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Abstract

Constraint programming can be divided very crudely into
modeling and solving. Modeling defines the problem, in
terms of variables that can take on different values, subject
to restrictions (constraints) on which combinations of vari-
ables are allowed. Solving finds values for all the variables
that simultaneously satisfy all the constraints. However, the
impact of constraint programming has been constrained by
a lack of “user-friendliness”. Constraint programming has a
major “declarative” aspect, in that a problem model can be
handed off for solution to a variety of standard solving meth-
ods. These methods are embedded in algorithms, libraries,
or specialized constraint programming languages. To fully
exploit this declarative opportunity however, we must pro-
vide more assistance and automation in the modeling pro-
cess, as well as in the design of application-specific problem
solvers. Automated modelling and solving in constraint pro-
gramming presents a major challenge for the artificial intel-
ligence community. Artificial intelligence, and in particular
machine learning, is a natural field in which to explore op-
portunities for moving more of the burden of constraint pro-
gramming from the user to the machine. This paper presents
technical challenges in the areas of constraint model acqui-
sition, formulation and reformulation, synthesis of filtering
algorithms for global constraints, and automated solving. We
also present the metrics by which success and progress can
be measured.

Introduction
Constraint programming provides powerful support for
decision-making; it is able to search quickly through an
enormous space of choices, and infer the implications of
those choices. Constraint programming, is already widely
used in industry. For example, constraint programming soft-
ware from ILOG, the leading commercial purveyor of con-
straint technology, is embedded in products from leading
companies like SAP and Oracle. However, the impact of
constraint programming has itself been constrained by a lack
of “user-friendliness”. While user-friendliness could be re-
garded as the 21st century challenge for all of computer
software, constraint programming presents particular chal-
lenges and opportunities. Jean-Franois Puget, Vice Presi-
dent of Optimization R&D at ILOG, delivered an invited
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talk at the 2004 Constraint Programming conference: “Con-
straint Programming’s Next Challenge: Simplicity of Use”.

We present a set of challenges in the area of constraint
programming. The motivation is to reduce the burden on
constraint programmers, and to broaden the scope of prob-
lems that can be tackled alone by the domain experts, by
shifting more of the modeling burden from the constraint
programmer into constraint programming software tools,
systems, and applications. While the constraint community
has begun to develop approaches that address the usability
issues in constraint programming, there is significant op-
portunity for the general artificial intelligence community
to make contributions. The specific challenges posed are re-
lated to automated constraint model acquisition, automated
formulation and reformulation, synthesis of filtering algo-
rithms for global constraints, and automated solving. In
many respects these challenges are at the core of artificial
intelligence, since they capture many, if not all, the facets
of AI research. For example, constraint model acquisition is
related to concept learning, theory formation, knowledge ac-
quisition, and programming-by-demonstration. Synthesiz-
ing filtering algorithms for global constraints is related to
automated programming, classifier learning, and inductive
logic programming. Finally, automated solving is closely
related to automated theorem proving and problem solving.

Of course, modeling and solving are intimately con-
nected, and we cannot study one without the other. The
line between modeling and solving is a fuzzy one. For ex-
ample, if symmetry in a problem makes solving difficult,
we can break symmetry by adding additional constraints to
the model, or by using an algorithm designed to cope with
symmetry, which itself might effectively change the model
dynamically during search. Ultimately, through the study
of these challenges, we hope to shed light on the “deep
structure” of usability and complexity challenges and the
relationship between representational and computational re-
sponses to such challenges.

Evaluating Progress
Progress in constraint programming is usually evaluated em-
pirically. Over the past number of years the constraints com-
munity has developed a large inventory of constraint satis-
faction problems. For example, the CSPLIB comprises al-
most 50 different problem classes. Each problem class is
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presented with a formal definition, pointers to research pa-
pers, and sample results; in some cases implementations in
some well-known constraint solvers have been made avail-
able. The CSPLIB is available online1.

The constraints community has recently begun to bench-
mark progress in the capabilities of constraint solving tech-
nology through the use of international competitions. Two
specific competitions are well supported: the International
CSP Solver Competition2, and the Minizinc Challenge3.
These provide a basis for benchmarking progress; the prob-
lems are available in a standardized machine readable for-
mat, and past competition results document the state-of-the-
art in terms of solving capability for each of those constraint
solvers that participated in previous competitions.

The CSP Solver Competition instances are readily avail-
able online4 in a standardized XML format, for which
parsers are also available in languages such as Java and C++.
Minizinc Challenge problems are available in a two-file for-
mat: the first containing the generic problem description,
and the other containing parameter sets for generating spe-
cific instances for benchmarking purposes. These instances
are also available online. In total, several thousand bench-
mark problems are available to those who wish to take up
one or more of the challenges presented in this paper.

Progress on the challenges can be measured in a variety of
ways. Acquisition methods can be evaluated on the basis of
the difficulty with which they can acquire specific problem
classes or instances. For example, difficulty can be mea-
sured in terms of the number of solutions or non-solutions
that need to be presented to an acquisition system in order to
acquire the model. Reformulation and search based methods
can be evaluated against the performances of those solvers
that appeared in competition.

Of course theoretical evaluation is also possible; for ex-
ample, generating bounds on the running time of a particular
method. Such analysis is typically done from a worst-case
point of view and is, therefore, often of limited use in prac-
tice. However, where theoretical results can be obtained that
demonstrate improvements in worst-case behaviour, they
should be reported. In so far as it is possible, average-case
analysis should be performed. However, such results can be
notoriously difficult to obtain. A compromise is to empiri-
cally study runtime distributions.

Automated Model Acquisition
In many application domains, one prefers to model a practi-
cal problem as a constraint satisfaction problem (CSP) and
then use available constraint programming tools to solve it.
However, the precise specification of a CSP is sometimes
not available, and users often find difficult to articulate their
constraints. In these situations we would like the computer
to take an active role in learning the CSP from a training

1http://www.csplib.org
2http://cpai.ucc.ie/08/
3http://www.g12.cs.mu.oz.au/minizinc/

challenge2009/challenge.html
4http://www.cril.univ-artois.fr/˜lecoutre/

benchmarks.html

set, which is given, for instance, as a set of examples of its
solutions and non-solutions. This kind of learning is called
constraint acquisition (Bessiere et al. 2005). The motiva-
tions for constraint acquisition are many. For example, in
order to solve partially defined constraints more efficiently,
Lallouet and Legtchenko (2005) have proposed to complete
their specification by using machine learning techniques and
then solve them. Wilson et al. (2007) have interleaved con-
straint elicitation and constraint solving with the objective
of minimizing the overall burden of the process.

Theoretically, generic methods from the machine learn-
ing field can be applied to learn an appropriate formulation
of the target problem as a CSP. However, standard machine
learning methods do not take the characteristics of CSPs into
account, and are usually not sufficient to efficiently acquire
constraints. A new class of learning methods with empha-
sis on the characteristics of CSPs has been studied in recent
years to learn CSPs more efficiently. In 1992, by introduc-
ing the notion of constraint-directed generalization in con-
straint logic programs, Mizoguchi and Ohwada (1992) de-
veloped a technique to learn generalized spatial constraints
given a set of input spatial constraints so that each input spa-
tial constraint is satisfied by the generalization. O’Connell
et al. (2002) presented an approach to interactive constraint
acquisition based on machine learning techniques, in which
they employ strategies that minimize the dialog length be-
tween the user and the computer. More recently, Coletta et
al. (2003) devised a specialized instance of the well-known
Candidate-Elimination algorithm (Mitchell 1982) for ver-
sion space learning to acquire classical CSPs. In that ver-
sion space-based approach constraints with different scopes
of variables are acquired separately. One version space of
candidate relations is maintained for each scope of variables.
A candidate CSP is then the combination of the final sets of
candidate relations over all scopes of variables. Constraint
acquisition is performed by searching through the hypoth-
esis space of candidate relations on a scope of variables
and removing those that violate the examples in the train-
ing set. The partial order over the relations is simply defined
as the natural subsumption order. Bessiere et al. (2004) fur-
ther improved that version space-based algorithm by exploit-
ing redundancy in CSPs. Recently, Bessiere et al. (2005)
have proposed to reformulate the CSP learning problem as
a SAT problem, benefitting from the use of efficient SAT
techniques to assist in the acquisition process.

The above-mentioned constraint acquisition methods,
though useful for finding CSPs that fully agree with the
training set, are still limited to learning classical CSPs and
provide no useful information in the case where a CSP that
fully agrees with the training set does not exist in the hy-
pothesis space. This deficiency motivated the development
a new framework in which one can acquire CSPs that min-
imally differ, according to a predefined measure, from the
training set (Vu and O’Sullivan 2008).

The Challenges. While there have been significant ad-
vances in the area of automated acquisition of constraint
models, there remain many challenges. Amongst these are:

1. All of the approaches summarized above rely heavily on
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supervision from an expert who either labels examples
of solutions and non-solutions of a target CSP, or reacts
to questions posed by the acquisition system. Develop-
ing approaches that support forms of unsupervised CSP
acquisition would be particularly important, especially in
data-rich domains. Techniques from the field of datamin-
ing are promising in meeting this challenge.

2. Even more importantly, the techniques presented above
are suitable for learning specific instances of a general
problem class, but they are not capable of acquiring a
description of the problem class itself. Techniques from
the field of inductive logic programming are promising in
meeting this challenge.

Automated Model Reformulation
Given a specification of the problem to be solved, there are
many different ways to formulate the problem as a CSP. A
major aim in reformulation is to ensure that the resulting
CSP can be solved as efficiently as possible. Recently a
large number of papers have been published that study the
reformulation of specifications of CSPs (Frisch et al. 2005b;
2005a). Using such formal approaches to reformulation,
one can define sets of reformulation rules which facilitate
the generation of many alternative CSP formulations (Frisch
et al. 2007). However, little or nothing is said about the
relative merits of each formulation until its runtime be-
haviour is empirically analysed. The TAILOR system at-
tempts to automate this by regarding model reformulation as
a compilation-like process (Gent, Miguel, and Rendl 2007).

An extremely innovative piece of work on automated re-
formulation is by Charnley et al. (2006), which builds upon
earlier work (Colton and Miguel 2001). Their objective is
to automatically detect implied constraints, i.e. constraints
that are logically implied by the problem formulation but
can also help in solving the problem more efficiently. The
concern of Charnley et al.’s methods is to generate candidate
implied constraints through the use of mathematical theory
formation software. The output of the theory formation step
is a set of conjectures (candidate constraints), which are then
proved to be implied constraints by using a theorem prover.
Those theorems, implied constraints, that are discovered are
evaluated for efficiency by simulation and added to the re-
formulated model only if they improve search. Related work
for reformulating global constraints has also been reported
by (Bessière, Coletta, and Petit 2007).
The Challenges. Automated reformulation is an extremely
challenging task. Two specific challenges whose resolution
could significantly impact of general purposes problem re-
formulation are:

1. Generating candidate sets of variables (model viewpoints)
and implied constraints for a problem is extremely dif-
ficult. However, many problems have significant struc-
ture that can be exploited. Techniques from the fields
of machine learning, datamining, and discrete mathemat-
ics have the potential to identify interesting candidate im-
plied constraints. For example, implied constraints could
be mined from the problem formulation using association
rule mining techniques.

2. Once a potential reformulation has been identified, it is
difficult to predict whether it is more efficient than an ear-
lier candidate without simulation. This can introduce a
major bottleneck in the modelling process. A key chal-
lenge here is to develop heuristic or learning-based ap-
proaches to reliably predict the runtime of a reformulated
CSP model.

Synthesis of Filtering Algorithms
Global constraints provide constraint programmers with an
expressive notation for modelling problems. Ideally, as well
as being expressive, a global constraint should be filtered
efficiently. Filtering is the process by which values from the
domains of variables that cannot participate in the solution
of a constraint are removed from their respective domains.
The classic global constraint is the ALLDIFFERENT (Régin
1994) which ensures that a set of variables all take unique
values. As well as being expressive, this constraint can be
efficiently filtered, using a combination of algorithms from
matching theory.

However, the major challenge one faces when designing
a new global constraint is that its filtering algorithm can be
difficult to design. Some researchers have noticed that many
global constraints can be expressed in terms of a set of lower
level constraints (Bessiere et al. 2009). Alternatively, some
have shown that filtering algorithms can be configured from
a set of filtering rules (Abdennadher and Rigotti 2004). A
major challenge is automating this process.
The Challenges. Given the work cited above, the major
challenge in this area is the automatic design of global con-
straint filtering algorithms. We put forward the following
challenges:

1. Assuming a rule grammar, or primitive constraint lan-
guage, design a filtering algorithm by searching through
the space of possible ‘programs’ in the grammar, evaluat-
ing their quality against the specification of the constraint.
This can be formulated as beam search. Methods suitable
for implementing large-scale beam searches are genetic
programming, and local search.

2. A disadvantage of using global constraints in a model is
that they can be very expensive to propagate. We therefore
propose the challenge of predicting the cost (time com-
plexity) and effectiveness (number of pruned values) due
to propagating a specific constraint to ensure that global
constraints are used in a beneficial manner.

Automated Solving
It is recognized within the field of constraint programming
that different solvers are better at solving different prob-
lem instances, even within the same problem class (Gomes
and Selman 2001). It has been shown in other areas, such
as satisfiability testing (Xu et al. 2007) and integer lin-
ear programming (Leyton-Brown, Nudelman, and Shoham
2002), that the best on-average solver can be out-performed
by carefully exploiting a portfolio of possibly poorer on-
average solvers. Selecting from a portfolio usually relies on
a machine learning technique based on feature data extracted
from constraint satisfaction problems.
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The SATZILLA5 system builds runtime prediction models
using linear regression techniques based on structural fea-
tures computed from instances of the Boolean satisfiability
problem. Given an unseen instance of the satisfiability prob-
lem, SATZILLA selects the solver from its portfolio that it
predicts to have the fastest running time on the instance. In
the International SAT Competition 2007, SATZILLA won
two of the categories, and came second and third in two oth-
ers. The AQME system is a portfolio approach to solving
quantified Boolean formulae, i.e. SAT instances with some
universally quantified variables (Pulina and Tacchella 2007).
AQME is built on the Weka data-mining library6. Three ver-
sions of AQME have competed in the International Competi-
tive Quantified Boolean Formula Evaluation7: a version us-
ing decision trees to select which solver to use, a version
using logistic regression, and another using 1-nearest neigh-
bour. Like SATZILLA, AQME selects one solver to run for
a given unseen formula. Streeter et al. (Streeter, Golovin,
and Smith 2007) build upon the work of Sayag et al. (Sayag,
Fine, and Mansour 2006), by using optimization techniques
to produce a schedule of solvers that should be tried in a
specific order, for specific amounts of time, in order to max-
imize the probability of solving the given instance.

CPHYDRA (O’Mahony et al. 2008) is a solver portfolio
for solving CSPs, specifically designed to compete in the
2008 CSP Solver Competition8. The task in that compe-
tition was to solve as many problem instances as possible,
given 30 minutes per instance. There were five categories
of problem instances: binary CSPs with extensional con-
straints, binary CSPs with intensional constraints, CSPs with
global constraints, non-binary CSPs with extensional con-
straints, and non-binary CSPs with intensional constraints.
CPHYDRA uses case-based reasoning to decide how much
of the 30 minute allocation per instance to give to each
solver in its portfolio. The competition entry of CPHYDRA
comprised three solvers: Abscon, Choco and Mistral.
The results of the competition are summarized in Table 1.
For each solver, and each category, we give the percentage
of instances solved. We also give the overall percentage
based on the set of instances from all categories that were
solved by at least one solver in the competition. CPHYDRA
dominated its constituent solvers in every category in the
solver competition. Moreover, it performed better than all
other solvers in every category with the (surprising) excep-
tion of Sugar+PicoSat in the “Global” constraint cat-
egory. This is clear evidence that straightforward learning
capability can been extremely successful in the context of
automated search.

Challenges. Automated search is one of the most impor-
tant aspects of constraint programming. Novice constraint
programmers are often unable to specify their own search
strategies for complex problems. Therefore, the challenges
in this area are:

5http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla/

6http://www.cs.waikato.ac.nz/ml/weka/
7http://www.qbflib.org/index_eval.php
8http://www.cril.univ-artois.fr/CPAI08/

1. Use machine learning and knowledge discovery tech-
niques to analyse the key aspects of problem structure and
generate advice to novice users on how they should set
about solving particular problems.

2. Develop automated search systems that go beyond the ca-
pabilities of both SATZILLA and CPHYDRA by focus-
ing on other solver objectives such as maximizing the ro-
bustness of search time, minimizing the worst-case search
time, etc.

3. Develop tools to support the automated integration of
systematic and non-systematic constraint programming
methods with operations research techniques to solve
complex optimization problems using hybrid methods.

Conclusions
We have presented a set of challenges from four of the most
important aspects of the constraint programming process:
problem acquisition, reformulation, global constraint devel-
opment, and automated solving. We have given an overview
of the literature related to the automation of these phases.

It is hoped that the artificial intelligence community will
rise to these challenges and make significant contributions
to making constraint process easier to use. The constraint
programming community have built sufficient research in-
frastructure in the form of benchmark problems to ensure
that progress against these challenges can be monitored.
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Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in csps. In AAAI, 362–367.
Sayag, T.; Fine, S.; and Mansour, Y. 2006. Combining
multiple heuristics. In Durand, B., and Thomas, W., eds.,
STACS, volume 3884 of Lecture Notes in Computer Science,
242–253. Springer.
Streeter, M. J.; Golovin, D.; and Smith, S. F. 2007. Com-
bining multiple heuristics online. In AAAI, 1197–1203.
Veloso, M. M., ed. 2007. IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, Hyderabad, India, January 6-12, 2007.
Vu, X.-H., and O’Sullivan, B. 2008. A unifying framework
for generalized constraint acquisition. International Journal
on Artificial Intelligence Tools 17(5):803–833.
Wilson, N.; Grimes, D.; and Freuder, E. C. 2007. A cost-
based model and algorithms for interleaving solving and
elicitation of csps. In Bessiere (2007), 666–680.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2007.
: The design and analysis of an algorithm portfolio for sat.
In Bessiere (2007), 712–727.

1497




