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Abstract

The determination of the computational complexity of multi-
agent pathfinding on directed graphs (diMAPF) has been an
open research problem for many years. While diMAPF has
been shown to be polynomial for some special cases, it has
only recently been established that the problem is NP-hard in
general. Further, it has been proved that diMAPF will be in
NP if the short solution hypothesis for strongly connected di-
rected graphs is correct. In this paper, it is shown that this
hypothesis is indeed true, even when one allows for syn-
chronous rotations.

Introduction
Multi-agent pathfinding (MAPF), often also called pebble
motion on graphs or cooperative pathfinding, is the prob-
lem of deciding the existence of or generating a collision-
free movement plan for a set of agents moving on a graph,
most often a graph generated from a grid, where agents can
move to adjacent grid cells (Ma and Koenig 2017; Stern et al.
2019). Two examples are provided in Figure 1.
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Figure 1: Multi-agent pathfinding examples

In the left example, the circular agent C needs to move to
v2 and the square agent S has to move to v3. S could move
first to v2 and then to v3, after which C could move to its
destination v2. So, in this case, a collision-free movement
plan exists. In the right example, where additionally the tri-
angle agent has to move to v1, there is no possible way for
the square and triangle agent to exchange their places, i.e.,
there does not exist any collision-free movement plan.

Kornhauser et al. (1984) had shown already in the eight-
ies that deciding MAPF is a polynomial-time problem and
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movement plans have polynomial length, although it took
a while until this result was recognized in the community
(Röger and Helmert 2012). The optimizing variant of this
problem, assuming that only one agent can move at each
time step, had been shown to be NP-complete soon after the
initial result (Goldreich 1984; Ratner and Warmuth 1986).

Later on, variations of the problem have been studied
(Stern et al. 2019). It is obvious that all robots that move
to different empty nodes could move in parallel, which may
lead to shorter plans. Assuming coordination between the
agents, one can also consider train-like movements, where
only the first robot moves to an empty node and the others
follow in a chain, all in one time step (Ryan 2008; Surynek
2009, 2010). Taking this one step further, synchronous ro-
tations of agents on a cycle without any empty nodes have
been considered (Standley 2010; Yu and LaValle 2013; Yu
and Rus 2014). And even distributed and epistemic versions
have been studied (Nebel et al. 2019).

Concerning plan existence and polynomial plan length,
parallel and train-like movements do not make a difference
to the case when only simple moves are permitted. Syn-
chronous rotations are a different story altogether. There are
problem instances which cannot be solved using only sim-
ple moves, but are solvable when synchronous rotations are
allowed. Nevertheless, it has been shown that MAPF is a
polynomial-time problem as well (Yu and Rus 2014). Dis-
tributed and epistemic versions are more difficult, however.
They are NP-complete and PSPACE-complete, respectively
(Nebel et al. 2019).

Optimizing wrt. different criteria turned out to be NP-
complete (Surynek 2010; Yu and LaValle 2013) for all kinds
of movements, and this holds even for planar and grid graphs
(Yu 2016; Banfi, Basilico, and Amigoni 2017; Geft and
Halperin 2022). Additionally, it was shown that there are
limits to the approximability of the optimal solution for
makespan optimizations (Ma et al. 2016).

The mentioned results all apply to undirected graphs only.
However, a couple of years ago, researchers also consid-
ered MAPF on directed graphs (diMAPF) (Wang and Botea
2008), and it has been proved that diMAPF can be decided
in polynomial time, provided the directed graph is strongly
biconnected1 and there are at least two unoccupied ver-

1This means that each pair of nodes is located on a directed
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tices (Botea and Surynek 2015; Botea, Bonusi, and Surynek
2018). The general case for directed graphs is still open,
though. It has only been shown that diMAPF is NP-hard
(Nebel 2020), but membership in NP was not established.

In general, the state space of (di)MAPF has size O(n!), n
being the number of vertices of the graph. However, for di-
rected acyclic graphs, a quadratic upper bound for the plan
length is obvious, because steps are not reversible in this
case, and so each single agent can perform at most n steps.
This leads immediately to NP-completeness for directed
acyclic graphs. For strongly connected directed graphs, this
argument is not valid, however. It was nevertheless conjec-
tured that plans can be polynomially bounded (Nebel 2020),
since this holds also for undirected graphs and for directed
strongly biconnected graphs with two empty nodes. In this
paper, we will show that this small solution hypothesis is
indeed true.

The crucial observation is that each movement in a
strongly connected directed graph can be reversed, which
essentially means that movements of single agents can also
be thought of taking place against the direction of an arc
in directed graphs, something already noted by Ardizzoni et
al. (2022). This implies that we can reuse almost all results
about undirected graphs with only a polynomial overhead
in plan length—provided we are talking about single-agent
movements. However, this does not apply to synchronous ro-
tations. Here, a reduction to movements on the correspond-
ing undirected graph is impossible. By using techniques sim-
ilar to the ones Kornhauser et al. (1984) employed, we show
that any movement plan using only synchronous rotations
on strongly connected directed graphs can be polynomially
bounded. Finally, we consider the case, when both kinds of
movements are allowed, and prove a polynomial bound as
well, which allows us to conclude that the small solution hy-
pothesis is indeed true regardless of what kind of movements
are possible, and therefore diMAPF is NP-complete.

The rest of the paper is structured as follows. In the next
section, we will introduce the necessary notation and ter-
minology that is needed for proving the small solution hy-
pothesis to be true. We will cover basic notation and termi-
nology from graph theory and permutation groups, and will
formally introduce MAPF and diMAPF. In the three sub-
sequent sections, the small solution hypothesis will then be
proven, first for the case of simple movements, then for the
more complicated case when only synchronous rotations are
permitted, and finally for the case, when both kinds of move-
ments are possible. The paper ends with a short discussion
of the results.

Notation and Terminology
Graph Theory
A graph G is a tuple (V,E) with E ⊆ {{u, v} | u, v ∈
V }. The elements of V are called nodes or vertices and the
elements of E are called edges. A directed graph or digraph
D is a tuple (V,A) with A ⊆ V 2. The elements of A are
called arcs. Graphs and digraphs with |V | = 1 are called
trivial. We assume all graphs and digraphs to be simple, i.e.,

cycle.

not containing any self-loops of the form {u}, resp. (u, u).
Given a digraph D = (V,A), the underlying graph of D,
in symbols G(D), is the graph resulting from ignoring the
direction of the arcs, i.e., G(D) = (V, {{u, v} | (u, v) ∈
A}).

Given a graph G = (V,E), G′ = (V ′, E′) is called sub-
graph of G if V ⊇ V ′ and E ⊇ E′. Similarly, for digraphs
D = (V,A) and D′ = (V ′, A′), D′ is a sub-digraph if
V ⊇ V ′ and A ⊇ A′.

A path in a graph G = (V,E) is a non-empty sequence of
vertices of the form v0, v1, . . . , vk such that vi ∈ V for all
0 ≤ i ≤ k, vi ̸= vj for all 0 ≤ i < j ≤ k, and {vi, vi+1} ∈
E for all 0 ≤ i < k. A cycle in a graph G = (V,E) is a
non-empty sequence of vertices v0, v1, . . . , vk with k ≥ 3
such that v0 = vk, {vi, vi+1} ∈ E for all 0 ≤ i < k and
vi ̸= vj for all 0 ≤ i < j < k.

In a digraph D = (V,A), path and cycle are similarly
defined, except that the direction of the arcs has to be re-
spected. This means that (vi, vi+1) ∈ A for all 0 ≤ i < k.
Further, the smallest cycle in a digraph has 2 nodes instead
of 3. A digraph that does not contain any cycle is called di-
rected acyclic graph (DAG). A digraph that consists solely
of a cycle is called cycle digraph. A digraph that consists of a
directed cycle v0, v1, . . . , vk−1, vk = v0 and any number of
arcs connecting adjacent nodes in a backward manner, i.e.,
(vi, vi−1) ∈ A, is called partially bidirectional cycle graph.

A graph G = (V,E) is connected if there is a path be-
tween each pair of vertices. A connected graph that does not
contain a cycle is called tree.

Similarly, a digraph D = (V,A) is weakly connected, if
the underlying graph G(D) is connected. It is strongly con-
nected, if for every pair of vertices u, v, there is a path in D
from u to v and one from v to u. The smallest strongly con-
nected digraph is the trivial digraph. The strongly connected
components of a digraph D = (V,A) are the maximal sub-
digraphs Di = (Vi, Ai) that are strongly connected.

Permutation Groups
In order to be able to establish a polynomial bound for
diMAPF movement plans containing synchronous rotations,
we introduce some background on permutation groups.2

A permutation is a bijective function over a set X
σ : X → X . In what follows, we assume X to be finite.

A permutation has degree d if it exchanges d elements and
fixes the rest of the the elements in X . We say that a per-
mutation is an m-cycle if it exchanges elements x1, . . . , xm

in a cyclic fashion, i.e., σ(xi) = xi+1 for 1 ≤ i < m,
σ(xm) = x1 and σ(y) = y for all y /∈ {xi}mi=1. Such
a cyclic permutation is written as a list of elements, i.e.,
(x1 x2 · · · xm). A 2-cycle is also called transposition.
A permutation can also consist of different disjoint cycles.
These are then written in sequence, e.g., (x1 x2)(x3 x4).

The composition of two permutations σ and τ , written as
σ ◦ τ or simply στ , is the function mapping x to τ(σ(x)).3

2A gentle introduction to the topic is the book by Mulholland
(2021).

3Note that this order of function applications, which is used in
the context of permutation groups, is different from ordinary func-
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This operation is associative because function composition
is. The special permutation ϵ, called identity, maps every
element to itself. Further, σ−1 is the inverse of σ, i.e.,
σ−1(y) = x if and only if σ(x) = y. The k-fold compo-
sition of σ with itself is written as σk, with σ0 = ϵ. Sim-
ilarly, σ−k := (σ−1)k We also consider the conjugate of
σ by τ , written as στ , which is defined to be τ−1στ . Such
conjugations are helpful in creating new permutations out of
existing ones. We use exponential notation as in the book by
Mulholland (2021): σα+β := σασβ and σαβ := (σα)β .

A set of permutations closed under composition and in-
verse forms a permutation group with ◦ as the product oper-
ation (which is associative), ·−1 being the inverse operation,
and ϵ being the identity element. Given a set of permutations
{g1, . . . , gi}, we say that G = ⟨g1, . . . , gi⟩ is the permuta-
tion group generated by {g1, . . . , gi} if G is the group of
permutations that results from product operations over the
elements of {g1, . . . , gi}. We say that σ ∈ G = ⟨g1, . . . , gi⟩
is k-expressible if it can be written as a product over the
generators using < k product operations. The diameter of
a group G = ⟨g1, . . . , gi⟩ is the least number k such that
every element of G is k-expressible. Note that this number
depends on the generator set.

A group F is a subgroup of another group G, written
F ≤ G, if the elements of F are a subset of the elements
of G. In our context, two permutation groups are of particu-
lar interest. One is Sn, the symmetric group over n elements,
which consists of all permutations over n elements. A per-
mutation in Sn is even if it can be represented as a product of
an even number of transpositions, odd otherwise. Note that
no permutation can be odd and even at the same time (Mul-
holland 2021, Theorem 7.1.1). The set of even permutations
forms another group, the alternating group An ≤ Sn. Since
any m-cycle can be equivalently expressed as the product of
m−1 transpositions, m-cycles with even m are not elements
of An.

A permutation group G is k-transitive if for all pairs of k-
tuples (x1, . . . , xk), (y1, . . . , yk), there exists a permutation
σ ∈ G such that σ(xi) = yi, 1 ≤ i ≤ k. In case of 1-
transitivity we simply say that G is transitive.

A block is a non-empty subset B ⊆ X such that for each
permutation σ, either σ(B) = B or σ(B) ∩ B = ∅. Single-
ton sets and the entire set X are trivial blocks. Permutation
groups that contain only trivial blocks are primitive.

Multi-Agent Pathfinding
Given a graph G = (V,E) and a set of agents R such that
|R| ≤ |V |, we say that the injective function S : R → V is a
multi-agent pathfinding (MAPF) state (or simply state) over
R and G. Any node not occupied by an agent, i.e., a node
v ∈ V − S(R), is called blank.

A multi-agent pathfinding (MAPF) instance is then a tuple
⟨G,R, I, T ⟩ with G and R as above and I and T MAPF
states. A simple move of agent r from node u to node v, in
symbols m = ⟨r, u, v⟩, transforms a given state S, where we
need to have {u, v} ∈ E, S(r) = u and v is a blank, into

tion composition.

the successor state S[m], which is identical to S except at the
point r, where S[m](r) = v.

If there exists a (perhaps empty) sequence of simple
moves, a movement plan, that transforms S into S′, we say
that S′ is reachable from S. The MAPF problem is then to
decide whether T is reachable from I .

The MAPF problem is often defined in terms of parallel
or train-like movements (Ryan 2008; Surynek 2010), where
one step consists of parallel non-interfering moves of many
agents. However, as long as we are interested only in solu-
tion existence and polynomial bounds, there is no difference
between the MAPF problems with parallel and sequential
movements. If we allow for synchronous rotations (Standley
2010; Yu and LaValle 2013; Yu and Rus 2014), where one
assumes that all agents in a fully occupied cycle can move
synchronously, things are a bit different. In this case, even if
there are no blanks, agents can move. A rotation is a set of
simple moves M = {⟨r1, u1, v1⟩, . . ., ⟨rk, uk, vk⟩}, where
k ≥ 3, with (1) {ui, vi} ∈ E for 1 ≤ i ≤ k, (2) ui ̸= uj

for 1 ≤ i < j ≤ k, (3) vi = ui+1 for 1 ≤ i < k, and
vk = u1. Such a rotation M is executable in S if S(ri) = ui

for 1 ≤ i ≤ k. The successor state S[M ] of a given state S is
identical to S except at the points r1, . . . , rk, where we have
S[M ](ri) = vi.

Multi-agent pathfinding on directed graphs (diMAPF) is
similar to MAPF, except that we have a directed graph and
the moves have to follow the direction of an arc, i.e., if there
is an arc (u, v) ∈ A but (v, u) ̸∈ A, then an agent can move
from u to v but not vice versa. Since on directed graphs there
are also cycles of size two, one may also allow rotations on
only two nodes, contrary to the definition of rotations on
undirected graphs. In the following, we consider both possi-
bilities, allowing or prohibiting rotations of size 2, and show
that it does not make a difference when it comes to bounding
movement plans polynomially.

The hypothesis that we want to prove correct can now be
formally stated.

Hypothesis 1 (Short Solution Hypothesis for diMAPF on
strongly connected digraphs). For each solvable diMAPF
instance on strongly connected digraphs, there exists a
movement plan of polynomial length.

When this hypothesis holds, then diMAPF is in NP, as
follows from Theorem 4 in the paper that established NP-
hardness of diMAPF (Nebel 2020). The short justification
for this is that in each movement plan on a digraph, each
agent only linearly often enters and leaves strongly con-
nected components. If the movements inside each compo-
nent can be polynomially bounded, then the overall plan is
polynomially bounded, i.e., can be guessed in polynomial
time. Together with the NP-hardness result (Nebel 2020,
Theorem 1), it follows that diMAPF is NP-complete.

DiMAPF Without Rotations
As mentioned in the Introduction, one crucial observation
is that any simple move on strongly connected components
can be undone. When considering cycle graphs, it is obvious
that it is always possible to restore a previous state.
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Proposition 2. Let S be a diMAPF state over the set of
agents R and the cycle digraph D = (V,A), and let S′ be
a state reachable from S with simple moves, then one can
reach S from S′ in at most O(|V |2) simple moves.

Proof. Since the relative order of agents on a cycle cannot
be changed by movements, one can always reach the ini-
tial state, regardless of what movements have been made in
order to deviate from the initial state. Further, the maximal
distance of an agent from its position in S is |V | − 1, which
is the maximal number of moves the agent has to make to
reach S. Since there are at most |V | agents, the stated upper
bound follows.

If we now consider a simple move on a strongly connected
digraph, then it is obvious that we can restore the original
state, because all movements in such a graph take place on a
cycle.

Proposition 3. Let S be a diMAPF state over R and a
strongly connected digraph D = (V,A) and let m =
⟨r, u, v⟩ be a simple move to transform S into S[m]. Then
there exists a plan consisting of simple moves of length
O(|V |2) to reach S from S[m].

Proof. Each move m in a strongly connected digraph is a
move on a cycle in the digraph. Hence, we can apply Propo-
sition 2 and restore the original state S using O(v2) simple
moves, provided v is the number of nodes in the cycle. Note
that by restoring the configuration on the cycle, we restore
the entire state. Further, since v ≤ |V |, the claim about the
plan length follows.

The plan of restoring the state before move m is executed
can actually be seen as the “inverse move” m−1, which
moves an agent against the direction of an arc!

Although such a “synthesized” move against the arc direc-
tion is costly—it may involve O(|V |2) simple moves—this
opens up the possibility to view a diMAPF instance on the
digraph D as a MAPF instance on the underlying undirected
graph G(D).4 Because of the existence of inverse moves for
each possible simple move with only polynomial overhead,
the next corollary is immediate.

Corollary 4. Let ⟨D,R, I, T ⟩ be a diMAPF instance with
D a strongly connected digraph. Then the MAPF instance
⟨G(D), R, I, T ⟩ has a polynomial movement plan consisting
of simple moves if and only if ⟨D,R, I, T ⟩ has a polynomial
movement plan consisting of simple moves.

Using Corollary 4 together with the result about an upper
bound for the plan length on undirected graphs from the pa-
per by Kornhauser et al. (1984, Theorem 2) gives us the first
partial result on the small solution hypothesis.

Theorem 5. The Small Solution Hypothesis for diMAPF
on strongly connected digraphs is true, provided only simple
moves are allowed.

4This had already been noted by Ardizzoni et al. (2022, The-
orem 4.3). However, the proof appears to be incomplete, and the
implication for plan length had not been stated.

DiMAPF With Rotations Only
As a next step, we will consider the case that the only kind of
movements are rotations. In this case, we can unfortunately
not reduce the reachability on the directed graph to reacha-
bility on the underlying undirected graph. In order to see the
problem, consider the directed graph in Figure 2(a). The cy-
cle in the underlying undirected graph formed by the nodes
c2, c3, c4, e2, e1, c2 could be used for a rotation on the undi-
rected graph, but there is no obvious way to emulate such
a rotation on the directed graph. In fact, there exist unsolv-
able diMAPF instances such that the corresponding MAPF
instance on the underlying undirected graph is solvable. For
this reason, we will employ permutation group theory in or-
der to derive a polynomial upper bound for plan length in
this case.

Cycle Pairs
Firstly, let us have a closer look at the structure of strongly
connected non-trivial digraphs that are not partially bidirec-
tional cycle digraphs. These can be decomposed into a basic
cycle and one or more ears (Bang-Jensen and Gutin 2009,
Theorem 5.3.2). This means that each such graph contains at
least a sub-graph consisting of a directed cycle (such as, e.g.,
c1, c2, c3, c4, c5, c1 in Figure 2, which is drawn solidly), and
an ear (such as, e.g., c2, e1, e2, c4 drawn in a dotted way).
An ear is a directed path or cycle that starts at some node
of the basic cycle (in Figure 2(a), c2) and ends at a node of
the basic cycle (c4), which however could be the same node.
The ear could either be oriented in the same direction as the
basic cycle, providing a detour or short-cut as in Figure 2(a),
or it points back, as in Figure 2(b).

c1

c5

c2

c3

c4

e1

e2

(a)

c1

c5

c2

c3

c4

e1

e2

(b)

Figure 2: Strongly connected digraphs consisting of a cycle
and an ear

In order to be able to deal with only one kind of cycle pair,
it is always possible to view a graph as in Figure 2(a) as one
in Figure 2(b). This can be accomplished by considering the
outer, larger cycle as the basic cycle and the path with c2,
c3, c4 as an ear, as illustrated in Figure 3. Note that in the
extreme one may have an ear with no additional nodes.

This means that in a strongly connected digraph which is
not a bidirectional cycle, one can always find two connected
directed cycles of a particular form as stated in the following
proposition.

Proposition 6. Any strongly connected non-trivial digraph
that is not a partially bidirectional cycle graph contains two
directed cycles that share at least one node, where at least
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c1

c5

c2

c3

c4

e1

e2

Figure 3: Different perspective on graph from Figure 2(a)

one cycle contains more nodes than the shared ones. Fur-
ther, if one cycle contains only shared nodes, then there are
at least three shared nodes.

Proof. There at least two cycles, since otherwise it is a par-
tially bidirectional cycle graph. At least two of these cycle
need to share at least one node, since the graph is strongly
connected. One of these cycles needs to contain more than
the shared nodes because otherwise we would not have two
cycles. Finally, if one cycle contains only the shared nodes,
then there needs to be at least three shared nodes, because
otherwise the structure would be a partially bidirectional
cycle (in case of two shared nodes), or a non-simple di-
graph (in case of only one shared node), which we excluded
above.

Rotations as Permutations
Rotations on cycles in the digraph will now be viewed as
permutations. Note that such permutations are cyclic per-
mutations. If we refer to such a cyclic permutation of degree
m, we may call them m-cycle. If we refer to a graph cycle
consisting of n nodes, we will write cycle of size n.

Given a diMAPF instance ⟨D,R, I, T ⟩ on a strongly con-
nected graph D with no blanks, we will view the sequence
of rotations that transforms I into T as a sequence of per-
mutations on V that when composed permutes I into T . The
permutation group rotation-induced by such an instance will
also often be called permutation group rotation-induced by
D, since the concrete sets R, I , and T are not essential for
our purposes. By the one-to-one relationship between rota-
tions and permutations, it is obvious that a polynomial di-
ameter of the rotation-induced group implies that the length
of movement plans can be polynomially bounded.

In the following, we will also often use arguments about
possible movements of agents in order to prove that a partic-
ular permutation exists.

On a fully occupied strongly connected digraph, it is pos-
sible to move any agent to any node by using the right
combination of rotations, i.e., the rotation-induced permu-
tation group is transitive. However, this holds only, as long
as we allow for rotations on directed cycles of size two.
If we require rotations to use at least 3 nodes, then the
rotation-induced group might not be transitive any longer
(see Figure 4). However, then there are transitive compo-
nents (dashed circles in Figure 4), in which each agent can
reach each node, but no other nodes, i.e., these transitive
components are independent of each other.

Figure 4: Non-transitive strongly connected digraph with
transitive components—provided rotations are disallowed
for cycles of size 2

One can solve these transitive components in isolation
and then combine the respective permutations or movement
plans (as also done by Kornhauser et al. (1984)). For this
reason, it is enough to consider rotation-induced permuta-
tion groups that are transitive.

In order to show that the permutation groups rotation-
induced by diMAPF instances have polynomial diameter,
we will use the following result by Driscoll and Furst (1983,
Theorem 3.2).

Theorem 7 (Driscoll & Furst). If G is a primitive group
containing a polynomially expressible 3-cycle, then the di-
ameter of G is polynomially bounded.

Incidentally, if the conditions of the Theorem are satisfied,
then G = An or G = Sn, as follows from a Lemma that is
used in Driscoll and Furst’s (1983, Lemma 3.4) paper.

Lemma 8. A primitive group that contains a 3-cycle is ei-
ther alternating or symmetric.

It should be noted that primitiveness is implied by 2-
transitivity, because for a non-trivial block Y there would
exist one permutation that fixes one element (staying in the
block) and moves another element out of the block, which
contradicts that Y is a block.

Proposition 9. Every 2-transitive permutation group is
primitive.

In other words, it is enough to show 2-transitivity and the
polynomial expressibility of a 3-cycle in order to be able to
apply Theorem 7, which enables us to derive a polynomial
bound for the diameter.

Further, for demonstrating that a rotation-induced group
is the symmetric group, given 2-transitivity and a 3-cycle,
it suffices to show that the rotation-induced group contains
an odd permutation. This follows from the fact that An con-
tains only even permutations and Lemma 8. Note that in case
the permutation group is the symmetric group, it means that
the diMAPF instance is always solvable, a fact we will later
use in the proof of Lemma 17.

2-Transitivity
Almost all transitive permutation groups rotation-induced by
diMAPF instances on strongly connected digraphs are 2-
transitive, as shown next. Intuitively, it means that we can
move any two agents to any two places in the digraph—
moving perhaps other agents around as well.
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Lemma 10. Transitive permutation groups rotation-
induced by strongly connected non-trivial digraphs that are
not partially bidirectional cycle graphs are 2-transitive.

Proof. In order to prove this lemma, we will show that for
two fixed nodes x and y, it is possible to move any pair
of agents au and av from the node pair (u, v) to the node
pair (x, y). This implies that we also could move any pair
(au′ , av′) from (u′, v′) to (x, y). Composing the first plan
with the inverse of the second plan means that we can move
agents from any pair of nodes (u, v) to any other pair of
nodes (u′, v′), which means the group is 2-transitive.

x

y

Figure 5: Strongly connected component containing at least
two cycles: Demonstrating 2-transitivity

By Proposition 6, the digraph must contain at least two
cycles, both containing at least 2 nodes, where the left cycle
may consist of only shared nodes, as depicted in Figure 5.
The dashed nodes signify possible additional nodes. The
dotted arcs exemplify potential connections to other nodes
in the digraph.

By transitivity, we can move any agent au from node u to
node x. After that, we can move any agent av from node v
to node y. This may lead to rotating the agent au out of the
left cycle. In order to prohibit that, we modify the movement
plan as follows. As long as av has not entered one of the two
cycles yet, every time au is threatened to be rotated out of
the left cycle in the next move, we rotate the entire left cycle
so that au is moved to a node that will not lead to rotating
au out of the left cycle.

If av arrives in the right cycle (including the shared
nodes), we rotate the right cycle iteratively. Whenever au
is placed on x and av has not yet arrived at y, we rotate on
the left cycle. Otherwise, we stop and are done. When av is
placed on x, then in the next move, we rotate the right cycle
and av is placed on y. After that, we can rotate the left cy-
cle until au arrives at x. This is possible, because au never
leaves the left cycle.

If av arrives on nodes not belonging to the right cycle, we
rotate the left cycle. When av arrives at x, we rotate right
and then we rotate left until au arrives again at x.

3-Cycles
The construction of 3-cycles will be shown by a case anal-
ysis over the possible forms of two connected cycles. By
Proposition 6, we know that every strongly connected non-
trivial digraph that is not a partially bidirectional cycle con-
tains a subgraph as shown in Figure 6.

a1

ar

b1

bs

α

c1

ct

β

Figure 6: Strongly connected component consisting of at
least two cycles inducing two permutations

We characterize such connected cycles by the three pa-
rameters (r, s, t) and will talk about cycle pairs of type
(r, s, t), assuming wlg. r ≤ t. Below, we will show that
for almost all cycle pairs one can construct a 3-cycle, save
for cycle pairs of type (2, 2, 2) and (1, 3, 2). These are the
directed counterparts of Kornhauser et al.’s (1984) T0- and
Wilson’s (1974) θ0-graph. We will therefore call such cycle
pairs T0-pairs.
Lemma 11. Each transitive permutation group rotation-
induced by a cycle pair that is not a T0-pair contains a poly-
nomially expressible 3-cycle.

Proof. The 3-cycles will be constructed from α =
(a1 . . . arbs . . . b1) and β = (c1 . . . ctbs . . . b1). We prove
the claim by case analysis over the parameters (r, s, t) (see
Fig. 6).

(0, , ): This implies by Proposition 6 that s ≥ 3 and t ≥ 1
and we have β α−1 β−1 α = (bs ct b1) as a 3-cycle.

(≥ 1, 1, ): In this case, the same expression delivers a
slightly different 3-cycle: β α−1 β−1 α = (b1 a1 ct).

(1, 2, ): α is a 3-cycle.
(1,≥ 3, 1): α−1β = (bs a1 c1) is the desired 3-cycle.
(1, 3, 2): This is a T0-pair, so there is nothing to prove

here. It can be shown by exhaustive enumeration that the
rotation-induced permutation group does not contain 3-
cycles.

(1, 3,≥ 3): β α−1 β−1 α = (bs ct)(b1 a1). Consider now
χ = β2 (α−1 β)2 β−2. This permutation fixes bs and
ct and moves ct−2 to a1 and a1 to b1 while also moving
other things around. This means:

(β α−1 β−1 α)χ
−1

= χ β α−1 β−1 α χ−1

= χ(bs ct)(b1 a1)χ
−1

= (bs ct)(a1 ct−2).

Composing the result with the original permutation
is now what results in a 3-cycle.5 That is, λ =

(β α−1 β−1 α)ϵ+χ−1

is the permutation, we looked for:

λ = (β α−1 β−1 α)ϵ+χ−1

= ((bs ct)(b1 a1)) ◦ ((bs ct)(b1 a1))χ
−1

= ((bs ct)(b1 a1)) ◦ ((bs ct)(a1 ct−2))

= (b1 ct−2 a1).
5This construction is similar to one used by Kornhauser (1984)

in the proof of Theorem 1 for T2-graphs.
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(1,≥ 4,≥ 2): In this case, ξ = (α β−1 α−1 β)β(ϵ+α−2) is
the claimed 3-cycle:6

ξ = (α β−1 α−1 β)β(ϵ+α−2)

= ((bs ar)(b1 c1))
β(ϵ+α−2)

= ((bs−1 ar)(c1 c2))
ϵ+α−2

= ((bs−1 ar)(c1 c2)) ◦ ((bs−1 ar)(c1 c2))
α−2

= ((bs−1 ar)(c1 c2)) ◦ ((b2 ar)(c1 c2))
= (bs−1 b2 ar).

(2, 2, 2): This is the other case that is excluded in the claim
and the same comment as in case (1, 3, 2) applies.

(2,≥ 3, 2): For this case, the sought 3-cycle is ζ =

(β α−1 β−1 α)α(ϵ+β−2):

ζ = (β α−1 β−1 α)α(ϵ+β−2)

= ((bs ct)(a1 b1))
α(ϵ+β−2)

= ((bs−1 ct)(a1 a2))
ϵ+β−2

= ((bs−1 ct)(a1 a2)) ◦ ((bs−1 ct)(a1 a2))
β−2

= ((bs−1 ct)(a1 a2)) ◦ ((b1 ct)(a1 a2))
= (bs−1 b1 ct).

(≥ 2,≥ 2,≥ 3): Interestingly, the above product of basic
permutations works for the general case, when a cycle
pair is “large enough,” as well. Because of the different
structure of the cycle pairs, the result is slightly different,
though (differences are underlined):

ζ = (β α−1 β−1 α)α(ϵ+β−2)

= ((bs ct)(a1 b1))
α(ϵ+β−2)

= ((bs−1 ct)(a1 a2))
ϵ+β−2

= ((bs−1 ct)(a1 a2)) ◦ ((bs−1 ct)(a1 a2))
β−2

= ((bs−1 ct)(a1 a2)) ◦ ((ct−2 ct)(a1 a2))

= (bs−1 ct−2 ct).

This covers all possible cases. Note that when taking α and
β as generators, then the inverses α−1 and β−1 can be ex-
pressed by linearly many products. Since the expressions for
all cases have constant length, in all cases the 3-cycles are
linearly expressible. So, the claim holds.

In order to be able to do away with T0-pairs, we will as-
sume that our digraphs contain at least seven nodes. For all
smaller digraphs, the diameter of the rotation-induced per-
mutation group is constant. One only has then to show that
strongly connected digraphs with seven or more nodes admit
for the generation of a 3-cycle.
Lemma 12. Each transitive permutation group rotation-
induced by a strongly connected digraph with at least 7
nodes that is not a partially bidirectional cycle contains a
polynomially expressible 3-cycle.

6This construction of a permutation as well as the ones for the
cases further down are similar to one that has been used in a similar
context by Bachor et al. (2023).

Proof. By Lemma 11, it is enough to prove the claim for di-
graphs that contain a T0-pair. In order to do so, it is sufficient
to analyze all one ear extensions of T0-pairs. We first need
to check whether a new cycle pair is created that is not a
T0-pair, in which case Lemma 11 is applicable. If the newly
created cycle pairs are all T0-pairs, one has to demonstrate
that by the addition of the additional ear a new permutation
is added that can be used to create a 3-cycle.

Because the longest ear in T0-pairs has a length of 2, we
consider ears up to length 2. Adding a longer ear would re-
sult in a pair of type ( , ,≥ 3), which admits a 3-cycle ac-
cording to Lemma 11. Since the T0-pairs contain six nodes
each, there are two different T0 pairs, and we consider ears
of length one and two, we need to analyze 62 × 2× 2 = 144
cases. This has been done using a SageMath (The Sage
Developers 2022) script, which is listed in the appendix.
This script identified three non-isomorphic extensions of the
(1, 3, 2)- and (2, 2, 2)-type cycle pairs that contain only T0-
pairs as cycle pairs. These are shown in Figure 7.
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b1

b2

b3

α

c1

c2

β

e1

γ

(a)

a1

a2

b1
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α

c1

c2

β

e2

e1

δ

(b)

a1

a2

b1

b2

α

c1

c2

β

e2

e1

η

(c)

Figure 7: Extensions of T0-pairs containing only T0-pairs

It is now an easy exercise to identify 3-cycles for these
cases:

(a): β α β−1 γ−1,
(b): β−1 δ−1 α−1 β2 δ−1 α−1 δ−1,
(c): α β η α−1 β−1 η−1.

So, the claim holds for all cases.

The above results enable us now to prove the claim that
the rotation-induced permutation groups have a polynomial
diameter.

Lemma 13. Each transitive permutation group rotation-
induced by a strongly connected digraph has a polynomial
diameter.

Proof. We prove the claim by case analysis. Let n be the
number of nodes.
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1. n < 7: There exist only finitely many permutation
groups rotation-induced by such graphs. The diameter is
therefore O(1) in this case.

2. n ≥ 7:
(a) The digraph is a partially bidirectional cycle of n

nodes: If rotations of size 2 are disallowed, then each
possible permutation can be expressed by at most
O(n) compositions of the permutation corresponding
to the rotation of all agents by one place. If rotations
of size 2 are permitted and the cycle has at least one
backward-pointing arc, the rotation-induced group is
Sn and any cyclic order is achievable using O(n2)
swaps and rotations on the cycle, similar to the way
bubble sort works.

(b) The digraph is a strongly connected digraph that is not
a partially bidirectional cycle: For this case, we use
Theorem 7, i.e., it is enough to show that a permuta-
tion group is 2-transitive and contains a polynomially
expressible 3-cycle. By Proposition 6, we know that
the digraph contains a cycle pair. Now, 2-transitivity
follows from Lemma 10. The existence of a polynomi-
ally expressible 3-cycle follows from Lemma 12. So,
in this case, the claim holds as well.

This covers all possible cases, so the claim holds.

With that, another partial result on the small solution hy-
pothesis follows.

Theorem 14. The Small Solution Hypothesis for diMAPF
on strongly connected digraphs is true, provided only rota-
tions are allowed.

Proof. Decompose the graph into its transitive components,
i.e., the components on which the rotation-induced permu-
tation group is transitive. The only way to solve such an in-
stance is to solve the instance for each transitive component
in isolation and afterward combine the result—if possible.
Each transitive component has a polynomial solution be-
cause by Lemma 13 each rotation-induced group has poly-
nomial diameter, so the combined solution will be polyno-
mial.

DiMAPF: The General Case
Finally, we will consider the case that simple moves as
well as rotations are permitted. In order to be able to ap-
ply permutation group theory, we will initially restrict our-
selves to diMAPF instances on strongly connected digraphs
⟨D,R, I, T ⟩ such that the set of occupied nodes is iden-
tical in the initial and the goal state, i.e., I(R) = T (R),
which can be viewed as permutations on the set of nodes V .
This restriction is non-essential since one can polynomially
transform a general diMAPF instance to such a restricted
instance, as shown in Corollary 16 below.

Lemma 15. Given a diMAPF instance ⟨D,R, I, T ⟩, with D
a strongly connected digraph, an instance ⟨D,R, I, T ′⟩ can
be computed in polynomial time such that I(R) = T ′(R),
and ⟨D,R, T, T ′⟩ and ⟨D,R, T ′, T ⟩ are both solvable using
plans of polynomial length.

Proof. In order to construct ⟨D,R, I, T ′⟩, generate an arbi-
trary mapping from blanks in T , the source nodes, to blanks
in I , the target nodes. Then “move” the blanks from the
source nodes to the target nodes (against the direction of
the arcs) by moving the appropriate agents. This is always
possible because D is strongly connected.

The new configuration is T ′ and clearly T ′(R) = I(R).
Further, T ′ is obviously reachable from T in at most O(n2)
simple moves, n being the number of nodes.

Reaching T from T ′ is possible by undoing each move-
ment of a blank in the opposite order. Undoing such a move-
ment can be done by applying Proposition 3 iteratively re-
sulting in O(n4) simple moves.

Since T is reachable from T ′ and vice versa using only
polynomial many steps, the next corollary follows immedi-
ately.

Corollary 16. Let ⟨D,R, I, T ⟩ and ⟨D,R, I, T ′⟩ be as in
Lemma 15. Then ⟨D,R, I, T ⟩ is solvable with a polynomial
plan if and only if ⟨D,R, I, T ′⟩ is solvable with a polyno-
mial plan.

As in the previous section, when only rotations were
permitted, we will again talk about induced permutation
groups, however, now they are induced by simple moves
as well as rotations. Again, we will only consider transi-
tive components of strongly connected digraphs, i.e., com-
ponents that induce a transitive group.

Lemma 17. Each transitive permutation group induced by
a strongly connected digraph D (using rotations and simple
moves) has a polynomial diameter.

Proof. We make the assumptions that we have at least one
blank—because otherwise Lemma 13 applies—and that the
digraph has at least 7 nodes—since smaller groups have ob-
viously a diameter of O(1).

Assuming that rotations on cycles with only 2 nodes are
permitted or that the graph does not contain such cycles, we
reduce this problem to the case where only rotations are al-
lowed.

If all cycles have odd length, then using Lemma 15, move
one blank to a node that is a non-articulation node. Such a
node must exist. Make sure that this blank will always be
blank after emulating rotations on not fully occupied cycles.
This will not destroy transitivity, and it effectively introduces
at least one rotation of even length (corresponding to an odd
permutation). Consider now all remaining blanks as “virtual
agents.” Now each possible synchronous rotation on a cy-
cle containing such virtual agents or the fixed blank can be
emulated by a sequence of simple moves on this cycle. Ap-
plying Lemmas 12 and 10 gives us together with Theorem 7
a polynomial diameter. With the presence of an odd permu-
tation and Lemma 8, the induced group must be symmetric,
i.e., the instance is solvable for all ⟨I, T ⟩ pairs.

Let us now assume that rotations on cycles with 2 nodes
are not permitted, and that the graph contains such cycles. If
the underlying graph G(D) is a tree, then rotations are im-
possible, and simple moves alone are enough, i.e., we can
rely on Theorem 2 by Kornhauser et al. (1984). Otherwise,
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the underlying graph is separable and contains strongly con-
nected components inducing a tree-like structure. One can
then show k-transitivity (k being the number of agents) as
Kornhauser et al. (1984, Section 2.3.1.1) did, which implies
that the induced group is symmetric and has a polynomial
diameter.

This means the claim follows in all possible cases.

This implies that the Small Solution Hypothesis is true for
all possible combinations of movements.

Theorem 18. The Small Solution Hypothesis for diMAPF
on strongly connected digraphs is true regardless of whether
simple moves or rotations are allowed.

Proof. If only simple moves are possible, Theorem 5 ap-
plies. If only synchronous rotations are possible, the claim
follows from Theorem 14. In case, simple moves and rota-
tions are possible, the claim follows from Lemma 17 and the
same arguments about combining the solutions of transitive
components as used in the proof of Theorem 14.

As mentioned above, this result enables us to finally settle
the question of the computational complexity of diMAPF.
Using Theorem 4 from the paper establishing NP-hardness
of diMAPF (Nebel 2020), the next Theorem is immediate.

Theorem 19. DiMAPF is NP-complete, even when syn-
chronous rotations are possible.

Conclusion and Outlook
This paper provides an answer to an open question about
the computational complexity of the multi-agent pathfind-
ing problem on directed graphs. Together with the results
from an earlier paper (Nebel 2020), we can conclude that
diMAPF is NP-complete, even when synchronous rotations
are permitted.

While the result might have only a limited impact on prac-
tical applications, it nevertheless provides some surprising
insights. First, it shows that if only simple moves are per-
mitted, then the inverse of such a move can be polynomi-
ally synthesized, meaning that agents can move against the
direction of an arc with only polynomial overhead. This is
something that should have been obvious to everybody, but
apparently was missed. Second, it shows that permutation
group theory is applicable to the analysis of diMAPF, some-
thing that was not recognized previously (Botea, Bonusi,
and Surynek 2018). As it turned out, there are quite a num-
ber of differences to the undirected case, though, e.g., Ko-
rnhauser et al.’s (1984) Lemma 1 is not valid in the di-
rected case and there are two counterparts to the T0-graph.
Third, although only implicitly, the results show that the spe-
cial case of diMAPF on strongly connected digraphs is a
polynomial-time problem. One needs to identify the tran-
sitive components, though, which although not necessarily
straight-forward (de Wilde, ter Mors, and Witteveen 2014,
Section 3.1), is always a polynomial problem. Alternatively,
one might be able to adapt the feasibility check by Auletta et
al. (1999). Fourth, this result provides an answer to a ques-
tion about the generalization of the robot movement problem
(Papadimitriou et al. 1994) to directed graphs with a variable

number of robots (Wu and Grumbach 2010). For a variable
number of mobile obstacles and mobile robots, the problem
is NP-complete in the general case. For strongly connected
digraphs, the above mentioned polynomiality of diMAPF on
strongly connected graphs carries over to the robot move-
ment problem.

SageMath Script for the Proof of Lemma 127

def shared(c1, c2):
return len(set(c1) & set(c2))

def ptype(c1, c2):
if len(c1) > len(c2): c1,c2 = c2,c1
if c1 != c2 and shared(c1,c2) > 0:

return (len(c1)-shared(c1,c2)-1,
shared(c1,c2),
len(c2)-shared(c1,c2)-1)

def t0pairs(dig):
for c1 in dig.all_simple_cycles():

for c2 in dig.all_simple_cycles():
if ptype(c1,c2) not in \

[(2,2,2),(1,3,2),None]: return
return True

t0a={"a1":["b3"],"b3":["b2"],"b2":["b1"],
"b1":["a1","c1"],"c1":["c2"],"c2":["b3"]}

t0b={"a1":["a2"],"a2":["b2" ],"b2":[ "b1"],
"b1":["a1","c1"],"c1":["c2"],"c2":["b2"]}

ears = [["e1"],["e1","e2"]]
tested = []
for g, p in ((t0a, (1,3,2)), (t0b,(2,2,2))):

for h in g.keys():
for t in g.keys():

for e in ears:
t0 = DiGraph(g)
t0.add_path([h]+e+[t])
if all([not t0.is_isomorphic(d) \

for d in tested]):
tested += [t0]
if t0pairs(t0): print(p,[h]+e+[t])
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