the process of conditioning on variables V can be interpreted

as a process of eliminating the interaction between variables X and

variables Y since this conditioning removes all cutset clauses. Once

all these interactions have been eliminated, the resulting formula is

guaranteed to be decomposable.

One of the key results we shall present later shows that the depen-

dence on cutset clauses in characterizing the interaction between two

sets of variables, and the dependence on these clauses in computing

decompositions, can be an overkill as these clauses may not faithfully

capture the interaction between the corresponding variables. Before

we present this result, however, we discuss another method for de-

composing a CNF based on cutset clauses.
Consider cutset clauses α1, . . . , αk for variable partition (X,Y)

and let us express clause αi as αi(X) ∨ αi(Y), where αi(X) is
the sub-clause of αi mentioning variables X and αi(Y) is the sub-
clause of αi mentioning variables in Y. We then have the following
decomposition of CNF ∆:







(

∆(X) ∧
∧

i∈S

αi(X)

)

∧



∆(Y) ∧
∧

i∈S

αi(Y)



 S ⊆ {1, 2, . . . , k}







.

We can now establish the following upper bounds on the size of

CNF decompositions computed using the above two methods.

Proposition 5 Let f(Z) be a CNF, let (X,Y) be a partition of vari-

ables Z, and let g be the cutset clauses of CNF f . Let kf and kg be

the sizes of minimal X-decompositions for f and g, respectively, and

let kc and kv be the number of clauses and variables in g, respec-

tively. Then

kf ≤ kg ≤ 2min(kv,kc).

Consider the following CNF with kc = O(n) and kv = O(n):

(A1 ∨B1),
(A1 ∨A2 ∨B2),
(A1 ∨A2 ∨A3 ∨B3),
...

(A1 ∨ . . . ∨An ∨Bn),

Let X = {A1, . . . , An} and Y = {B1, . . . , Bn}. The above meth-

ods (and corresponding bounds) lead to decompositions of exponen-

tial size. Yet, we have an X-decomposition of size O(n):

g(X) h(Y)

A1 true

(A1 ∨A2) B1

(A1 ∨A2 ∨A3) B1 ∧B2

...
...

(A1 ∨ . . . ∨An) B1 ∧ . . . ∧Bn

This example shows that the specific decomposition schemes we

discussed, based on cutset clauses, could yield decompositions that

are much larger than the optimal one. In fact, this sub-optimality

turns out to go well beyond the specific decomposition schemes dis-

cussed here. The following example shows that even the smallest X-

decomposition of the cutset clauses (obtained by any method) could

be exponentially larger than the smallest X-decomposition of the en-

tire CNF. Consider the following CNF ∆(Z):

X1 ∧ . . . ∧Xn ∧

(¬X1 ∨ Y1) ∧ . . . ∧ (¬Xn ∨ Yn)

If we let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn}, then we have

∆(X) = X1 ∧ . . . ∧Xn, ∆(Y) = true,

∆(X,Y) = (¬X1 ∨ Y1) ∧ . . . ∧ (¬Xn ∨ Yn).

Note that this CNF is logically equivalent to X1 ∧ . . . ∧Xn ∧ Y1 ∧
. . . ∧ Yn, which is already decomposable according to the parti-

tion (X,Y). Hence, its minimal decomposition has size 1. Yet, we

can show that the minimal X-decomposition for the cutset clauses

∆(X,Y) has size exponential in n (proof in the full paper). Note

also that the interaction function for this CNF is true.

6 The Relationship between Cutset Clauses and
Interaction Functions

We have thus far presented two methods that try to eliminate the

interaction between two sets of variables by effectively eliminating

cutset clauses. We have also shown that these methods can lead to

decompositions that are exponentially larger in size than optimal de-

compositions. We have also shown that the optimal decomposition

of cutset clauses (using any method) can be exponentially larger than

the optimal decomposition of the whole CNF.

Earlier, however, we have shown that this cannot happen when us-

ing interaction functions. In particular, we have shown that the size

of an optimal decomposition of a function is roughly equal to the

size of an optimal decomposition of its interaction function. We will

next show the relationship between cutset clauses and the interaction

function of a CNF. The goal here is to show what is exactly missing

when using cutset clauses, which could lead to sub-optimal decom-

positions.

Proposition 6 Consider a CNF f(Z) and let (X,Y) be a partition

of variables Z. Let g(X) be the clauses of the CNF mentioning only

variables in X, h(Y) be the clauses of the CNF mentioning only

variables in Y, and e(X,Y) be the cutset clauses. We then have:

f(Z) = g(X) ∧ h(Y) ∧ e(X,Y).

Moreover, the (X,Y) interaction function is given by:

fXY = e ∨ ¬(h ∧ ∃X(g ∧ e)) ∨ ¬(g ∧ ∃Y(h ∧ e)).

This proposition spells out precisely the difference between cutset

clauses and interaction functions. In particular, while we have shown

earlier that an optimal decomposition for cutset clauses e can be ex-

ponentially larger than an optimal decomposition for CNF f , the

above proposition (together with Proposition 2) show that the size of

an optimal decomposition for e∨¬(h∧∃X(g∧e))∨¬(g∧∃Y(h∧e))
is at most off by 2 from the size of an optimal decomposition for the

CNF f .4 Hence, while current decomposition methods consider only

the cutset clauses e, one also needs to account for the components

¬(h ∧ ∃X(g ∧ e)) and ¬(g ∧ ∃Y(h ∧ e)), which may lead to a

decomposition whose size is exponentially smaller.

Consider the following CNF for an example:

f(Z) = X2 ∧X3 ∧ . . . ∧Xn ∧ (¬X1 ∨ Y1) ∧ . . . ∧ (¬Xn ∨ Yn).

If X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn}, the cutset clauses are

e(X,Y) = (¬X1 ∨ Y1) ∧ . . . ∧ (¬Xn ∨ Yn).

4 Note that ¬(h ∧ ∃X(g ∧ e)) depends only on variables Y and ¬(g ∧
∃Y(h ∧ e)) depends only on variables X.

Moreover, we have g(X) = X2 ∧ . . . ∧Xn and h(Y) = true . One

can verify that ¬(h ∧ ∃X(g ∧ e)) = (¬Y2 ∨ . . . ∨ ¬Yn) and that

¬(g ∧ ∃Y(h∧ e)) = (¬X2 ∨ . . .∨¬Xn). The interaction function

will then simplify to

fXY = (¬X1 ∨ . . . ∨ ¬Xn) ∨ (Y1 ∨ ¬Y2 ∨ . . . ∨ ¬Yn).

Even though the cutset clauses e(X,Y) admit no polysize X-

decomposition (proof in full paper), the interaction function has an

X-decomposition of size 2n.

7 Computing Interaction Functions

Our results thus far show that dependence on cutset clauses in com-

puting decompositions could lead to sub-optiomal decompositions.

Our results also show that using interaction functions, which are

weaker than cutset clauses, do not suffer from this problem. This

leaves the question, however, of how to practically compute interac-

tion functions, which are not readily available (as they do not neces-

sarily correspond to a subset of the CNF clauses). We do not have an

answer to this question in this paper and we view this as an important

problem to be addressed in future research. In the short term, how-

ever, one may not want to completely compute and use interaction

functions, but one may only seek to find better approximations of this

function than the cutset clauses. In fact, some knowledge compilers

and model counters can be viewed as doing just that. For example,

the C2D compiler [5], will instantiate variables incrementally, apply

unit propagation (to the whole CNF), and then simplify clauses, be-

fore continuing to instantiate more variables. In a sense, this can be

viewed as integrating (even in a limited way) the other missing com-

ponents of the interaction function. Our results, however, pinpoint

precisely and semantically the CNF contents which are relevant, and

which must be brought to bear on the decomposition process if one

is to guarantee optimality.

In the following experiments, we set out to shed some light on

the distinctions between cutset clauses and interaction functions. In

particular, we implemented a method for computing the OBDD rep-

resentations of interaction functions based on the formula given in

Proposition 6. We will compare these OBDDs against the OBDDs for

cutset clauses. One reason for choosing OBDD for this comparison is

because of its canonicity–the size of the OBDD depends only on the

underlying boolean function and the variable order used. Moreover,

representing these functions using OBDDs also allow us to easily

compare their model counts. Lastly, the OBDDs of these functions

also provide us with useful insights on certain types of decompo-

sitions that they admit. This is mainly due to a result in a recent

work [10]. In that work, it was shown that, given a variable order-

ing that puts X before Y, any OBDD of function f respecting that

ordering must induce an X-decomposition. Moreover, the size of the

induced X-decomposition is equal to the number of OBDD nodes la-

beled with a variable in Y that are pointed to by some nodes labeled

with a variable in X. We refer to these nodes as decomposition-nodes

in the following discussion.

In this preliminary experiment, we used more than 1,000

randomly-generated, satisfiable 3CNF formulas over 20 variables.

The number of clauses in these formulas ranges from 40 to 100

clauses. For each CNF formula, we generated a random variable par-

tition, and computed the OBDDs for the cutset clauses and the inter-

action function (using CUDD [12]) with respect to that partition. For

a partition (X,Y), we used the variable ordering 〈X,Y〉 for con-

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

(a)

 1

 10

 100

 1000

 1 10 100 1000

(b)

Figure 2. Scatter plots comparing (a) OBDD sizes and (b) number of
decomposition-nodes for cutset clauses (x-axis) against those for interaction

functions (y-axis).

structing OBDDs.5 We used the natural order within sets X,Y. Ta-

ble 1 reports the sizes and model counts for representative instances.

vars clauses partition cutset clauses interaction
sizes OBDD nodes models OBDD nodes models

20 40 10|10 1,611 30,890 1,448 968,189
20 40 9|11 901 60,684 908 1,010,684
20 50 8|12 764 20,664 412 1,042,563
20 50 9|11 1,486 43,505 748 1,038,957
20 60 7|13 630 13,834 230 1,048,230
20 60 8|12 1,396 12,434 347 1,045,503
20 70 10|10 646 830 304 1,046,941
20 70 10|10 528 507 349 1,046,740
20 80 8|12 314 1,020 34 1,048,560
20 80 9|11 400 926 75 1,048,542
20 90 9|11 836 1,754 190 1,048,179
20 90 10|10 530 647 184 1,045,774
20 100 10|10 246 246 37 1,048,570
20 100 8|12 207 93 38 1,048,568

Table 1. Properties of cutset clauses and interaction functions for
representative instances.

On average, the interaction functions tend to have several orders

of magnitude more models than cutset clauses. Hence, these results

show that interaction functions tend to be much weaker than cutset

clauses. Nevertheless, their OBDDs tend to be smaller. On average,

the size of the OBDD of interaction is about 54% smaller than that

of the corresponding cutset clauses. Figure 2(a) shows a scatter plot

that compares the OBDD sizes of cutset cluases (x-axis) and corre-

sponding interaction functions (y-axis). Each data point in this plot

corresponds to one instance. Each data point below the x = y di-

agonal line indicates that the interaction function for the CNF has a

smaller OBDD representation.

In terms of decomposition-nodes, the decompositions induced by

the OBDDs of interaction functions are 45% smaller than those

of cutset clauses on average. Figure 2(b) compares the number of

decomposition-nodes in these OBDDs in the same manner. In fact,

the number of decomposition-nodes in the OBDDs of interaction

functions is almost always (> 99%) smaller than that of cutset

clauses. Even though we only experimented with random formulas,

the results are promising as they clearly indicate that interaction func-

tions tend to lead to smaller decompositions than cutset clauses.

5 Using this ordering allows us to measure the sizes of X-decompositions
induced by these OBDDs as explained above.

8 Conclusions

We discussed in this paper the problem of computing optimal

decompositions for Boolean functions — those represented using

CNFs in particular. We introduced the notion of an interaction

function between two sets of variables, which captures the re-

lationship between these variables as encoded by the Boolean

function. We showed that optimally decomposing the interaction

function is equivalent to optimally decomposing the full Boolean

function. We also showed that the current practice of computing

decompositions based on cutset clauses can lead to decompositions

that are exponentially larger than optimal decompositions. We

also provided precise relationships between cutset clauses and

interaction functions, showing that cutset clauses can be viewed as

approximations of interaction functions. Our results pinpoint why

decomposition methods based on cutset clauses are sub-optimal and

identify what else needs to be accounted for by these methods to

guarantee the optimality of computed decompositions.

Acknowledgment

We thank Jinbo Huang for providing a program for converting

CNFs into OBDDs.

A Proofs

Proof of Proposition 1

By the definition of interaction function, we have

(∃Xf) ∧ (∃Yf) ∧ fXY

= (∃Xf) ∧ (∃Yf) ∧ (f ∨ ¬(∃Xf) ∨ ¬(∃Yf))

= (∃Xf) ∧ (∃Yf) ∧ f = f,

since f |= ∃Xf and f |= ∃Yf . We also have

∃XfXY = ∃X (f ∨ ¬(∃Xf) ∨ ¬(∃Yf))

= (∃Xf) ∨ (∃X¬(∃Xf)) ∨ (∃X¬(∃Yf))

= (∃Xf) ∨ true ∨ (∃X¬(∃Yf)) = true.

Similarly, ∃YfXY = true. We will next show that fXY is the

weakest function satisfying f = (∃Xf) ∧ (∃Yf) ∧ fXY . That

is, any function with one more model will fail to satisfy this prop-

erty. We first observe that f |= (∃Xf) ∨ (∃Yf). Therefore, the

models of ¬f ∧ ((∃Xf) ∨ (∃Yf)) (∗) are precisely the models of

(∃Xf)∨ (∃Yf) that are not models of f . For a function h to satisfy

f = (∃Xf) ∧ (∃Yf) ∧ h

it cannot have any of the models of (*). That is, the following must

be inconsistent h∧(¬f ∧ ((∃Xf) ∨ (∃Yf))). The weakest function

that satisfies this property is:

h = ¬ (¬f ∧ ((∃Xf) ∨ (∃Yf)))

= f ∨ ¬(∃Xf) ∨ ¬(∃Yf).

The following properties follow immediately from the definition of

an interaction: fXY 6= false and if f = false or f = true , then

fXY = true. ⊓⊔

Proof of Proposition 2

Suppose that fXY =
∨kXY

i=1 gi(X) ∧ hi(Y) is a minimal X-

decomposition for fXY . We then have

f = (∃Yf) ∧ (∃Xf) ∧ fXY

= (∃Yf) ∧ (∃Xf) ∧

(

kXY
∨

i=1

gi(X) ∧ hi(Y)

)

=

kXY
∨

i=1

(

(∃Yf) ∧ gi(X)
)

∧
(

(∃Xf) ∧ hi(Y)
)

which is an X-decomposition for f of size kXY . Hence, k ≤ kXY .

Suppose now that f =
∨k

i=1 gi(X) ∧ hi(Y) is a minimal X-

decomposition for f . Then ¬(∃Xf) ∨ ¬(∃Yf) ∨
∨k

i=1 gi(X) ∧
hi(Y) is an X-decomposition for fXY of size k+2. Hence, kXY ≤
k + 2. ⊓⊔

Proof of Proposition 6

We want to compute fXY = f ∨ ¬∃Xf ∨ ¬∃Yf for f = g(X) ∧
h(Y) ∧ e(X,Y). We have

∃Xf = ∃X(g ∧ h ∧ e)

= h ∧ ∃X(g ∧ e) (h does not depend on X).

Similarly, we have ∃Yf = g ∧ ∃Y(h ∧ e). We then have

fXY = f ∨ ¬∃Xf ∨ ¬∃Yf

= (g ∧ h ∧ e) ∨ ¬h ∨ ¬∃X(g ∧ e) ∨ ¬g ∨ ¬∃Y(h ∧ e)

= e ∨ ¬h ∨ ¬∃X(g ∧ e) ∨ ¬g ∨ ¬∃Y(h ∧ e)

= e ∨ ¬(h ∧ ∃X(g ∧ e)) ∨ ¬(g ∧ ∃Y(h ∧ e)).

⊓⊔

REFERENCES

[1] Roberto J. Bayardo, Jr. and Joseph Daniel Pehoushek, ‘Counting mod-
els using connected components’, in Proc. of the AAAI-00, pp. 157–162.
AAAI Press / The MIT Press, (2000).

[2] Elazar Birnbaum and Eliezer L. Lozinskii, ‘The good old davis-putnam
procedure helps counting models’, J. Artif. Int. Res., 10(1), 457–477,
(1999).

[3] Adnan Darwiche, ‘Compiling knowledge into decomposable negation
normal form’, in Proc. of IJCAI-99, pp. 284–289. Morgan Kaufmann,
(1999).

[4] Adnan Darwiche, ‘Decomposable negation normal form’, Journal of

the ACM, 48(4), 608–647, (2001).
[5] Adnan Darwiche, ‘New advances in compiling CNF to decomposable

negational normal form’, in Proceedings of European Conference on

Artificial Intelligence, Valencia, Spain, pp. 328–332, (2004).
[6] Adnan Darwiche and Pierre Marquis, ‘A knowledge compilation map’,

JAIR, 17, 229–264, (2002).
[7] Jinbo Huang and Adnan Darwiche, ‘Using dpll for efficient obdd con-

struction’, in Proc. of SAT-04 (Selected Papers), pp. 157–172, (2004).
[8] Robert Mateescu and Rina Dechter, ‘Compiling constraint networks

into and/or multi-valued decision diagrams (AOMDDs)’, in Proc. of

CP-06, pp. 329–343, (2006).
[9] Knot Pipatsrisawat and Adnan Darwiche, ‘New compilation languages

based on structured decomposability’, in Proc. of AAAI-08, pp. 517–
522, (2008).

[10] Knot Pipatsrisawat and Adnan Darwiche, ‘A lower bound on the size
of decomposable negation normal form’, in Proceedings of AAAI-10,

to appear, (July 2010).
[11] Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann

Pitassi, ‘Combining component caching and clause learning for effec-
tive model counting’, in In Proc. of SAT-04, (2004).

[12] F. Somenzi. Cudd: Cu decision diagram package. available from
http://vlsi.colorado.edu/∼fabio/.

