
All from One, One for All: 
on Model Checking Using Representatives 

D o r o n  P e l e d  

A T & T  Bel l  L a b o r a t o r i e s  

600  M o u n t a i n  A v e n u e  

M u r r a y  Hil l ,  NJ  07974 ,  U S A  

Abstract 

Checking that a given finite state program satisfies a linear temporal logic 
property is suffering in many cases from a severe space and time explosion. One 
way to cope with this is to reduce the state graph used for model checking. We 
define an equivalence relation between infinite sequences, based on infinite traces 
such that for each equivalence class, either all or none of the sequences satisfy 
the checked formula. We present an algorithm for constructing a state graph that 
contains at least one representative sequence for each equivalence class. This allows 
applying existing model checking algorithms to the reduced state graph rather than 
on the larger full state graph of the program. It also allows model checking under 
fairness assumptions, and exploits these assumptions to obtain smaller state graphs. 
A formula rewriting technique is presented to allow coarser equivalence relation 
among sequences, such that less representatives are needed. 

1 Introduction 
When a program allows concurrent or independent activities, their executions are inter- 
leaved in many possible orders. It is often the case that a formula qa is insensitive to 
reordering some of the concurrent activities of the program, i.e., that any two sequences 
that are obtained from each other by such reordering, either both satisfy ~o or both 
satisfy -,9~. This phenomenon allows reducing the state graph used for model checking 
by constructing a smaller state graph that represents only a subset of the interleaving 
sequences. 

In this paper, we study model checking techniques based on constructing a reduced 
state graph that generates representative interleaving sequences. We base our state graph 
reduction on an equivalence relation on classes of inf ini te  sequences (called infinite 
traces [7]), equivalent up to commuting independent operations (i.e., pairs of operations 
whose effect on the global states is commutative). This equivalence relation is refined 
in order to guarantee that the checked formula is equivalence robust [2] w.r.t, the 
equivalence relation. That is, in each equivalence class, either all the sequences satisfy 
the formula, or none of them satisfy it. 

A family of algorithms is suggested which generate a state graph G for the modeled 
program such that at least one representative sequence for each equivalence class is 
present in G. Thus, model checking algorithms for linear temporal logic (LTL) [9] such 



410 

as [8], that are otherwise applied to the (full) state graph of the program, can be applied 
to the smaller state graph G. The gain in time and space lies then in the fact that these 
algorithms are applied to a state graph which can be in some cases considerably smaller 
than the full state graph of the program. 

In order to make the checked formula equivalence robust, the equivalence relation 
between sequences that is induced by the program may need to be refined. This is 
done by introducing new dependencies between program operations whose execution 
in different orders can alter the truth value of the checked property. Since the size of 
the reduced state graph grows with the number of such dependencies (the equivalence 
relation becomes finer and more representatives are required to appear in the state 
graph), we are motivated to add as little such dependencies as possible. We show how 
re,;vriting the checked formula using LTL equivalences can help in reducing the number 
of dependencies that are added in order to achieve equivalence robustness. 

We also generalize the framework of model checking using representative sequences 
by allowing fairness conditions to assist in the generation Of the reduce state graphs. 
When fairness is assumed, there are less interleaving sequences that correspond to 
executions of the program. Thus, in the presence of a fairness assumption, it is possible 
that less equivalence Classes and thus less representatives are required. We show how 
fairness assumptions can be exploited when expanding the state graph to reduce it 
further. 

2 Preliminaries 

Afinite-stateprogram P is a triple IT, Q, 5 / where T is a finite set of operations, Q is 
a finite set of states, and t E Q is the initial state. The enabling condition ena _C Q of 
an operation c~ is the set of states from which c~ can be executed. This is denoted also as 
a boolean predicate on states. Each operation o~ can be seen as a partial transformation 
c~ : Q ~ Q which needs to be defined at least for each q E en,~. 

Definition 2.1 A dependency relation is a binary reflexive and symmetric relation D C_ 
T x T such that for each pair of operations (o~,/3) q[ D(called independent operations) 
it must hold that for each q E Q, if  q E end,/3 is enabled in q iff it is enabled in c~(q). 
Moreover, i f  q E en~ N en~ then ~(/3(q) ) =/3(c~(q) ). 

Programs written in programming languages, e.g., with shared variables or communi- 
cation, can be Ixanslated into sets of operations [9]. A dependency relation can also be 
retrieved syntactically from the program (see for example [5, 13]). It will be evident 
in the sequel that the gain obtained from the model checking method suggested here 
can increase when a smaller dependency relation (i.e., one that contains less pairs) D 
is used, and vice versa. Notice that any reflexive and symmetric relation D I such that 
D C_ D' C_ T • T also satisfies the above conditions and thus can be considered as a 
dependency relation for P. 

Definition 2.2 An interleaving sequence of a program is a finite or infinite sequence of 
operations v = ~1 c~2 . �9 that generates the sequence of states ~ = qo ql q2. �9 .from Q, 
of length Iv + 11 (or w when v is infinite), such that (1) qo = L, (2)for each 0 < i <l v I, 
qi E en~+l holds, and qi+l = f~+, (qi), and (3) either ~ is infinite or its last state qn 
satisfies q,~ f[ UTeT enT. 



411 

The interleaving semantics of a program often involves a restricting condition on 
interleaving sequences called fairness. Only sequences satisfying the assumed fairness 
conditions are considered to be executions of the program. The temporal logic properties 
are interpreted accordingly only over fair sequences. Then, model checking algorithms 
must reflect this choice by checking that the fair sequences satisfy the temporal property. 

An admissible sequence is an interleaving sequence or any (finite) prefix of such 
a sequence. We represent an admissible sequence either as a set of states from Q, or 
by the sequence of executed operations a l  a2 a3 . . . .  For a finite admissible sequence 
generated by the sequence of operations v, we denote its last state by f inv .  This is the 
state reached when executing the sequence of operations v from the initial state ~. 

A state graph for a program P is a graph G = (~, V, E),  where V is the set of nodes, 
E V is the starting node, and the edges E are labeled with operations from T. For 

each node s E V,  val(s) is a state of Q, and in particular, val(~) = ~. If s a } t E E,  
then val ( s ) E en~ (we also say that a is enabled from s ), and vai( t ) = a(  val( s ) ). It is 
said that a is one of the directions taken from s. A state graph generates a sequence of 
operations a l a 2 . .  �9 (or their corresponding sequence of states), if there exists a (finite 
or infinite) path starting with ~ whose edges are labeled with C~la2... in this order. The 
full state graph of a program P satisfies that for each node s, for each operation a such 
that c~ is enabled in s, there is an outgoing edge from s, labeled with a.  

The dependency relation D is used to define an equivalence relation on interleaving 
sequences. First, an equivalence between finite strings of operations is defined [10]: 
two strings v, w E T* are equivalent, denoted v =D w, iff there exists a sequence of 
strings u0, ul,  . . . ,  un, where uo = v, u~ = w, and for each 0 < i < n, ui = f~afl~ and 
u~+l = ~/~aa for some ~, ~2 E T*, a , /3  E T, (a, t )  r D. That is, w is equivalent to v 
if it can be obtained from it by repeatedly commuting adjacent independent operations. 
It can be easily seen that '=D'  is indeed an equivalence relation among finite strings. 
Notice that if v is a finite admissible sequence of a program P,  and v = n  w, then w is 
also an admissible sequence of P.  

The definition of equivalence between finite strings is now extended to interleaving 
sequences [7]. Denote by P r e f ( w )  the set of finite prefixes of the (finite or infinite) 
string w. A relation ' _ '  is defined between pairs of admissible sequences as follows: 
v _ v' i f fVu E P r e f ( v )  3w E P r e f ( v ' )  3z E T* (w = n  z A u E P r e f ( z ) ) .  
That is, each finite prefix of v is a prefix of a permutation (under commuting adjacent 
independent operations) of some prefix of v'. 

Definition 2.3 Define v ~-, v I iff v -~ v ~ and v' -~ v. 

It is easy to see that ' ~ '  is an equivalence relation [7]. A trace is an equivalence 
class of admissible sequences. Notice that this allows traces of finite as well as infinite 
sequences. Denote a trace a also by [v], where v is any member of or. The length of a 
trace is the length of any of its sequences (they are all of equal length). A finite trace 
is thus a set of finite admissible sequences equivalent to each other up to commuting 
adjacent independent operations. It can be easily shown that if v =D V ~, then f i nv  = 
f inv , .  Therefore, for a finite trace a, we can write f i na  for the last state reached by 
any sequence in a. 



412 

Concatenation of two traces a = [s0 O i l  �9 �9 �9 S n ]  and ~r' = [30 31 . . .  3m. . . ] ,  where a 
is finite and a '  is either finite or infinite, is defined as act' = Is0 al  . . .  Sn3O/31 . . .  3m. . . ] ,  
provided that sos1 . . .  an3O31 . . .  3 m . . .  is admissible. I fp  = a ~r ~, denote ~r _ p. 

A run r of a program P is a trace that contains interleaving sequences of P.  Thus, it 
is finite i t  each one of its sequences cannot be extended by another operation (according 
to the third requirement in Definition 2.2). The set of runs of P under a dependency 
relation D is denoted by R D. Notice that for any run 7r of P and finite trace a _ lr, 
if ~[a3] E 7r and (s,  3) ~ D, then a[a], a[3] U__ r. Consider now two dependency 
relations D and D' such that D C_ D'. Then '-----D,' is a refinement of the relation '--D'- 
That is, i fv  =D, W, then v ------D w. Denote [12]: 

7r~qo For each interleaving sequence ~ of 7r, ~ ~ ~. I.e., 7r satisfies ~ universally. 

7r~qo There exists an interleaving sequence ~ ofTr, such that ~ ~ ~. I.e., 7r satisfies 
existentially. 

A property ~ such that for each r E R g,  r ~  i f f T r ~  is said to be equivalence robust 
with respect to R D. We will omit R D when clear from text. Equivalence robustness 
was first defined for fairness properties in [2]. 

It is possible to weaken the conditions for dependency given in Definition 2.1, 
achieving further reduced state graphs when using conditional dependency relation 
(see [6]). 

3 Spawning Reduced State Graphs 
3.1 Existing Partial Order Model-Checking Methods 
The algorithm suggested in this paper is related to previous algorithms of Valmari [15, 
16] and of Godefroid and Wolper [3, 4]. It is also connected to a verification method by 
Katz and Peled [5]. 

Godefroid [3] suggested an algorithm called the sleep set method for spanning a 
reduced state graph for finite-state programs. Such a reduced state graph G contains 
for eachfinite trace a representative linearization. More formally, for each finite trace 
a of P,  G generates an admissible sequence of operations "/1 3'2... 3'n such that cr C 
[3'1 72. . .  3'n]. This algorithm can be used for checking deadlocks and other safety 
properties. The intuition behind the algorithm is as follows: to each node s expanded by 
the algorithm, a set sleep(s) of directions (operations), called its sleep set, is associated. 

e 

These (enabled) operations do not need to be explored from s. 

If from some node a, some direction a is already explored, then when any edge 

s ~ ~ t, with 3 independent of s is explored, there is no need to expand the direction r 
from t and s is added to sleep(t). This follows form the fact that when the expansion 
of s is finished, enough representatives for successor operations of s (including 3) are 
explored, and exploring s after 3 is the same as expanding/3 after s ,  i.e., a[s3] = ~r [3~]. 
Moreover, if expanding s is not needed from some node s (i.e., s E sleep(s)) and an 
edge s ~ r with 3' independent of cx is explored, then c~ is added to sleep(r), since 
the occurrences of s immediately following 7 can be commuted to represent an already 
unnecessary sequence. 



413 

When a node is reached again during expansion, a new sleep set is calculated for 
it, and is compared with the one it had before. If the old sleep set contained some 
operations that are not included in the new sleep set, the node is expanded again with a 
sleep set which is the intersection of the new and the old sleep set. This guarantees that 
if the node is reached from two or more directions, it will provide enough successors for 
all of them 1. This algorithm does not guarantee that the state graph it spawns generates 
at least one representative interleaving sequence for each run. 

As an example, consider a program P1 with two sets of operations Ot = {a} and 
02 = {3, 7, 6}, initialized with a state in which both a and 3 are enabled. The 
operations 02 are interdependent and constitute an infinite loop such that 3 '76  is 
repeatedly executed. The operation a is independent of the oper- 
ations in Oi, and can be executed only once. Each interleaving ,O ,  
sequence of P1 is infinite and contains at most one occurrence of a, J ( ~ d ~ 6  3 
interleaved after an arbitrary prefix of (3 7 6) ~ The reduced state 
graph constructed according to the above principles is depicted on ~ ~ ,7 ~ a 
the right (the starting node is black). For each node s reached by 
an edge labeled with a,  the only enabled operation is in sleep(s). 
Thus, in each sequence generated by the graph, once a is taken, it is 
the last operation. The only infinite sequence generated is (~ 7 6)~. 

Valmafi [ 15] suggested an algorithm for spawning reduced state graphs for programs, 
extending a previous method by Overman [11]. His method is based on avoiding the 
expansion of all the enabled directions from a given node s. This is done by finding 
a sufficient subset of the enabled directions that need to be explored from s called a 
stubborn set. Then, only these directions are explored. The reduced state graph obtained 
in this way is guaranteed to contain all of the deadlocks (i.e., states that do not have 
successors) that appear in the full state graph. 

The idea of reducing the set of successors from a global state was also developed 
independently by Katz and Peled [5]. There, proof rules were given, based on a 
construction of faithful decompositions that are similar to stubborn sets. This allows 
verifying equivalence robust liveness properties of programs by using well founded 
induction that considers only a subset of representatives of the interleavings sequences. 
Then, it is possible to deduce that these properties hold for all the execution sequences 
of the program. 

Valmari has extended his methods [16] to verify properties of next-time free (i.e., 
without' O ' )  LTL formulas using the reduced state graph. There, an operation is defined 
to be visible if it can change the truth value of  a proposition that appears in the checked 
formula. The gain from commutativity strongly depends upon the number of visible 
operations. When all the operations are visible, there is no gain at all, as the full state 
graph will be constructed. 

The stubborn sets are generated with respect to no particular fairness assumption. 
If some fairness ~P is assumed, it is possible to check that the property ~b holds under 
the assumption ~o by model checking that qa ~ ~b holds. In addition to the inefficiency 

1The algorithm described in [3] includes also some additional heuristics to reduce the subset of edges 
expanded from a given node. 



414 

caused by model checking being PSPACE-complete in the size of the formula, adding 
fairness as a part of the formula also causes all the operations of the program to be 
visible. 

3.2 The Suggested Algorithm 
We present an algorithm that improves the above techniques in order to achieve the 
following new goals: 

�9 Representative sequences for all the infinite runs (rather than the finite traces, as 
in [3, 16]) of the program are generated by. the reduced state graph G. That is, for 
every run 7r E R~,  at least one interleaving sequence ~ E 7r is generated by G. 

�9 Algorithms that treat various fairness assumptions efficiently, such as [8] can 
directly use the reduced state graph to check that a property holds under a fairness 
assumption. Moreover, fairness can be used during the state graph expansion, to 
further reduce the state graphs. 

�9 Heuristics that were used by the previous methods are generalized in such a way 
that (1) a generic framework is presented for predicting the directions needed 
to be explored from a given node, such that suggested prediction heuristics can 
be validated against it, and (2) it is shown that making an optimal prediction is 
NP-hard. 

�9 Any next-time free temporal property can be model-checked, and (as will be 
shown in the next section) a reduced state graph can be constructed even in the 
extreme case when all operations are visible (i.e., can change the truth value of 
some proposition that appear in the checked formula). 

�9 Additional reduction of the state graph is achieved by deciding whether to con- 
struct a new edge only upon backtracking from the node to which it is directed. 
Moreover, after completing the expansion of the state graph, it is possible to 
identify some states as redundant, and free the space that was used to store them. 

The algorithm presented herein is a modification of the algorithm of [3] so that 
the spawned state graph contains representatives for infinite traces. It does so by 
guaranteeing that for each run ~r, for each expanded node s and trace ~ _ 7r with 
f in~  = val(s), if a[a] _.E 7r and a is not in sleep(s) (if t~ E sleep(s) the direction 

a was already taken care of from some other node), then a path ~ = s a0 ~ tl #1 

t2 . . .  tn - ~  tn+l a ~ r will be generated, with a[/~0 . . .  ~3ha] EE_ 7r. 

The following changes are made to the sleep set algorithm: after an edge s "r ~ t 
with (a, 7) r D that closes a cycle is explored (this is detected by testing if the 

expansion of t is not completed, i.e., is still active, when the edge s "r > t is explored), 
the operation "/is not added to the sleep set of any node s' such that s a ~ s'. We say 
that the direction 7 is unreliable from s. The reason is that since the expansion of t is 
not completed and thus the existence of a path ~ (with/3o = 7 and tl = t) for the runs 
7r such that a[a], a[7] E r is not yet guaranteed. 

Another change is that an edge is only created upon backtracking it, when it leads 
to a node from which other edges that were already created, or to a node that has no 
enabled operations (i.e., a deadlock or termination state). This prevents creating edges 



415 

that only lead to redundant nodes where all their enabled operations are in their sleep 
set. 

The algorithm that appears in Figure 1 uses the following notation. We identify 
a node s with val(s). Thus, the a successor of a node s has the value a(s). The 
operations that are enabled from s are denoted by en(s). A state that is guaranteed to 
remain in the reduced state graph is labeled with the flag f ixed(s) (states that are not 
fixed will be eventually removed), while open(s) is a boolean flag that holds when s is 
not fully expanded (is still active) at this point of the execution. The set of directions 
(i.e., operations) already explored from the node s is denoted by explored(s). The 
directions which, when explored from s, reach a node that is open (and therefore, close 
a cycle) are denoted by unreliable(s). The set of directions yet to be explored from 
node s is working_set(s). Finally, let dep(a) be the set of operations dependent on a,  
i.e., {~3 I (8, a) E D}. For the moment, let ample(t) be en(t). 

Consider now the complexity of the spawning algorithm when a perfect hashing 
function to locate old nodes in O(1) is given. Each node s can be expanded at most as 
many times as it is assigned a new sleep set, since in each time, sleep(s) is diminished. 
Thus, each edge can be explored no more than IT I times. Each time an edge s a ~ t 
is explored, a new sleep set is calculated for t and compared against the old one. This 
can be done in time O(I T I). Thus, the time complexity is therefore O(I T 121 E I) 
(notice that the graph is connected), where [ E I is the actual number of edges explored, 
rather than the number of edges in the full state graph. The space complexity is 
o(  (I T II V I)+ I I), where V is the actual number of nodes. Notice that space is 
further saved in this modified version of the sleep set algorithm by not creating edges 
that lead to non-fixed nodes. 

The reduction of the state graph was achieved so far by collecting information about 
the explored directions. We allow a further reduction of the state graph by allowing 
ample(s) C en(s). This is related to [5, 15, 3] and others, where a subset of the enabled 
directions to be explored from a node is calculated before starting its expansion, based 
on a static analysis of the modeled program. Our adaptation to this principle will again 
insure representations for all the runs rather than only for finite traces. The following 
definition, adapted from [13], characterizes all the sets of operations that guarantee at 
least a single successor for a state q for each run in a set of runs ~ .  

Definition 3.1 A set T C_ T is called an ample set for q with respect to a set of 
runs T~ if for each a such that f in~ = q, for each run ~r E T~ such that ~r E_ ,75 
{r e TA@-]  _.E r 

Before expanding a node s whose value is q in the reduced state graph, an ample set Ts 
for q w.r.t. R~  is calculated. We say then that ~ is an ample set for s. Again, we need 
to prevent cycles in which an enabled operation is not taken as each node relies on its 
successor to take this direction. 

Ample sets are implemented by using a procedure ample(s) that returns an ample 
set Ts C en(s) of directions that do not lead to an open node. If no such subset exist, 
then ample(s) simply returns en( s ). The directions ample(s) \ sleep(s) are explored 
from s. It is also possible to use ample sets without sleep sets. Then one does not have 
to keep the sleep set of each expanded node in memory, or ever re-expand a node. 



416 

proc expand_node(s); 
ifen(s) = r then set(fixed(s) ) fi; 
working_set(s) := ample(s) \ sleep(s) ; 
while working_set(s) r r do 

a := some operation of working_set(s); 
working_set(s) := working_set(s) \ {a}; 
explored(s) := explored(s) U {a}; 
s' : =  
new_sleep := (sleep(s) U explored(s) )\ 

(dep(a) U unreliable(s) ); 
if not exists node s r then 

create_node( s'); set( open( s') ); 
explored( s'), unreliable( s I) := r 

program reduced_graph; 
s := ~; /* starting node , /  
explored(s) := r 
unreliable(s) := r 
sleep(s) := r 
set(open(s) ); 
expand_node(s); 
foreach s d o / , r e m o v e  nonfixed, /  

if -~fixed(s) then remove(s) fi 
hcaerof 

end reduced_graph. 

sleep( s') := new_sleep; expand_node( s') fi 
else if sleep(s') ~ new_sleep then / ,  re-expand an old n o d e . . .  �9 / 

explored(s'), unreliable( s') := r 
sleep(s') := sleep(s') n new_sleep; / *. . ,  with a smaller sleep set  , /  
if-~oPen(s' ) then set( open( s') ); expand_node( s') 
else working_set(s') := ample(s') \ sleep(s') fi 

fi 
fi; 
if fixed(s') or open(s') then / ,  permanent node , /  

set(fixed(s) ); 
if not exists edge (s, a, s t) then create_edge(s, a, s r) fi; 
if open( s') then unreliable(s):= unreliable( s ) U { a } fi / * a closes cycle . /  

fi 
elihw; 
unset(open(s) ); 

end expand_node. 

Figure 1: A modified sleep set algorithm 

Fairness assumptions play an important r61e in calculating Ts: an equivalence robust 
fairness assumption can be conceived also as a condition on runs. Then, an ample ~et 
can be sought with respect to the set of fair runs. Thus, dealing with a smaller set of 
runs can be used to diminish the size of the ample sets, resulting in smaller state graphs. 
Let us consider a specific weak fairness (justice) assumption: an interleaving sequence 
is fair in this sense iff the following holds: 

( ,)  if an operation a is enabled from some state of the sequence, then some operation 
that is dependent on a (possibly ot itself) will appear eventually in the sequence. 

Notice that from Definition 2.1, once a is enbaled, if no operation dependent on a is 
executed, it remains enabled. 



417 

Example. Consider again the program P1 in Section 3.1. The sequence (fl76) ~ in 
which a does not appear is unfair with respect to (*). Notice that in the state graph 
depicted in Section 3.1, no fair interleaving sequence is generated, and thus model 
checking algorithms such as [8] cannot be applied to it. Three state graphs are depicted 
below: 

Fu: R e d u c  Reduc t ion  
sta wi th in  wi th  
gr~ fairnes fairness 

pot 

The reduction in the rightmost state graph, spawned when assuming the fairness condi- 
tion (*), is due to the fact that the state graph does not have to generate a representative 
for the unfair sequence in which a is never taken. Notice in the above example that if 
no fairness is assumed, this state graph does not contain all the representatives. That is, 
the sequence (fl76) ~ is not represented. -~ 

Theorem 3.2 Calculating ample sets that can be used to generate minimal sized state 
graphs, with representative for each equivalence class of R~, is NP-hard. 

The above theorem justifies seeking heuristics, rather than an optimal algorithm to find 
ample sets. The reduction used in the proof of Theorem 3.2 generates a program that 
has only finite interleaving sequences, and thus the theorem does not depend on any 
fairness condition. There is a clear tradeoff between execution time and making a good 
prediction: the better prediction is more time consuming to make. In Section 4, it will 
be shown that the choice of the heuristics should depend on the fairness assumption 
used. Some calculations of subsets of enabled operations in [5, 3, 15] are also particular 
cases of ample sets. 

In some cases, it is also possible to reduce the ample sets when relaxing the require- 
ment that there must be at least one representative sequence for each equivalence class. 
In these cases, several disjoint equivalence classes can be combined into a new single 
equivalence class, requiring a single representative, and hence resulting in a smaller 
state graph. 

4 Model Checking Using Reduced State Graphs 
4.1 Achieving Equivalence Robustness 
It will now be shown that for any checked next-time free LTL formula ~o we can extend 
D in such a way that ~ becomes equivalence robust. Then it is possible to spawn the 
reduced state graph (w.r.t. the extended dependency relation) for P and use it to model 
check if ~o holds. 

The size of the reduced state graph grows when adding more dependencies. This is 
because with a larger relation D (that contains more dependent pairs), the equivalence 
relation becomes finer, and more representatives are needed in the generated state graph. 



418 

Thus, our aim is to find a small as possible extension of D that will guarantee equivalence 
robustness. 

An operation a E T affects a proposition Y, if there exists a finite admissible 
sequence va such that the truth value of Y is different in f inv  than in f inva.  We 
assume that for each proposition Y that appears in the checked formula ~ it is possible 
to calculate efficiently (e.g., syntactically, during translation of the checked program 
to a set of operations) a set a(Y) C T that includes at least the operations that affects 
Y. (It will be evident that it is beneficial to keep a(Y) as small as possible. However, 
calculating a minimal a(Y) can be expensive.) The set a(~) is defined to be the union 
of a(Y) for all propositions Y in qo. This can be defined inductively on the structure of 
the formula, e.g., a(~lbl#) = a(rl) U a(#), a(~l V #) = a(~) U a(#), a(O~l) = a(~l). 
Lemma 4.1 I f  D D_ a(~) x a(qa), then qo is equivalence robustw.r.t. R D. 
Thus, if D is a dependency relation of P,  then D' = D O (a(~) • a(~)) is a dependency 
relation that guarantees that ~ can be model checked using a reduced state graph 
(constructed w.r.t. D'). However, the size of this relation D' can still prevent any 
practical gain using this method. Obtaining a smaller relation D' is based on the 
following lemma, which stems directly from the semantic definition of temporal logic 
formulas. 
Lemma 4.2 I f  ~O and r are equivalence robust, then so are -~ ,  qa A r qo V r 
It is easy to check that equivalence robustness is not preserved under the temporal 
modalities. Observe that if ~ = ~1 A qo2 or qa = ~1 V ~2, then a(~P) = a(qOl) U a(CP2) 
and thus a(~) x a(~) 3 (a(~l) • a(q~ U (a(qO2) • a(@2)). 

This provides a strategy of obtaining a smaller dependency relation: given a formula 
~, rewrite ~ in an equivalent form in which as many as possible boolean operators 
appear at the outermost levels (i.e., not within the scope of any temporal modal). That 
is, ~ is written in an equivalent form as a boolean combination of some formulas 
~1, . . . ,  ~,~. Then, extend the dependency relation D given for a program P to D'  = 
D U (a(qol) x a(~l ) ) U.. .  U (a(qOn) x a(~n) ). Rewriting the formula can be based on the 
following (and other) equivalences among temporal formulas: o(qa A r = Dqa A De, 

v r  - v o o r  v r  = v o r  ^ r  = ^ o n e ,  
(qo A r (qoHrl) A (r ~/H(q o V r = (r/Hqa) V (~Hr Additional equivalences 
that do not directly separate the formula into components can also be used Such as 
OC]~ = O~ and OOqa = <>~P. 

Rewriting the formula can also be automated: whenever the left hand sides of one of 
the above temporal equivalences is found, it is replaced by its corresponding right hand 
side. However, notice that when an until operator ('L/') is encountered in a subformula, 
either the left or the right side of the subformula needs to be duplicated in the rewriting. 
Thus, the rewriting can increase its length exponentially. But observe that we do not 
actually need the rewritten formula for model checking, as we can model check the 
original, equivalent formula. The rewriting is needed only for the purpose of adding 
less dependencies. Thus, it is only important to identify the boolean components of 
the rewritten formula, and then add dependencies separately for each one of them. 
Therefore, instead of rewriting the formula, we can obtain its components, which can 
be done in time linear in the size of the formula. (But optimal rewriting can be easily 
shown to be NP-hard in the size of the formula.) 



419 

The following algorithm pushes components of the formula r/that contribute sepa- 
rately to the dependence relation into its stack. As a preparatory step for applying the 
algorithm to r/, it is beneficial to use de-Morgan equivalences (i.e., --,(r/V r  = -,t7 A -,r 
and "-,(rl A ~b) =_. -,r/V --,r in order to push negations that precede conjunctions or 
disjunctions inwards (since, for example, u-,(~o V r  will not be separated, while the 
equivalent t2(-,qo ^ -~r will). 

proc separate(y) 
if r/match formula in table then 

foreach # in sub(rl) do 
separate (g) 

else push r/fi 
end separate; 

Type Formula ~/ sub(rl) Type Formula ~/ sub(~l) 
1 E](~ A ~) ~o, "r 4 OD(~o A ~) ~o, ~, 
2 130(~o V ~) (P, ~ 5 (~o A ~)Ur/ r/, cp, r 
3 06o v ~0) ~, r 6 nu(~, v ~) ~, ~o, r 

4.2 Treating Fairness 
It is important to consider fairness carefully: it might be the case that some run ~r 
contains fair as well as unfair sequences. If the only interleaving sequence representing 
r in the reduced state graph is unfair, then this sequence is not taken into account during 
model checking (see [8]), regardless of other sequences of ~r that are fair. This can 
lead to an incorrect conclusion about the satisfaction of the checked formula. For this 
reason, it is important that the fairness assumption is also equivalence robust. 

In order to force the assumed fairness condition to be equivalence robust, additional 
dependencies need to be added. It is important to express the fairness in such a way 
that the minimal number of dependencies are added. (Alternatively, it is sometimes 
possible to add dependencies directly for a fairness requirement without expressing it 
as a temporal formula.) 

Consider the following fairness assumptions: a sequence is operation just if when- 
ever an operation is enabled from Some point onwards, it will be executed infinitely 
often, i.e., AaeT(<>Den~ -+ E2<>execa). A sequence is operation fair if whenever 
an operation is enabled infinitely often from some point, it will be executed infinitely 
often, i.e., AaET(rl<>ena -+ []<>execs). 

In order to express these assumptions, a special predicate ezeea is used, which 
is interpreted over occurrences of operations in a sequence. It is easy to see that 
D<>exee~ is equivalence robust. In order to make the subformulas E3<>ena and <>Dena 
equivalence robust as well, we can add to the dependency relation for each operation c~ 
dependencies between all pairs of operations that can make it enabled or disabled. 

The fairness assumption ( ,)  is equivalence robust (see [7, 13]), regardless of the 
actual modeled program. Thus, it is not necessary to consider extending the dependency 



420 

relation because of the assumed fairness property. It is weaker than both operation justice 
and operation fairness. This stems from the reflexivity of D, independently of the choice 
of D. 

Definition 4.3 A faithful decomposition [5]for (a node) s is a partition (7"8, ~ ) of the 
operations (i.e., ~ = T \ ~),  satisfying the following conditions: 

1. All the operations in Ts are enabled from val(s). 
2. If  an operation a E ~ is dependent on some operation 8 E Ts, then a is disabled 

from val( 8), and cannot become enabled unless at least one operation from ~ is 
executed. 

Lemma 4.4 Under the fairness assumption (,), if (~ ,  ~ )  is a faithful decomposition 
in s, then ~ is an ample set for s. 

Notice that the notion of ample sets is more general than faithful decompositions. 

In order to calculate faithful decompositions, define a symmetric relation E C_ T x T 
such that if (a, 8) E E then a and 8 cannot be enabled both from a mutual state (i.e., 
ena n ena = r It is preferable, for achieving smaller ample sets, to have as big an 
E relation as possible. Evaluating a relation E for a program P that will have exactly 
all the pairs of operations that cannot become enabled simultaneously is expensive. 
However, a practical evaluation of E can be done when translating a program written in 
some programming language to a set of operations: e.g., operations that correspond to 
a mutual process can be in E, unless they belong to the same non-deterministic choice. 

Let s be a node of the expanded state graph that we wish to expand. Then (Ts, ~s) 
is a faithful decomposition if T~ C_ en(s) and {7- [ 3a E Ts (a, r) E D \ E )  _C T~. 
That is, all the operations that are dependent on operations in Ts, and are not necessarily 
disabled when an operation of T8 is enabled, are already in Ts. 

Based on the above description, calculating an ample set U for a node s can start 
with choosing U as a singleton operation from en(s). Then U is repeatedly expanded 
by adding all the operations that are dependent on operations in U, and are not disabled 
when one of the operations selected before is enabled. If during this expansion of U, it 
contains operations that are not included in en(s), this set U is abandoned, and a new 
search is started from a different operation of en(s) that was not used before. Selecting 
the first operation a can be prioritized, as in some cases it is possible to estimate on the 
size of the ample sets in which they may participate. 

proc ample(s); 
V := en(s); 
while V ~ 0 do 

choose some a E V; 
X, U := {a}; D I S  = r ; 
repeat D I S  := D I S  U {8 [ 37 e X (8, 7) e E}; 

x := {813  x 8) e D ^ 8 r U u DIS}; 
U := U U X ;  

until X = r or X ~ V ; 
if X = r and not 

3r E U 9s' (s r ,  s' A open(s') ) / �9 T closes a cyc le , /  



421 

then return(U) fi; 
V : = V \ U  

elihw; 
return(en(s)); / ,  cannot find a smaller ample set  , /  

end ample; 

4.3 Model Checking without Fairness Assumption 
Consider now the case where no fairness is assumed. In this case, constructing ample 
sets from faithful decompositions is not possible. As a counter example consider the 
program P1 in section 3.1. Then, {a} can be considered as a faithful decomposition for 
the starting node, but not as an ample set, since when no fairness is assumed (/3~5) ~ is 
a legal execution sequence, in which a is never executed. The definition of a faithful 
decomposition needs to be strengthened in order to give enough representatives: 

Definition 4.5 A strongly faithful decomposition in (a node) s is a faithful decomposi- 
tion (Ts, ~ } satisfying that no operation from ~ can be executed infinitely many times 
without any operation of Ts being executed. 

Previously, Definition 4.3 allowed that operations that are independent of the operations 
in ~ are unconditionally repeated, as the fairness assumption ( .)  does not allow them 
to occur exclusively. In practice, one might need to further strengthen strongly faithful 
decomposition, e.g., replace 'infnitely many times' by 'once' in the above definition. 
This is still expensive to check, but an estimating procedure can be given, based on a 
syntactic analysis of the program. 

4 ,4  C h e c k i n g  S a f e t y  P r o p e r t i e s  

As seen from the above examples, fairness assumptions, such as ( .)  can be taken into 
account when calculating ample sets, resulting in smaller ample sets. The following 
theorem guarantees that when model checking safety properties, it is possible to gain 
from incorporating fairness conditions, even if the executions are not assumed to be 
fair. Thus in the case of safety properties, we can choose the most beneficial fairness 
assumption that can be used for generating ample sets (while adding as few dependencies 
as possible), even if no particular fairness is assumed. 

We restrict ourselves to deal with fairness conditions that satisfy that every finite 
admissible sequence can be extended to a full fair execution sequence. This requirement 
is caUedfeasibility in [2]. It means that, according to the definitions in [1], these fairness 
assumptions are required to be liveness properties. This requirement is satisfied by many 
fairness assumptions, such as operation justice, operation fairness and many others (e.g., 
the ones in [9]). 

Theorem 4.6 Given a feasible fairness assumption r a safety property qo, and a 
program 19, qo holds in P under the assumption ~b iff it holds without any fairness 
assumption. 

The weak fairness assumption ( .)  is equivalence robust (see [13]), and thus adds no 
new dependencies. Combined with the fact that an algorithm for constructing ample 



422 

sets was given in Section 4.3, it turns to be beneficial to use it when checking safety 
properties. 

5 Conclusions 

An algorithm for spawning reduced state graphs for finite state programs was sug- 
gested. The algorithna guarantees that the reduced state graph generates at least one 
representative interleaving sequence for each run of the program. Then, model checking 
algorithms such as [8] can be applied to it for checking any equivalence robust property 
using the reduced state graph rather than the full state graph. 

It was also shown how to force any next-time free temporal formula ~ to become 
equivalence robust by adding additional dependencies, based upon the checked formula 
~o (and the fairness assumption). By rewriting the checked formula as a boolean 
combination of temporal properties, less dependencies are added. 

An additional feature of the framework presented herein is the ability to efficiently 
model-check properties with respect to fairness assumptions. It was shown that a fairness 
assumption can be exploited in the spawning stage to obtain smaller state graphs. The 
fairness assumption (.) was found to be in particular beneficial for model checking 
using representatives: ir is itself equivalence robust and thus contributes no additional 
dependencies. It is interesting to observe that (,) is also a natural assumption for trace 
semantics, as it is equivalent to considering only maximal (under 'E ')  runs [7, 13]. 

An implementation of the algorithm was written in PROLOG. The table below 
compares the number of states, edges and run time in seconds of generating state graphs 
for a generic pipeline paradigm. This paradigm corresponds to various distributed 
algorithms such as finding prime numbers and sorting: the leftmost process is a generator 
of elements, while the other processes receive a value from the left, do some internal 
calculations, and (except the rightmost process) send the value to the right. The Petri- 
Net [14] that corresponds to the checked program appears bellow the table. 

Full State Graph Reduced State Graph No. of 
Proc. Nodes Time Nodes Edges Time 

3 12 0.84 5 5 0.83 
4 36 0.267 7 7 0.116 
5 108 1.317 9 9 0.167 
6 324 7.6 11 11 0.2 
7 972 59.016 13 13 0.216 

- 5 -  , 

Edges 
20 
76 
276 
972  
3348 

Acknowledgements. I would like to express my gratitude to Patrice Godefroid, Gerard 



423 

Holzmann, Antti Valmari and Pierre Wolper for careful reading of earlier drafts, and 
their helpful comments on this subject. 

References 
[1] B. Alpern, EB. Schneider, Defining liveness, Information Processing Letters 21 

(1985), 181-185. 
[2] K. Apt, N. Francez, S. Katz, Appraising fairness in languages for distributed 

programming, Distributed Computing, Vol 2 (1988), 226-241. 
[3] P. Godefroid, Using partial orders to improve automatic verification methods, 

CAV'90, DIMACS Series, Vol 3, 1991, 321-339. 
[4] P. Godefroid, P. Wolper, Using partial orders for the efficient verification of dead- 

lock freedom and safety properties, CAV'91, Aalborg, Denmark, 1991, LNCS 
575, Springer-Verlag, 332-342. 

[5] S. Katz, D. Peled, Verification of distributed programs using representative in- 
terleaving sequences, Distributed Computing 6 (1992), 107-120, A preliminary 
version, titled An efficient verification method for parallel and distributed pro- 
grams, appeared in: Workshop on Linear Time, Branching Time and Partial 
Order in Logics and Models for Concurrency, The Netherlands, 1988, LNCS 354, 
Springer-Verlag, 489-507. 

[6] S. Katz, D. Peled, Defining conditional independence using collapses, Theoretical 
Computer Science 101 (1992), 337-359, a preliminary version appeared in BCS- 
FACS Workshop on Semantics for Concurrency, Leicester, England, July 1990, 
Springer-Verlag, 262-280. 

[7] M.Z. Kwiatkowska, Fairness for non-interleaving concurrency, Phd. Thesis, Fac- 
ulty of Science, University of Leicester, 1989. 

[8] O. Lichtenstein, A. Pnueli, Checking that finite-state concurrent programs satisfy 
their linear specification, 11 ~h ACM POPL, 1984, 97-107. 

[9] Z. Manna, A. Pnueli, How to cook a temporal proof system for your pet language. 
9 tn ACM POPL, Texas, 1983, 141-151. 

[10] A. Mazurkiewicz, Trace semantics, in: W. Brauer, W. Reisig, G. Rozenberg (eds.) 
Advances in Petri Nets 1968, Bad Honnef, LNCS 255, Springer-Verlag, 1987, 
279-324. 

[11] W.T. Overman, Verification of concurrent systems: function and timing, Ph.D. 
dissertation, University of California at Los Angeles 1981,174p. 

[12] D. Peled, 'Sometimes' sometimes is as good as 'always', CONCUR'92, Stony 
Brook, NY, USA, August 1992, LNCS 630, Springer-Verlag 1992, 192-206. 

[13] D. Peled, A. Pnueli, Proving partial order liveness properties, 17 th ICALP, LNCS 
443, Springer-Verlag, 1990, 553-571. 

[14] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Com- 
puter Science, Springer-Verlag 1985. 

[15] A. Valmari, Stubborn sets for reduced state space generation, 10 th International 
Conference on Application and Theory of Petri Nets, Vol. 2, 1-22, Bonn, 1989. 

[16] A. Valmari, A Stubborn attack on state explosion, CAV'90, DIMACS Series, Vol 
3, 1991, 25--42. 


