A Heuristic Estimator for Means-Ends Analysis in Planning

Drew McDermott*
Yale Computer Science Department
51 Prospect Street, P.O. Box 808285
New Haven, CT 06520-8285

e-mail: mcdermott@cs.yale.edu

phone: 203-432-1281 fax: 203-432-0593

Abstract

Means-ends analysis is a seemingly well understood
search technique, which can be described, using plan-
ning terminology, as: keep adding actions that are fea-
stble and achieve pieces of the goal. Unfortunately,
it is often the case that no action is both feasible
and relevant in this sense. The traditional answer
is to make subgoals out of the preconditions of rele-
vant but infeasible actions. These subgoals become
part of the search state. An alternative, surprisingly
good, idea is to recompute the entire subgoal hierar-
chy after every action. This hierarchy is represented
by a greedy regression-match graph. The actions near
the leaves of this graph are feasible and relevant to
a sub...subgoals of the original goal. Furthermore,
each subgoal is assigned an estimate of the number
of actions required to achieve it. This number can be
shown in practice to be a useful heuristic estimator for
domains that are otherwise intractable.

Keywords: planning, search, means-ends anal-
ysis

Reinventing GPS

Means-ends analysis is one of the oldest ideas in Al
It was named and studied by Newell, Shaw, and Si-
mon 1n the 1950s, and was the key idea behind the
General Problem Solver (GPS) (Newell & Simon 1961;
Ernst & Newell 1969) In the late sixties, Fikes, Nils-
son, and Raphael embodied the idea in their planner,
Strips (Fikes & Nilsson 1971). Tt is still an important
technique today, especially as embodied the Prodigy
planner (Fink & Veloso 1994)).

As used by planners, means-ends analysis can be de-
scribed thus: We are given a set of action specifications,
an inetial situation, and a goal-situation description.
The problem is to find a sequence of actions that, if
carried out starting in the initial situation, would get
to a situation that satisfies the goal description. Ac-
tion specifications define the meanings of action terms

This work by supported by ARPA and administered by
ONR under Contract Number N00014-93-1-1235

by specifying preconditions, addlists, and deletelists in
the usual way. For example, we might define the action
take_out(?x,7?b) thus:
Action: take_out(?x,7?b)
Preconditions: in(?x,7b) A exposed(?b)
Effects: Del: in(?x,7b)
Add: exposed(?x)

That 1s, if ?x is in container ?b, and ?b is “ex-
posed” (not inside anything), then the result of exe-
cuting take out(?x,?b) is that ?x ceases to be inside
?b, and becomes exposed.

In a nutshell, the idea behind means-ends analysis
is to build action sequences by continually adding ac-
tions whose addlists contain conjuncts that correspond
to pieces of the goal-situation description. I will use the
term plan prefir for an action sequence that the plan-
ner is trying to extend to be a solution to a planning
problem. The search space is the set of all plan pre-
fixes. The search begins with the empty prefix. The
goal is a sequence such that executing it gets the world
to a situation that satisfies the goal-situation descrip-
tion. If I is the initial situation, then let r(I,s) be
the situation resulting from executing action sequence
s starting in /. If the search has reached prefix s, then
s can be extended to s, A, where A is an action such
that: (1) A is feasible (has all preconditions satisfied)
in r(1,s); (2) some conjunct in A’s addlist occurs in
the goal-situation description and is not already true
in r(I,s).

The main bug with this idea is, of course, that for
almost all interesting problems, we can’t hope to sat-
isfy both condition (1) and condition (2) on the ac-
tion that extends a plan prefix. That is, many ac-
tions that would add a goal conjunct are not feasible
in 7(I,s). The solution that has been adopted since
Newell, Shaw, and Simon invented means-ends analysis
is to make search states more complicated, by keeping
track of a hierarchy of subgoals as well as a plan pre-
fix. In this paper I consider the following alternative:
Keep search states simple, just sequences of actions,

and try harder to find feasible and relevant actions to
add. However, instead of cautiously back-chaining in
tiny steps, back-chain all the way to feasible actions at
every search state.

For example, suppose we are given the action
take_out as defined above, plus the initial situation:

in(b1,b2) in(b2, b3) exposed(b3)

plus the goal exposed(bl). The action
take out(bl,b2) is relevant (the goal occurs in its
addlist), but it isn’t feasible. So we introduce a sub-
goal exposed(b2), which traditionally becomes part of
the search state. What I am proposing is that we ex-
plore the subgoal immediately, back-chaining until we
can verify that there is an action, take_out(b2,b3),
which is feasible and leads (by reversing the series of
back chains) to the goal. We tack this action onto the
sequence, then discard the subgoal structure, regener-
ating it from scratch in the situation resulting from
executing take_out(b2,b3). In this situation, we’ll
discover that take_out(b1,b2) is feasible and achieves
the original goal.

Greedy Regression-Match Graphs

Let me be more precise about this back-chaining sys-
tem. We start with the given overall goal G, and we
grow a tree of subgoals. On alternate layers of the tree,
we match a goal to the current situation to find dif-
ferences, then back-chain through actions to find sub-
goals, then match again, and so forth. By “matching”
a goal g1 AgaA.. . Agr I mean computing a substitution
@ such that 6(g;) is true in the current situation for as
many g¢; as possible. More formally, define a match of a
conjunction of goal literals G = ¢; A. . . A gy to situation
S to be a substitution # that binds the free variables
of G (and no other variables). Define hit_set(G, 8, 5)
of a match 6 to be the set {g; : 0(g;) is true in S}. A
mazimal match is then a match such that there is no
0" with hit_set(0) C hit set(0'). The difference set of a
maximal match ¢ is defined as (G \ hit_set(G, 6, 5)),
and written difference_set(G,0,5). Note that hit sets
are defined as subsets of the original goal conjuncts,
but difference sets are defined as subsets of the con-
juncts after variable substitution. Difference sets cor-
respond to goals that remain to be achieved, although
it may well be that goals not in the difference set, which
are satisfied in the current situation, may be made false
by some of the actions that achieve goals in the differ-
ence set.

Now we can define the structure that specifies what
relevant actions are. This i1s the greedy regression-
match graph, defined in terms of two kinds of nodes:
(1) c-nodes: Conjunctions of literals that represent
goals, possibly containing variables; and (2) l-nodes:

Ground literals that represent elements of difference
sets. There are edges from l-nodes to c-nodes and
from c-nodes to l-nodes. The first kind are labeled
with substitutions; an edge from I-node [to c-node ¢ is
labeled with @ only if # 1s a maximal match such that
l € difference_set(c,6,5). (S is the current situation.)
The edge from c-node ¢ to I-node [is labeled with an
action term A only if A causes [to become true if ¢ is
true in the current situation S, that is, if the regression
of l through A is ¢, or, in symbols, ¢ = [A]%(!).

The greedy regression-match graph is a graph be-
cause l-nodes are not duplicated, so that there can be
multiple paths, and even cycles, between nodes. The
graph is “greedy” because it considers only mazimal
matches. In the interest of brevity, I'll often drop the
word “greedy.”

The regression-match graph is built starting with the
original goal, GG, which is matched to the current situ-
ation, yielding a maximal match 8 with difference set
D. Each element of D becomes a new l-node, which is
added to the graph, connected to GG by an edge labeled
with #. An l-node is then regressed through all action
terms of the form a(vy, ..., vs), where the v; are new
variables; yielding a c-node with some, but not nec-
essarily all, of the variables replaced by l-node terms.
The instantiated action term then labels the link from
the c-node to the l-node. Then the process repeats.
A regression-match graph for our simple example is
shown in Figure 1. The I-nodes appear as unboxed
literals; c-nodes are in dotted lozenges; actions are in
ovals. Each c-node is connected to a group of I-nodes
by an edge labeled with a maximal match. In gen-
eral a c-node will be connected to zero or more such
groups; in the figure, there’s exactly one per c-node.
The I-nodes that are made true by the match are un-
derlined. Each of the others is connected to zero or
more c-nodes by edges labeled with a actions; in the
figure, there’s exactly one action for each such l-node.!

In Figure 1, c-nodes are labeled with numbers in
boxes. These are estimated effort numbers, which are
an estimate of how many actions it will take to achieve
the main goal. They are computed as follows: The
effort of a c-node is the sum of the efforts of the I-
nodes in the difference set with least effort, or

effort(c) = 9677?717’}%10,5) | Z effort(l)

le difference_set(¢,0,5)
where mm(c, S) is the set of all maximal matches be-
tween ¢ and S. In particular, the effort assigned to a

'The direction of the arrows in the graph may seem
counterintuitive. The arrows point toward the top c-node
rather than away from it in order to make the causal direc-
tion explicit. Nonetheless, when I talk of the “children” of
a node, I mean the nodes that point toward it.

I
| exposed(bl) |
| |

{}
exposed(bl)

take_out (b1, ?b)

i n(bl, b2)

exposed(b2)

[n(b2.53) exposed(b3)

Figure 1: A Simple Greedy-Regression Match Graph

c-node that matches the current situation with differ-
ence set ¢ 1s 0. The effort assigned to an l-node counts
the actions required to achieve it, and so is obtained
by adding one to the effort of the precondition of the
action whose precondition has the least effort. In sym-
bols,

effort(l) =1+ H}L‘in effort([AJ(1))

Because estimated efforts are defined by minimizing
over the children of a c-node or I-node, they depend on
only a subset of those children, namely, those whose
scores actually are minimal. Call these the effective
children of that node. Define the cffective subgraph
of the regression-match graph to be the subgraph ob-
tained by selecting just the effective children at each
node, but removing all children of a node that are also
its ancestors, thus ensuring that the effective subgraph
is a DAG. Such cycles will exist only if the estimated
effort of the top node is co. When the estimated effort
is less than oo, the “leaves” of the effective subgraph
will be c-nodes that are true in the current situation.
If the estimated effort is co, then there will also be
at least one “impossible leaf,” either an l-node that is
achieved by no action, or a c-node all of whose differ-
ence sets have at least one l-node that is an ancestor
of the c-node.

We can compute the effective subgraph as we build
the entire regression-match graph. For each I-node and
c-node, as we accumulate their subnodes, we just keep
track of the minimal ones. It is always possible to
tell locally whether a child is also an ancestor. We
also keep track of the actions favored by the greedy
regression-match graph, defined as those whose pre-
conditions are leaf c-nodes in the effective subgraph
(and hence are true in the current situation).

The regression-match graph has two valuable fea-
tures: the estimated-effort numbers give us a heuristic
estimate for the current plan; and the allowed actions
are the “feasible and relevant” actions we seek. We
exploit these features by embedding them in a search
algorithm with the following search space:

Search Space RM:

o Initial state: The empty plan prefix {).

e Operators: Let s be the current plan prefix. Let
S = r(I,s) be the current situation. Compute the
greedy regression-match graph for the goal G with
respect to S. The set of operators is then the set
of all action terms in the tree whose precondition
c-nodes have estimated effort 0.

e Heuristic evaluation function: Score state s as
length(s)+ estimated_effort(G). The estimated ef-
fort is read off from the regression-match graph.

Action: unlock(?7il,7j1)
Preconditions: at(robot,?i,?j)
adjacent(7i,7j,7il,7j1,
?direction)
carrying(robot, 7key)
loc_shape(7il,7j1,7s)
key_shape(7key,?s)
locked(?il1,7j1)
= Del: locked(7il,7j1)
Add: open(?7il,7j1)

Effects:

Table 1: Manhattan World Action Definitions — 1

Action: move(?direction)
Preconditions: at(robot,?i,?j)
adjacent(7i,7j,7il,7j1,
?direction)
open(?7il,7j1)
Effects: Del: at(robot,?i,?j)
Add: at(robot,?il,?j1)

Table 2: Manhattan World Action Definitions — 2

e (oal state: A plan prefix s for which the goal G is
true in (I, s).

We need a more realistic example, and for that we
turn to what I call the “Manhattan world,” a large
grid of intersections a robot can move through. The
robot can carry one object at a time. Some of the
intersections are locked, and can be opened only with
a key of the same shape. If the robot is standing next
to a locked intersection (¢, j)with a key of that shape,
the action unlock(s, j) causes it to become unlocked.
The robot can move to a neighboring intersection if it
is unlocked. (See Tables 1 and 2.) Tt can pick objects
up and put them down (Tables 3 and 4).

The construct p = e indicates a conditional effect;
the effect e occurs if p is true just before the action is
executed. (This and other aspects of my notation are
taken from (Penberthy & Weld 1992).) For example,
if the robot is already carrying an object 7k1, picking
up ?key will cause 1t to let go of 7k1.

Figure 2 shows a problem in this domain. The
shapes represent keys; the black squares with white
shapes inscribed represent locks, which are initially all
locked. The shapes must match for a key to open a

Action: pickup(7key)

Preconditions: at(?key,?i,7j)
at(robot,?i,7j)

Effects: Del: at(7key,?7i,7j)
Add: carrying(robot,?key)
carrying(robot, ?k1)
= Del: carrying(robot,?kl)

Add: at(?k1,71,7j)

Table 3: Manhattan World Action Definitions — 3

Action: put_down(7k)
Preconditions: carrying(robot,?k)
Effects: Del: carrying(robot,7k)
at(robot,?i,7j)
= Add: at(?k,71,7j)

Table 4: Manhattan World Action Definitions — 4

ou o0
O u u
M
MV M
M

Figure 2: The Manhattan World

lock. The problem is to get dk, the diamond-shaped
key at (2, 1), to location (3,0). The optimal plan has
43 steps. People find the problem quite simple, but
one reason for that is that they condense sequences of
motions to single steps. Automated planners can’t do
that, and they tend to get blown away by the combi-
natorics. (See Section “Results and Related Work.”)

Let’s look at how the problem responds to greedy
regression-match graphs. The goal i1s at(dk,3,0).
The goal is false in the current situation, so it be-
comes the only element of the difference set ob-
tained by matching. So we regress it through all
possible action terms, move(?dir), unlock(?i,?j),
pickup(?k), and put_down(?k). The first two yield
identically false preconditions, but the last two give
rise to two nontrivial c-nodes:

1 put_down(dk):
at(robot,3,0) A carrying(robot,dk)

2 pickup(?k):
at(robot,3,0) A at(?k,3,0)
A carrying(robot ,dk)

The first of these has one maximal match:

6 = {}, with difference set
{at(robot,3,0), carrying(robot,dk)}

The c-node for the second action, pick_up(?k) has
three maximal matches, corresponding to three differ-
ent values for 7k, dk, tk (the triangular key), or ck (the
circular key)?. Each match has a difference set that in-
cludes at (robot,3,0) and carrying(robot,dk), plus
one other literal, either at(dk,3,0) for § = {k = dk},
at(tk,3,0) for § = {k=tk}, or at(ck,3,0) for
0= {k = Ck}.

This fragment of the regression-match graph is just
the tip of a big iceberg. The whole graph has about
730 I-nodes, and takes about 25 seconds to generate
on a Sun Microsystems SparcStation 2. The total esti-
mated effort is 36, which 1s off by 7 from the optimum.
Because we must rebuild this large graph every time
we take a step through the search space, it might seem
as if this algorithm makes no sense at all. Instead of
searching through the space of situations in a forward
way, we are back-chaining on each iteration; doesn’t
that amount to searching backward through exactly
the same space? The answer is No: the backward
search 1s not through situations, but through literals.
Roughly speaking, if there are n literals, then there
are 2" possible situations. A straight situation-space
search for the problem of Figure 2 is, as discussed in
Section “Results and Related Work”, out of the ques-
tion.

Search Space RM may be considered a nondeter-
ministic algorithm. To implement it on a computer,
we must specify a search strategy, that is, a specifica-
tion of which operator to apply when more than one
is possible. T have experimented with two strategies:
best-first search and limited-discrepancy search (Har-
vey & Ginsberg 1995). The former just keeps a queue
of plans that have been generated but not extended,
and works on the plan with the least estimated effort.
The limited-discrepancy strategy is a modification of
depth-first search in which branches that are not lo-
cally optimal according to the heuristic estimate are
postponed. It is based on the observation that the es-
timated effort is a better measure of relative merit of
search states than absolute merit. For toy domains,
where plans are no longer than length 15 or so, the
best-first strategy usually results in finding an opti-
mal plan. But for more realistic domains, such as
the Manhattan world, the best-first strategy spends
an exponential amount of time ruling out all promis-
ing alternatives before extending the main line. The
limited-discrepancy approach will often find a reason-

?Domain-specific argument constraints for pickup are
used to ensure that only keys are considered as bindings for
7k.

able plan, but not the optimal one. Results appear in
Section “Results and Related Work.”

Technicalities, Limitations and Possible
Enhancements

In this section I'll fill in some details on how the algo-
rithm works. I call the implemented algorithm “Un-
pop.” Space does not permit a detailed discussion of
algorithms for matching, regression, and search. The
regression algorithm just works through action defini-
tions in the obvious way. The matching algorithm is a
straightforward combinatorial algorithm that considers
all possible hit sets. Note that the problem of finding
all maximal matches for a formula is itself potentially
expensive, because there may be an exponential num-
ber of candidate matches to consider. It may take a
long time to consider them, and if an exponential num-
ber get through that will make the regression-match
graph too big. In practice, this has not been a prob-
lem. (For discussion of the exponentialities that are
problematic, see Section “Results and Related Work”)

I do need to make one crucial remark about the
search space. On top of all the other search strategies
I have discussed, my algorithm is doing a situation-
space search, and so must cope with the problem of
encountering the same situation repeatedly. I have im-
plemented the simplest possible tactic. A table of sit-
uations is kept, and whenever a situation is created,
the program does a linear search through the table to
see if 1t has been encountered before. If so, 1t 1s not
explored again, unless the new path to the situation is
shorter than the old, in which case the program treats
it as a new situation.

The example action specfications in the “box” do-
main made use of the construct p = e, which condi-
tionalizes the effect e based on the secondary precon-
dition p. The precondition is called “secondary” (Ped-
nault 1989) because the feasibility of the action being
defined does not depend on its being true. The effect e
is called conditional or context-dependent. The greedy
regression-match algorithm has no trouble when e is
of the form Add: ¢. The secondary precondition be-
comes part of the c-node created when a goal conjunct
matching e is regressed through this action specifica-
tion. But we must extend the algorithm to handle the
case when e is of the form Del: ¢. In that case, p is
called a preservation precondition. Intuitively, there
will be circumstances where p must be achieved before
an action A in order to prevent A from deleting e. The
classic example is due to Pednault (Pednault 1989): If
a briefcase is carried from one place to another, then
an object moves to its location if and only if the object
is in the briefcase.

It is not obvious how to include preservation pre-
conditions in a system that adds actions only at the
end of a plan, because the whole idea is to add ac-
tions before a plan step to make sure that step doesn’t
have some effect. My solution doesn’t handle every
case, but handles a surprising number of them. I allow
preservation goals to arise only before the last step. In
essence, | have Unpop treat “preserve across last step
in the current plan prefix” as an odd kind of action
for achieving an l-node ¢, applicable only when g was
actually true before the last step. Its precondition is
just the preservation precondition for ¢ before the last
step, and this precondition, expressed in disjunctive
normal form, gives rise to c-nodes, one per disjunct.
However, for this tactic to work, we have to change
c-nodes and l-nodes so that they stipulate where in
the action sequence they are to be made true. Fur-
thermore, if an action favored by the regression-match
graph is adopted, and that action is to occur in a sit-
uation prior to the current one, then all actions after
that point are discarded and replaced by the new ac-
tion. Of course, they are likely to be rediscovered and
reappended.

It’s traditional in papers like this to prove soundness,
completeness, or optimality of a planning algorithm..
But the soundness of my algorithm is so obvious it
isn’t worth stating formally; the algorithm produces a
plan only when 1t results in a situation in which the
goal description is satisfied. Alas, the algorithm is nei-
ther complete nor optimal, so there are no theorems
there either. On the other hand, the recent history
of research in automated planning tends to have a de-
pressing surplus of completeness results and shortage
of heuristic estimators. If you really want complete-
ness, you could plug the Unpop heuristic estimator into
a complete goal-directed planning framework such as

that of (Fink & Veloso 1994).

Results and Related Work

The program has no trouble with the standard “toy”
problems in the literature, where solutions are plans
with about five or six steps. My main test domain
has been the Manhattan world. Before I discuss how
well the program works, let me pause to note how
poorly all previous general-purpose systems perform
on this problem. There are three classes of algo-
rithm to consider: a blind situation-space search, a
Strips/Prodigy-style algorithm (Fikes & Nilsson 1971;
Fink & Veloso 1994), and a partial-order (or “non-
linear”) planner (McAllester & Rosenblitt 1991; Weld
1994).

A straight situation-space search in this domain is
out of the question. There are about 100 possible des-

tinations for the robot if it doesn’t pick anything up,
but as soon as it reaches the diamond key 1t gets an-
other 100 positions for that key, for a situation space
of 10,000. But there are three diamond-shaped locks,
each of which can be open or closed, which is 8 more sit-
uation classes, for a total of 80,000. Now we can get at
the circular key, which multipliesit by 100 again, times
two for the circular lock, so we’re up to 16,000,000.
Adding one more key would multiply it by 100 again,
and so forth.

The Strips/Prodigy family of planners is similar to
mine, but differ in that they build the subgoal hi-
erarchy incrementally. For Prodigy, the hierarchy is
a tree of conjunctive goals; for Strips, it’s a subgoal
stack, a single branch through that tree. There are
two big headaches that these systems share. First, be-
cause they can’t represent a disjunction in their sub-
goal trees, there is an exponential blowup in the num-
ber of possible trees; for each regression-match graph
there is a large number of subgoal trees, obtained by (in
essence) transforming the graph into disjunctive nor-
mal form, that is, raising all ORs to the top and calling
each disjunct a separate search state. Second, there
is no heuristic estimator for these subgoal hierarchies.
There 18 no way of knowing that carrying the circular
key to (3, 1) (see Figure 2) from the west is better than
carrying it from the south. In the regression-match
graph, we work all the way to actions that are feasible
now, and verify that the estimated effort coming from
the west is lower.

Strips and Prodigy come out even worse when the
possibility of using the triangular key at (—2,-3)
arises. They have no way of knowing that getting the
triangular key 1s impossible, without exploring the en-
tire search space. The greedy regression match graph
contains an l-node carrying(robot,tk), but its effec-
tive subgraph has a cycle, and so has estimated effort
0.

Partial-order planners do even worse in this domain,
if that’s possible. They represent attempted solutions
as a pure hierarchy of subgoals, with no action se-
quence and hence no current situation. Hence they are
unable to realize that if you have committed to getting
to (3,0) via (2, 0), there is no point in trying to get to
(2,0) via (3,0). The number of possible partial-order
plans in this domain is astronomical.

With these comparisons in mind, let’s look at how
the regression-match approach compares. For large
Manhattan-world problems such as that of Figure 2,
I used the limited-discrepancy strategy, for reasons de-
scribed above. Because it’s behavior is randomized,
it behaves differently on different runs, but it always
takes about 30 minutes, explores around 60 plan pre-

Size Num Time Size Num Time

1 2.0 .02 9 206 1.95
2 3.2 .07 10 252 2.95
3 4.2 A2 11 326 4.69
4 5.2 23 12 374 7.06
5 7.2 .38 13 428 8.03
6 10.2 .58 14 52.8 10.76
7 108 .82 15 66.2 10.37
8 142 1.24

Table 5: Unpop’s Behavior on D! S?!
(Num = number of plan prefixes explored
Run = run time)

fixes (30 seconds per prefix), and finds a plan within
5 of optimal. Unpop has also been run on a suite
of problems created by the University of Washington
ATl Group. Many of these problems involve context-
dependent effects. Unpop can solve all of them, and
only exhibits exponential behavior on one (which I dis-
cuss below).

For a more systematic comparison of Unpop with
previous planners, I ran it in best-first mode on some
of the artificial problem spaces of (Barrett & Weld
1994). In most of these problem spaces, the number
of plan prefixes examined by the planner grew linearly
or quadratically with the size of the problem. The run
time grew faster, because as problems grow, the size
of the regression-match graph grows, too. Even so,
on some of the domains, Unpop’s behavior was poly-
nomial,although it was never linear. Table 5 shows
Unpop’s run-time in the domain Barrett and Weld call
D' S as the problem size increases. The actions in this
domain are of the form:

Action: 4;

Preconditions: I;

Effects: Del: I;,_4
Add: G;

A typical problem begins with an initial situation in
which all of I; are true for ¢+ = 1 to 13; and the goal
1s to make G; true for some random set of 7 between 1
and 13. Solutions are sequences that contain an A; for
every G;, and such that 4; never comes after 4;; for
any j. Unpop’s heuristic estimator cannot “see” this
interaction, but after one false step it becomes quite
clear. That is, whenever 4;; is added to the plan
prefix, the goal 4; becomes impossible. Hence Unpop
will try at most 12 — [blind alleys on a plan prefix of
size [.

The news about Unpop is not all good. It tends to do
poorly on problems where a goal literal ¢ that is true in
the current situation is sure to be deleted by an action
that must be taken, but not right away. Suppose the

action becomes inevitable for all plans beginning with
plan prefix P, but that there are exponentially many
ways to lengthen it before the action gets added. All
of these extensions will look more attractive than the
ones that add that action, because they will count g as
already achieved. One domain that has this property
is the “fridge” domain in the University of Washing-
ton collection. There are four screws that must be
unscrewed in order to service a refrigerator. But the
final goal specifies that the screws must all be screwed.
Hence Unpop tries very hard to find a way to avoid un-
screwing all the screws, and considers all possible ways
of unscrewing two or three before finally exploring plan
prefixes in which all four are unscrewed. Another ex-
ample is Barrett and Weld’s (Barrett & Weld 1994)

domain D™ 5%,

Yet another example is the “Rocket” domain dis-
cussed by (Blum & Furst 1995). In this domain a
rocket can only be used once, a fact expressed by hav-
ing the action of flying a rocket delete the precondition
has-fuel(rocket), which is not added by any action.
Unpop considers moving cargo to two different desti-
nations by flying the same rocket, and once again will
try all possible permutations of cargo and rockets be-
fore finally flying the rocket and realizing that the plan
prefix just can’t be extended to a solution.

I am currently exploring ways to fix this problem
with Unpop. It is encouraging that the regression-
match graph usually signals in advance that a dele-
terious action is inevitable, when that action occurs as
the only way to achieve some l-node. The main road-
block to exploiting that information is finding a good
way to estimate the cost of repairing the damage done
by the action. The cost depends on the situation when
the action is executed, which differs from the current
situation.

Two other planners have used data structures simi-
lar to regression-match graphs to look for exactly this
kind of information. One is the system of Smith and
Peot (Smith & Peot 1993), which used a data struc-
ture called an “operator graph” that is essentially a
regression-match graph without the matches. The
planner of (Blum & Furst 1995) used a data struc-
ture called a “planning graph” that is similar in spirit
to a regression-match graph, but “looks forward” from
the current situation all the way to the end rather than
“looking back” from goals all the way to the current sit-
uation, as the regression-match graph does. Graphplan
is blindingly fast for some classes of problem, including
the Rocket problem. However, Graphplan apparently
does not handle context-dependent effects, and it’s not
clear how to extend it to do so.

Conclusions

I have presented a new way of thinking about means-
ends analysis, in which an exhaustive subgoal analysis,
based on greedy regresston-match graphs, is repeated
at each search state, rather than being spread over a
number of search steps. This sounds like a bad idea,
but 1t yields two benefits: a heuristic estimator of the
number of actions required to get to a problem solu-
tion from the current state; and a set of actions that
are good candidates for the next step to take. The re-
sulting situation-space search algorithm searches many
fewer states than traditional planners on a large class
of problems, although it takes longer than usual per
state.

A key lesson is that results such as those of (Barrett
& Weld 1994) on the inferiority of total-order planners
versus partial-order planners may not apply when the
planners are given more accurate heuristic estimators.
The fact that a search space is exponential matters less
if the searcher can avoid looking at most of it.

References

Barrett, A., and Weld, D. S. 1994. Partial-order plan-
ning: evaluating possible efficiency gains. Artificial

Intelligence 67(1):71-112.

Blum, A. L., and Furst, M. L. 1995. Fast planning
through planning graph analysis. In Proc. [jcai.

Ernst, G. W., and Newell, A. 1969. GPS: A Case
Study in Generality and Problem Solving. Academic
Press.

Fikes, R., and Nilsson, N. J. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence 2 189-208.

Fink, E., and Veloso, M. 1994. Prodigy planning
algorithm. Technical Report 94-123, CMU School of

Computer Science.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited
discrepancy search. In Proc. Ijcai95, 607-613.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. AAAT 9, 634-639.

Newell, A., and Simon, H. 1961. Gps: a program
that simulates human thought. In Lernende Auto-
maten, 279-293. R. Oldenbourg KG. Reprinted in
Feigenbaum and Feldman 1963.

Pednault, E. P. D. 1989. Adl: Exploring the middle
ground between Strips and the situation calculus. In
Proc. Knowledge Representation Conf, 324-332.

Penberthy, J. S., and Weld, D. S. 1992. Ucpop: A
sound, complete, partial order planner for Adl. KR-
92.

Smith, D. E., and Peot, M. A. 1993. Postponing
threats in partial-order planning. In Proc. AAAI 11,
500-506.

Weld, D. 1994. An introduction to least-commitment
planning. Al Magazine.

