
Moving Target Search with Subgoal Graphs∗

Doron Nussbaum and Alper Yörükçü
School of Computer Science

Carleton University

Abstract

Moving Target Search (MTS) is a dynamic path plan-
ning problem, where an agent is trying to reach a
moving entity with a minimum path cost. Problems
of this nature can be found in video games and dy-
namic robotics, which require fast processing time (real
time). In this work, we introduce a new algorithm for
this problem - the Moving Target Search with Subgoal
Graphs (MTSub). MTSub is based on environment ab-
straction and uses Subgoal Graphs to speed up searches
without giving up cost minimal paths. The algorithm is
optimal with respect to the knowledge that the agent
has during the search. Experimental results show that
MTSub meets the requirement of real time performance
(e.g., 5 microseconds per step). Compared to G-FRA*,
which is the best known dynamic algorithm so far, MT-
Sub is up to 29 times faster in average time per step,
and 186 times faster in maximum time per step. MTSub
also compares fairly well against MtsCopa. Although in
this case MTSub is up to 3.89 times slower in average
response time and up to 6.81 times slower in maximum
response time, it performed much better than MtsCopa
in the processing phase - up to 220,000 times faster and
requiring up to 44 times less space.

Introduction
A large number of applications, in video games, robotics and
virtual simulations, require agents to plan their path, not only
to a stationary target but also with respect to a moving target.
When a change in a target location is observed, agents must
override their plan during execution and react to the change
in the target location. Namely, the current path has to be up-
dated in order to obtain a better path. The speed with which
these operations are executed is important because agents
must decide where to move next in real time. The quality
of the updated solutions is also crucial, because it directly
affects the cost of reaching the target.

Moving Target Search (MTS) is a path planning problem
where an agent attempts to reach a moving target (Ishida and
Korf 1991). In this paper, we focus on moving target search
where at all times, the agent has full knowledge of the search
∗The research is partially supported by the Natural Sciences and

Engineering Research Council of Canada.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

environment, which is static, and the target position. This
variant of MTS often arises in robotic applications that run
in a known environment and in video games.

There are generally two kinds of strategies for solving
MTS problems with search algorithms (Sun, Yeoh, and
Koenig 2010):

• Offline techniques (Moldenhauer and Sturtevant 2009;
Hahn and MacGillivray 2006; Vieira, Govindan, and
Sukhatme 2008; 2009) consider all possible locations of
the agent and the target in the environment to determine
the best plan, prior to movement of the agent. These tech-
niques are not applicable to large environments due to
large numbers of possible future actions of a target.

• Online techniques find a solution according to current in-
formation and update the existing plan when changes oc-
cur. They solve a series of path planning problems dur-
ing plan execution to react to the target movement. Ear-
lier online algorithms (Ishida and Korf 1991; 1995) find a
prefix of the path with a bounded search. Therefore, they
can work under strict time bounds. However, the cost of
reaching the target location is high since they make short-
sighted decisions and it is hard to determine the exis-
tence of a path between an agent and a target. Subsequent
online algorithms (Sun, Yeoh, and Koenig 2009; 2010;
Sun et al. 2012) find a complete path from the agent to-
wards the target and update the path during the search.
Fringe Retrieving A* (FRA*) (Sun, Yeoh, and Koenig
2009) and Generalized Fringe Retrieving A* (G-FRA*)
(Sun, Yeoh, and Koenig 2010) are two algorithms that cal-
culate cost minimal, complete paths between the current
positions of the agent and the target. The overall cost of
reaching the target using G-FRA* or FRA* is smaller than
that of earlier online algorithms that find only a prefix of
the path. Nevertheless, they cannot run under strict time
bounds. Incremental Any time Repairing A* (I-ARA*)
(Sun et al. 2012) can compute paths between current lo-
cations of the agent and the target under user defined time
limits. However, the paths may not be cost minimal. Thus,
the cost of reaching the target is higher (Botea et al. 2013)
than algorithms that find cost minimal paths between cur-
rent positions of the agent and the target. A more recent
paper introduced Moving Target Search with Compressed
Databases (MtsCopa) (Botea et al. 2013) which exploits

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

179



preprocessing to speed up online search without sacrific-
ing cost minimal paths between current locations of the
agent and the target. Unfortunately, preprocessing time
and space requirements of the algorithm are substantially
high (e.g., over eleven hours of preprocessing time and
23MB of space are required for a 320 x 320 game map).
The performance of MtsCopa against latest algorithms for
fast first move queries is discussed in (Strasser, Harabor,
and Botea 2014).
We introduce an innovative, incremental search algorithm

that uses environment abstraction to shorten response time
of the agent without giving up cost minimal paths, Moving
Target Search with Subgoal Graphs (MTSub). MTSub uses
Subgoal Graphs (Uras, Koenig, and Hernández 2013) to cre-
ate an abstract search environment and determine the path
by solving numerous instances of the path planning problem
incrementally. Subgoal Graphs restricts the applicability of
MTSub to eight connected grids but this also lets MTSub to
exploit environment specific features. Our experiments show
that space requirements and preprocessing times of MTSub
are significantly lower than that of MtsCopa. Moreover, MT-
Sub finds paths up to 29 times faster than an incremental
algorithm, G-FRA*, and only up to 3.89 times slower than
MtsCopa.

In the following sections, we define the problem and the
notation, explain related work, discuss MTSub further with
the results of the empirical analysis, and finally, share our
conclusions and future work.

(a) Positions at time ti (b) Positions at time ti+1

Figure 1: a. Two possible paths, with the same cost, that the agent,
A, can take to reach the target T at time ti; b. Positions of A and T
at time ti+1 after A chose one of the two paths randomly.

Problem Definition and Notation
In this section, we explain the notation used in this paper
and formally define the problem. An undirected graph G =
(V,E) represents an 8-connected environment, where V de-
notes all the nodes in graph and E corresponds to allowable
moves between neighbouring grid cells. The nodes can be ei-
ther blocked or unblocked. The environment is static, which
implies that nodes do not change their status over time, e.g.,
becoming an obstacle or ceasing being an obstacle. S de-
notes all the unblocked nodes in V , where S ⊂ V . Cardi-
nal moves are allowed between adjacent nodes if both nodes
are unblocked. Diagonal moves are allowed if both nodes
are unblocked and the two corresponding cardinal nodes are
also unblocked (here we assume the agent is as large as a

grid cell). The costs of cardinal and diagonal moves are 1
and
√

2, respectively. We denote by C(s, s′) the smallest
cost of traveling from s to s′ where (s, s′) ∈ S. We denote
by neighbour(s) the set of all nodes s′ ∈ S that s can move
to either by an allowed diagonal move or by an allowed car-
dinal move. An ordered set of adjacent nodes, which form a
path from s to s′, is denoted by Π(s, s′), where s, s′ ∈ S.
We define C(Π(s, s′)) as cost of the path Π. We use t to in-
dicate discrete time steps from the beginning of the search
to determine a next move until the end of the search. Nota-
tions position(A, ti) and position(T, ti) are used to show
locations of the agent and target at time ti, respectively. For
simplicity, we also use sA and sT to indicate the location
of the agent and the target at the current time, respectively.
At the beginning of a search, sA = position(A, t0) and
sT = position(T, t0). We use route to denote an ordered
collection of position(A, t), t0 ≤ t ≤ tk, where t0 is the
time that the agent started to move towards the target and tk
is the time that the agent reached the target.

The problem is defined as follows: Given a graph G =
(V,E), representing an 8-connected environment, an agent
A and a moving target T , positioned at sA and sT respec-
tively, find an optimal route that is subject to:

• A and T can move at discrete time steps.

• At each time step ti, T positioned at u = position(T, ti)
can either stay put or move to node v where v ∈
neighbour(u).

• At each time step ti, A, positioned at (p =
position(A, ti)), can detect the position of T (u =
position(T, ti)), compute a path Π(p, u) and move to a
node w where w ∈neighbour(u)∧w ∈Π(p, u).

An optimal route is a route from position(A, to) to
position(T, tk), when to is the time that A and T attempted
to move, tk is the time that A reached T , and ∀ti to≤ti≤tk,
position(A, ti)∈ Π(position(A, ti−1),position(T, ti−1))
where Π is a cost minimal path.

Note that following an optimal route may not minimize
the cost of reaching the target. Figure 1 depicts a search
environment at time ti and ti+1 where black cells repre-
sent obstacles, ’A’ and ’T’ show sA and sT , respectively.
Two obstacle free paths are displayed in Figure 1a. The
paths have the same cost. However, Figure 1b shows that
the agent’s random choice of paths at time ti may not be
the best choice to get closer to the target. Experiments
show that following an optimal route decreases the cost
of reaching the target in most cases (Botea et al. 2013;
Sun et al. 2012).

Please note that, an agent can evade indefinitely from a
target with the same speed. This paper focuses on optimal
movement strategy for an agent regardless of this fact.

Background
This section summarizes algorithms and techniques that led
to the Moving Target Search with Subgoal Graphs develop-
ment. Algorithm A* and the Subgoal Graphs technique are
discussed in order to provide more insight into the MTSub
algorithm.

180



A* Algorithm
A* (Hart, Nilsson, and Raphael 1968) is a search algorithm
that uses heuristics for calculating cost minimal paths be-
tween stationary locations. A* keeps track of four values for
each node s ∈ S: 1. Approximation cost - h(s) denotes user
provided approximation of C(s, sT ) where s, sT ∈ S. The
value h(s) is computed by the function H(s, sT ). If func-
tion H have the triangle inequality property (H(s, s′′) ≤
H(s, s′) + H(s′, s′′) for all s, s′, s′′ ∈ S ), the h values are
admissible (Koenig and Likhachev 2005). FunctionH(s, s′)
calculates octile distances between s and s′, which is the
shortest distance between s and s′ as if there were no obsta-
cles. 2. Calculated value for C(sA, s) - this value is denoted
g(s). Initially, it is assigned a zero for g(sA) and infinity for
each node s ∈ S other than sA before the search. 3. Esti-
mated cost of reaching the target - this value is denoted by
f(s) where f(s) = g(s) + h(s). 4. Parent of s - the value,
parent(s) denotes the node that is the parent of s in the
search tree. Initially, parent(u) = NULL.

A* also uses two lists: 1. OPEN list - this list main-
tains the nodes that are going to be evaluated. Initially, it
has only position(A, t0) as a member. 2. CLOSED list
- this list contains all the nodes that were evaluated (ex-
panded). At every iteration of A*, a node s with minimum
f value is extracted from OPEN and added to CLOSED.
Each node s′ ∈ neighbour(s) is evaluated as follows: if
g(s) + C(s, s′) < g(s′) then g(s′) = g(s) + C(s, s′) and
parent(s′) := s. Node s′ is then added to the OPEN list if
it is not already in OPEN . A* terminates and returns a cost
minimal path if sT is expanded. If the OPEN list is empty
and sT is not expanded, A* terminates and reports that there
is no obstacle free path between sA and sT ).

(a) Local Subgoal Graph (b) Global Subgoal Graph

Figure 2: Basic and Two-Level Subgoals (Uras, Koenig, and
Hernández 2013)

Subgoal Graphs
MTSub uses Subgoal Graphs (Uras, Koenig, and Hernández
2013) to create an abstraction of the search environment
and to find a cost minimal path Π(sA, sT ). Variations of
the technique produced the fastest optimal results in Grid-
Based Path Planing Competition 2013 (Uras, Koenig, and
Hernández 2013). Moreover, the required space to create
Subgoal Graph was lower than any other competitors.

An algorithm based on Subgoal Graphs relies on environ-
ment abstraction to speed up the cost minimal path searches
between stationary locations in the eight connected grid

worlds. Instead of searching for a cost minimal path in a
given eight connected graph, the method uses a subset of the
graph which is referred to as Simple Subgoal Graph (SSG).
It is faster to search in a Simple Subgoal Graph than in the
original graph because the SSG has fewer number of edges
and nodes. A Simple Subgoal Graph is depicted in Figure
2a.

Subgoal Graphs have some similarities to visibility
graphs (Lozano-Pérez and Wesley 1979): 1. It is pos-
sible to add any node of the original graph to Subgoal
Graph. This means it is possible to connect (with the
function connectstartandgoal in (Uras, Koenig, and
Hernández 2013)) sA and sT to SG at any time t. 2. The edge
costs of Subgoal Graphs represent cost minimal paths be-
tween corresponding nodes. 3. If C(s, s′)> H(s, s′), where
s and s′ are nodes of SG, there is at least one node u in SG
that is on the cost minimal path Π(s, s′). 4. If s and s′ are
subgoals and there is an edge of SG that connects them, any
Π(s, s′), where C(Π(s, s′))= H(s, s′), is a path. The sec-
ond, third and fourth similarities imply that it is possible to
find an ordered list of nodes of SG that is on the cost min-
imal path. Nodes of SG are called subgoals for this reason.
This similarity means that it is trivial to transform a ordered
list of the subgoals between sA and sT , which is referred to
as a high level path, to Π(sA, sT ), which is referred to as a
low level path.

The algorithm creates a SSG only once for a given en-
vironment. The generation of a SSG is as follows: An un-
blocked node s is marked as a subgoal if at least one of
its diagonal neighbours is blocked and all of its cardinal
neighbours are unblocked. An edge is created between two
subgoals s and s′ if and only if there is a path Π such as
C(Π(s, s′)) = H(s, s′) and there is no subgoal s′′ such as
C(Π(s, s′′)) + C(Π(s′′, s′)) = C(Π(s, s′)) where s′ ∈ S.
If s and s′ are connected in SG, s ∈ sg.neighbour(s′) and
s′ ∈ sg.neighbour(s). Finding a high level path in SSG
is done by setting sA and sT as subgoals and adding edges
using the above rule. Once done, a high level path can be
obtained using an A* search. Converting the high level path
to a low level path is trivial.

Hierarchical abstraction can be used to speed up the
search by creating layers of Subgoal Graphs in order to ac-
celerate the search. Although, it is achievable to create a
hierarchical abstract environment by using n-level subgoals
(Uras and Koenig 2014), MTSub uses Two-Level Subgoal
Graphs. Two-Level Subgoal Graph is depicted in Figures 2a
and 2b. Here, level 1 is the SSG Figures 2a and level 2 is
Figures 2b.

Nodes in the Two-Level Subgoal Graph, referred to as
global subgoals, are a subset of the nodes of SSG, which
is also referred to as local subgoals. The idea behind Two-
Level Subgoals is to eliminate subgoals that are not con-
tributing a cost minimal path between two SG neighbours
that it connects.

Global subgoals are selected as follows: First, all of nodes
in SSG are declared as global subgoals. Second, subgoals are
checked for two properties: subgoal s is declared as local
subgoal, where ∀s s′, s′′ ∈ sg.neighbour(s) and s, s′, s′′ ∈
S, if 1. there is a high level path Π, excluding s, such as

181



C(Π(s′, s′′)) ≤ C(s′, s) + C(s, s′′) or 2. C(Π(s′, s′′)) =
H(s′, s′′). An edge (s′, s′′) is created if the second condition
is satisfied but not the first.

A cost minimal path is found with Two-Level Subgoal
Graphs as follows: First, sA and sT are added to the Global
Subgoal Graph (GSG), if they are not already in GSG or
SSG. Second, all SG neighbours u of sA and sT are de-
clared as global subgoals where u is a local subgoal. Next,
it is possible to find a high level path in the Two-Level Sub-
goal Graph using A*. A directed depth first search (search-
ing with only corresponding cardinal and diagonal direction)
is used to construct a low level path between two global sub-
goals s, s′ because following corresponding cardinal and di-
agonal directions randomly from one global subgoal to an-
other may not lead to a cost minimal path as it does in SSG.
Therefore, transforming a high level path to a low level path
in Two-Level Subgoal Graphs may be more costly than that
of simple Subgoal Graphs.

Moving Target Search with Subgoal Graphs

Algorithm 1 Main Function and MTSub Algorithm
1: function Main
2: if ¬ checkconnectivity(sA, sT ) then
3: return false;
4: constructsubgoal(S);
5: while sA 6= sT do
6: if the target moved then
7: MTSub (S, sA, sT , Π);
8: agentmove(Π); \\agent follows the cost minimal

path
9: return true if sA = sT ;

10: targetmove(); \\target moves
11: return true;
12: function MTSub(S, sA, sT , Π)
13: if a search tree is constructed then
14: prepareforsearch(S, sT );
15: expandsearchtree(S, sT );
16: if insubtree(S, sA, Π) then
17: return Π;
18: else
19: return initialsearch(S, sA, sT , Π); \\build a

new search tree
20: else \\if there is no usable search tree
21: return initialsearch(S, sA, sT , Π); \\build a new

search tree

Moving Target Search with Subgoal Graphs(MTSub) is
an optimal algorithm that attempts to update the path based
on knowledge from the previous step. MTSub is different
from the other incremental MTS algorithms because it uses
a Two-Level Subgoal Graph, which is constructed during a
preprocessing step.

MTS in known environments is a series of similar path
planning problems. However, it is not possible to apply in-
cremental search methods, that are used in grid graphs, di-
rectly to the Two-Level Subgoal Graphs. Because every lo-
cation that an agent and a target can move, is represented
with a node in grid graphs. In contrast, only a subset of the
such locations are represented in Two-Level Subgoals. This

implies that the current agent and target locations may not
be a part of the Two-Level Subgoal. Therefore, the loca-
tions sA, sT and their local SG neighbours must be con-
nected to the Two-Level Subgoal Graph before initiating a
path search, Π(sA, sT ), at a time t. Unfortunately, inserting
new nodes and edges to the Two-Level Subgoal Graph at
every time t is time consuming (and the search is somewhat
longer depending how many nodes and edges were added).
In addition, those nodes must be removed after the search in
order to preserve the Two-Level Subgoal Graph properties.

MTSub overcomes this problem as follows: First, if there
is no tree data structure in SG (search tree), a new tree is
constructed after sA and sT are connected to the Two-Level
Subgoal Graph. After obtaining a path Π(sA, sT ), sT and
local SG neighbours of sT are removed from the search tree
and from the Two-Level Subgoal Graph (sT is not added or
removed if it is already a global subgoal). Note that this op-
eration does not spoil the search tree connectivity, because
the search tree stops expanding once it reaches sT . Thus,
there are no nodes in the search tree that are rooted at sT .
Local SG neighbours of sT do not contribute to the cost min-
imal paths between two global nodes, by definition of global
subgoals. Therefore, they do not connect two global nodes
in the search tree and removing them does not violate con-
nectivity of the search tree. Once there is an existing search
tree, MTSub does not connect the current sA to the Two-
Level Subgoal but it connects sT . Next, MTSub expands the
search tree rooted at position(A, ti) where A is the agent
and ti is the time step when the search tree is initiated. After
a cost minimal path Π(position(A, ti), sT ) is found, MT-
Sub checks if sA is on the path. If it is, MTSub returns a
part of the path Π(position(A, ti), sT ) from sA towards sT .
Note that the returned path is also a cost minimal path be-
cause it is a sub-path of a cost minimal path. If sA is not
on the path Π(position(A, ti), sT ), MTSub connects sA to
the Two-Level Subgoal Graph, constructs a new search tree
that is rooted at sA from scratch, and finds a path Π(sA, sT ).
Note that the graph does not grow as we continue incremen-
tal search since we remove sT at the end of every search.
Details of the algorithm are explained below with the help
of pseudo-code.

Algorithm MTSub checks if the agent and the tar-
get are positioned in the same cell of the the grid
graph (line 2). If they are not in the same grid cell,
then a path Π(sA, sT ) does not exist. Otherwise, a path
Π(position(A, t), position(T, t)) at ∀ t exists. Next, the
Two-Level Subgoal Graph is generated (line 4). The agent
follows a cost minimal path constructed by MTSub until
reaching the target. If the target moves, the path is updated
with MTSub function (line 7).

MTSub is a function that returns a cost minimal path be-
tween sA and sT . MTSub executes as follows: If there is no
existing search tree, MTSub calls initialsearch (line
21). The function uses A* to create a search tree over Two-
Level Subgoal Graph and to find a cost minimal path. After
the end of the function, a cost minimal path Π(sA, sT ) is
generated and a reusable search tree rooted at sA is initiated.
The root of the tree, which is referred to as position(A, ti)
where ti is the time step when the search tree is built, stays

182



same until a new search tree is constructed.

Lemma 1. The initialsearch function returns a cost
minimal path Π(sA, sT ).

Proof. The function uses an A* search over Two-Level Sub-
goal Graph to find a path. The heuristic function H that is
used by the initialsearch obeys the triangle inequal-
ity. Octile distance used as heuristic and it gives the shortest
possible distance between two nodes if we assume that there
is no obstacles in the environment. Therefore, it is not possi-
ble to find a node s whereH(u, v) >H(u, s)+H(s, v) and
u, v, s ∈ S . Thus, based on Theorem 2 in (Uras, Koenig,
and Hernández 2013) an A* search over Two-Level Subgoal
Graph returns a cost minimal path.

Algorithm 2 Prepare For Search Function
22: function prepareforsearch(S, sT )
23: connecttarget(sT ); \\connect target location to the

graph
24: for all local subgoal s ∈ sg.neighbour(sT ) or node s =

sT do \\iterate through recently added nodes
25: g(s) :=∞;
26: for all node s′ ∈ CLOSED and s′ ∈

sg.neighbour(s) do
27: if g(s) > g(s′) + C(s′, s) then
28: g(s):= g(s′) + C(s′, s);
29: parent(s):= s′;
30: if g(s) !=∞ then
31: add s into OPEN ;

Once MTSub has existing data, prepareforsearch
function is executed (line 14) as a first step of the incre-
mental search. The function makes required changes in Two-
Level Subgoal Graph to the make existing tree usable with
sA and sT . First, the function connects sT to the graph
with corresponding edges (line 23). Next, the function con-
nects sT and the local SG neighbours of sT (nodes that are
newly marked as global subgoals) to the search tree as fol-
lows: The function updates parent accordingly (line 29)
and the g value of every node s that was recently added
to the Two-Level Subgoal Graph by minimizing g(s) =
g(s′) + C(s′, s), where s, s′ ∈ S, s′ ∈ CLOSED and
s′ ∈ sg.neighbour(s) (line 28). Node s is added to the
OPEN list, if g(s) 6=∞ (line 31). MTSub calculates f val-
ues as f(s) = g(s)+H(s, position(T, ti)) where s ∈ S and
position(T, ti) is the location of the target when the search
tree is initiated. Note that heuristic values are not admissible
after the execution of this function because the actual cost
of s (g(s)) may be smaller than the provided heuristic value
(h(s)).

Lemma 2. After prepareforsearch function executes,
theOPEN list has all the required nodes for a cost minimal
path search between the root of the search tree and sT .

Proof. Algorithm A* guarantees that if the CLOSED list
is not empty thenOPEN consists of nodes v such that ∀ v ∈
OPEN,∃ u ∈ CLOSED such that u ∈ sg.neighbour(v).
All the nodes in the OPEN list has a parent in the
CLOSED list that minimizes g(s) = g(s′) + C(s, s′)
where s is a node in the OPEN list and s′ is a node in
both sg.neighbour(s) and CLOSED.

The function is invoked when a search tree is already in
place and therefore the OPEN and the CLOSED lists are
already populated. However, the OPEN list may not be
complete because the function adds sT and every local sub-
goal s where s ∈ sg.neighbour(sT ) to the graph after an
A* search was executed.

To fix this problem, the function prepareforsearch
examines every node s that was added to the Two-Level
Subgoal Graph. Here the function either finds a node s′ ∈
CLOSED and s′ ∈ sg.neighbour(s) that minimizes
g(s′) + h(s) or no such node s′ exists. In the former case,
the function sets g(s) = g(s′) + h(s) and parent(s) = s′

and it inserts s into theOPEN list. In the latter case s is not
reachable from any node in s′ ∈ CLOSED and therefore
is not added to the OPEN list.

Therefore, when prepareforsearch terminates, the
OPEN list has all required nodes for a search.

Algorithm 3 Expand Search Tree Function
32: function expandsearchtree(S, sT )
33: while OPEN 6= ∅ do
34: extract a node s with the smallest g(s) + h(s) from

OPEN ;
35: add s to CLOSED;
36: if g(s) + h(s)> g(sT )+H(sT , position(T, ti)) then

37: construct path Π from a high level path and return
;

38: for all s′ that is sg.neighbour of s do
39: if g(s′) > g(s) + C(s, s′) then
40: g(s′):=g(s) + C(s, s′);
41: parent(s′):=s;
42: add s′ into OPEN if it is not already in the

list;
43: return false;

Next, MTSub executes expandsearchtree to find a
path between the root of the search tree and sT (line 15). The
function builds on the search tree by expanding nodes s until
f(s)< g(sT )+H(sT , position(T, ti)) where s is a node in
theOPEN list with the lowest f value, and position(T, ti)
is the location of the target when the search tree is initiated
(line 36). Note that we add H(sT , position(T, ti)) to g(sT )
to make sure that every node that may be on the cost min-
imal path expanded even if they are disadvantaged because
we do not use admissible heuristics in incremental search
iterations.

Lemma 3. The expandsearchtree function returns a
cost minimal path.

Proof. Algorithm A* does not end as long as there exists
a node s ∈ OPEN such as g(s) + H(s, sT ) < g(sT ) in
order to ensure that all possible paths leading to sT were
explored. Similarly, the function expandsearchtree
does not terminate if there exists a node s ∈ OPEN
such as g(s) + H(s, position(T, ti)) < g(sT ) +
H(sT , position(T, ti)). This equation can be rewritten as
g(s) + H(s, position(T, ti)) − H(sT , position(T, ti)) <
g(sT ). By the triangle inequality, H(s, position(T, ti))
≤ H(s, sT ) + H(sT , position(T, ti)). Therefore, the
function does not terminate if there is a node s in

183



OPEN such as g(s) + H(s, sT ) < g(sT ). Hence, the
expandsearchtree function returns a cost minimal
path.

After a path is constructed between the root of the tree
and sT , MTSub checks if sA is on the path with the
help of insubgoal function (line 16). If sA is on the
path, a cost minimal path Π(sA, sT ) is generated and re-
turned. Otherwise, a new search tree is constructed with
initialsearch function (line 19).

Lemma 4. The insubgoal function returns a cost mini-
mal path.

Proof. The function insubgoal is only executed if there
is a cost minimal path, Π(position(A, ti), sT ) where ti is
the time when search tree is built. The function returns
a sub-path Π(sA, sT ) if both locations are on the path,
Π(position(A, ti), sT ). Any sub-path between two nodes of
a cost minimal path is also a cost minimal path. Therefore,
the returned path is a cost minimal path.

Theorem 1. MTSub finds a cost minimal path Π(sA, sT ).

Proof. MTSub returns paths that were computed by either
initialsearch or insubgoal functions. All of these
paths are cost minimal as shown in Lemmas 1, 3, and 4.
Therefore, at each step MTSub returns cost minimal paths
between current positions of the target and the agent.

Theorem 2. The position of an agent that is following a path
generated by MTSub is on the optimal route at any time ti.
Proof. According to Theorem 1, MTSub generates op-
timal paths between current locations of the agent
and the target at ∀ ti. Thus, the position of the
agent, position(sA, ti), is on the cost minimal path
Π(position(sA, ti−1),position(sT , ti−1)). Therefore, the
agent is on the optimal route.

It is possible to use early termination techniques to find
cost minimal paths to speed up incremental search.

The function quickpath which is introduced with
Subgoal Graphs (Uras, Koenig, and Hernández 2013),
checks if it is possible to find a path Π(sA, sT ) where
C(Π(sA, sT )) =H(sA, sT ). The function tries to build such
a path by starting from sA and following the corresponding
cardinal and diagonal nodes towards sT . If an obstacle is en-
countered along the path, quickpath returns false. Other-
wise, a cost minimal path is returned. We use this method at
the beginning of the MTSub function to terminate early.

If there is an existing search tree, the easypath function
is used to terminate early before the prepareforsearch
function. This function checks if sT is on the existing cost
minimal path. If it is, we use the same path since any sub-
paths of a cost minimal path is a also cost minimal path.

Empirical Evaluation
In this section, we compare optimal algorithms for MTS per-
formance.

(a) Random Map (b) Constructed Map

(c) Maze Map (d) Room Map
Figure 3: Map Classes

Methodology

We compare MTSub against two algorithms for MTS: G-
FRA*, which is an incremental algorithm, and MtsCopa,
which in the preprocessing phase computes a path between
any two nodes s, s′ ∈ S and stores the results in a database.
A previous paper (Sun et al. 2012) shows that the per-
formance of FRA* and G-FRA* is similar and they have
the smallest average run times among optimal algorithms
that do not use preprocessing. Thus, we only compare G-
FRA* against MTSub in the incremental algorithm category.
MtsCopa has the smallest run times (Botea et al. 2013). We
include MtsCopa in the experiments in order to demonstrate
the efficiency of MTSub against an algorithm that exploits
preprocessing. We also compared with algorithms for fixed
location path planning, A* and Two-Level Subgoal Graphs,
to demonstrate the benefits of incremental search. We use
such algorithms repetitively to find path Π(sA, sT ) and solve
MTS. We refer to them as Repeating A* (R-A*) and Repeat-
ing Two-Level Subgoal Graphs (R-Sub).

The experiments were conducted as follows: First, a pre-
defined set of maps were selected. The size of a graph and
obstacles were determined by a map. Second, scenarios were
created which included initial locations of the agent and the
target on the graph and target motion. The target path was
defined by the scenario where the path moves were ran-
domly selected (the path were stored and used by all al-
gorithms). To hinder the target from running infinitely, we
move the target at every time tn, if its location at time tn−1
is not occupied by the agent at time tn. The agent path was
determined by the competing algorithms at run time. An ex-
periment ends when sA at time tn is equal to sT at time tn−1

184



Map AR0700SR Map AR0500SR Map AR0300SR
MTSub MtsCopa MTSub MtsCopa MTSub MtsCopa

Preprocessing 0.18s 41299.2s 0.37s 12046s 0.5s 10489.2s
Memory 545KB 24064KB 501KB 7680KB 487KB 4403KB
Average 6.93µ 1.94µ 7.75µ 1.99µ 6.61µ 1.75µ

Maximum 184µ 27µ 149µ 84µ 147µ 25µ

Table 1: Comparison between MtsCopa and MTSub, with respect to preprocessing time and space, and performance. The Experiments were
conducted on 320 x 320 Maps. Preprocessing shows the preprocessing time in seconds and memory shows the space requirements in KB
after the preprocessing was completed. Average and Maximum are the average time per step and maximum time per step respectively.

and the target can not move.
We use four classes of maps to examine the effects of the

environment on the different algorithms (Figure 3): 1. Con-
structed Maps - are used in well known video games such
as “Dragon Age: Origins”, “StarCraft”, “Baldur’s Gate” and
“WarCraft”. We use these maps to monitor performances
of the algorithms in video games. 2. Random Maps - are
created by adding blocked grid cells to random points on
the map. These maps allows us to evaluate how algorithms
behave if the environment is not suitable for abstraction.
3. Room Maps - have rooms that allow access other rooms
through a small number of unblocked cells. We use these
maps for observing performances if the environment is par-
ticularly good for abstraction. 4. Maze Maps - represent en-
vironments where user provided heuristics are usually mis-
leading. These maps are used for examining the effects of
heuristics on the algorithms. All maps used in the exper-
iments are retrieved from Nathan Sturtevant’s pathfinding
repository (Sturtevant 2012).

We conduct the first set of experiments in maps scaled
512 x 512 with 100 scenarios per map. For each map class,
we choose 6 maps1. MtsCopa was excluded from this set
of experiments due to its significantly high preprocessing
time and memory footprint. In the second set of experiments,
we use three smaller, 320x320, constructed maps with 100
scenarios for each map to compare MTSub and MtsCopa.
We also report preprocessing requirements of MTSub for
some instances of Constructed Maps ranging from 512 x 512
to 1024 x 1024.

All of the algorithms are implemented comparatively, us-
ing original authors’ codes. We run experiments on a 2.50
GHz Linux machine with 6 GByte of RAM. All of the re-
ported times are CPU time. We ensured that algorithms did
not require the use of virtual memory and thus access the
disk repeatedly.

We measured required time and space (memory) for pre-
processing to discuss applicability of the algorithms that ex-
ploit preprocessing. We report average time spent to deter-
mine a next move at a time step t to give a notion of run time
performance. We also report maximum time spent per step
to see if algorithms meet the real time requirements. We do
not report the cost of reaching the target because all of the

1Constructed Maps: AR0011SR, AR0071SR, AR00511SR,
stormguarde, duskwood, tranquilpaths; Random Maps:
random512-20-1, random512-20-2, random512-20-3, random512-
20-4, random512-20-5, random512-20-6; Maze Maps: maze512-
2-1, maze512-2-2, maze512-2-3, maze512-2-4, maze512-2-
5, maze512-2-6; Room Maps: 16room 001, 16room 002,
16room 003, 16room 004, 16room 005, 16room 006

R-A* R-Sub GFRA* MTSub

Constructed Avg. 325.20 12.09 140.54 6.85
Max 9369 188 26857 144

Random Avg 284.2 270.10 91.66 50.56
Max 5389 6588 15533 5140

Room Avg. 626.48 23.09 163.25 5.66
Max 9858 810 33507 304

Maze Avg. 8571.96 852.71 648.5 44.85
Max 38315 7871 80054 4523

Table 2: Experiments in 512 x 512 Maps, Times are Given in µ
seconds. All reported times are per step where Avg. is the average
time per step and Max is the maximum time per step. Note the
effect of map type on the performance of the algorithms.

algorithms find optimal solutions according to the informa-
tion available to the agent and the results are very close. Note
that, MtsCopa is an optimal algorithm for MTS because it al-
ways finds the first step of a cost minimal path, Π(sA, sT ) at
∀t.

Experiments and Results
Results of the first set of experiments are depicted in Table
2.

One of the incremental algorithms, G-FRA* has smaller
average runtime than that of R-A* but R-A* has smaller
maximum time than that of G-FRA* in all of the map do-
mains. These results indicate that repairing a search tree dur-
ing runtime, increases maximum time spent in a search step
even if it decreases average runtime. Please note that, MT-
Sub does not have the same issue and it outperforms R-Sub
in both average and maximum run times. Because MTSub
only expands an existing search tree or builds a new search
tree from scratch as needed.

R-Sub outperforms A* in both maximum and average
times in all of the map classes except Random Maps. The
environment abstraction technique used by R-Sub can not
generate significantly smaller abstract graphs for Random
Maps. Therefore, R-Sub can not outperform A* remarkably
in such environments. This indicates that environment ab-
straction can be used to decrease not only average times but
also maximum times when the technique can be applied to
the environment effectively.

The incremental algorithm G-FRA* has smaller average
times than that of R-Sub not only in Random Maps but also
in Maze Maps. This implies that incremental search is com-
paratively more effective in Maze Maps and Room Maps
because in often times, the target does not move to locations
that make G-FRA* repair its search tree.

The suggested algorithm, MTSub outperforms all of the
competing algorithms in both average and maximum times
in this set of the experiments. MTSub uses both environment

185



(a) MTSub vs. MtsCopa

(b) MTSub vs. R-Sub
Figure 4: Run Times per Search in Map AR0700SR

abstraction and incremental search and successfully avoids
the disadvantages of those techniques. The results also show
that the run time performance of MTSub is closely related
combined success of the techniques it uses.

The results of the second set of experiments, shown in
Table 1, depict preprocessing time and space consumption
in addition to average and maximum search times.

MTSub outperforms MtsCopa up to 229400 times in pre-
processing time and up to 44.15 times in space require-
ments. Nonetheless, MTSub is slower than MTSCopa but it
is competitive in average and maximum runtime per search.
MtsCopa is better than MTSub by only up to 3.89 times
in average search times and up to 6.81 times in maximum
times.

MTSCopa has consistent step time requirements across
the map classes according to our experiments and analysis
of the data from GPPC2. The expected MTSub performance
for random maps will not be as good as in the case of Con-
structed/Room map. The performance degradation is a result
of the large number of random obstacles, which impacts the
size of the subgoal graph. Here we expect the MTSub per-
formance to be about 20 times slower than MTSCopa, which
is more significant.

We give required preprocessing time and space for MT-
Sub in various maps in Table 3 to complement results of the
second set of experiments. The results show that MTSub is
applicable to large maps.

We also examined search times individually in a Con-
structed Map AR0700SR to complement the experimen-

2http://movingai.com/GPPC/results.html

Map Name Map Size Preprocessing SpaceTime
Aftershock 512 x 512 1989.26ms 1.3MB
Backwoods 512 x 768 754.164ms 1.9MB
RiverLethe 512 x 768 1685.51ms 1.9MB
Turbo 768 x 768 1691.91ms 2.6MB
Nightshade 768 x 1024 4348.23ms 3.7MB
TheFrozenSea 1024 x 1024 7691.85ms 5.4MB
Octopus 1024 x 1024 5571.44ms 4.9MB
Cauldron 1024 x 1024 5063.05ms 5.2MB

Table 3: Preprocessing Requirements of MTSub

tal results. Figure 4 shows run times per search of MT-
Sub, MtsCopa and R-Sub in a scenario for AR0700SR map.
Search times are given per time t from t = 1 to t = 250.
All of the agents reach the target at t = 250. In figure
4a, we compare MTSub against MtsCopa. Compared algo-
rithms spend maximum search time at the beginning which
is 108 µs for MTSub and 11 µs for MtsCopa. We exclude
maximum times from this graph to better depict the change
in search times in runtime. The graph shows that the run-
time of MTSub has jumps. The jumps occur when the ex-
isting search tree is no longer usable and MTSub constructs
a search tree from scratch. These jumps do not exceed the
maximum runtime and get smaller as the agent gets closer
to the target. However, MtsCopa maintains almost the same
runtime after the maximum time without affecting from
the distance between agent and the target. This is because
MtsCopa finds the only next move on a cost minimal path
without returning a complete path. In Figure 4b, we compare
MTSub and R-Sub. We did not exclude maximum search
times in this graph. It is shown that, after the first time step,
MTSub finds paths faster than a repeating algorithm that also
uses Two-Level Subgoal Graphs for search. This implies that
incremental search effectively decreases the response time
of the agent.

Conclusions and Future Work
In this paper, we introduced an innovative incremental
search algorithm that uses environment abstraction to speed
up the response time of an agent that searches for a moving
target. The MTSub algorithm, finds optimal route between
the agent and the target by computing cost minimal paths
between the agent and the target at each time step. Empiri-
cal evaluation shows that MTSub outperforms G-FRA*, R-
Sub and R-A* in all of the experiment domains. It is also
demonstrated, using empirical analysis, that MTSub has a
significantly smaller memory footprint and preprocessing
time than MtsCopa, a state-of-art algorithm for Moving Tar-
get Search and that MTSub is only up to four times slower
than MtsCopa in average run times. MTSub average per-
formance meets real time requirements and is applicable to
video games and robotics that use not only small environ-
ments but also larger ones with lower resources.

Acknowledgments
We wish to thank the anonymous reviewers for their con-
structive comments.

186



References
Botea, A.; Baier, J. A.; Harabor, D.; and Hernández, C.
2013. Moving target search with compressed path databases.
In ICAPS, 288–292.
Hahn, G., and MacGillivray, G. 2006. A note on k-
cop, l-robber games on graphs. Discrete mathematics
306(19):2492–2497.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Ishida, T., and Korf, R. E. 1991. Moving target search. In
IJCAI, volume 91, 204–210.
Ishida, T., and Korf, R. E. 1995. Moving-target search:
A real-time search for changing goals. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 17(6):609–619.
Koenig, S., and Likhachev, M. 2005. Fast replanning for
navigation in unknown terrain. Robotics, IEEE Transactions
on 21(3):354–363.
Lozano-Pérez, T., and Wesley, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obsta-
cles. Communications of the ACM 22(10):560–570.
Moldenhauer, C., and Sturtevant, N. R. 2009. Optimal so-
lutions for moving target search. In Proceedings of The 8th
International Conference on Autonomous Agents and Multi-
agent Systems-Volume 2, 1249–1250. International Founda-
tion for Autonomous Agents and Multiagent Systems.
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast first-
move queries through run-length encoding. In Seventh An-
nual Symposium on Combinatorial Search, 157–165.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games, IEEE
Transactions on 4(2):144–148.
Sun, X.; Yeoh, W.; Uras, T.; and Koenig, S. 2012. Incre-
mental ara*: An incremental anytime search algorithm for
moving-target search. In Twenty-Second International Con-
ference on Automated Planning and Scheduling, 243–232.
Sun, X.; Yeoh, W.; and Koenig, S. 2009. Efficient incremen-
tal search for moving target search. In Twenty-First Interna-
tional Joint Conference on Artificial Intelligence, 615–620.
Sun, X.; Yeoh, W.; and Koenig, S. 2010. Moving target
d* lite. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-
Volume 1, 67–74. International Foundation for Autonomous
Agents and Multiagent Systems.
Uras, T., and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Seventh Annual Symposium on Com-
binatorial Search, 878–884.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
graphs for optimal pathfinding in eight-neighbor grids. In
Twenty-Third International Conference on Automated Plan-
ning and Scheduling, 224–232.
Vieira, M. A.; Govindan, R.; and Sukhatme, G. S. 2008.
Optimal policy in discrete pursuit-evasion games. Depart-
ment of Computer Science, University of Southern Califor-
nia, Tech. Rep 08–900.

Vieira, M. A.; Govindan, R.; and Sukhatme, G. S. 2009.
Scalable and practical pursuit-evasion with networked
robots. Intelligent Service Robotics 2(4):247–263.

187




