
A Heuristic Estimator for Means-Ends Analysis in PlanningDrew McDermott�Yale Computer Science Department51 Prospect Street, P.O. Box 808285New Haven, CT 06520-8285e-mail: mcdermott@cs.yale.eduphone: 203-432-1281 fax: 203-432-0593AbstractMeans-ends analysis is a seemingly well understoodsearch technique, which can be described, using plan-ning terminology, as: keep adding actions that are fea-sible and achieve pieces of the goal. Unfortunately,it is often the case that no action is both feasibleand relevant in this sense. The traditional answeris to make subgoals out of the preconditions of rele-vant but infeasible actions. These subgoals becomepart of the search state. An alternative, surprisinglygood, idea is to recompute the entire subgoal hierar-chy after every action. This hierarchy is representedby a greedy regression-match graph. The actions nearthe leaves of this graph are feasible and relevant toa sub. . . subgoals of the original goal. Furthermore,each subgoal is assigned an estimate of the numberof actions required to achieve it. This number can beshown in practice to be a useful heuristic estimator fordomains that are otherwise intractable.Keywords: planning, search, means-ends anal-ysis Reinventing GPSMeans-ends analysis is one of the oldest ideas in AI.It was named and studied by Newell, Shaw, and Si-mon in the 1950s, and was the key idea behind theGeneral Problem Solver (GPS) (Newell & Simon 1961;Ernst & Newell 1969) In the late sixties, Fikes, Nils-son, and Raphael embodied the idea in their planner,Strips (Fikes & Nilsson 1971). It is still an importanttechnique today, especially as embodied the Prodigyplanner (Fink & Veloso 1994)).As used by planners, means-ends analysis can be de-scribed thus: We are given a set of action speci�cations,an initial situation, and a goal-situation description.The problem is to �nd a sequence of actions that, ifcarried out starting in the initial situation, would getto a situation that satis�es the goal description. Ac-tion speci�cations de�ne the meanings of action terms�This work by supported by ARPA and administered byONR under Contract Number N00014-93-1-1235

by specifying preconditions, addlists, and deletelists inthe usual way. For example, we might de�ne the actiontake out(?x,?b) thus:Action: take out(?x,?b)Preconditions: in(?x,?b) ^ exposed(?b)E�ects: Del: in(?x,?b)Add: exposed(?x)That is, if ?x is in container ?b, and ?b is \ex-posed" (not inside anything), then the result of exe-cuting take out(?x,?b) is that ?x ceases to be inside?b, and becomes exposed.In a nutshell, the idea behind means-ends analysisis to build action sequences by continually adding ac-tions whose addlists contain conjuncts that correspondto pieces of the goal-situation description. I will use theterm plan pre�x for an action sequence that the plan-ner is trying to extend to be a solution to a planningproblem. The search space is the set of all plan pre-�xes. The search begins with the empty pre�x. Thegoal is a sequence such that executing it gets the worldto a situation that satis�es the goal-situation descrip-tion. If I is the initial situation, then let r(I; s) bethe situation resulting from executing action sequences starting in I. If the search has reached pre�x s, thens can be extended to s; A, where A is an action suchthat: (1) A is feasible (has all preconditions satis�ed)in r(I; s); (2) some conjunct in A's addlist occurs inthe goal-situation description and is not already truein r(I; s).The main bug with this idea is, of course, that foralmost all interesting problems, we can't hope to sat-isfy both condition (1) and condition (2) on the ac-tion that extends a plan pre�x. That is, many ac-tions that would add a goal conjunct are not feasiblein r(I; s). The solution that has been adopted sinceNewell, Shaw, and Simon invented means-ends analysisis to make search states more complicated, by keepingtrack of a hierarchy of subgoals as well as a plan pre-�x. In this paper I consider the following alternative:Keep search states simple, just sequences of actions,

and try harder to �nd feasible and relevant actions toadd. However, instead of cautiously back-chaining intiny steps, back-chain all the way to feasible actions atevery search state.For example, suppose we are given the actiontake out as de�ned above, plus the initial situation:in(b1,b2) in(b2, b3) exposed(b3)plus the goal exposed(b1). The actiontake out(b1,b2) is relevant (the goal occurs in itsaddlist), but it isn't feasible. So we introduce a sub-goal exposed(b2), which traditionally becomes part ofthe search state. What I am proposing is that we ex-plore the subgoal immediately, back-chaining until wecan verify that there is an action, take out(b2,b3),which is feasible and leads (by reversing the series ofback chains) to the goal. We tack this action onto thesequence, then discard the subgoal structure, regener-ating it from scratch in the situation resulting fromexecuting take out(b2,b3). In this situation, we'lldiscover that take out(b1,b2) is feasible and achievesthe original goal.Greedy Regression-Match GraphsLet me be more precise about this back-chaining sys-tem. We start with the given overall goal G, and wegrow a tree of subgoals. On alternate layers of the tree,we match a goal to the current situation to �nd dif-ferences, then back-chain through actions to �nd sub-goals, then match again, and so forth. By \matching"a goal g1^g2^: : :^gk I mean computing a substitution� such that �(gi) is true in the current situation for asmany gi as possible. More formally, de�ne amatch of aconjunction of goal literals G = gi^: : :^gk to situationS to be a substitution � that binds the free variablesof G (and no other variables). De�ne hit set(G; �; S)of a match � to be the set fgi : �(gi) is true in Sg. Amaximal match is then a match � such that there is no�0 with hit set(�) � hit set(�0). The di�erence set of amaximal match � is de�ned as �(G n hit set(G; �; S)),and written di�erence set(G; �; S). Note that hit setsare de�ned as subsets of the original goal conjuncts,but di�erence sets are de�ned as subsets of the con-juncts after variable substitution. Di�erence sets cor-respond to goals that remain to be achieved, althoughit maywell be that goals not in the di�erence set, whichare satis�ed in the current situation, may be made falseby some of the actions that achieve goals in the di�er-ence set.Now we can de�ne the structure that speci�es whatrelevant actions are. This is the greedy regression-match graph, de�ned in terms of two kinds of nodes:(1) c-nodes: Conjunctions of literals that representgoals, possibly containing variables; and (2) l-nodes:

Ground literals that represent elements of di�erencesets. There are edges from l-nodes to c-nodes andfrom c-nodes to l-nodes. The �rst kind are labeledwith substitutions; an edge from l-node l to c-node c islabeled with � only if � is a maximal match such thatl 2 di�erence set(c; �; S). (S is the current situation.)The edge from c-node c to l-node l is labeled with anaction term A only if A causes l to become true if c istrue in the current situation S, that is, if the regressionof l through A is c, or, in symbols, c = [A]R(l).The greedy regression-match graph is a graph be-cause l-nodes are not duplicated, so that there can bemultiple paths, and even cycles, between nodes. Thegraph is \greedy" because it considers only maximalmatches. In the interest of brevity, I'll often drop theword \greedy."The regression-match graph is built starting with theoriginal goal, G, which is matched to the current situ-ation, yielding a maximal match � with di�erence setD. Each element of D becomes a new l-node, which isadded to the graph, connected to G by an edge labeledwith �. An l-node is then regressed through all actionterms of the form a(v1; : : : ; vk), where the vi are newvariables, yielding a c-node with some, but not nec-essarily all, of the variables replaced by l-node terms.The instantiated action term then labels the link fromthe c-node to the l-node. Then the process repeats.A regression-match graph for our simple example isshown in Figure 1. The l-nodes appear as unboxedliterals; c-nodes are in dotted lozenges; actions are inovals. Each c-node is connected to a group of l-nodesby an edge labeled with a maximal match. In gen-eral a c-node will be connected to zero or more suchgroups; in the �gure, there's exactly one per c-node.The l-nodes that are made true by the match are un-derlined. Each of the others is connected to zero ormore c-nodes by edges labeled with a actions; in the�gure, there's exactly one action for each such l-node.1In Figure 1, c-nodes are labeled with numbers inboxes. These are estimated e�ort numbers, which arean estimate of how many actions it will take to achievethe main goal. They are computed as follows: Thee�ort of a c-node is the sum of the e�orts of the l-nodes in the di�erence set with least e�ort, ore�ort(c) = min�2mm(c;S) Xl2di�erence set(c;�;S) e�ort(l)where mm(c; S) is the set of all maximal matches be-tween c and S. In particular, the e�ort assigned to a1The direction of the arrows in the graph may seemcounterintuitive.The arrows point toward the top c-noderather than away from it in order to make the causal direc-tion explicit. Nonetheless, when I talk of the \children" ofa node, I mean the nodes that point toward it.

exposed(b1)

exposed(b1)

take_out(b1,?b)

in(b1,?b) exposed(?b)

in(b1,b2) exposed(b2)

take_out(b2,?b)

in(b2,?b) exposed(?b)

in(b2,b3) exposed(b3)

{b=b2}

{b=b3}

{}

0

1

2

Figure 1: A Simple Greedy-Regression Match Graph

c-node that matches the current situation with di�er-ence set � is 0. The e�ort assigned to an l-node countsthe actions required to achieve it, and so is obtainedby adding one to the e�ort of the precondition of theaction whose precondition has the least e�ort. In sym-bols, e�ort(l) = 1 + minA e�ort([A]R(l))Because estimated e�orts are de�ned by minimizingover the children of a c-node or l-node, they depend ononly a subset of those children, namely, those whosescores actually are minimal. Call these the e�ectivechildren of that node. De�ne the e�ective subgraphof the regression-match graph to be the subgraph ob-tained by selecting just the e�ective children at eachnode, but removing all children of a node that are alsoits ancestors, thus ensuring that the e�ective subgraphis a DAG. Such cycles will exist only if the estimatede�ort of the top node is1. When the estimated e�ortis less than 1, the \leaves" of the e�ective subgraphwill be c-nodes that are true in the current situation.If the estimated e�ort is 1, then there will also beat least one \impossible leaf," either an l-node that isachieved by no action, or a c-node all of whose di�er-ence sets have at least one l-node that is an ancestorof the c-node.We can compute the e�ective subgraph as we buildthe entire regression-match graph. For each l-node andc-node, as we accumulate their subnodes, we just keeptrack of the minimal ones. It is always possible totell locally whether a child is also an ancestor. Wealso keep track of the actions favored by the greedyregression-match graph, de�ned as those whose pre-conditions are leaf c-nodes in the e�ective subgraph(and hence are true in the current situation).The regression-match graph has two valuable fea-tures: the estimated-e�ort numbers give us a heuristicestimate for the current plan; and the allowed actionsare the \feasible and relevant" actions we seek. Weexploit these features by embedding them in a searchalgorithm with the following search space:Search Space RM:� Initial state: The empty plan pre�x hi.� Operators: Let s be the current plan pre�x. LetS = r(I; s) be the current situation. Compute thegreedy regression-match graph for the goal G withrespect to S. The set of operators is then the setof all action terms in the tree whose preconditionc-nodes have estimated e�ort 0.� Heuristic evaluation function: Score state s aslength(s)+ estimated e�ort(G). The estimated ef-fort is read o� from the regression-match graph.

Action: unlock(?i1,?j1)Preconditions: at(robot,?i,?j)adjacent(?i,?j,?i1,?j1,?direction)carrying(robot,?key)loc shape(?i1,?j1,?s)key shape(?key,?s)E�ects: locked(?i1,?j1)) Del: locked(?i1,?j1)Add: open(?i1,?j1)Table 1: Manhattan World Action De�nitions | 1Action: move(?direction)Preconditions: at(robot,?i,?j)adjacent(?i,?j,?i1,?j1,?direction)open(?i1,?j1)E�ects: Del: at(robot,?i,?j)Add: at(robot,?i1,?j1)Table 2: Manhattan World Action De�nitions | 2� Goal state: A plan pre�x s for which the goal G istrue in r(I; s).We need a more realistic example, and for that weturn to what I call the \Manhattan world," a largegrid of intersections a robot can move through. Therobot can carry one object at a time. Some of theintersections are locked, and can be opened only witha key of the same shape. If the robot is standing nextto a locked intersection hi; jiwith a key of that shape,the action unlock(i; j) causes it to become unlocked.The robot can move to a neighboring intersection if itis unlocked. (See Tables 1 and 2.) It can pick objectsup and put them down (Tables 3 and 4).The construct p) e indicates a conditional e�ect;the e�ect e occurs if p is true just before the action isexecuted. (This and other aspects of my notation aretaken from (Penberthy & Weld 1992).) For example,if the robot is already carrying an object ?k1, pickingup ?key will cause it to let go of ?k1.Figure 2 shows a problem in this domain. Theshapes represent keys; the black squares with whiteshapes inscribed represent locks, which are initially alllocked. The shapes must match for a key to open aAction: pick up(?key)Preconditions: at(?key,?i,?j)at(robot,?i,?j)E�ects: Del: at(?key,?i,?j)Add: carrying(robot,?key)carrying(robot,?k1)) Del: carrying(robot,?k1)Add: at(?k1,?i,?j)Table 3: Manhattan World Action De�nitions | 3

Action: put down(?k)Preconditions: carrying(robot,?k)E�ects: Del: carrying(robot,?k)at(robot,?i,?j)) Add: at(?k,?i,?j)Table 4: Manhattan World Action De�nitions | 4
1 3 5

1

3

5

Figure 2: The Manhattan Worldlock. The problem is to get dk, the diamond-shapedkey at h2; 1i, to location h3; 0i. The optimal plan has43 steps. People �nd the problem quite simple, butone reason for that is that they condense sequences ofmotions to single steps. Automated planners can't dothat, and they tend to get blown away by the combi-natorics. (See Section \Results and Related Work.")Let's look at how the problem responds to greedyregression-match graphs. The goal is at(dk,3,0).The goal is false in the current situation, so it be-comes the only element of the di�erence set ob-tained by matching. So we regress it through allpossible action terms, move(?dir), unlock(?i,?j),pick up(?k), and put down(?k). The �rst two yieldidentically false preconditions, but the last two giverise to two nontrivial c-nodes:1 put down(dk):at(robot,3,0) ^ carrying(robot,dk)2 pick up(?k):at(robot,3,0) ^ at(?k,3,0)^ carrying(robot,dk)The �rst of these has one maximal match:

� = fg, with di�erence setfat(robot,3,0), carrying(robot,dk)gThe c-node for the second action, pick up(?k) hasthree maximal matches, corresponding to three di�er-ent values for ?k, dk, tk (the triangular key), or ck (thecircular key)2. Each match has a di�erence set that in-cludes at(robot,3,0) and carrying(robot,dk), plusone other literal, either at(dk,3,0) for � = fk = dkg,at(tk,3,0) for � = fk = tkg, or at(ck,3,0) for� = fk = ckg.This fragment of the regression-match graph is justthe tip of a big iceberg. The whole graph has about730 l-nodes, and takes about 25 seconds to generateon a Sun Microsystems SparcStation 2. The total esti-mated e�ort is 36, which is o� by 7 from the optimum.Because we must rebuild this large graph every timewe take a step through the search space, it might seemas if this algorithm makes no sense at all. Instead ofsearching through the space of situations in a forwardway, we are back-chaining on each iteration; doesn'tthat amount to searching backward through exactlythe same space? The answer is No: the backwardsearch is not through situations, but through literals.Roughly speaking, if there are n literals, then thereare 2n possible situations. A straight situation-spacesearch for the problem of Figure 2 is, as discussed inSection \Results and Related Work", out of the ques-tion.Search Space RM may be considered a nondeter-ministic algorithm. To implement it on a computer,we must specify a search strategy, that is, a speci�ca-tion of which operator to apply when more than oneis possible. I have experimented with two strategies:best-�rst search and limited-discrepancy search (Har-vey & Ginsberg 1995). The former just keeps a queueof plans that have been generated but not extended,and works on the plan with the least estimated e�ort.The limited-discrepancy strategy is a modi�cation ofdepth-�rst search in which branches that are not lo-cally optimal according to the heuristic estimate arepostponed. It is based on the observation that the es-timated e�ort is a better measure of relative merit ofsearch states than absolute merit. For toy domains,where plans are no longer than length 15 or so, thebest-�rst strategy usually results in �nding an opti-mal plan. But for more realistic domains, such asthe Manhattan world, the best-�rst strategy spendsan exponential amount of time ruling out all promis-ing alternatives before extending the main line. Thelimited-discrepancy approach will often �nd a reason-2Domain-speci�c argument constraints for pick up areused to ensure that only keys are considered as bindings for?k.

able plan, but not the optimal one. Results appear inSection \Results and Related Work."Technicalities, Limitations and PossibleEnhancementsIn this section I'll �ll in some details on how the algo-rithm works. I call the implemented algorithm \Un-pop." Space does not permit a detailed discussion ofalgorithms for matching, regression, and search. Theregression algorithm just works through action de�ni-tions in the obvious way. The matching algorithm is astraightforward combinatorial algorithm that considersall possible hit sets. Note that the problem of �ndingall maximal matches for a formula is itself potentiallyexpensive, because there may be an exponential num-ber of candidate matches to consider. It may take along time to consider them, and if an exponential num-ber get through that will make the regression-matchgraph too big. In practice, this has not been a prob-lem. (For discussion of the exponentialities that areproblematic, see Section \Results and Related Work")I do need to make one crucial remark about thesearch space. On top of all the other search strategiesI have discussed, my algorithm is doing a situation-space search, and so must cope with the problem ofencountering the same situation repeatedly. I have im-plemented the simplest possible tactic. A table of sit-uations is kept, and whenever a situation is created,the program does a linear search through the table tosee if it has been encountered before. If so, it is notexplored again, unless the new path to the situation isshorter than the old, in which case the program treatsit as a new situation.The example action spec�cations in the \box" do-main made use of the construct p) e, which condi-tionalizes the e�ect e based on the secondary precon-dition p. The precondition is called \secondary" (Ped-nault 1989) because the feasibility of the action beingde�ned does not depend on its being true. The e�ect eis called conditional or context-dependent. The greedyregression-match algorithm has no trouble when e isof the form Add: q. The secondary precondition be-comes part of the c-node created when a goal conjunctmatching e is regressed through this action speci�ca-tion. But we must extend the algorithm to handle thecase when e is of the form Del: q. In that case, p iscalled a preservation precondition. Intuitively, therewill be circumstances where p must be achieved beforean action A in order to prevent A from deleting e. Theclassic example is due to Pednault (Pednault 1989): Ifa briefcase is carried from one place to another, thenan object moves to its location if and only if the objectis in the briefcase.

It is not obvious how to include preservation pre-conditions in a system that adds actions only at theend of a plan, because the whole idea is to add ac-tions before a plan step to make sure that step doesn'thave some e�ect. My solution doesn't handle everycase, but handles a surprising number of them. I allowpreservation goals to arise only before the last step. Inessence, I have Unpop treat \preserve across last stepin the current plan pre�x" as an odd kind of actionfor achieving an l-node g, applicable only when g wasactually true before the last step. Its precondition isjust the preservation precondition for g before the laststep, and this precondition, expressed in disjunctivenormal form, gives rise to c-nodes, one per disjunct.However, for this tactic to work, we have to changec-nodes and l-nodes so that they stipulate where inthe action sequence they are to be made true. Fur-thermore, if an action favored by the regression-matchgraph is adopted, and that action is to occur in a sit-uation prior to the current one, then all actions afterthat point are discarded and replaced by the new ac-tion. Of course, they are likely to be rediscovered andreappended.It's traditional in papers like this to prove soundness,completeness, or optimality of a planning algorithm..But the soundness of my algorithm is so obvious itisn't worth stating formally; the algorithm produces aplan only when it results in a situation in which thegoal description is satis�ed. Alas, the algorithm is nei-ther complete nor optimal, so there are no theoremsthere either. On the other hand, the recent historyof research in automated planning tends to have a de-pressing surplus of completeness results and shortageof heuristic estimators. If you really want complete-ness, you could plug the Unpop heuristic estimator intoa complete goal-directed planning framework such asthat of (Fink & Veloso 1994).Results and Related WorkThe program has no trouble with the standard \toy"problems in the literature, where solutions are planswith about �ve or six steps. My main test domainhas been the Manhattan world. Before I discuss howwell the program works, let me pause to note howpoorly all previous general-purpose systems performon this problem. There are three classes of algo-rithm to consider: a blind situation-space search, aStrips/Prodigy-style algorithm (Fikes & Nilsson 1971;Fink & Veloso 1994), and a partial-order (or \non-linear") planner (McAllester & Rosenblitt 1991; Weld1994).A straight situation-space search in this domain isout of the question. There are about 100 possible des-

tinations for the robot if it doesn't pick anything up,but as soon as it reaches the diamond key it gets an-other 100 positions for that key, for a situation spaceof 10,000. But there are three diamond-shaped locks,each of which can be open or closed, which is 8 more sit-uation classes, for a total of 80,000. Now we can get atthe circular key, which multiplies it by 100 again, timestwo for the circular lock, so we're up to 16,000,000.Adding one more key would multiply it by 100 again,and so forth.The Strips/Prodigy family of planners is similar tomine, but di�er in that they build the subgoal hi-erarchy incrementally. For Prodigy, the hierarchy isa tree of conjunctive goals; for Strips, it's a subgoalstack, a single branch through that tree. There aretwo big headaches that these systems share. First, be-cause they can't represent a disjunction in their sub-goal trees, there is an exponential blowup in the num-ber of possible trees; for each regression-match graphthere is a large number of subgoal trees, obtained by (inessence) transforming the graph into disjunctive nor-mal form, that is, raising all ORs to the top and callingeach disjunct a separate search state. Second, thereis no heuristic estimator for these subgoal hierarchies.There is no way of knowing that carrying the circularkey to h3; 1i (see Figure 2) from the west is better thancarrying it from the south. In the regression-matchgraph, we work all the way to actions that are feasiblenow, and verify that the estimated e�ort coming fromthe west is lower.Strips and Prodigy come out even worse when thepossibility of using the triangular key at h�2;�3iarises. They have no way of knowing that getting thetriangular key is impossible, without exploring the en-tire search space. The greedy regression match graphcontains an l-node carrying(robot,tk), but its e�ec-tive subgraph has a cycle, and so has estimated e�ort1.Partial-order planners do even worse in this domain,if that's possible. They represent attempted solutionsas a pure hierarchy of subgoals, with no action se-quence and hence no current situation. Hence they areunable to realize that if you have committed to gettingto h3; 0i via h2; 0i, there is no point in trying to get toh2; 0i via h3; 0i. The number of possible partial-orderplans in this domain is astronomical.With these comparisons in mind, let's look at howthe regression-match approach compares. For largeManhattan-world problems such as that of Figure 2,I used the limited-discrepancy strategy, for reasons de-scribed above. Because it's behavior is randomized,it behaves di�erently on di�erent runs, but it alwaystakes about 30 minutes, explores around 60 plan pre-

Size Num Time Size Num Time1 2.0 .02 9 20.6 1.952 3.2 .07 10 25.2 2.953 4.2 .12 11 32.6 4.694 5.2 .23 12 37.4 7.065 7.2 .38 13 42.8 8.036 10.2 .58 14 52.8 10.767 10.8 .82 15 66.2 10.378 14.2 1.24Table 5: Unpop's Behavior on D1S1(Num = number of plan pre�xes exploredRun = run time)�xes (30 seconds per pre�x), and �nds a plan within5 of optimal. Unpop has also been run on a suiteof problems created by the University of WashingtonAI Group. Many of these problems involve context-dependent e�ects. Unpop can solve all of them, andonly exhibits exponential behavior on one (which I dis-cuss below).For a more systematic comparison of Unpop withprevious planners, I ran it in best-�rst mode on someof the arti�cial problem spaces of (Barrett & Weld1994). In most of these problem spaces, the numberof plan pre�xes examined by the planner grew linearlyor quadratically with the size of the problem. The runtime grew faster, because as problems grow, the sizeof the regression-match graph grows, too. Even so,on some of the domains, Unpop's behavior was poly-nomial,although it was never linear. Table 5 showsUnpop's run-time in the domain Barrett and Weld callD1S1 as the problem size increases. The actions in thisdomain are of the form:Action: AiPreconditions: IiE�ects: Del: Ii�1Add: GiA typical problem begins with an initial situation inwhich all of Ii are true for i = 1 to 13; and the goalis to make Gi true for some random set of i between 1and 13. Solutions are sequences that contain an Ai forevery Gi, and such that Aj never comes after Aj+1 forany j. Unpop's heuristic estimator cannot \see" thisinteraction, but after one false step it becomes quiteclear. That is, whenever Aj+1 is added to the planpre�x, the goal Aj becomes impossible. Hence Unpopwill try at most 12� l blind alleys on a plan pre�x ofsize l.The news about Unpop is not all good. It tends to dopoorly on problems where a goal literal g that is true inthe current situation is sure to be deleted by an actionthat must be taken, but not right away. Suppose the

action becomes inevitable for all plans beginning withplan pre�x P , but that there are exponentially manyways to lengthen it before the action gets added. Allof these extensions will look more attractive than theones that add that action, because they will count g asalready achieved. One domain that has this propertyis the \fridge" domain in the University of Washing-ton collection. There are four screws that must beunscrewed in order to service a refrigerator. But the�nal goal speci�es that the screws must all be screwed.Hence Unpop tries very hard to �nd a way to avoid un-screwing all the screws, and considers all possible waysof unscrewing two or three before �nally exploring planpre�xes in which all four are unscrewed. Another ex-ample is Barrett and Weld's (Barrett & Weld 1994)domain DmS2?.Yet another example is the \Rocket" domain dis-cussed by (Blum & Furst 1995). In this domain arocket can only be used once, a fact expressed by hav-ing the action of
ying a rocket delete the preconditionhas-fuel(rocket), which is not added by any action.Unpop considers moving cargo to two di�erent desti-nations by
ying the same rocket, and once again willtry all possible permutations of cargo and rockets be-fore �nally
ying the rocket and realizing that the planpre�x just can't be extended to a solution.I am currently exploring ways to �x this problemwith Unpop. It is encouraging that the regression-match graph usually signals in advance that a dele-terious action is inevitable, when that action occurs asthe only way to achieve some l-node. The main road-block to exploiting that information is �nding a goodway to estimate the cost of repairing the damage doneby the action. The cost depends on the situation whenthe action is executed, which di�ers from the currentsituation.Two other planners have used data structures simi-lar to regression-match graphs to look for exactly thiskind of information. One is the system of Smith andPeot (Smith & Peot 1993), which used a data struc-ture called an \operator graph" that is essentially aregression-match graph without the matches. Theplanner of (Blum & Furst 1995) used a data struc-ture called a \planning graph" that is similar in spiritto a regression-match graph, but \looks forward" fromthe current situation all the way to the end rather than\looking back" from goals all the way to the current sit-uation, as the regression-match graph does. Graphplanis blindingly fast for some classes of problem, includingthe Rocket problem. However, Graphplan apparentlydoes not handle context-dependent e�ects, and it's notclear how to extend it to do so.

ConclusionsI have presented a new way of thinking about means-ends analysis, in which an exhaustive subgoal analysis,based on greedy regression-match graphs, is repeatedat each search state, rather than being spread over anumber of search steps. This sounds like a bad idea,but it yields two bene�ts: a heuristic estimator of thenumber of actions required to get to a problem solu-tion from the current state; and a set of actions thatare good candidates for the next step to take. The re-sulting situation-space search algorithm searches manyfewer states than traditional planners on a large classof problems, although it takes longer than usual perstate.A key lesson is that results such as those of (Barrett& Weld 1994) on the inferiority of total-order plannersversus partial-order planners may not apply when theplanners are given more accurate heuristic estimators.The fact that a search space is exponential matters lessif the searcher can avoid looking at most of it.ReferencesBarrett, A., and Weld, D. S. 1994. Partial-order plan-ning: evaluating possible e�ciency gains. Arti�cialIntelligence 67(1):71{112.Blum, A. L., and Furst, M. L. 1995. Fast planningthrough planning graph analysis. In Proc. Ijcai.Ernst, G. W., and Newell, A. 1969. GPS: A CaseStudy in Generality and Problem Solving. AcademicPress.Fikes, R., and Nilsson, N. J. 1971. Strips: A newapproach to the application of theorem proving toproblem solving. Arti�cial Intelligence 2 189{208.Fink, E., and Veloso, M. 1994. Prodigy planningalgorithm. Technical Report 94-123, CMU School ofComputer Science.Harvey, W. D., and Ginsberg, M. L. 1995. Limiteddiscrepancy search. In Proc. Ijcai95, 607{613.McAllester, D., and Rosenblitt, D. 1991. Systematicnonlinear planning. In Proc. AAAI 9, 634{639.Newell, A., and Simon, H. 1961. Gps: a programthat simulates human thought. In Lernende Auto-maten, 279{293. R. Oldenbourg KG. Reprinted inFeigenbaum and Feldman 1963.Pednault, E. P. D. 1989. Adl: Exploring the middleground between Strips and the situation calculus. InProc. Knowledge Representation Conf, 324{332.Penberthy, J. S., and Weld, D. S. 1992. Ucpop: Asound, complete, partial order planner for Adl. KR-92.

Smith, D. E., and Peot, M. A. 1993. Postponingthreats in partial-order planning. In Proc. AAAI 11,500{506.Weld, D. 1994. An introduction to least-commitmentplanning. AI Magazine.

