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Abstract. Action pruning is one of the most basic techniques for
improving a planner’s performance. The challenge of preserving op-
timality while reducing the state space has been addressed by several
methods in recent years. In this paper we describe two optimality
preserving pruning methods: The first is a generalization of tunnel
macros. The second, the main contribution of this paper, is a novel
partition-based pruning method. The latter requires the introduction
of new automated domain decomposition techniques which are of
independent interest. Both methods prune the actions applicable at
state s based on the last action leading to s, and both attempt to cap-
ture the intuition that, when possible, we should focus on one sub-
goal at a time. As we demonstrate, neither method dominates the
other, and a combination of both allows us to obtain an even stronger
pruning rule. We also introduce a few modifications to A* that uti-
lize properties shared by both methods to find an optimal plan. Our
empirical evaluation compares the pruning power of the two methods
and their combination, showing good coverage, reduction in running
time, and reduction in the number of expansions.

1 INTRODUCTION

Action pruning is one of the most basic techniques for improving a
planner’s performance. By considering only a subset of the applica-
ble actions at a state, one can focus on a subset of the possible search
paths, and in some cases, eliminate some search nodes. If the pruning
technique is fast and effective, this can lead to significant speed-up,
as well. One of the most influential and effective pruning techniques
is FF’s helpful actions [11]. However, FF’s helpful actions pruning
is heuristic, and sacrifices optimality and completeness. A number
of other pruning techniques maintain completeness and optimality,
among these are commutativity pruning [15, 8], tunneling [5], and
other methods based on the principle of stubborn sets [4, 19]. Our
work falls into this category, and specifically, into the class of state
reduction pruning techniques.

In this paper, we present two new pruning techniques that
share similar intuitions. First, we provide a slight generalization
of the domain-independent tunnel-macros technique introduced by
Coles and Coles [5] which was motivated by tunnel macros in
Sokoban [13]. Very roughly, tunnel pruning is based on the following
idea: suppose that we just applied an action a that only changes the
value of some variable p to vy. Further, suppose that p’s goal value
is not vy, and that any action that changes p from v; to some other
value does not affect other variables. Then, after a, we might as well
apply one of those actions that changes p. Our generalized tunneling
applies this idea to actions that affect more than a single variable.

1

Ben-Gurion  University of the Israel, email: raz-

nis,apsel,brafman@cs.bgu.ac.il

Negev,

The second and more significant contribution, is a new partition-
based pruning technique. This technique requires as input a partition
of the set of actions. Given such a partition, it allows us to prune ac-
tions roughly as follows: after performing an action a, if this action
affects only actions from its own partition (i.e., by supplying or de-
stroying their pre or prevail conditions) then the next action should
be from that same partition. The power of this method depends on
the quality of the partition used. In some domains natural partitions
suggest themselves. For example, when there is a natural notion of
agents in a domain (e.g., trucks in Logistics, satellites in Satellite,
etc.), then it is natural to partition the set of actions to sets consisting
of actions involving a specific agent. However, most domains offer
no obvious partition, and hence one of our contributions is a princi-
pled and efficient automated domain decomposition method.

Both the above methods prune according to the last action leading
to the current state. Hence, to yield an optimal plan, slight modifi-
cations of A* are required, both to maintain this extra information
about a state, as well as to properly address the issue of duplicate de-
tection in this context. With these modifications, A* combined with
our pruning rules (and in fact, a general class of path-based pruning
rules) finds an optimal plan, when one exists.

Given a number of pruning techniques, it is natural to ask whether
one dominates the other. We show that, despite some similarities,
generalized tunneling and partition-based pruning do not dominate
each other, but cannot be used together without sacrificing optimal-
ity. However, we describe an optimality preserving pruning rule that
combines elements of both methods. Lastly, we provide an empiri-
cal analysis across various planning domains, comparing our pruning
methods to a baseline planner. Our results show an increase in cov-
erage, as well as a reduction in running time and node expansion.

2 BACKGROUND/PRELIMINARIES

This paper considers cost-optimal planning, using the SAS+ for-
malism [1]. Such a planning problem is defined as a tuple II =<
V, S0, Sx, A > where V is a set of variables which can be assigned
a value from a finite domain D,, s is the initial state, s, is a partial
assignment of G C V denoting the goal conditions, and A is the set
of actions, where each a =< pre, prevail, eff >€ A is given by its
preconditions, prevail conditions (required, but not affected by the
action) and effects. For convenience, if an action has (v, p) as a pre-
condition, and (v, p’) as an effect, we refer to it as having a pre-post
condition (v,p,p’). An action sequence 7 is legal if the precondi-
tions of every action in 7 hold when executing 7 starting at so and is
called a plan if its execution ends in a goal state. A path P is a se-
quence of states induced by a legal sequence of actions, where each
state is associated with the action leading to its generation.



Two actions a, a’ are commutative [8] if neither one achieves or
destroys a precondition of the other, and they don’t have conflicting
effects. By this definition, in any legal plan 7 having two consecu-
tive commutative actions a;, a;+1, the permutation 7" of = where the
order of a;, a;+1 is switched, is an effect-equivalent legal plan.

Our pruning methods require that the actions of a SAS+ problem
be partitioned, i.e. mapped to k disjoint sets. A partitioned SAS+
problem is therefore defined as IT =< V, 50, 54, {A; }1—; > where
for 1 <14 < k, A; is the set of actions in partition . Given such a
partition, we can now distinguish between private and public actions
— public actions are the ones that are not commutative with actions in
other partitions, while all other actions are private. A value p € D, of
variable v is said to be private if it is required and achieved only by
actions of a single partition, and public otherwise. We note that for
ease of presentation, all actions which achieve some variable’s goal
value are considered public. This is assumed throughout the paper,
but our techniques are easily modified to remove it.

To get a clearer picture of a partitioned SAS+ problem and the de-
pendencies induced by it, consider the well known Logistics planning
domain, in which a set of packages should be moved on a road-map
from their initial to their target locations using a given fleet of vehi-
cles such as trucks, airplanes, etc. The packages can be loaded onto
and unloaded off the vehicles, and each vehicle can move along a
certain subset of road segments. Possible actions are therefore move,
load, and unload. Associating each vehicle with a partition, we might
map all move, load and unload actions in which it is involved to a
single partition. Now, since a vehicle’s location can only be changed
by its move actions, all the move actions are private. On the other
hand, load/unload actions are public only if they affect the position
of a package in some of its public locations, i.e., locations that can
be reached by at least two vehicles.

We note that the notion of partitioning actions and the distinction
between private and public actions was presented in the context of
multi-agent STRIPS (MA-STRIPS) planning by Brafman and Domsh-
lak [2]. The multi-agent aspects of MA-STRIPS are not of relevance
to this work, but the partition of actions into disjoint groups given
by MA-STRIPS is essential for our pruning methods, so we adapted
these definitions for SAS+ planning.

Finally, we introduce a property relevant to pruning methods,
which we use throughout the paper. Pruning method p is optimal-
ity preserving if for every SAS+ problem II and for every optimal
plan 7, there exists another, effect-equivalent optimal plan 7/, which
is not pruned by p. The three pruning methods we shall describe are
optimality preserving since for any legal plan 7, an effect equiva-
lent permutation of 7 which is not p-pruned exists. In Section 6 we
show that a slightly modified version of A* which uses an optimality
preserving pruning method is complete and optimal.

3 ACTION TUNNELING

Tunnel macros were first described as part of a Sokoban solver [13].
The idea here is to group related atomic actions into a single macro,
or composite action. In Sokoban, a tunnel is a part of the grid where
the maneuverability of the player is restricted to a width of one.
When pushing a box into a tunnel, assuming all points along the tun-
nel are indistinguishable, the only sensible choice is to push the box
to its end, since this would have to be done eventually if it is part of
an optimal plan. Therefore, all push actions along the tunnel can be
treated as a macro, and heuristic evaluation and decision making in
intermediate locations is not necessary.

Coles and Coles [5] provided the first domain-independent gener-
alization of the tunnel-macro idea focused on actions with a single
effect. We now present a generalization of this definition to arbitrary
operators.

For each action a =< pre, prevail, eff >, we define s,,,;,(a) =
{prevail Ueff}, i.e. 5,,;,(a) is the minimal partial assignment which
always holds following the execution of a. Action a allows a tunnel
if the following conditions hold:

1. 3(v;,p) € eff such that (v;,p’) € s, andp # p'.

2. Any action having a prevail (v;, p;) € eff, has some pre-post con-
dition (vj, pj,pj) such that (vj, p;) € eff.

3. For any action a’ having a pre-post condition (v;, p;,p}) where
(vi, pi) € eff, then:

e the preconditions of a’ are satisfied by s,;,;,,(a).

e ¢ affects only the variables affected by a.”

If a allows a tunnel, we define runnel(a) to be all operators
which have a pre-post condition < vy, p;, p; > or prevail condition
< v, p; > where (vi, pi) € eff. Otherwise, funnel(a) = A.

Pruning rule 1 (Action Tunneling Pruning). Following action a,
prune all actions not in tunnel(a).

A valid sequence of actions 7 = (a1,az2...,ax) is said to be
tunnel-pruned if for some action a;, a;+1 ¢ tunnel(a;).

Lemma 1. Action tunneling pruning is an optimality-preserving
pruning method.

Proof. Let II be a SAS+ problem for which an optimal solution
m = (a1,a2,...,ax) exists. If 7 is not tunnel-pruned, the lemma
trivially holds. Otherwise, consider the first occurrence of an action
pair a;, a;+1, such that a;+1 ¢ tunnel(a;). Given the conditions on
a;, we know that one of the variables v it affects does not have its
goal value after applying a;. Consequently, there exists an action ap-
pearing after a; in P that changes v’s value. Let a; be the first such
action in the plan following a;. Consider the actions a;41,...a;—1.
By assumption, none of them changes the value of a;’s effects. By
the definition, this means that none of them require any of a;’s ef-
fects, either as preconditions or prevail conditions. By definition, a;
cannot change any variable that is not affected by a;, and a; is ap-
plicable in s,,;, (a;). Therefore, a; can be applied immediately af-
ter a;, and a;41,...a;j—1 are executable after a;. This means that
' = (ai,.. .,ai) is a legal plan
that is effect-equivalent to 7.

By applying this procedure repeatedly, we obtain an optimal,
effect-equivalent permutation of 7 which is not tunnel-pruned. [
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4 PARTITION-BASED PATH PRUNING

Given a SAS+ planning problem and a partition of its actions, we
propose our pruning rule, partition-based (PB) pruning:

Pruning rule 2 (Partition-Based Pruning). Following a private ac-
tion a € A;, prune all actions not in A;.

A valid sequence of actions P = (a1,az2...,ax) is said to be
PB-pruned if for some private action a; € A;, a;+1 ¢ A;.

2 Coles and Coles allow a’ to affect irrelevant resources. However, these are
essentially variables that can be removed from the problem description in
preprocessing without affecting correctness.



Figure 1. Correlation between I" and running time using PB pruning.
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Lemma 2. PB pruning is an optimality-preserving pruning method.

Proof. Let II be a SAS+ planning problem, let | J, A; = A be a
partition of its actions, and let 7 be an optimal plan for II. By defini-
tion of private actions, we know that private actions are commutative
with actions of other partitions. Therefore, we can move any ordered
sequence of private actions of .4;, so that it would be immediately
before the subsequent public action of .A;, and maintain the legality
and the effect of the plan. Doing this for all ordered sequences of
private actions, will produce a non-PB-pruned plan which is a per-
mutation of 7, and therefore optimal as well. O

As an example, consider a logistics problem consisting of two
trucks, and a partition of the actions such that for i € {1,2}, all
actions of truck; are in .A;. When expanding state s, for which the
creating action was a = move(trucki, loc1, locz), all actions corre-
sponding to trucko are pruned. Since a was performed in order to
achieve some precondition for truck,’s public load/unload action at
locz, PB pruning focuses the search effort on applying that action.

Generally, in optimal plans, private actions are executed only to
enable some public action, since otherwise, the private action can
be removed and the plan is not optimal®. Therefore, when pruning
the actions of other partitions after applying a private action a, the
search effort focuses on achieving the cause for applying a in the
first place. The reader may have observed that in optimal search in
general, when reaching state s via a private action a € A;, all public
actions of A; constitute a disjunctive action landmark in state s.

We note that our logistics example exhibits multi-agent struc-
ture, and therefore, a natural decomposition into partitions (vehi-
cle=partition). Although this structure is evident in some benchmark
planning domains (e.g. Logistics, Rovers, Satellites, Zenotravel etc.),
in general there isn’t always an obvious way of decomposing the
problem. In what follows, we describe an automated method for de-
composing a general planning problem, making PB pruning applica-
ble in the general setting.

4.1 Decomposition

We now discuss the important question of zow to decompose a given
planning problem II. Since not all planning problems exhibit “multi-
agent” structure some general method of problem decomposition is
required. We now describe one such method.

Given a SAS+ planning problem II, we define the action graph
(AG) of I1. The nodes of AG correspond to the actions in 4. There is
an undirected edge between actions a1, as if they are not commuta-
tive, i.e. if one achieves or destroys a precondition of the other, or if

3 This is assuming, as we do, that all goal-achieving actions are public.

they have a conflicting effect. A partition of AG maps all nodes of AG
to k > 1 disjoint sets A; such that Ui <;<xA; = A, clearly induc-
ing a partitioned SAS+ problem. Moreover, the distinction between
public and private actions is immediate — action a; € A; is public if
there exists an edge (a;, a;) for some a; € A;,i # j, while all other
actions are defined as private. In other words, a; € A; is private if it
is connected only to actions belonging to .A;, and public otherwise.

As an exponential number of partitions exist, some measure of
partition quality is required. Using PB pruning, action pruning is per-
formed only when the first of two consecutive actions is private and
the second is one belonging to a different partition. We introduce the
notion of symmetry score (I'), which measures the probability of
such a sequence apgearing in the search:

P{A}_,) = Z(pr(a € A; and a is private) * pr(a ¢ A;))

i=1

T is, of course, an approximation, since it regards the probability
of each action appearing at any point in the search as equal. On two
extremes, I is equal to zero:

1. If each action is mapped to a different partition (k = |.A|), and as-
suming the action graph is connected, there are no private actions
and the first term in the multiplication is always zero.

2. If all actions belong to a single partition (A; = A), then the sec-

ond term is always zero.

In both cases, PB pruning will, in fact, be useless. On the other hand,
if the actions are distributed evenly between k partitions which have
no effect on one another, then the symmetry score will be k  (1/k) *
(k — 1)/k, which approaches 1 as k rises. In this case, PB pruning
will reduce the search space dramatically, as many effect-equivalent
action sequences exist.

In order to verify that there exists a correlation between the sym-
metry score I' of a partition and the effectiveness of PB pruning in
practice, we conducted an empirical study. Figure 1 depicts the run-
ning time of our slightly modified version of A* (presented in Sec-
tion 6) with the hp,, ... heuristic [10], using PB pruning, on four
benchmark planning problems. Each problem was solved 400 times
using different partitions with varying symmetry score. We used the
METIS package [14] as our graph partitioning software. METIS is a
fast and effective graph partitioning tool, and was also used in the
experiments in Section 7. Since I' is only an approximation, higher
I values do not necessarily mean the problem is solved faster. How-
ever, in general we observe that running time decreases as I rises.
Satellites 6, for example, was solved almost x10 faster when using
PB pruning with the best partition.

Interestingly, in the case of the Rovers and Satellites domains, the
best partitions obtained correspond exactly to the natural multi-agent
(MA) structure of the problem. Problems of both these domains rep-
resent loosely-coupled MA systems, in which many private actions
exist. In other cases, such as Logistics, however, the best partitions
found had higher symmetry score than the natural MA formulations.
This is due to the tightly-coupled MA systems that are represented
as Logistics problems. In these problems, an artificial partition of the
actions, which may group together a few (natural) agents as one, can
achieve a higher symmetry score.

We note that I is not a perfect quality measure, but rather a rough
approximation. Its main deficiency lies in the fact that it assumes a
uniform distribution of action application during the search. As this is
a phenomenon which rarely occurs, I is far from optimal. However,
it is simple and intuitive, and our experiments seem to validate its
utility. Finding more accurate measures remains an open challenge.



Figure 2. Action graph of an example planning problem and search space of A*with tunneling and partition-based pruning. Actions are represented as
< pre, prevail, eff > and states are denoted by the values of variables v1, v2, v3 respectively (112 denotes the state where v1 = 1,v2 = 1,v3 = 2.)
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5 PB-PRUNING AND TUNNELING

Intuitively, tunneling and PB pruning seem similar. Both are based
on the idea that search should aim to “finish what it started”, i.e. after
performing an action aimed at eventually achieving some variable
value, focus the search effort only on achieving it. Both methods
are state reduction techniques, which reduce the number of reach-
able states as well as transitions, unlike other partial order reduction
techniques such as sleep sets, commutativity pruning and stratified
planning, which reduce the number of state transitions but not the
number of reachable states.

Although based on a similar intuition, PB and tunnel pruning do
not prune the same set of states, nor can it be said that one method
strictly dominates the other®.

To better understand the differences between the methods, con-
sider the example in Figure 2. In this example, the actions a1, ... as
are divided between two partitions Aq, Az, such that a5 and ag are
public, and the rest are private. Additionally, there are 3 actions
a1, as, ae after which we can tunnel. so = 0000 and s, = (va4,2).
We first address the state reduction obtained by action tunneling.
Consider states 1000 and 0010, both created by an action after which
we can tunnel. In these states, action tunneling will prune actions
ae, a1, respectively. Since these two actions are the only creating
operators of state 1010, that state is never generated. Altogether, 7
out of 31 states are pruned using action tunneling. Now consider the
search space when using PB pruning. State 0020, created by a private
action ar € Az, may only expand using actions from As. Since there
are no such applicable actions (which do not constitute a self-loop),
0020 effectively becomes a dead-end, never generating states 1020
and 1120. Notice that when reaching state 2200, the only state with
g = 4, the search space is reduced to a single path leading directly
to the goal. In total, 16 out of 31 states are never generated.

Although the two pruning rules seem to be applicable together,
combining them, as presented, results in a pruning method which is
not optimality-preserving. As an example, consider planning prob-
lem II, for which a;, a;4+1 are two consecutive actions in a non-PB-
pruned optimal plan, such that a; € A; is a public action, affecting
a single private variable value and having a public prevail condition,
and such that a; has the private action ay € A; in its tunnel. Then,

4 In general, it is difficult to discuss dominance of PB pruning, since the effect
of PB pruning is dependent on the partition of the actions.

if a;iy1 € Aj, j # i, moving aj, between a; and a;+1 would not
preserve the PB pruning rule. There is a way, however, to combine
the two pruning rules and maintain optimality:

Pruning rule 3 (Tunnel+PB Pruning). Always apply pruning rule 2,
and apply pruning rule 1 only if the creating action is private.

This combined pruning rule yields non-PB-pruned plans, such that
internally, the private action sequences of every partition are not
tunnel-pruned. Clearly, this dominates PB pruning when using the
same partition of A.

Lemma 3. Tunnel+PB pruning is an optimality-preserving pruning
method.

Proof. Let II be a partitioned SAS+ planning problem, and let 7 be
an optimal plan for II. By Lemma 2 there exists an optimal plan
7' which is not PB-pruned . If 7’ is not tunnel-pruned, the lemma
trivially holds. Otherwise, consider the first occurrence in 7’ of an
action pair a;, ai+1, such that a;41 ¢ tunnel(a;). By definition,
a; € Aj; is private, so it affects and requires only private variable
values. Therefore, any action in its tunnel must be in .4;. Since one
of the variables v does not have a goal value after applying a;, there
exists another action in 7’ appearing after a; that changes v’s value.
Let a; € A; be the first such action. Similarly to Lemma 1, a; can
be applied directly after a; without effecting the legality and outcome
of the plan. Moreover, since a;, a; belong to the same partition, this
new plan is not PB-pruned.

By applying this procedure repeatedly, we obtain a non-tunnel-
pruned plan, which is a permutation of 7, and therefore optimal. [

Going back to the rightmost part of Figure 2, we see that perform-
ing tunneling after private actions can lead to further state reduction.
Specifically, in states 1000 and 0100, actions @ and a3 are pruned
respectively, and state 1100 is never generated.

6 PATH PRUNING A*

In this section we present a slight modification of the A* algorithm,
which allows the application of optimality preserving pruning meth-
ods for the purpose of optimal planning. The path pruning A*, aka
PP-A%*, is a search algorithm which receives a planning problem II




and a pruning method p as input, and produces a plan 7, which is
guaranteed to be optimal provided that p respects the following prop-
erties: (i) p is optimality preserving, and (ii) p prunes only according
to the last action. It is easy to see, for example, that both PB pruning
and tunnel pruning respect the second condition, since both pruning
rules fire only according to the last action. Of course, both pruning
methods are also optimality preserving, and can therefore be easily
integrated in PP-A*, as we later demonstrate.

6.1 PP-A* versus A*

PP-A* is identical to A* except for the following three changes.
First, a different data-type is used for recording an open node. In
PP-A*, an open list node is a pair (A, s), where s is the state and A
is a set of actions, recording various possible ways to reach s from
a previous state. Second, node expansion is subject to the pruning
rules of method p. Namely, PP-A* executes an applicable action a’
in state s only if there is at least one action a € A s.t. the execution
of @' is allowed after a under p’s pruning rules. Third, duplicate
states are handled differently. In A*, when a state s which is already
open is reached by another search path, the open list node is updated
with the action of the lower g value, and in case of a tie — drops the
competing path. In contrast, ties in PP-A* are handled by preserving
the last actions which led to s in each of the paths. Hence, if action
a led to an open state s via a path of cost g, and if the existing open
list node (A, s) has the same g value, then the node is updated to
(AU {a}, s), thus all actions leading to s with path cost g are saved.
Tie breaking also affects the criterion under which closed nodes are
reopened. In A*, nodes are reopened only when reached via paths
of lower g values. In PP-A*, if an action a leading to state s of
some closed node (A, s) is not contained in A, and if the g values
are equal, then the node reopens as ({A U {a}}, s). However, when
the node is expanded, only actions that are now allowed by p and
were previously pruned, are executed. We now move to prove the
correctness of PP-A*.

6.2 Proof of Correctness and Optimality

The next lemma refers to PP-A*, and assumes p to be an optimality
preserving pruning method, which prunes according to the last ac-
tion. We say that node (A, s) is optimal on path P, if A contains
an action a which leads to state s on path P, and ¢g(s) = ¢*(s). The
notation s <p s’ denotes the fact that state s precedes state s’ in
optimal path P.

Lemma 4. In PP-A*, for any non-closed state sy, and for any opti-
mal non-p-pruned path P from I to sk, there exists an open list node
(A’ s") which is optimal on P .

Proof. Let P be an optimal non-p-pruned path from [ to sg. If |
is in the open list, let s’ = I and the lemma is trivially true since
g(I) = g*(I) = 0. Suppose I is closed. Let A be the set of all
nodes (A;, s;) optimal on P, that were closed. A is not empty, since
by assumption, [ is in A. Let the nodes in A be ordered such that
s; <p s; fori < j, and let j be the highest index of any s; in A.

Since the closed node (A, s;) has an optimal g value, it had been
expanded prior to closing. From the properties of PP-A*, it follows
that the expansion of (A;, s;), which is optimal on P, is followed
with an attempt to generate a node (Aj;1, sj+1) which is optimal on
P as well. Generation of (4,41, s;+1) must be allowed, since under
the highest index assumption there can be no closed node containing
s which is optimal on P. Naturally, s; <p Sj41.

At this point, we note that actions in A;41 cannot be removed by
any competing path from I to s;41, since (A;j41, sj4+1) has an opti-
mal g value. It is possible, though, that additional actions leading to
s;+1 are added to the node. The updated node can be represented by
(A% 1 D Aj11,s541), and the property of optimality on P holds.
Additionally, node (A, s;4+1) cannot be closed after its genera-
tion, since again, this contradicts the highest index property. Hence,
there exists an open list node (A’, s") which is optimal on P. This
concludes the proof. O

Corollary 1. If h is admissible, PP-A* is admissible.

Proof. This follows directly from Lemma 4, the optimality preserv-
ing property of p and the properties of PP-A*, which allow every
optimal, non-p-pruned path to be generated. O

7 EMPIRICAL EVALUATION

In order to evaluate our pruning methods, we performed experiments
on 23 benchmark planning domains, used in the International Plan-
ning Competition [12]. Our pruning methods, as well as the changes
to A*, were integrated into the implementation of A* in the Fast
Downward (FD) planner [9]. In our implementation of PP-A*, only
a single creating action is cached by state s, and if it is reached op-
timally via two paths which prune different sets of its applicable ac-
tions, no pruning is done at s. Caching all creating actions can be
costly, and empirically, fully expanding such a state s had no nega-
tive effect on state-space reduction. All configurations used the state-
of-the-art heuristic hlm—cut' Each test was given a 10 minute time
limit including preprocessing, and was limited to 1GB of memory.

In configurations which include PB pruning, problem decomposi-
tion was handled in a preprocessing phase, using the METIS graph
partitioning package. During this phase, the action graph was con-
structed and given as input to METIS, which computed 120 partitions
under varying parameters. The partition with the highest symmetry
score was chosen, and the problem was decomposed accordingly.

Table 1 depicts a per-domain coverage summary for all configura-
tions, as well as ratios summarizing running time (with and without
preprocessing), and number of nodes expanded and generated per
domain. For example, the expansion ratio for configuration ¢ and do-
main d is: Zp expanded(baseline, d, p)/ Zp expanded(c, d, p)
for all p solved by both baseline and ¢’. Using PB pruning and
PB+Tunneling (denoted PBT in the table) improved coverage in 3
domains, while hurting coverage in a single domain (mprime). Tun-
neling alone did not improve coverage and solved one problem less
in the mprime domain as well.

Looking at the total time (running time including preprocessing)
ratios, we first notice that tunneling incurs very little overhead, hav-
ing almost no negative effect on running time, even when no prun-
ing occurs (domains where generated ratio is 1). In satellites, driver-
log and psr, tunneling performs very well, speeding up total time
by 22%, 45%, and 52% respectively. PB pruning behaves differently
than tunneling, exhibiting much larger speedups (e.g. 170%, 274%
and 1274% speedup for zenotravel, logistics98 and satellites respec-
tively), but in some cases it incurs large preprocessing overhead (as
high as 37% slowdown for mprime)®. Focusing on search time, we
see that PB and PBT never cause slowdown, and can have an im-
mense effect — exhibiting over 50% speedup in 7 domains, up to

5 Restricting the ratio results only to problems solved does not misrepresent
the results, since coverage scores are almost identical.

6 This overhead can be reduced, for example, by stopping partitioning if after
trying a few common parameter settings, we get a symmetry score of 0.



Table 1. Coverage and comparison of A*+hy,, ..., using our 3 pruning rules. Time and node ratios are relative to the baseline planner.

Coverage Total Time Search Time Expanded Generated

Domain A* | PB T | PBT T PBT T PBT T PBT PB T PBT
airport 27 27 27 27 0.96 1.01 0.97 1.0T 1.0T 1.03 T T I 1.03 I 1.03
blocks 28 28 28 28 1 1 1.01 1 1 1.01 1 1 1 1 1 1
depot 7 7 7 7 1.03 1 1.04 1.04 1 1.04 1 1 1 1.1 1 1.1
driverlog 13 13 13 13 1.2 145 1.24 1.2 145 1.25 1.13 1.1 1.24 1.49 1.62 1.68
freecell 15 15 15 15 0.94 1.02 | 094 1.01 1.02 1.01 1 1 1 1 1 1
grid 2 2 2 2 0.97 1.01 0.97 1.01 1.02 1.01 1 1 1 1 1 1
gripper 6 6 6 6 1 1.01 1.02 1 1.01 1.02 1 1 1 1.01 1 1.01
logistics00 20 | 20 20 20 2.15 1 2.16 2.15 1 2.16 1.52 1 1.52 2.88 1 2.88
logistics98 6 6 6 6 3.74 1 3.71 3.78 1 3.75 2.02 1 2.02 4.65 1 4.65
miconic 141 | 141 | 141 | 141 0.82 1.01 0.83 0.99 1.02 1.02 1 1 1 1 1 1
mprime 23 | 20 22 20 074 | 099 | 075 1.03 0.99 1.05 1.01 1 1.01 115 1 115
mystery 15 15 15 15 0.63 0.98 0.64 1 0.98 1.01 1 1 1 1.01 1 1.01
openstacks 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1
pathways-noneg 5 5 5 5 1.65 1.02 1.7 1.65 1.02 1.7 131 1 1.31 1.87 1 1.87
pipes-notankage 16 16 16 16 1.04 1.01 1.05 1.09 1.01 1.1 1 1 1 1.09 1 1.09
pipes-tankage 9 9 9 9 1 1 1.01 1.02 1 1.04 1 1 1 1.04 1 1.04
psr-small 49 | 49 | 49 49 1 1.52 | 0.99 1 1.52 1 1 1.48 1 1.08 1.51 1.08
rovers 7 8 7 8 2.61 1.04 | 2.64 2.63 1.04 | 2.66 1.78 1 1.78 3.23 1.02 | 3.24
satellite 7 12 7 12 1374 | 1.22 | 14.09 || 1455 | 1.22 | 1491 6.85 1.04 | 6.85 19.18 | 1.35 | 19.33
tpp 6 6 6 6 1.03 1 1.04 1.04 1 1.04 1.02 1 1.02 1.37 1 1.37
transport 11 11 11 11 1.5 1 15 1.54 1 154 1.24 1 1.24 1.79 1 1.79
trucks 9 9 9 9 096 | 0.99 0.95 1 0.99 1 1 1 1 1.01 1 1.01
zenotravel 12 13 12 13 2.7 0.99 2.68 2.81 0.99 2.79 1.54 1 1.54 2.86 1 2.86
Total/Geometric Mean || 441 | 445 | 440 | 445 1.339 | 1.047 | 1.350 [| 1.424 [ 1.048 | 1.437 || 1.226 | 1.023 [ 1.231 [[ 1.558 | 1.055 | 1.567

1391% speedup on satellites. The two rightmost columns show that
all three methods have a positive effect on the size of the explored
search space as well.

It is no coincidence that PB pruning performs well on domains
having natural “multi-agent” structure. These problems are highly
decomposable, and the partitioned SAS+ problems include many pri-
vate actions, after which pruning is performed. It is important to note
the positive effect that adding internal tunneling has on PB pruning
— PBT is the best overall performer in all five criteria.

8 RELATED WORK

Numerous works presented pruning techniques which preserve the
optimality of search algorithms. Transition reduction techniques in-
clude Sleep Sets [ 7], Commutativity Pruning [8)] and Stratified Plan-
ning [3], which perform action pruning, reducing the amount of paths
to each reachable state, but nor the set of reachable states. More
closely related to our work are numerous State Reduction techniques,
such as Expansion Core [4] and Stubborn Action Core [19], which
are instances of the stubborn set method [17]”. All stubborn-set based
methods are not path dependent, i.e. perform the same pruning at
state s regardless of s’s creating action. Our methods, use additional
information regarding the path to state s, and are not instances of
stubborn sets. Aside from tunnel macros, the work by Coles and
Coles [5] presents an interesting method for identifying irrelevant
actions, which can be removed altogether from the problem descrip-
tion. This can be combined with our pruning methods seamlessly. In
addition, symmetry detection methods [6, 5, 16] identify and prune
symmetric states during the search process, and should complement
our pruning approaches.

It remains an open question whether combinations of these prun-
ing methods maintain optimality, and if not, how they can be com-
bined effectively, while maintaining optimality. In general, more
work must be done on providing sufficient conditions for which two
optimality preserving pruning methods could be combined. Creating
such a portfolio of pruning rules would strengthen existing planners,
as the benefit of pruning is orthogonal to that of improved heuristics.
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