
Using Regression-Match Graphs to Control Search in PlanningDrew McDermottJanuary 11, 1999AbstractClassical planning is the problem of �nding a sequence of actions to achieve a goal given an exactcharacterization of a domain. An algorithm to solve this problem is presented, which searches aspace of plan pre�xes, trying to extend one of them to a complete sequence of actions. It is guidedby a heuristic estimator based on regression-match graphs, which attempt to characterize the entiresubgoal structure of the remaining part of the problem. These graphs simplify the structure byneglecting goal interactions and by assuming that variables in goal conjunctions should be bound insuch a way as to make as many conjuncts as possible true without further work. In some domains,these approximations work very well, and experiments show that many classical-planning problemscan solved with very little search.1 De�nition of the ProblemThe classical planning problem is to generate a sequence of actions that make a given propositiontrue, in a domain in which there is perfect information about the initial state of the world andthe e�ects of every action. Problems of this type are of practical interest, for instance in tightlycontrolled domains such as manufacturing, and many algorithms have been proposed for solvingthem. However, none of them have been applied in practical domains.1 The main reason is thatall interesting classes of classical-planning problems are intractable [11], and therefore all planningalgorithms must resort to search. However, there is hope that for some kinds of problems there arealgorithms that do well enough in spite of the intractability. Some recent algorithms succeed bysearching nontraditional spaces [4, 21]. In this paper, the focus is on improving the performanceof classical-planning algorithms by �nding improved heuristic estimators for controlling search in atraditional space.I will assume that world states (henceforth called situations) are described as collections of atomicpropositions, and that actions2 are described using PDDL, the Planning Domain De�nition Lan-guage [25], developed for the AIPS-98 planning competition. This is a descendant of the University1Most applications of \practical planning" algorithms such as Sipe [38] and O-plan [9] have made good use of theplan-management capacities of these systems, but not much use of their plan-search capacities.2A note on terminology: I reserve the term operator to refer to transitions in the space of plans, as explained below;transitions between world states are called actions. Analogously, I use the term state to refer to the state of a searchprocess, and reserve situation to refer to the state of the world, considered as a set of atomic propositions. A propositionis a fact; an atomic proposition is the proposition denoted by an atomic formula or its negation. An atomic formula is oneconsisting of a predicate followed by several arguments, which in this paper will be written as (P a1 a2 ...an). Pleasenote that the existence of propositional logic, in which the objects of study are unanalyzed propositions, does not meanthat propositions cannot have more complex structure in other frameworks.1

of Washington notation, which is based on Pednault's Action Description Language [30]. Thesenotations have a avor like the Strips notation [13], and share its essential weakness, which is thatit is good with propositions and bad with numbers and geometry.Tables 1 through 3 show the PDDL de�nitions for a domain that has been used for one of theexperiments reported below. The notation tends to be Lispish, with atomic formulas and termsbeing written (f |args|). Actions are described as terms whose arguments are variables, pre�xedby question marks. The function in such a term is called an action functor. Each action has aprecondition which must be true for the action to be feasible, and several e�ects which will occur inthe next situation if the action is executed. E�ects are de�ned by the following recursive de�nition:1. p: Proposition p becomes true in the next situation. (p must not have functor not, when,forall or and.)2. (not p): Proposition p becomes false in the next situation.3. (change f e): The value f changes to the value of expression e. I will explain exactly whatthis means in Section 3.1.4. (when p e): If proposition p is true in the current situation, then e�ect e occurs.5. (and e1 : : : en): All of the e�ects ei occur.6. (forall (|vars|) e): Every e�ect obtained by substituting objects for the variables varsin e occurs.E�ects of the �rst two kinds are called literal e�ects, in parallel with the usual de�nition of a literalas an atomic formula or the negation of an atomic formula.Note that all the free variables in an e�ect must be bound in preconditions, either in a propositionfrom the :precondition �eld of an action de�nition, or in some p from a clause (when p...) thatgoverns the e�ect in question. All variables must occur as :parameters of the action being de�ned,or be explicitly quanti�ed in the :vars �eld of the action or in a forall. Note that when variablesare bound they are given a type. Some types, such as integer, are de�ned in all PDDL theories.Others, like key, are speci�c to this domain.So, according the de�nition of put down in Table 2, if the robot is carrying key ?k, then, if therobot is at an arbitrary location h?i; ?ji, then one e�ect of (put down ?k) is that ?k is now located ath?i,?ji. If the robot is located in two places, ?k will be in two places; if the robot is not anywhere,the key will not be anywhere. Of course, we arrange things so that these pathological cases neverhappen.There is no way to use existential quanti�ers in action de�nitions, or to indicate that an actionhas disjunctive e�ects.Table 3 completes the domain de�nition by de�ning adjacency. Two intersections are adjacent ifthey di�er by 1 in either the x or y coordinate. The proposition (equation e1 e2) just means thate1 and e2 are equal. The planner is able to solve simple equations such as (equation (+ ?i 1) t),binding ?i to 4. The proposition (bounded-int i l h) is true for all integers i between l and h.The planner can solve such goals if l and h are known. In this case, l and h are simple arithmeticfunctions of the domain variable coord lim, which is bound to 5 in the domain de�nition.This action formalism has two valuable properties. One is that it is easy to compute the e�ect ofan action sequence. Given a complete description of an initial situation S0, it is easy to generate acomplete description of the situation after executing hA1; : : : ; Ani starting from that initial situation.I call this situation the result of executing the action sequence, written result(S0; hA1; : : : ; Ani).It is also easy, as I will discuss below, to go the other way: given a proposition and an actionsequence, to infer what must be true before the sequence is executed in order for the proposition tobe true afterward.I can now give a formal de�nition of a planning problem: It is a tuple hA; I; Gi, where� A is a domain de�nition, in the format exempli�ed above;2

(define (domain grid)(:requirements :typing :expression-evaluation:conditional-effects :existential-preconditions)(:types coord - integer shape key agent direction - object)(:domain-variables (coord_lim 5) - integer)(:predicates(legal_coord ?i - integer)(locked ?i ?j - integer)(loc_shape ?i ?j - integer ?c - shape)(key_shape ?k - key ?c - shape)(at ?a - (either agent key) ?i ?j - integer)(carrying ?a - agent ?b - key)(adjacent ?i ?j ?i1 ?j1 - integer ?d - direction)(consecutive ?i ?j - integer))(:constants left right up down - directiontriangle circle diamond - shaperobot - agent)(:action move:parameters (?dir - direction):vars (?i ?j ?i1 ?j1 - integer):precondition (and (at robot ?i ?j)(adjacent ?i ?j ?i1 ?j1 ?dir)(not (locked ?i1 ?j1))):effect (and (not (at robot ?i ?j))(at robot ?i1 ?j1)))(:action unlock:parameters (?i1 ?j1 - integer):vars (?i ?j - integer):precondition (and (at robot ?i ?j)(exists (?dir - direction)(adjacent ?i ?j ?i1 ?j1 ?dir))(exists (?k - key ?c - shape)(and (carrying robot ?k)(loc_shape ?i1 ?j1 ?c)(key_shape ?k ?c)))):effect (when (locked ?i1 ?j1)(not (locked ?i1 ?j1))))... Table 1: Grid-World De�nition | Part 1� I is an initial situation description, a complete description of all true atomic formulas. Wewill use a \closed-world assumption" to keep these descriptions �nite: any atomic formula notmentioned is assumed to be false;� G is a problem goal, a proposition to be made true. This is a conjunction of literals (atomicformulas or their negations), possibly containing free variables.A solution to a planning problem hA; I; P i is a sequence hA1; : : : ; Ani of variable-free action3

...(:action pick_up:parameters (?k - key):vars (?i ?j - integer):precondition (and (at ?k ?i ?j)(at robot ?i ?j)):effect (and (not (at ?k ?I ?J))(carrying robot ?k)(forall (?k1 - key)(when (carrying robot ?k1)(and (not (carrying robot ?k1))(at ?k1 ?i ?j))))))(:action put_down:parameters (?k - key):precondition (carrying robot ?k):effect (and (not (carrying robot ?k))(forall (?i ?j - integer)(when (at robot ?i ?j)(at ?k ?i ?j))))))Table 2: Grid-World De�nition | Part 2terms, such that in the situation resulting from executing the sequence starting in I, some instanceof P is true.2 Means-Ends AnalysisThe historically dominant framework for solving planning problems is re�nement search. A re�ne-ment search goes on in a space of potential plans. A potential plan is a partial sketch of a plan, whichcan be �lled out by applying various planning operators. Di�erent planners use di�erent notions ofpotential plan, and di�erent operators for transforming one potential plan into another. What makesit a \re�nement" search is that a potential plan can be thought of as de�ning a set of plans | itscompletions |, and operators can be thought of as narrowing these sets. When potential plan P1 istransformed into potential plan P2, that corresponds to moving from the set of completions of P1 tothe set of completions of P2, a subset. The search stops when a potential plan is found all of whosecompletions are solutions to the problem[20].In this paper, I will be discussing a very simple re�nement search space for classical planning.Potential plans are just plan pre�xes, that is, sequences of actions that the planner is trying toextend to a solution plan. The novel contribution is a method of computing an estimate of howmuch work is required to �nish a plan. Most of the recent research in this area has been in a quitedi�erent paradigm, using search states that consist of networks of partially ordered steps. Searchcontrol in this paradigm consists mainly of deciding, using local criteria, which \aw" in the currentpartial plan to �x. [15, 33]. There has been practically no work on heuristic estimators for comparingpotential plans. As a consequence, these planners often search through thousands of plans to solveseemingly simple problems.The alternative search space I describe is much closer to the space searched by the Prodigyplanner [36, 34], in that it is based on means-ends analysis, a classic search technique �rst embodiedin the GPS system [26, 10]. The principal di�erence is that Prodigy, like GPS and Strips [13], uses as4

(define (addendum adjacent-def)(:domain grid)(:axiom:vars (?i ?j ?i1 - integer):implies (adjacent ?i ?j ?i1 ?j right):context (and (equation (+ ?i 1) ?i1)(legal_coord ?i)(legal_coord ?i1)))(:axiom:vars (?i ?j ?i1 - integer):implies (adjacent ?i ?j ?i1 ?j left):context (and (equation (- ?i 1) ?i1)(legal_coord ?i)(legal_coord ?i1)))(:axiom:vars (?i ?j ?j1 - integer):implies (adjacent ?i ?j ?i ?j1 up):context (and (equation (+ ?j 1) ?j1)(legal_coord ?j)(legal_coord ?j1)))(:axiom:vars (?i ?j ?j1 - integer):implies (adjacent ?i ?j ?i ?j1 down):context (and (equation (- ?j 1) ?j1)(legal_coord ?j)(legal_coord ?j1)))(:axiom:vars (?i - integer):implies (legal_coord ?i):context (bounded-int ?i (- 1 coord_lim) (- coord_lim 1))))Table 3: Grid-World De�nition | Part 3a search state an ordered pair containing a plan pre�x and a goal structure (called the \head plan"and \tail plan" respectively by the Prodigy group). There are two sorts of operators: those thatadd steps to the pre�x, and those that commit to a particular action for achieving an outstandinggoal. In my framework, the goal structure is generated anew at each state, and represents (in a sensemade precise below) all possible ways of achieving the original goal. Pre�x lengthening is the onlysearch operator that is used, that is, the only operation that actually moves the planner through thespace of partial plans, hopefully toward a solution.Partial-order planners have the advantage that, when goals interact only weakly, they can beplanned for independently and the results combined. But they have a big disadvantage, namely,that they cannot keep a complete description of any intermediate situation that will arise duringthe course of plan execution. Hence it is not possible to compare intermediate situations to the goaldescription to look for directions in which to move. The best they can do is to compare individualpropositions that are created by steps proposed so far. Sometimes these comparisons give informationthat is too \local," so that the planner ounders a lot in trying to decide what to do next. Theplanner I describe invests a large e�ort in working out these comparisons, so that for many domainsit has a good picture of the next move to make. 5

G_1 G_2 G_m G_{m+1} G_n

A

P_1 P_2 P_3

B_1 B_2

Q_1 Q_2 R_1

....

Figure 1: Analysis of Actions and Goals2.1 Plan-Pre�x-Space SearchSuppose the planner is trying to complete the plan pre�x hA1; A2; : : : ; Aki. I will use the termcurrent situation to denote the situation that obtains after hA1; A2; : : : ; Aki is executed beginningin the initial situation. Suppose the goal description is G1 ^ : : : ^ Gn. If we match this goalagainst the current situation, we may discover that (say) G1 ^ : : : Gm are true in that situation, andGm+1 ^ : : : ^ Gn are false. (In Figure 1, goals true in the current situation are underlined.) Wecan say that fGm+1; : : : ; Gng is the set of di�erences between the current situation and the goaldescription. (For now, I will ignore any variables that might occur in the goals; pretend there aren'tany.) This notion of matching to �nd di�erences goes all the way back to GPS [26]. If there are nodi�erences, then the current plan pre�x is a solution to the problem. Otherwise, it would seem thata reasonable idea for improving the plan pre�x is to �nd an action that achieves one of the goals(Gm+1, say) and tack it on to the end. The planner knows exactly which actions achieve which goals,because every action has a well de�ned list of literals that it adds. This idea is called means-endsanalysis, and in this form was �rst developed by the Strips group [13].The problem, of course, is that an action that achieves Gm+1 may not be feasible in the currentsituation. In Figure 1, action A achieves the goal conjunct, but has preconditions that are not alltrue. The obvious tack to take at this point is to \recurse," and repeat the same operations on thepreconditions of A. Some will be di�erences, which the planner can achieve by proposing actions,which in turn have preconditions, and so on. The tree obtained by considering all possible actionsand matches is called the regression-match graph. I will be more precise later about exactly what itconsists of and how it is constructed, and why it is a graph and not a tree. If we continue to pretendit's a tree for a moment, we can see that its \leaves" are conditions that are true now, or that areunachievable by any action.3The regression-match graph is interesting for several reasons:� Its size serves as an estimate of how hard it is to complete the current plan pre�x.3In some domains, the tree may be in�nite or unmanageably large, and a depth cuto� can be imposed, in which casesome goals are leaves because they appear too deep; they behave like unachievable goals for our purposes. See Section 3.3.6

� If the tree below a goal bottoms out in unachievable subgoals, then that is evidence that thegoal is impossible to achieve.� Actions just above the \leaves" of the graph are likely to be those that are feasible in thecurrent situation, and relevant to achieving the overall goal.Looking again at Figure 1, we can see that the graph structure suggests two possible ways toachieve Gm+1: First B1, then A; or �rst B2, then A. Either way, we can estimate that achieving thisconjunct will take 2 steps. If the graph is completed with similar analyses for the other conjunctsGm+2; : : :, then we will get estimates for how hard it is to achieve those goals, and other possible�rst steps might emerge.Of course, the planner has no way of knowing which action is best to try as the �rst step towardsolving its problem, B1, B2, or one of the actions that occur in the analysis of the other goals. Butit can try them all. That is, if the initial search state is the empty plan pre�x hi, then the possiblenext states include hB1i and hB2i. See Figure 3. Each state corresponds to a di�erent \currentsituation," either that obtaining after B1 is executed, or that obtaining after B2 is executed. In eachsituation we can repeat the construction of the regression-match graph. This exercise will result in�nding new estimated e�orts for the goals, and new feasible actions. It may reveal unforeseen sidee�ects. For example, B1 might delete G1, thus taking away part of what it gains. So in the statehB1i, the e�ort of reachieving G1 will be added into the total e�ort, causing hB2i to become moreattractive.It is common to label this kind of planner a \state-space search," and it is, but let me hastento point out that the word \state" in this phrase means \world state," or \situation." I normallyuse the word \state" to refer to search states, and in this sense the phrase \state-space search" istautologous. In my terminology, search states are plan pre�xes of the form hA1; : : : ; Aki. Each suchpre�x corresponds to a world situation, namely that obtaining after A1, A2, . . . , Ak are executedstarting in the initial situation. Hence the planner is for all intents and purposes a situation-spacesearcher.I should also point out that the arrows in Figure 1 may appear to go the wrong way, from childrento parent nodes. The reason is that they are intended to reect the ow of time and causality, ratherthan dependency. I will continue to refer to the nodes at the tails of the arrows as the children ofthe nodes at the heads. If node N2 can be reached by following zero or more child arcs from N1 thenN2 is a descendant of N1, and N1 is an ancestor of N2. In these de�nitions, N1 and N2 may be goalconjunctions, cohorts, or goal literals, and the arcs may be labeled with action terms or maximalmatches, or, in the case of an arc from a cohort to its elements, left unlabeled.3 Formal TreatmentNow let's be more precise about how the regression-graph is de�ned. It has a layered, tripartitestructure. There are three types of nodes, and a given type of node is always connected to the sametypes of neighbors, and by the same kinds of edges. Two of the edge categories are nontrivial, andI will explain them before describing the overall graph structure. The two nontrivial categories areregression edges and match edges.3.1 RegressionThe regression of a proposition P through an action A, written [A]R(P) is the weakest condition Qsuch that if Q is true before A is executed, then P will be true afterward. This condition is easyto compute given our Strips-style action formalism [30]. It depends on the action de�nitions of aparticular theory, and when that is important I will write [A]RtheoryP to relativize it.7

We can always write the regression of P as[A]R(P) = :P ^ [A]R(P) _ P ^ [A]R(P)where [A]R(P) is the weakest precondition that causes P to become true after A when it is falsebefore; and [A]R(P) is the weakest precondition that keeps P true after A when it is true before. Wecall [A]R(P) the causation precondition for P before A, and [A]R(P) the preservation preconditionfor P before A [29, 30]. Until Section 3.7, I will focus only on causation preconditions.When P is a literal, to compute [A]RT (P), it su�ces to take the de�nition of A in T , and examineall the literal e�ects. If some literal e�ect uni�es with P with uni�er �, then �(R) is the desiredcondition, where R is the precondition of A. That is, if A is feasible at all, then P will be caused byit. If an e�ect is of the form C)E, then the algorithm is applied recursively to E, taking R ^ C asthe relevant precondition. C is not necessary to the feasibility of A, but is necessary to A's causingP ; in Pednault's terminology, it is a secondary precondition.The PDDL language allows the speci�cation of numerical e�ects using the change notation,which can e�ect the truth value of formulas of the form (fluent-test (r e1 e2)), where r is a aninequality (<, >, �, �, 6=, or =) and e1 and e2 are arithmetic expressions. If f occurs in e1 or e2,then the e�ect (change f e)can potentially make the inequality true. We get the usual precondition, plus the formula(fluent-test r e01 e02)which is obtained by substituting e for f in the original goal. In these goals, f is a uent term suchas (water in jug2), that is, a term whose value can change from situation to situation.3.2 MatchingThe second concept we need in order to understand regression-match graphs is matching. In thesimple examples above, I left variables out of the propositions in the graph. But in general, whenwe take a goal and regress through an action term with variables, then the result will have variables,even if the goal did not. For example, in the grid world, the result of computing[(pick up ?k2)]R((at k1 2 � 3))is (carrying robotk1) ^ (at robot 2 � 3) ^ (at ?k2 2 � 3)In other words, one way to cause k1 to be at h2;�3i is to be at that location and pick up some otherkey ?k2.A planner can handle the subgoal (at ?k2 2 -3) in one of several ways. One way is to treat ?k2as an unknown, a global variable that is \solved for" during the course of the remaining planningprocess. Typically, it gets bound when the planner decides what e�ect of what step to identify withthis goal. If a step causes, e.g., (at key14 2 -3) to become true, then the planner can achieve thelater goal (at ?k2 2 -3) by binding ?k2 everywhere it occurs to key14.The only problem with that idea is that it forces the planner to do nothing with the goal whenit is �rst produced. In particular, it can have no idea how di�cult it is to achieve it compared toother subgoals it might have adopted instead.Another approach is to avoid variables by substituting variables in all meaningful ways as earlyas possible, either during the formulation of the problem, as SATPLAN does [21], or during theconstruction of the planning graph that Graphplan uses [5]. This technique runs the risk of generatingmany irrelevant atomic formulas.An attractive alternative is to guess likely values of the variable as soon as it occurs in a goal.Suppose that the planner sees that key14 is at h2;�3i in the current situation. Then it is a plausible8

guess that as further plans unfold key14 will remain there, and hence remain a candidate for bindingto ?k2. Hence it is reasonable to estimate that the number of steps required to achieve (at ?k2 2-3) is zero.In general, the idea is to bind variables in such a way as to make as many conjuncts in a goaltrue as possible. That is, whenever a goal arises of the formP1(?x) ^ P2(?x) ^ : : : ^ Pk(?x)where ?x represents all the variables that occur in the conjunction, the planner should �nd bindingsof ?x to constants so that as many of the Pi as possible are made true. The remaining conjunctsare di�erences between the goal and the current situation. One estimate of the e�ort required toachieve the conjunction is the e�ort required to achieve the di�erences resulting from binding thevariables.To be more precise, de�ne the hit set for a substitution � in a set of formulas P =fP1(?x); P2(?x); : : : ; Pk(?x)gwith respect to situation S to be the set of all Pi(?x) such that �(Pi(?x)) is variable-free and truein S. I'll write this as hit(�; P; S). Following standard terminology, I'll use the word ground to mean\variable-free."Now de�ne a match substitution for the set P = fP1(?x); P2(?x); : : : ; Pk(?x)g with respect tosituation S to be a substitution � that binds (some or all of) the variables ?x to constants so thatthe conjunction is split into two disjoint parts: Ptrue and Pfalse such that:1. Ptrue is the hit set for � with respect to S;2. Pfalse = P � Ptrue is a set of conjuncts, not necessarily ground, that have no true instances inS;3. for any proper subset �0 � �, the hit set for �0 in P is a proper subset of Ptrue .A maximal match of P = P1(?x)^P2(?x)^ : : :^Pk(?x)g with situation S is then a substitution� that assigns constants to all the variables ?x, such that there is a match substitution � � �. � willdi�er from � only if �(Pfalse) contains free variables; � must bind them all to whatever objects makesense, as I discuss shortly. The di�erence set of the maximal match, written di� (�; P; S) is the set�(Pfalse) = �(P � hit(�; P; S)).For example, consider the goal P =(at robot ?i ?j) ^ (at key15 ?i ?j), which might ariseas a precondition of the action (pick up key15). Suppose the robot is currently at location h2; 3i,and key15 is currently at location h5; 6i. There are two maximal matches:Substitution Di�erencesi=2,j=3 (at key15 2 3)i=5,j=6 (at robot 5 6)Di�erences give rise to subgoals. In the example, two ways of achieving P are proposed: Getkey15 to h2; 3i, or get the robot to 5,6. Of course, the �rst of these is silly if the reason to achieveit is to pick up key15, but further analysis will be required to decide that.In the example, the substitution � is identical to �. They di�er when there are free variables thatoccur in Pfalse , which must be bound by �. The formal de�nition allows these variables to be boundto arbitrary constants, which works �ne for formal purposes. However, in practice we usually getgreat bene�t out of the following optimization. Suppose that Pi(?y) is a conjunct of Pfalse , where ?yrepresents all the variables of ?x that are left unbound by �. Some constants will make no sense whenplugged in as arguments to Pi. The resulting di�erences will be goals like carrying(robot,robot),or at(key15,2,key13). We avoid all such absurdities in practice by keeping track of the types ofarguments for predicates and action functors, and plugging in only objects of the appropriate types.Note that we never bind a variable in such a way as to make a conjunct false. A binding is addedto � only if it makes some conjunct true; and a binding is added to � only if there are conjunctscontaining the binding's variable which are false for every way the variable could be bound.9

3.3 Regression-Match GraphsWe are now in a position to be precise about regression-match graphs. A regression-match graphfor a goal G (a conjunction of literals, possibly containing variables) is a tuple hC;L;H;Ei with thefollowing properties:� C is a collection of goal conjunction nodes, each labeled with a conjunction of literals, possiblycontaining variables (I distinguish nodes from their labels only to allow two nodes to have thesame label; in what follows I will relax the distinction and just use the term \goal conjunction");� There is a node 2 C labeled with G;� L is a collection of goal literals, each containing no variables;� H is a collection of cohorts, each a collection of goal literals;� E is a collection of edges, � (C �H) [(H � L) [(L�C), some labeled and some unlabeled;� for every g 2 C, and for every maximal match � of g with S, �(g) 2 H, and edge hg; �(g)i 2 E,labeled with �;� for every �(g) 2 H, if p is a conjunct of �(g), then p 2 L and there is an edge h�(g); pi 2 E;� for every p 2 L such that p is not true in S, and for every n-argument action functor A, if[(A ?v1 : : : ?vn)]R(p) = g1 _ : : : _ gkin disjunctive normal form, where the ?vj are distinct variables, and gi is a conjunction ofliterals that is not identically false, then there is a goal conjunction 2 C labeled with gi, andhp; gii 2 E, labeled with (A?v1 : : : ?vn). Each such goal conjunction is called a reduction of p.� C, L, H, and E have no elements not required by a �nite number of applications of the previousrules in this list.Obviously the regression-match graph for a goal is unique, up to renaming of the variables in goalconjunctions.Let me pause to insert an example, drawn from the grid world. In the initial situation, the robotand key K are at h0; 0i, and the goal is to get K to location h1; 0i. The initial goal conjunction consistsof a single variable-free goal, so it has a trivial maximal match and just one cohort. Goal conjunctionsare indicated by dotted lozenges drawn around a group of literals. Cohorts are indicated by edgesfrom their elements (which are goal literals) to the goal conjunction they derive from, with edgeslabeled with the maximal matches used to derive them. In this simple example, the initial goalcontains just one ground conjunct, so there is an empty substitution labeling the arc to it from thegoal literal that constitutes its only cohort. There is just one action term such that [A]R((at K 1 0))is not identically false, namely (put down ?v). The regression yields a single goal conjunction. Asat the top, it contains no variables, so it has just one cohort, consisting of the two goal literals (atrobot 1 0) and (carrying robot K). (Formulas are abbreviated to avoid clutter.)Interesting things happen at the next layer. First observe the subgraph attached to (carryingrobot K). There is a unique action term that leads to this conclusion, (pick up ?v). The regressionof (carrying robot K) through this action yields the goal conjunction(at robot ?i ?j)^ (at K ?i ?j)This goal conjunction maximally matches the current situation just one way: fi = 0; j = 0g. Theresulting cohort has two goal literals that are true in the current situation. The e�ort required toachieve them is 0.We can propagate estimates of the e�orts for all nodes in the graph using the following recursivede�nition of the estimated e�ort of goal conjunctions and goal literals:� If p is a goal literal, and p is true in S, then EE(p) = 0.10

0

00

0

3

{}

v=K

2

3

0

0

1
1

2

v=K

{i=0,j=0}

0

0

0

1

(at K 1 0)

(at K 1 0)

(put_down ?v)

(move ?dir)

(at robot 1 0) (carrying K)

(at robot 2 0)

(carrying K)

(move ?dir)

(pick_up ?v)

(at robot ?i ?j) (at K ?i ?j)

(at robot 0 0) (at K 0 0)

(adj 1 0 2 0 right)

(open 2 0)

(at robot 1 0)

{i=1,j=0,dir=right}

(adj ?i ?j 1 0 ?dir)

{i=2,j=0,dir=left}

{i=0,j=0,dir=right} {i=1,j=1,dir=down}

{i=1,j=-1,dir=up}

(open 2 0)(at robot ?i ?j)(adj ?i ?j 2 0 ?dir)

(at robot ?i ?j) (open 1 0)

(adj 0 0 1 0 right)

(adj 2 0 1 0 left)

(open 1 0)

Figure 2: A Regression-Match Graph for a Grid-World Goal� If p is a goal literal, and p is not true in S, thenEE(p) = 1 + ming2reductions(p)EE(g)� If g is a goal conjunction, then EE(g) = minh2cohorts(g)Xp2h EE(p)� If applying the previous rules repeatedly does not assign an e�ort, then the e�ort is 1.By this de�nition, the estimated e�ort of (carrying robot K) is 1.On the other branch, (at robot 1 0) is achieved by (move ?dir), yielding the goal conjunction11

(adjacent ?i ?j 1 0 ?dir) ^ (at robot ?i ?j) ^ (open 1 0)There are four maximal matches with the current situation:Substitution Di�erencesfi=0,j=0,dir=rightg Nonefi=2,j=0,dir=leftg (at robot 2 0)fi=1,j=1,dir=downg (at robot 1 1)fi=1,j=-1,dir=upg (at robot 1 -1)To avoid clutter, only the �rst two of the resulting cohorts are shown in the �gure. The �rstconsists of three goal literals that are all true, so there are no di�erences, and the estimated e�ortof the goal conjunction is 0, and the estimated e�ort of (at robot 1 0) is 1. However, the othercohort demonstrates an interesting phenomenon. The only di�erence obtained if dir=left is (atrobot 2 0). It gets regressed through (move ?dir) in a very similar fashion to the way (at robot1 0) was regressed, and we once again get four maximal matches. This time only one is shown:fi=1,j=0,dir=rightg, with di�erence (at robot 1 0). The intuition is that if the robot were ath1; 0i, it could get to h2; 0i by going right. Of course, this tactic makes no sense. But no harm isdone. The e�ort for (at robot 1 0) is 1, so the e�ort for the cohort is 1, the e�ort for (at robot2 0) is 2, and this value plays no part in determining the value of (at robot 1 0).Although the regression-match graph often contains cycles, there is an important class of acyclicsubgraphs that can be extracted. A strati�ed subgraph is obtained by selecting a single cohort foreach goal conjunction, and a single reduction for each goal literal, in such a way that the resultingsubgraph contains no cycles. More precisely, a strati�ed subgraph of a goal literal or goal conjunctionG in a regression-match graph hC;Li is a subgraph hC0; L0; H 0; E0i such that� C0 � C, L0 � L, H 0 � H, E0 � E, and G 2 C0;� for every g 2 C0, either (a) for every maximal match � of g with S (the current situation),some conjunct of �(g) is an ancestor of g in hC;Li; or (b) there is a single maximal match �of g with S and for every conjunct p of �(g), p 2 L0;� for every p 2 L0 such that p is not true in S, either there is an n-argument action functor de�neA, such that [A(?v1; : : : ; ?vn)]R(p) = g1 _ : : : _ gkin disjunctive normal form, where the ?vj are distinct variables, and some gi is a non-identically-false conjunction of literals, in which case one such gi 2 C0; or (b) for every such A and vj , allthe gi are identically false;� E0 consists of exactly the edges both ends of which are in C0 [H 0 [L0.By minimal I mean that if there is another subgraph hC00; L00; H 00; E00i with these properties, andC00 � C0, L00 � L0, H 00 � H 0, E00 � E0, then C00 = C0, L00 = L0, H 00 = H 0, and E00 = E0. InFigure 2, one strati�ed subgraph has been indicated with heavier lines.A strati�ed subgraph all of whose leaves are goal literals that are true in S, the current situation,is called a coherent subgraph. The subgraph in the �gure is also coherent. It should be obvious thatthere will be a coherent subgraph of the top-level goal conjunction if and only if its estimated e�ortis < 1. If the estimated top-level e�ort is 1, then every strati�ed subgraph has at least one leafnode that is a goal conjunction with e�ort 1, and so there are no coherent subgraphs. Note that aleaf node of a strati�ed subgraph is not necessarily a leaf node of the original graph.You can think of a coherent subgraph it as being a \plan sketch" for how to achieve the top-levelgoal. If an action A occurs in a coherent subgraph with precondition goal conjunction G, and there isa maximal match � that makes G true in the current situation, then �(A) is said to be an initial stepof the subgraph. In the �gure, (move right) and (pick up K) are the initial steps of the indicatedcoherent subgraph. Either one is feasible as a �rst step in an action sequence. What we hope is thatat least one of them makes sense as a �rst step; i.e., that the sequence can then be continued until12

the problem is solved. That's true for (pick up K); whether it's true for (move right) depends onwhether we count sequences such as h(moveright); (moveleft); (pick upK); (moveright)i as solutionsor not.The actions allowed by a regression-match graph are all the actions that occur as initial stepsof some coherent subgraph of the top-level goal conjunction. If a regression-match graph has nocoherent subgraphs, then no actions are allowed by the graph, and it is a good guess (but not alwaystrue) that its top-level goal conjunction is infeasible. The actions allowed by the graph are the onlyones my planning algorithm considers.The estimated e�ort of a strati�ed subgraph is obtained in the obvious way: The e�ort of a goalliteral is 0 if it is true in S,1 if it is an untrue leaf, and otherwise 1+ the e�ort of its only reduction.The e�ort of a goal conjunction is 1 if it is a leaf, otherwise the e�ort of its only cohort.In general, the e�ort of a goal literal is equal to 1+ the e�orts of its lowest-e�ort reductions,unless the literal is true in the current situation, or all its reductions have in�nite e�ort. Anyreduction whose e�ort is �nite, and as low as any other reduction of that goal literal is called ane�ective reduction of that goal literal. The others are ine�ective, and do not inuence the estimatede�ort for the goal literal. We can similarly divide the cohorts of a goal conjunction into an e�ectiveand an ine�ective category; the e�ective ones are just those with �nite e�ort less than or equal tothe e�orts of all the others. An e�ective subgraph of a regression-match graph is one obtained bychoosing exactly one e�ective cohort for the top goal conjunction, then one e�ective reduction foreach untrue element of that cohort, then one e�ective cohort for each reduction, and so on. It iseasy to see that if the estimated e�ort for the top goal conjunction is �nite, then at least one suchgraph exists, and is a coherent subgraph. The subgraph indicated in Figure 2 is e�ective. If wecompleted the diagram in Figure 2, we would see coherent but ine�ective subgraphs, such as theone involving the action sequence h: : :, (move up), (move right), (move right), (move down),(move left), : : :i.For every action allowed by the graph, there is an estimated e�ort associated with that action,which is just the lowest e�ort of any coherent subgraph for which the action is an initial step. If�(A) is allowed by the graph, and occurs in an e�ective subgraph, then it is said to be favored bythe graph. If the action is favored by the graph, this value is the same as the estimated e�ort of theoverall graph.Note that if a literal is not added by any action, then it will always have e�ort 1. For example,suppose it is true in the current situation that (at robot 0 0), and the goal (at robot 2 0)occurs in the regression-match graph. Regressing through the action (move ?dir), we obtain thegoal conjunction (adjacent ?i ?j 2 0 ?dir) ^ (at robot ?i ?j) ^ (open 2 0)This goal has eight maximal matches:Substitution Di�erencesfi=1,j=0,dir=rightg (at robot 1 0)fi=3,j=0,dir=leftg (at robot 3 0)fi=2,j=1,dir=downg (at robot 2 1)fi=2,j=-1,dir=upg (at robot 2 -1)fi=0,j=0,dir=rightg (adjacent 0 0 2 0 right)fi=0,j=0,dir=leftg (adjacent 0 0 2 0 left)fi=0,j=0,dir=downg (adjacent 0 0 2 0 down)fi=0,j=0,dir=upg (adjacent 0 0 2 0 up)But the last four of these are absurd, because there is no way to make h0; 0i adjacent to h2; 0ifrom any direction. The estimated e�ort for the cohort resulting from each match is therefore 1.In the implementation, such impossible goals are weeded out at a very early stage (see Section 5),and do not actually appear in the graph. 13

In some domains it may be necessary to impose a depth cuto� on a regression-match graphbecause the whole graph is in�nite, or too large to be manageable. A depth-limited regression-matchgraph with depth limit d is then de�ned as the largest subgraph of the whole graph in which thedepth of the shortest path from the root (G) to any goal conjunction is � d. We de�ne the depthof a path as the number of goal literals it contains. The depth-limited graph can contain some goalliterals with no reductions because they would be too depp. The de�nition of estimated e�ort (EE)is the same for depth-limited subgraphs. The de�nition of strati�ed subgraph has to change slightly:� for every p 2 L0 such that p is not true in S, either p is at depth d; or one of the cases (a) and(b) listed above holds, i.e., p has at most one reduction.In cases where no natural numbers are involved, the regression-match graph is guaranteed to be�nite, and, by an argument analogous to that of [5] for planning graphs, to have size polynomial inthe number of symbols in the domain, provided we have a bound on the arity of all the predicatesinvolved. This bound doesn't mean much unless the graphs are of manageable size in practice, but,as illustrated in Section 6, they usually are.3.4 Search SpaceNow I can be more formal about the search space my planner uses. The order in which it searchesthe space is the topic of Section 3.5.To de�ne a search space, we need to de�ne three things: the initial state, the operators, andthe success criterion. I said in Section 1 that the state space is the set of all action sequences, soyou might expect the initial state to be the empty sequence. However, in order to get the detailsto work out, we actually de�ne the space so that sequences always end in an action allowed bysome regression-match graph. That is, if the sequence hA1; : : : ; An�1; Ani is in the space, then Anis allowed by the regression-match graph for the goal with respect to the situation resulting fromhA1; : : : ; An�1i.So: The initial state is the set of all singleton sequences hAi, where A is some action allowed bythe regression-match graph for the goal with respect to the initial situation.4The operators take an action sequencehA1; : : : ; Ani; and extend it to hA1; : : : ; An; An+1iwhere An+1 is allowed by the regression-match graph for the problem goal with respect toresult(I; hA1; : : : ; Ani):The success criterion is that a sequence result in a situation where the top-level goal is true.This is essentially a situation-space search, because the main feature of an action sequence thatwe care about is the situation that results from it. In particular, if two sequences result in thesame situation, then it is wasteful to attempt to extend both of them. The second time a sequenceis seen, it should be discarded. See Figure 3, in which transitions that cause discards are drawnwith a dotted line. (Of course, exactly which transitions cause discards depends on the order inwhich situations are encountered.) The data structure required to test for repeated occurrence of asituation is described in Section 5.The only remaining piece of the puzzle to supply is the heuristic evaluation function, the \score"we assign to each search state. If the state is hA1; : : : ; An�1; Ani, then its score is n � 1 plusthe estimated e�ort of An in the regression-match graph for the problem goal in the situationresult(I; hA1; : : : ; An�1i). (Recall that the estimated e�ort of a feasible action is the e�ort of thecheapest coherent subgraph of which it is an initial step.)4To be technically precise, we must allow for the case where the goal is true in the initial situation. We can stipulatethat in that case the search space has just one state: the empty action sequence.14

<>

<B1>

<B1,C1>

<B1,C2>

<B2,C2>

<B2>

B1

C1

C2

B1

B1 C3

B1

C2

D1

Figure 3: Situation-Space Search3.5 Search StrategiesNow that we have a search space, we have to choose a strategy to use in exploring it. The searchspace gives the \legal moves" the planner can make; the strategy decides which ones to try. I haveexperimented with two strategies: best-�rst search, and hill-climbing search with restarts.Best-�rst search is implemented in the usual way: The program keeps a queue of plan pre�xes.It chooses the pre�x hA1; : : : ; Ani with the lowest score (estimated e�ort), builds the regression-match graph for it, �nds all the actions B1; B2; : : : ; Bk allowed by the graph, plus their e�orts, andgenerates k new pre�xes hA1; : : : ; An; Bji for 1 � j � k. These are sorted and merged back ontothe queue, and the process is repeated. It terminates as soon as an action sequence is found whoseresult is a situation in which the problem goal is true.Best-�rst search often works quite well, especially for the sort of \toy" problems that are foundin the literature. But what I observe in many cases is that estimated e�ort is a better local estimatorthan a global one. That is, it often correctly ranks the possible next actions, without necessarilycomparing those moves accurately with competitors from a completely di�erent part of the space. Ifit says that hA1; : : : ; An; B1i is better than hA1; : : : ; An; B2i, then it's often right. When it reportsthat hA01; : : : ; A0mi, a random competitor found on the queue, is just as good as hA1; : : : ; An; B1i,it's often wrong. The reason is that the inaccuracies in estimated e�ort, are often balanced acrossnear relatives in the space. If one is weighting one subproblem too heavily, the other probably is,too. But for distant relatives the errors tend to depend on the wrong factors. Typically errors ine�ort estimates tend to be correlated with the length of plan pre�xes. The shorter the pre�x, thefurther it is from a solution, the larger the e�ective subgraph, and the greater the error tends to be.The problem is especially severe if short pre�xes look too good. Then a best-�rst search tends todegenerate into a breadth-�rst search.We can usually avoid these problems by the use of hill climbing, in which we discard all but thelocally best successors to the current plan pre�x, pick one randomly, and pursue it. The locally bestsuccessors of a search state are those that are better than all the other successors. There may bemore than one. We give up on this branch of the search space only when a state has no successors.15

In that case we pick at random one of the states that was locally best at some previous state andrestart the search from there.5For all the experiments reported in this paper, I used a hybrid search scheme, in which the plannersearched best-�rst until it decided that approach was ine�ective, then switched to hill climbing withrestart. The details appear in Section 5.In practice, whenever either search strategy is used, Unpop is supplied with a bound on planlength. This serves two roles: it allows the system to discard plans that are too long, and it can beused as a bound on the depth of the regression-match graph. The latter is the more important bound,because where the depth cuts o� inuences how big the search space really is and how expensive itis to explore one search state. Applying the maximum plan length as a depth bound is a generousconstraint, because the estimated e�ort extracted from a graph is usually larger than its depth.In hill-climbing mode, the bound on plan length is often useful for limiting search for reasonshaving nothing to do with the depth cuto� on the regression-match graph. Without the length limit,Unpop can get itself into searching an in�nite branch containing no solutions; it keeps lengtheningthe plan hoping to get closer. Giving Unpop a length limit may sound like giving it too much ofa hint, but it isn't, for the following reason. We have to give it a limit on the number of plans tosearch anyway, because if the problem has no solution the planner can go for a long time beforeexhausting the entire search space. In all the experiments, the plan-length bound was set to 12B,where B is the plan-number bound. Unpop uses up a search state for every step it adds to a partialplan. Therefore, if it is distracted by an incorrect partial plan that is discarded only when it reacheslength L � 12B, then after giving up on that branch it has only another 12B partial plans to try, so ifit's lost it's almost sure to fail. Hence this policy prevents Unpop from using the plan-length boundto skip unpromising plans and go for the correct part of the search space.3.6 Plan IncoherenceThe algorithm as presented so far has an attention-de�cit disorder. At each state in the search space,it recomputes the entire regression-match graph, and gives equal weight to all the favored actions.Suppose that the planner is in a part of the search space where there are two overall goals, neitherof which is true. The regression-match graph will have two parts, one for each goal. If the plannertries an action that helps achieve Goal 1, then in the graph computed in the resulting situation thesubgraph for Goal 1 will be a bit smaller, and the subgraph for Goal 2 will typically be the same sizeor even a bit larger. If the planner takes an action from the subgraph for Goal 2, then it runs the riskof making that subgraph smaller while the graph for Goal 1 gets larger. This risk is especially greatusing hill-climbing-with-restart search, because the planner cannot backtrack to undo the damageuntil it has explored a large portion of the zone of the situation space resulting from the bad action.An example occurs in the \fridge" problem from the University of Washington corpus (see Section6.2). To �x a refrigerator, it is necessary to turn the refrigerator o�, remove the backplane, changethe compressor, reattach the backplane, and turn the refrigerator back on. The problem is di�cultbecause removing the backplane requires unscrewing four screws, and the refrigerator can't be turnedon until all four screws are back in place. Let's focus on what happens after one screw has beenunscrewed, or, more formally, when the current situation is the result ofh(unscrew s1) iFigure 4 is a simpli�ed diagram of the situation, in which there are just three screws. Screw s1 isunscrewed and s2 remains to be unscrewed. In the regression-match graph, there are three possible5In the earlier report on this work[24], I described this process in terms of Ginsberg and Harvey's limited-discrepancysearch [16]. The current description is more accurate given what the program actually does in practice. For those familiarwith limited-discrepancy search, the following may explain: My program searches the subspace of discrepancy 0. AlthoughI programmed it to follow up with a search of the subspaces of discrepancy 1, 2, 3, etc., it never actually found a solutionin any but the subspace of discrepancy 0. It may be of interest that when there is a solution to a planning problem, thereis almost always a solution of discrepancy 0, even if it's not optimal.16

attached(new_compressor)

change_compressor

C0

1

0

2

3

4

(fridge_on f1)

(start_fridge f1)

not (in_place backplane)
(in_place backplane)

(screwed s1) (screwed s2)

(remove backplane)

not (fridge_on f1)
not (screwed s1)

not (screwed s3)

not (screwed s2)

(screw s1) (screwed s3)

(unscrew s2) (unscrew s3)Figure 4: The Infamous \Fridge" Probleminitial steps: (unscrew s2) and (unscrew s3) to achieve a precondition of (remove backplane),and (screw s1), to achieve a precondition of (start fridge f1). (The actual terms are di�erent,as explained in Section 6.2.)The algorithm as presented so far will have no reason to favor (unscrew s2) and (unscrew s3)over (screw s1). In the simpli�ed version, the pre�xh(unscrew s1), (screw s1)iwill be rejected quickly because it repeats the previous situation. But there is no way to rejectpre�xes such as h(unscrew s1), (unscrew s2), (screw s1)iwhich will become an option after (unscrew s2) is added to the pre�x. If there are N screws,then there are 2N situations to be explored in which various combinations of screws are unscrewed.Unpop will explore a large subset of them. A person can see that if you've just unscrewed some ofthe screws, then you should keep unscrewing them. Unless there is a good reason, you shouldn'tswitch from one goal to another.One way to diagnose this problem is to recall that coherent subgraphs of the regression-matchgraph correspond to sketches of plans for achieving subgoals, and to observe that in the absence ofany advice to the contrary, the planner should pursue sequences of actions drawn from one coherent17

subgraph rather than jumping back and forth between subgraphs. Put another way, the plannershould pretend it is actually executing a plan (even though it is really only projecting possible plans).As I described in Section 3.4, a search state is a sequence of actionshA1; : : : ; An; An+1iwhere An+1 is allowed by the regression-match graph for the problem goal with respect toresult(I; hA1; : : : ; Ani)Because An+1 is allowed, there is a coherent subgraph such that it occurs in that subgraph withonly true goals as preconditions. Let's look a little more closely at the information extractable fromthat coherent subgraph. For clarity, forget An+1's position in the plan pre�x, and relabel it as C0,an arbitrary step allowed by the regression-match graph, and focus on a minimal-e�ort coherentsubgraph C of which it is an initial step. (As it happens, Figure 4 shows exactly one coherentsubgraph.) In Figure 4, I have labeled unscrew(s2) as C0. De�ne the following partial order onaction occurrences in that subgraph:De�nition 1 If action occurrences C1 and C2 occur in C, then C1 is beforeC;C0 C2 if and only ifeither C1 6= C2 and� C1 is a descendant of C2; or� There is an action occurrence C0 in C such that C0 and C1 are descendants of C0 and C2 isnot. (C0 may be identical to C0 or C1.)Note that C1 and C2 are action occurrences, and so may be distinct even if they refer to the sameaction.Now we can de�ne the \incoherence" of an action:De�nition 2 If C is a coherent subgraph, and C0 and C1 occur in it, then the incoherence ofaction occurrence C1 with respect to C0 in C is the number of action occurrences C such thatC0 beforeC;C0 C beforeC;C0 C1If A0 is an action allowed by a regression-match graph, then the incoherence of action A afterA0 is then de�ned as follows. LetG(A) = fhC; C0ijCis a coherent subgraph in which C0 is an initial step and an occurrence of A0gThen the incoherence of A with respect to A0 isminhC;C0i2G(A) minoccurrences C1 of A incoherence of C1 with respect to C0 in CIn Figure 4, the incoherence of each step with respect to C0 is written next to the step inside adiamond. In this case, no two steps have the same incoherence, but if C0 had had two sibling steps(say, unscrew(s3) and unscrew(s4)), then they both would have had incoherence 0, and the parent,remove(backplane), would have had incoherence 2.The incoherence of an action is essentially its distance from an initial step of a coherent subgraph.The plan embodied in a coherent subgraph can be thought of as: \Do the initial step, then all thesteps of incoherence zero (either feasible siblings or, if there aren't any, the immediate ancestor ofthe initial step), then all the steps of the next level of incoherence, and so forth." If after taking theinitial step there is a choice among followup actions, it's better to take an action with incoherence0 than an action with incoherence 1, if one is available.Hence we can use incoherence to di�erentiate between two plan-pre�x extensions that have thesame estimated e�ort. If one has lower incoherence, we favor it. More formally, we can amend thede�nition of the heuristic estimator: 18

If the state is hA1; : : : ; An�1; Ani, then its score is an ordered pair hn�1+E;Hi, whereE is the estimated e�ort of An in the regression-match graph for the problem goal in thesituation result(I; hA1; : : : ; An�1i); and H is the incoherence of An after An�1 in theregression-match graph for the problem goal in the situation result(I; hA1; : : : ; An�2i).(If n < 2 then H = 0.) Two scores S1 = hE1; H1i and S2 = hE2; H2i are comparedlexicographically. That is, S1 < S2 if and only if E1 < E2 or E1 = E2 and H1 < H2.The graph of Figure 4 is constructed for the plan pre�x h(unscrew s1)i. In that graph, theincoherence of (unscrew s3) after (unscrew s2) is 0, while the incoherence of (screw s1) after(unscrew s2) is 3. Hence the score ofh(unscrew s1), (unscrew s2), (unscrew s3)iis h2 + E; 0i, where E is the estimated e�ort of (unscrew s3) in the graph obtained after addingthe action (unscrew s2) to the pre�x6; while the score ofh(unscrew s1), (unscrew s2), (screw s1)iis h2 +E; 3i, which is inferior.Computing incoherence exactly is expensive. As described in Section 5, in practice we need onlyto approximate it.3.7 Preservation PreconditionsIn Section 3.1, I pointed out that the regression of P through A could be analyzed in terms ofcausation and preservation preconditions. So far I have described an algorithm that deals only incausation conditions. In the framework of this algorithm, there is no problem with such \secondary"preconditions. In building the regression-match graph, we don't care whether the goal conjunctionscome from primary or secondary preconditions.Things are di�erent when we turn to thinking about preservation. Consider the \briefcase prob-lem," due to Ed Pednault, whose formalization appears in Tables 4 and 5.The algorithm as presented so far will build a regression-match graph in which (at paycheck1home) has e�ort 0 (being true already), and the only way to achieve (at briefcase2 office) is tomove it there. Unfortunately, in the resulting situation, the goal (at paycheck1 home) is false, andthe only way to make it true is to move the briefcase home again. The algorithm now detects a loopin the space of situations, and halts, reporting failure.The correct solution is, of course,h(take out paycheck1 briefcase2), (move briefcase2 home office)i. The problem is to �ndit. The only reason to perform the take out action is to make the goal (at paycheck1 home) true,but at the time it is executed the goal is already true, so the motivation for performing it is obscure.The solution is to wait until the one-step planh(move briefcase2 home office)ihas been proposed, then realize that one way to achieve the (now false) goal (at paycheck1 home)is to take the paycheck out of the briefcase before the last step. More generally, if An is the laststep of a plan pre�x hA1; A2; : : : ; An�1; Ani, then one possible step in plan space to achieve a goalG that is true after An�1 is to move to the plan hA1; A2; : : : ; An�1; Bi, where B achieves [An]R(G),the preservation precondition of G before An. Note that we must discard An, because it may not befeasible after B. Presumably, if it is feasible and relevant at that point, the algorithm will proposeit again on the next iteration.This still isn't quite general enough, because B may be relevant to achieving [An]R(G), butnot feasible. But addressing this issue is the whole purpose of the regression-match graph. All weneed to do is build a piece of the graph for [An]R(G) , but build it relative to the situation that6E = 6 if you take the graph seriously, which you shouldn't.19

(define (domain briefcase-world)(:requirements :strips :equality :typing :conditional-effects)(:types place)(:constants B P D)(:predicates (at ?thing - object?l - place)(in ?thing - object))(:action mov-b:parameters (?m ?l - place):precondition (and (at B ?m) (not (= ?m ?l))):effect (and (at b ?l) (not (at B ?m))(when (in P)(and (at P ?l) (not (at P ?m))))(when (in D)(and (at D ?l) (not (at D ?m))))))(:action take-out:parameters (?x):precondition (in ?x):effect (not (in ?x)))(:action put-in:parameters (?x - object ?l - place):precondition (and (at ?x ?l) (at B ?l) (not (= ?x B))):effect (in ?x))) Table 4: The Briefcase Domain(define (problem get-paid)(:domain briefcase-world)(:objects home office bank - place)(:init (at B home) (at P home) (at D home) (in P))(:goal (and (at B home) (at D office) (at P bank))))Table 5: PDDL De�nition of Briefcase Problemobtains after An�1. This extension requires that di�erent pieces of the graph be relative to di�erentsituations. In other words, we must extend goal literals, goal conjunctions, and cohorts so that theyare pairs of the form hgoal ; situationi, where the situation is normally the current situation (i.e., thatobtaining after execution of the current plan pre�x), but will become a previous situation whenevera preservation goal is generated.To make this idea work, we must provide a method for computing preservation preconditions fromaction de�nitions. The key is to notice that each de�nition provides a speci�cation (a necessary andsu�cient condition) for when it deletes a proposition. Hence to ensure that the action fails to deletea proposition, we must simply �nd the negation of that speci�cation, and express it as a disjunctionof conjunctions. Each such conjunction is a su�cient condition for the preservation of the givengoal. 20

In most cases, this kind of complexity is not necessary. In the given example, the only way that(move briefcase2 office) can delete (at paycheck1 home) is if (in paycheck1 briefcase2) istrue. Hence :(in paycheck1 briefcase2) is the desired preservation precondition, and the algo-rithm generates the goal literal h:(in paycheck1 briefcase2); Ii(an ordered pair in the new scheme). This goal literal is achieved by the action (take out paycheck1briefcase2), given a causation precondition that yields the goal conjunctionh(in paycheck1 briefcase), Iiwhich has estimated e�ort zero. Next the algorithm considers the plan pre�xh(take out paycheck1 briefcase2)iand then solves the problem by rediscovering the move action.There is one remaining complexity. Suppose that the paycheck and briefcase had started o� atthe o�ce instead of at home; in other words, that the initial situation had had(at briefcase2 office) ^ (at paycheck1 office)true. Now the algorithm would have �rst generated the plan pre�xh (move briefcase2 home)ito get the paycheck home, and thenh(move briefcase2 home), (move briefcase2 office)ito get the briefcase back to the o�ce. But it will refuse to consider this pre�x any further, becauseit appears to return the entire world to its initial situation without accomplishing anything. Thepreservation machinery doesn't get a chance to try to insert a new action before the last one.To avoid this problem, the system does not discard situation-repeating plan pre�xes immediately,but allows only search-space moves that discard the last step of such a pre�x. In the experimentsreported in Section 6, however, this feature was turned o�. In those experiments, preservation pre-conditions never occurred, and it speeded things up to avoid considering plan pre�xes that repeatedpreviously encountered situations.4 LimitationsUsing regression-match graphs does not solve all classical-planning problems. There are a variety ofreasons.First, the method is incomplete, because sometimes solving a problem requires actions that arenot allowed by the regression-match graph. The idea of bindings variables using maximal matchesis only a heuristic, and it is not hard to contrive examples where the correct bindings are missed.I expected some such examples to occur in practice, but they never did. In all the experimentsdescribed in Section 6, as far as I know this heuristic never failed.Of course, when no variables are involved and actions do not have context-dependent e�ects,as in the arti�cial domains of Section 6.5, the regression-graph technique is complete. This is soobvious that I won't glorify it with a formal statement and proof.The algorithms I have described have two classical limitations: they don't worry about �ndingoptimal plans, and they are not very good at inferring that a problem has no solutions. The formerissue is one that is often dealt with ambivalently in the literature. O�cially plan optimality is notpart of the classical-planning problem, but uno�cially some of the research (e.g., [32, 21]) has beendriven by attempts to avoid redundant plan steps. Unpop shares this ambivalence. On one hand, itsheuristic estimator explicitly takes plan length into account | the value of a plan pre�x is its lengthplus the estimated e�ort of achieving the goal by extending it. On the other hand, this estimator is21

often systematically inaccurate. And in hill-climbing-with-restart mode it sticks with a plan pre�xas long as it can, which often means �xing plan blemishes by adding steps instead of backtrackingto a point where the blemish doesn't happen.The other issue, proving that a plan doesn't exist, is more fundamental. Unpop, like many searchsystems, is oriented entirely towards �nding a solution. If no solution exists, the only way it can tellthat is by exploring its space exhaustively. In practice, however, reporting that a problem can't befound in a certain amount of time may be almost as useful as reporting that it can't be solved at all.On some problems Unpop takes a very long time, even though the space searched doesn't seemthat large. Closer investigation showed that the system was doing a lot of uni�cations while searchingfor maximal matches. As with other deductive systems, the order in which conjuncts appear in anaction de�nition can have a big impact on how e�ciently the conjunction can be handled. Itwould be nice if a preoprocessor could �nd and correct such problems, but for now some tuningis necessary. In general, however, very little rewriting is required. For the experiments reportedhere, no rewriting is required; some of the domains from other researchers are expressed in a veryunnatural way for Unpop, but I avoided any revisions. For example, in the Fridge domain, theactions to remove and attach the backplane of a refrigerator are written to include all the screwsinvolved: (remove-backplane b1 f1 s3 s4 s1 s2), for instance. This is because it was originallyproduced for a planner that couldn't handle context-dependent e�ects. That means that there are24 (= 4!) di�erent equivalent actions, one for each permutation of the screws. It is a real nuisancefor Unpop to think about all these, but it does.Finally, the regression-match graph often provides an inaccurate estimate of the e�ort required toachieve a goal. The major reason for this limitation is that the mechanism doesn't count desctructivee�ects of plan steps. It doesn't distinguish between steps that achieve one goal and delete another,and steps that achieve one goal while preserving another. Because so much of the research in theplanning literature is concerned with this kind of negative interaction, it may be a mystery howUnpop works at all. The answer is that in many cases it is acceptable to handle deletion by waitingfor it to be projected. After the planner has added an action that deletes a goal, the newly constructedregression-match graph will contain a nonzero estimate for the cost of reachieving it. In best-�rstmode, the result is often a polyonimal amount of backtracking. For example, in the blocks world,if the system chooses a destination for a block that covers up a block that is supposed to be clear,then on the next iteration it will backtrack and try a di�erent place. There is only a bounded list ofplaces to try. However, in some problems this technique is not satisfactory. Without the incoherencefetaure, Unpop thrashes badly on problems like the \Fridge" problem in which a long sequence ofgoals must be deleted that are true now and must be true in the end. In hill-climbing-with-restartmode the poor handling of deletion means that the planner's estimate of the actual work remainingcan steer it in the wrong direction for a long time.Another source of inaccuracy in e�ort estimates is the failure to count multiple occurrences ofsubgraphs properly. Consider a domain in which a robot is able to carry two objects, and it has to along distance to reach them. The estimated e�ort will count the steps of the trip twice. To alleviatethis problem, I experimented with a version of the algorithm that returned a multiset of actionsinstead of a single number. This multiset was de�ned as follows, letting AS(p) be the \action set"for a node of the regression-match graph:� If p is a goal literal, and p is true in S, then AS(p) = fpg;� If p is a goal literal, and p is not true in S, thenAS(p) = p+ smallestg2reductions(p)AS(g)where the \+" sign means to add an occurrence of p to the multiset.� If g is a goal conjunction, thenAS(g) = jsmallesth2cohorts(g) [p2h AS(p)j22

where [refers to multiset union: the number of occurrences of x in S1 [S2 is the max of thenumber of occurrences in S1 and the number of occurrences in S2.� If the previous rules do not assign an action set, then assign a multiset in which every actionoccurs in�nitely often.(Compare the de�nition of EE in Section 3.3.) Now instead of estimated e�ort we can take the sizeof the multiset that is associated with the top node. The hope was that if a subgraph occurred morethan once its actions would be counted just once in the action set. In the example I just gave, thesequence of motion actions would give rise to a multiset of \moves," which would be counted justonce.This scheme didn't work as well as I hoped. It tends to underestimate the e�ort about as oftenas the numerical scheme overestimates. More subtly, it has little e�ect on the di�erential powers ofe�ort estimates. That is, if the numerical scheme rates two successor plans about the same, so willthe multiset scheme. This lack of discrimination is especially important in hill climbing.5 ImplementationUnpop is implemented using the Nisp macro package [23] on top of Harlequin Common Lisp. BecauseNisp is a macro package, it a�ects only the compile times for programs, and not execution times(except to the extent that its presence alters the behavior of the garbage collector).Problems and domains are presented to Unpop using the PDDL formalism [25]. For each domainthere is stored:1. Lists of all the object types and constant symbols associated with the theory.2. For each predicate and action functor, the type constraints on its arguments.3. An index of all the action de�nitions in the theory. Each action de�nition speci�es the precon-ditions and e�ects of an action.4. An index of all the deductive rules associated with the theory. These are used for backwardchaining, Prolog-style.5. A list of facts that are true in every situation. (These involve only constant symbols, andcannot be changed by actions.)6. Indexes for maintaining unique copies of propositions and actions. This enables them to beEQ-tested and EQ-hashed when necessary. I use the term occasion to refer to a \uniqui�ed"proposition of this kind.7. A list of domain variables, such as the dimensions of the grid.8. An action-di�erence table, which for each action stores all its regressions.9. An \achievability table," which speci�es for each predicate whether it can be altered by anyaction.PDDL supplies a simple inheritance mechanism for domain theories, so that one theory can bede�ned to be equal to another theory, with the addition of further predicates, rules, actions, orwhatever.The action-di�erence table corresponds to the operator-di�erence table of GPS [26]. It is builtup incrementally. Every time Unpop computes the regression of an action, it caches it in the table,so the next lookup will be much faster. This table does not depend on the particular problem beingsolved, so it is saved from run to run.The \indexes" in the list, and the action-di�erence table, are implemented as discrimination treeson symbolic expressions [8, 28]. Each node discriminates on a particular position in the expression(CAR, CADR, etc.) and partitions the expressions it is storing into buckets depending on whatever23

content it �nds at that position. When a bucket gets to be too large, it is further discriminated.These indexes are used to fetch rules, propositions, or action de�nitions that unify with a particulargoal. They are e�cient enough that in practice 95% of the uni�cations the system tries succeed.To de�ne a problem, you must tell Unpop three things: the domain, the initial situation, andgoal. An initial situation de�nes a situation space, de�ned as the set of all situations that can bereached by taking sequences of legal actions starting in the initial situation. A situation space isrepresented by a data structure that speci�es, among other things, a situation index that enablesUnpop to tell very quickly whether a newly generated situation has been encountered previously.(See Figure 3.) This index is also implemented as a discrimination tree, whose nonleaf nodes arelabeled with occasions. If the label is occasion C, then the node has two subnodes, one containingall the situations stored in the node in which C is true, the other containing all those in which C isfalse. The contents of nodes are further discriminated whenever they contain �ve or more situations,provided there exists a C that is not true in all the situations or false in all of them.In an earlier version of Unpop, instead of this situation-index mechanism, situation spaces wererepresented as lists of situations, which were linearly searched. For certain sorts of abstract problems(such as the arti�cial domains mentioned in Section 6.5), thousands of situations can be generated,and Unpop would spend most of its time deciding if a newly computed situation had been seenbefore. The situation index reduces this time drastically.In Figure 3, the dotted arcs are drawn based on the assumption that a situation is �rst seen whenthe planner explores one of the shortest paths to it. In fact, especially in hill-climbing-with-restartmode, the planner may well encounter a situation �rst when it is pursuing the longer path. In thiscase it does not discard the shorter path when it is found, but continues to work on it.The heart of Unpop is the module for computing regression-match graphs, which calls two mainsubroutines: one to compute regressions and one to compute maximal matches. I'll describe thegraph manager itself �rst.The implemented system di�ers from what I've described here in various ways. Mathematicallyit's convenient to talk in terms of goal conjunctions, cohorts, and goal literals. In practice, it's moreconvenient to keep track of two things:1. The goal literals2. For each goal literal, the set of all its reductions.The reduction of a goal literal g is a pair hA; li, where A is an action and l is a list of goal literals.The reduction indicates that there is an action de�nition for action term Av = a(?v1; : : : ; ?vn) anda substitution � such that [Av]R(g) = c and � is a maximal match of c with the current situation,and A = �(Av) and l = �(c). That is, having computed the maximal match, we combine it with theaction de�nition and discard it.The regression-match graph is built breadth-�rst. I experimented with depth-�rst schemes, butin some domains they visit the same goal literal repeatedly at di�erent depths. In domains in whicha depth cuto� is necessary, it matters what depth a node is encountered at, so it's best to encounterit �rst at its least depth. A breadth-�rst scheme makes that more likely.After the graph has been built, a second pass through it computes e�ective e�orts and feasibleactions. A feasible action speci�cation consists of the following:1. A (uniqui�ed) action term;2. A plan pre�x. (This is always just the current plan pre�x, unless the preservation machineryof Section 3.7 is in use, when it might be some pre�x of the current pre�x.)3. The e�ective e�ort of the action (the minimal e�ort of any coherent subgraph of which it is aninitial step; see Section 3.3).4. The subsequent-steps table of the feasible action, which is a table giving, for each action thatoccurs in the tree, an estimate of its incoherence after this feasible action (see Section 3.6).24

A few more words about incoherence are in order. Recall that the incoherence of action A1 afteraction A0 is the least number of actions between A0 and A1 in any coherent subgraph of whichA0 is an initial step. Unfortunately, there is no way to compute this number without enumeratingall the coherent subgraphs, which would be very expensive. Instead, the Unpop system computesthe following approximation: the least number of \incoherence layers" between A0 and A1 in anycoherent subgraph, where an \incoherence layer" is a set of actions that all have the same incoherence.That is, it assigns 0 to all feasible steps in pursuit of immediate siblings of the purpose of A0, or,if there aren't any, A0's immediate successor action. It then assigns 1 to all feasible steps that aresuccessors of siblings. These numbers can be computed simply by computing siblings and successorsat each level, as the estimated e�orts are being propagated up the regression-match graph. Inpractice, the main role of incoherence measures is to distinguish steps with incoherence 0 from stepswith incoherence > 0, and this approximation agrees with the exact de�nition in what it assigns thevalue 0 to. In fact, above some threshold (the MAX-INCOHERENCE* parameter), the system does notdistinguish among di�erent incoherence values.I experimented with best-�rst and hill-climbing search schemes. For most tests I settled on ahybrid scheme that runs best-�rst until the search tree has gotten to be too bushy, then switchesto hill climbing on the most promising branch, restarting randomly as describe in Section 3.4. Formany problems such a hybrid approach does almost as well as the better of the other two schemeswould do. The criterion of \bushiness" is the \obesity" of the queue of search states, de�ned as thenumber of search states that occur at approximately the same depth, and with approximately thesame score, as the current search state. When this number exceeds FAT-THRESH*, usually set to 10,the system switches to hill-climbing mode.The \inner loop" of the whole Unpop system is the algorithm for computing maximal matches.This operation is in itself NP-hard in the worst case, although in practice that doesn't seem to mattermuch. The maximal-match algorithm works as follows. Given a goal of the form g11 ^ g2 ^ : : :^ gk,it recurses into two subcases: �nding matches for which g1 is in the hit set Ptrue , and matches forwhich it is in Pfalse . (See Section 3.2.) The former are obtained by �nding all insances of g1 thatare true in the current situation, and the associated substitutions. For each such substitution �, thematch �nder is called recursively with the goals �(g2) ^ : : : ^ �(gk).The other recursive branch is somewhat more interesting. The match �nder is looking for anymatch � of g2 ^ : : : ^ gk such that �(g1) has no true instances in the current situation. If g1 isvariable-free, the this branch can be pruned if g1 has true instances; if g1 has no true instances, thenit is added to a list of di�erences. Otherwise, when it has variables and true instances, it must bepassed down the recursion as an element of an \avoid" list, a list of goals that must not be satis�ablewhen all variables are bound. Every time a substitution is found, the avoid list must be checked.If an element becomes variable-free and true, the branch is pruned; if variable-free and false, theinstantiated goal is added to the di�erence list. Otherwise, it is retained on the \avoid" list.The recursion ends when the matcher runs out of conjuncts. At that point it has a list of knowndi�erences (ground literals that are false in the current situation), and the \avoid" list, literals withvariables that must have no true instances in the current situation. If any element of the \avoid" listhas true instances, the branch is pruned. Otherwise, the only remaining task is to instantiate thesevariables. The matcher does this by �nding the type constraints for all the predicates mentioned inthe di�erence list and avoid list, and �nding all true instances of them. In the example described atthe beginning of Section 3.2, the system requires maximal matches of(carrying robot k1) ^ (at robot 2 -3) ^ (at ?k2 2 -3)Suppose that the �rst two conjuncts are true, but there is no key at h2;�3i. Then the only branchof the maximal-match search that is not pruned bottoms out with di�erence listf(carrying robot k1), (at robot 2 -3)gand \avoid" list 25

f(at ?k2 2 -3)gThe type constraint on the at predicate is(at ?a - (either agent key) ?i ?j - coord)So the set of maximal matches is the set fk =xg for all x such that7(agent x) _ (key x)There is one last optimization in the maximal-match �nder. Before a literal is added to the\avoid" list, it is checked to verify that it is achievable. A literal is achievable if there is any rulethat mentions its predicate in an e�ect. Once a predicate has been checked by searching through therules, its achievability is cached so it can be checked quicker the next time. The maximal matcherprunes any branch of its recursion that requires putting an unachievable formula in the di�erencelist. That's how the absurd matches described at the end of Section 3.3 are eliminated.6 ResultsUnpop has been run on a wide variety of planning problems, including the Blocks World, theGrid World described in Section 1, a corpus of problems from the University of Washington, the\Mystery" domains from the AIPS competition, the \Rocket" problem of [5], and the arti�cialdomains of [3]. On some of these it exhibits exponential behavior, but on many of them its behavioris polynomial, especially when you measure the number of plans (search states) tried. In this sectionI will summarize these results. The data reported below were obtained by running on a 300 MHz DellPentium-II workstation with 128MBytes of primary memory, using Windows NT as the operatingsystem and Harlequin Common Lisp as the programming language. The running times below includegarbage-collection times, because I don't think it makes sense to talk about Lisp run times withoutincluding garbage collection.8 If someone is interested in how long this algorithm will take to solvea problem they care about, they need to know how long it will actually take, not how long it wouldtake in an ideal world where garbage collection was free. It is no doubt true that when and if thisstyle of algorithm becomes useful for practical applications, it will have to be rewritten in a clumsierbut more e�cient language such as C++. However, there are many factors that would make it runfaster if so translated; there is no reason to single out garbage collection.All the experiments were run using the hybrid search scheme outlined above. The maximumnumber of plans considered varied from problem to problem, and, as explained in Section 3.5,the maximum plan length was always one-half of the maximum number of plans. Like any otherre�nement planner, Unpop must consider at least N + 1 partial plans when it succeeds in �nding asolution of length N . (N +1 because the empty plan it starts with is counted.) In the tables below,the \Search" column gives the number of plans generated that are not on the path to the solution.Therefore, in the case where it �nds a solution, the \Search" number is the total number examined�(N + 1) . When it doesn't �nd a solution, the \Search" is the total number examined, which isusually equal to the bound it was given; however, in some cases it runs out of plans to try muchsooner because the regression-match graph can detect that the problem is unsolvable.In all the experiments below the system was run with the same parameter settings, with oneexception described in Section 6.5. The settings are:CONSIDER-PRESERVATION* Value: falseThis turns o� the preservation-precondition machinery described in Section 3.7. In manydomains it just slows things down by causing the system to arti�cially consider undoing its lastaction in order to look for ways to achieve a preservation precondition before it.7Actually, if you check Section 3.2, you'll see that the context makes the �rst disjunct of this goal absurd.8Because of a memory leak, either in my code or in the Harlequin system, the Lisp had to be restarted periodically toavoid thrashing. It was never allowed to grow to more than 80Mb.26

COUNT-INCOHERENCE* Value: trueThis turns on the incoherence machinery of Section 3.6.MAX-INCOHERENCE* Value: 3Plan-pre�x extensions with incoherence 3 or greater are counted the same.MAX-MERGED-OUT* Value: 5 except in Section 6.5, where it had value 20.MAX-HYB-BRANCHING* Value: 20In some domains the planner �nds a large number (> 20) of feasible actions in a state. Such ahuge branching factor makes one false step deadly. To avoid such a fate, we limit the numberof feasible actions generated as preconditions of a single action to be � MAX-MERGED-OUT*, andlimit the number used to generate successor states to be � MAX-HYB-BRANCHING*. If the limitsare exceeded, the actions are sorted using their estimated e�orts and incoherences, and onlythe best are retained.SCRAMBLE-SUCCESSORS* Value: trueThe list of favored actions is scrambled before being sorted and added to the search queue.This prevents the planner from being harmed by or pro�ting from a lucky coincidence in theordering of actions tried.HC-BACKTRACK-DEPTH-FIRST* Value: falseIn hill-climbing mode, when a state has no successors and this ag is true, the planner backsup to the chronologically most recent untried locally best branch. If it's false, it does a randomrestart from an arbitrary ancestor node, again picking some locally best branch. The plannertends to do better on the average when this ag is true, but (a) I don't know why, and (b)when it does worse, it can do a lot worse, because it must explore a bad part of the spaceexhaustively. So I made it false.FAT-THRESH* Value: 9As explained in Section 5, once the search-state queue's \obesity' exceeds this threshold, thesystem switches from best-�rst search to hill climbing.MAX-HYB-QUEUE-LENGTH* Value: 100In the hybrid search algorithm, there is no point in letting the search-state queue get to belong, because if it's long it's probably obese, and once the program gets into hill-climbing modeit rarely examines more than a small fraction of the states on the queue. Once the queue hasmore than MAX-HYB-QUEUE-LENGTH* states, the once past that horizon are discarded.All of the problems discussed in this section are accessible from my web page:http://www.cs.yale.edu/users/mcdermott.html6.1 The Grid WorldA typical problem in this world is as speci�ed by Figure 5. The shapes are keys. The squares withholes in them represent locks. Initially, all intersections with locks are locked. The robot can opena locked intersection hi; ji by standing next to it with a key of the same shape as the lock, andexecuting the action open(i,j). The goal is to get the diamond-shaped key DK to location h3; 0i. Todo that requires unlocking intersection h3; 1i, which is locked with a circular key. It does no goodto try to use a triangular key, because the only one is trapped inside a ring of triangular-lockedintersections. Hence the robot must use dk to open h�4; 0i, h�3; 1i, or h�3;�1i, carry the circularkey ck to where the intersection h3; 1i can be unlocked, then go back and retrieve dk. (The robotcan carry only one key at a time.) The optimal plan has 43 steps. Unpop did not �nd it in the �veruns reported here, but did �nd a 48-step plan:((move right) (move up) (move right)(pick_up dk) (move left) (move left) (move left)27

Problem Optimal Unpop's behaviorLength Search TimeGrid World 43 48 30 21448 30 20548 30 19448 30 19648 30 197Times are in seconds Table 6: Grid World Results
dk

Robot

ck
<3,0>

Figure 5: The Grid World(move up) (move left) (move left)(unlock -3 1) (move down) (move down)(pick_up ck) (move up) (move up)(move right) (move right) (move right) (move right) (move right) (move right)(unlock 3 1) (move down) (move down)(put_down ck) (move up)(move left) (move left) (move left) (move left)(move up) (move left) (move left)(move down) (move down)(pick_up dk) (move up) (move up)(move right) (move right) (move right) (move right) (move right) (move right)(move down) (move down)(put_down dk))The results of 5 runs are shown in Table 6. In each case the maximum number of plans exploredwas set at 200, and the maximum plan length to 100.28

Unpop switches from best-�rst to hill-climbing mode after �nding about a 25-step plan (in theusual case). This plan is optimal \so far" (meaning that it could have been extended to an optimalplan), but the search had gotten to be too bushy, so Unpop gave up on exploring all the possibilities.This class of problems is a good example of the global inaccuracies that can occur in estimatede�orts. The robot must go back and forth several times to achieve its goals; the regression-matchgraph contains several pointers to the substructure for these trips; but there is no way to tell howmany occurrences of the substructure will actually need to occur in the �nal plan. It depends onfactors like what the robot needs to carry when it moves. For instance, when the robot has justexecuted (pick up ck), it must unlock the lock at location h3; 1i, then move dk to h3; 0i. Both goalsrequire a trip from the second quadrant to the �rst quadrant; the second goal requires the robotto be holding dk. This second goal appears simple, because the robot is still at the same locationas dk. However, it can't pick dk up without dropping ck. As it moves back to the right carryingck, the goal to get ck to h3; 1i looks easier and easier, while the goal to pick up dk looks harderand harder. Consequently, the estimated e�ort stays constant. After h3; 1i has been unlocked, therobot must go back to get dk. Now the goal starts to look more and more di�cult, as the planner isforced to realize step by step that it's going to have to retrace the steps it's taking. If the plannerstayed in best-�rst-search mode, it would have to prove that all the alternative side trips, themselvesoveroptimistically assessed, would do no better if pursued. In hill-climbing mode, the system justplods ahead looking at the locally best successor plan, and solves the problem with almost no search,albeit with a few suboptimalities.Problems like those in the grid world are di�cult for traditional planners. A system likeUcpop [37] or Prodigy [36] has trouble because it represents only a single goal structure in itspartial-plan representation. Because it has no way of knowing from which direction to approachan intersection, when it is looking for a path of length n it has to consider O(4n) alternative goalreductions before getting to goals that can be satis�ed by feasible actions.6.2 The University of Washington CorpusThe University of Washington Planning Group has a corpus of planning problems that have beenattempted or solve by their planner (Ucpop) and planners from other institutions. It is accessiblefrom the URLhttp://www.cs.washington.edu/research/projects/ai/www/ucpop.htmlThese may be compared with the versions at my web site to see exactly what changes were madein order to get Unpop to run on them. In each case, the problem speci�cation was edited as littleas possible. The major change was to introduce argument types for predicates and actions. In mostcases, this was straightforward and enhanced the clarity of the speci�cation. Without these changes,the maximal-match �nder would have produced way too many matches, as explained in Section 3.2.On some of the domains minor bugs had to be �xed to make the problems solvable. In some, suchsevere bugs were found that it was impossible to �gure out the intent. Timing results for sampleproblems in most of the remaining domains are given in Table 7, in increasing order of di�culty.Some of these problems are so easy that it was not necessary for Unpop to be run multiple times;for others there was more variety. A detailed comparison with UCPOP is not possible, because thecorpus does not include systematic performance data; my impression is that UCPOP cannot solvethe Strips, Fridge, and Flat-tire problems in a reasonable amount of time.The \Ferry" and \Robot" problems are toys. The \Molgen" domain is inspired by the workof [31]. But the problem in the corpus (\rat-insulin") is probably not representative of problemssolved by the real Molgen planner. The \Monkey" problem(\monkey-test3" in the corpus) involvesa monkey, some boxes, some bananas, and so forth. The goal is to get some bananas and a glass ofwater. 29

Problem Optimal Unpop's behaviorBound Length Search TimeFerry 7 20 7 2 0.2Robot 7 30 7 2 0.2Molgen 10 80 10 13 1.6Monkey 12 80 13 5 3.5Flat tire 19 300 1 301 14.635 213 10.027 205 8.129 66 2.621 41 1.7Blocks 8 100 10 19 10.315 1 5.526 20 19.115 12 12.810 1 4.8Prodigy 13 100 20 19 3.730 21 4.220 10 2.920 5 2.418 5 1.6Fridge 13 80 13 37 19.813 13 6.813 26 9.413 11 5.613 1 3.1Strips 14 100 17 22 54.619 29 64.218 19 46.617 42 79.317 14 38.6Times are in seconds Table 7: Results for University of Washington CorpusThe \Flat Tire" problem (\�xit" in the corpus) was originally due to Stuart Russell. To �x a attire, it is necessary to take tools out of a car's trunk (or \boot," as the problem so quaintly says),use them in various straightforward ways, then put them away (along with the bad tire) and closethe boot. Unpop quickly switches from best-�rst search to hill climbing with restarts. Every timeit happens to choose to close the boot, it can't reopen it again without repeating a state, so it doesa random restart. It usually �nds a solution eventually, but it can take a long time; in one of the�ve runs it failed (indicated by a value of 1 for solution length). Note that it had to be given aplan-number bound of 300 to avoid giving up prematurely.The blocks world contains a single action (puton block destination origin), with the usual ax-iomatization, involving a clear predicate and a restriction that every block have at most one blockon top of it (except for a big block called \table"). The problem in Table 7 is the most di�cult forUnpop: Starting from a situation in which �ve blocks are stacked up in increasing order (\B5 on B4on B3 on B2 on B1 on the table"), achieve the following goal:(on B3 B2) ^ (on B4 B3) ^ (on B5 B4) ^ (on B1 B5)30

which requires undoing every goal but the last before reachieving all of them, with no hint aboutwhere B2 must be in the end. This problem is not in the corpus, but is harder than any that appearsthere.The \Prodigy" problem is another version of the blocks world, closer to Nilsson's [27] speci�cation,in which there are separate actions of the form unstack(block, o�-block), stack(block, on-block),pick up(block), etc. The one for which results are reported is \prodigy-p22" in the corpus.I discussed the \Fridge problem" (corpus label: \�xb") in Section 3.6, in connection with theincoherence mechanism. That mechanism sharply reduces the search required to solve the problem,although the system still has a high probability of choosing the wrong action when it must reattachthe backplane before putting the screws back. The problem is that it has a 0.8 chance of choosingto put a screw back. In hill-climbing mode, once it has gone down this path it has to explore it toa dead end before giving up and trying another path.The \Strips" problem (\move-boxes-1" in the corpus) involves a robot pushing boxes from roomto room, as the Shakey robot [12] did. Solving the problem does not require a lot of search, at leastnot in limited-discrepancy mode, but it does take a lot of time. Obviously, the reason is that themaximal matcher is doing a lot of work. The number of uni�cations done for the Strips problem isas high as 648,000, of which more than 90% are successful. This is about 9000 per search state. Forcomparison, in the Monkey problem there are about 1100 uni�cations per search state.6.3 The Mystery WorldThe \Mystery World" was designed for the AIPS-98 Planning Competition. It is actually threedomains, called Mystery, Mystery-Prime, and Mystery-Two. In each the world consists of a planargraph of locations, each having zero or more cargo items, zero or more vehicles, and some amountof fuel. The possible actions are to load a cargo item onto a vehicle at the same location, to move avehicle from a location to an adjacent one, and to unload a cargo item from a vehicle. An item can'tbe loaded unless there is room for it on the vehicle, and a vehicle can't move unless there is fuelfor it at the location. One trip takes one unit of fuel. Mystery-prime di�ers from Mystery in thatany location with at least two units of fuel can \leak" a unit to any other location. Mystery-two isthe same as Mystery-prime except that fuel can leak only between adjacent locations. See Table 8and 9.Note the use of the change construct of PDDL to express changes in numerical quantities (and the:functors �eld to declare the uent functors fuel and space). These constructs allow for a succinctstatement of what the leak action accomplishes, and allows the regression system to determine, forinstance, that in Mystery-two you can make (> (fuel n22) 0) by �nding a node ?n1 such that(conn ?n1 n22) ^ (> (fuel ?n1) 1) ^ (> (+ (fuel n22) 1) 0)In the AIPS competition, the true nature of the domain was concealed by calling locations \foods,"vehicles \pleasures," cargo items \pains," and so forth. Numbers were simulated with a clumsy sys-tem of constants and special relations. (None of the contestants could handle the change construct.)Since Unpop can handle numbers, there seemed no point in expressing the domain in an unnaturalway.Tables 10 and 11 give the results for Mystery and Mystery-prime. (The results for Mystery-twowere not qualitatively di�erent from those from Mystery-prime.) There were 35 problems in eachdomain, and they were the same for each domain. The planner was given a length bound of 30for each problem (no problem required a plan more than 16 steps long), and a search-space size of60. After searching 60 partial plans with no solution, the search was aborted. In at least one casethe planner could have found a plan of length 33 if allowed to continue (although the optimal planwas of length 12, so this isn't so brilliant). Note that for unsolvable problems X-7 (size 264), Y-3(size 373), and X-18 (size 383), Unpop did no search at all, but inferred from the regression graphconstructed at the �rst step that no action would get it anywhere.31

(define (domain mystery)(:requirements :typing :existential-preconditions :conditional-effects:expression-evaluation :fluents)(:types physob node - objectvehicle cargo - physob)(:predicates(conn ?n1 ?n2 - node)(loc ?v - physob ?n - node)(aboard ?c - cargo ?v - vehicle))(:functors(fuel ?n - node)(space ?v - vehicle)- (fluent integer))(:action load:parameters (?c - cargo ?v - vehicle):vars (?n - node):precondition (and (loc ?c ?n)(loc ?v ?n)(fluent-test (> (space ?v) 0))):effect (and (not (loc ?c ?n))(aboard ?c ?v)(change (space ?v) (- (space ?v) 1))))(:action move:parameters (?v - vehicle ?n1 ?n2 - node):precondition (and (loc ?v ?n1)(conn ?n1 ?n2)(fluent-test (> (fuel ?n1) 0))):effect (and (not (loc ?v ?n1))(loc ?v ?n2)(change (fuel ?n1) (- (fuel ?n1) 1))))(:action unload:parameters (?c - cargo ?v - vehicle):vars (?n - node):precondition (and (aboard ?c ?v)(loc ?v ?n)):effect (and (not (aboard ?c ?v))(loc ?c ?n)(change (space ?v) (+ (space ?v) 1)))))Table 8: \Mystery" DomainAny plan that is legal in Mystery is legal in Mystery-two, and any plan legal in Mystery-twois legal in Mystery-prime, so it's reasonable to assume that if a planner can solve a problem inthe Mystery domain, it can also solve it in the other two. However, the search space changes, andthere are cases where Unpop (and the AIPS contestants) fail to solve a Mystery-prime problem eventhough they solved it for the simpler Mystery domain.The actual problems are too big to display here. See the web site referred to earlier for a completelist. In tables 10 and 11 I have arranged the problems in order of increasing size (as measured bythe number of symbols in their PDDL de�nitions). Obviously, this is only a rough measure of how32

(define (domain mystery-prime)(:extends mystery)(:action leak:parameters (?n1 ?n2 - node):precondition (fluent-test (> (fuel ?n1) 1)):effect (and (change (fuel ?n1) (- (fuel ?n1) 1))(change (fuel ?n2) (+ (fuel ?n2) 1)))))(define (domain mystery-two)(:extends mystery)(:action leak:parameters (?n1 ?n2 - node):precondition (and (conn ?n1 ?n2)(fluent-test (> (fuel ?n1) 1))):effect (and (change (fuel ?n1) (- (fuel ?n1) 1))(change (fuel ?n2) (+ (fuel ?n2) 1)))))Table 9: \Mystery-prime" and \Mystery-two" Domainsdi�cult the problems were.Each line of the table gives numbers for a single problem. \Best AIPS" gives the length of theshortest plan found by any contestant at the AIPS competition, and the time required to �nd thatplan. If the length is 1, no plan was found (which may or may not mean that no plan exists). Ifthe length is \|," then the problem was not attempted during the competition. (The \Y" problemswere from Round 2 of the competition, and so were treated as being Mystery-prime problems only.)No time is given for the cases where no AIPS contestants could �nd a solution to a problem, becausenot all programs speci�ed a time for problems they couldn't solve, and also because some programsjust gave up after a while (as Unpop does) while others were able to prove there was no solution,thus making comparisons between them meaningless.Obviously, the times Unpop takes on these problems is usually larger than the time taken bythe contestants. However, most of the AIPS contestants are C programs, whereas Unpop is writtenin Lisp. When Unpop can solve a problem, it usually does very little search, as shown by the factthat the number of partial plans considered is only a bit larger than the length of the plan found.Insisting that it try 61 plans before declaring failure is probably too conservative; if the thresholdhad been set at 30 the results would not have changed, but the run times for the case where it failedto �nd a plan would have been half as long.For very large problems Unpop's directedness pays o�. Of the 16 largest problems in the Mystery-prime domain, Unpop was able to �nd solutions for 13, whereas all the AIPS contestants togetherwere able to solve 3. I don't know if the three problems Unpop couldn't solve have solutions. Unpoptook up to 5 minutes to solve the largest of these problems, and conceivably the AIPS contestantscould have solved them with that amount of time. However, my impression is that they all ran outof memory space due to their insistence on advance instantiation of all terms.Figures 6 and 7 plot the time per \plan-symbol" for these two domains. This number is just theratio of running time by the product of problem size (number of symbols) times number of plansconsidered9 If the number is constant, then all the time Unpop spends can be accounted for byan increase in problem size and number of plans considered. Although there is considerable noise(because number of symbols is only an approximate measure of how hard each problem is), the ratioappears to grow linearly for both of these domains. Because the number of plans considered grows9Remember that, when a solution is found, this number is \Search" + solution length + 1.33

Problem Size Best AIPS UnpopLength Time Length Search TimeX-25 92 4 0.10 4 0 0.4X-1 107 5 0.04 5 0 0.3X-28 118 7 0.06 9 3 1.4Y-5 130 | | 1 61 12.8X-27 158 5 4.3 9 2 3.8X-11 161 7 0.4 11 2 1.4X-12 162 1 | 1 61 20.1X-29 175 4 0.11 4 1 0.9X-9 182 8 0.16 8 2 3.3X-4 188 1 | 1 61 8.2X-5 207 1 | 1 61 31.6Y-2 208 | | 8 5 3.7X-3 228 4 0.20 4 0 2.1X-2 228 9 0.41 10 1 5.0X-26 236 6 1.78 6 2 6.0X-16 240 1 | 1 3 3.6Y-1 255 | | 4 0 5.3Y-4 258 | | 4 0 2.2X-7 264 1 | 1 1 0.3X-30 265 12 5.64 14 1 20.8X-8 326 1 | 1 61 104.2X-19 327 8 0.87 6 1 11.8X-21 352 1 | 1 61 47.9X-20 356 10 56.5 7 1 22.5X-15 369 1 | 6 1 17.3Y-3 373 | | 1 1 0.8X-17 376 4 17.8 5 1 13.1X-23 377 1 | 1 61 101.9X-18 383 1 | 1 1 2.3X-6 384 1 | 1 61 177.4X-24 385 1 | 1 61 33.5X-10 485 8 9.1 1 61 123.1X-22 515 1 | 1 61 302.4X-13 521 16 1.79 16 44 370.1X-14 548 1 | 18 23 162.1Table 10: Results for \Mystery" Domainalmost linearly with solution length, the conclusion is that, for solvable problems, running time isgrowing proportionally to the cube of problem size.6.4 The Rocket ProblemThis problem, drawn from [5], is very hard for Unpop. You are given two rockets and N cargoobjects, all in London. Any amount of cargo can be loaded onto a rocket, but the rocket can beown only once. Some subset of the objects must go to New York and some subset to Paris. Althoughconsiderable variation in the order of steps is possible, there is essentially only one solution to eachsuch problem: Load the objects destined for Paris into one rocket; load those destined for New York34

Problem Size Best AIPS UnpopLength Time Length Search TimeX-25 92 4 0.1 4 1 0.5X-1 107 5 3.7 5 0 0.4X-28 118 7 79.7 11 1 1.6Y-5 130 6 0.5 8 1 4.0X-27 158 8 3.2 7 2 2.8X-11 161 8 1.8 11 0 2.9X-12 162 9 4.5 12 1 8.0X-29 175 5 2.3 4 1 1.5X-9 182 8 1.9 8 1 13.5X-4 188 9 0.8 9 1 3.9X-5 207 11 8.1 17 2 19.2Y-2 208 7 2.5 9 2 7.0X-3 228 4 0.9 4 0 5.9X-2 228 9 6.5 10 1 7.5X-26 236 7 13.3 14 0 16.4X-16 240 11 5.2 13 1 25.2Y-1 255 4 7.3 4 1 10.1Y-4 258 4 8.4 4 2 5.6X-7 264 5 1.6 5 0 4.0X-30 265 1 | 12 2 17.7X-8 326 7 2.8 10 2 52.5X-19 327 1 | 6 2 24.7X-21 352 7 1.1 11 2 22.1X-20 356 1 | 17 2 62.8X-15 369 1 | 6 0 14.6Y-3 373 1 | 13 0 18.8X-17 376 4 7.1 5 0 12.3X-23 377 1 | 18 0 55.0X-18 383 1 | 1 61 27.4X-6 384 1 | 1 61 313.9X-24 385 1 | 15 2 24.8X-10 485 1 | 19 1 79.0X-22 515 1 | 16 1 135.7X-13 521 1 | 15 2 89.3X-14 548 1 | 1 61 289.2Table 11: Results for \Mystery-prime" Domaininto the other; y each rocket; unload in Paris; unload in New York. If N objects are to be taken,the optimal solution takes 2N + 2 steps.Regression-match graphs are little help with this problem, because you get almost zero infor-mation about progress from a single step. The problem is that getting each cargo object to itsdestination is trivial. The hard part is realizing that exactly one rocket can go to London and oneto Paris. Unpop's performance is summarized in Table 12. Unpop eventually stumbles on the rightplan, but it must search a huge number of plans (on the average about 4N) that are essentially thesame except for step ordering. The planner was given a bound of 100 plans to try, so it can't solvea problem of size greater than 3. 35

50 100 150 200 250 300 350 400 450 500 550
0

0.002

0.004

0.006

0.008

0.01

0.012

Problem Size

T
im

e/
(s

iz
e

*
pl

an
s)

Figure 6: Mystery-domain Ratio of timesize�plans

50 100 150 200 250 300 350 400 450 500 550
0

0.005

0.01

0.015

Problem Size

T
im

e/
(s

iz
e

*
pl

an
s)

Figure 7: Mystery-prime Ratio of timesize�plans6.5 Arti�cial DomainsI tested Unpop on most of the problem domains described in [3]. None of these domains used variablesin any nontrivial way, so there was always exactly one maximal match for every goal conjunction.However, they do involve lots of action interactions, so the order of steps is important. In [3], thetotal-order planners usually do very poorly on these problems, becoming exponential for all but the36

Size Optimal Unpop's Behavior(No. of cargo items) Length Search Time1 3 3.4 0.8 0.32 6 6.0 4.4 1.13 8 8.0 22.2 4.04 10 1 101.0 15.2All numbers averaged over 5 runs. Times are in secondsFor problem of size N , optimal solution is size 2N + 2; Unpop �nds it.Table 12: Results for Blum and Furst's \Rocket Problem"simplest classes. In addition, with MAX-MERGED-OUT* set to 5, as for all the more \realistic" problems,Unpop was unable to solve many of the arti�cial problems, because these problems have unusuallyhigh branching factors. The larger problems typically had 15 unrelated goals, whose �rst steps wereby design equally attractive. Consequently, I set the parameter to 20 for these experiments. Inthe interests of space, I'll comment on only two of the domains, D1S1, in which its behavior isacceptable, and DmS2�, for which it is hopelessly exponential.In D1S1, there are 15 actions, A1 through A15, and 30 propositions, I1, . . . , I15, G1, . . . , G15. Allthe Ik are true initially. Each Ak requires Ik to be true, adds Gk and deletes I(k� 1). A problem ofsize n consists of a random selection of the G's. Within any contiguous sequence of G's that happensto be included, the corresponding A's to achieve them must be in numerical order. This sounds likeit might be di�cult for a total-order planner (as it was for the ones Barrett and Weld tried), butin actuality Unpop can take but one false step before having to backtrack. That is, if a plan pre�xcannot be extended to a complete plan, Unpop will realize it immediately after producing it. Theperformance is graphed as a function of problem size in Figure 8. For this problem, the bound onnumber of plans searched was set to 500, and the bound on plan length was set to 250. Oddlyenough, Unpop actually does worst for problems of medium size in this problem class. I have notsucceeded in explaining this phenomenon, although it is very repeatable. For comparison the dottedline shows the behavior of a partial-order planner on the same problem, from [3]. My total-orderplanner does not succeed in being linear, but it's not exponential either.In the domain DmS2�, there are 13 actions, two of the form Ak1 and Ak2 for k = 1; : : : ; 6, anda special action A*. There are 7 goals, with Gk achieved by Ak2, and G* achieved only by A*. Theaction Ak2 requires precondition Pk. This precondition is achieved only by Ak1, which also requiresIk as a precondition. Unfortunately, each Ak deletes Pj for j < k. The action A* deletes everygoal except G*, plus all of the Ik conditions. Initially all the Ik's are true. A problem consists ofa random sample of Gk's, plus G*. A solution is a sequence of Ak1's in decreasing k order, followedby A*, followed by all of the Ak2's in increasing k order. For example, to achieve G4, G5, G6, and G*,you must execute hA61, A51, A41, A*, A42, A52, A62iUnpop's behavior is shown in Figure 9. It is quite exponential, just like the planners in [3]. It alsodoes not �nd the optimal plan, but adds in pointless occurrences of Ak2. The plan it �nds for theexample problem is hA61, A62, A51, A52, A41, A*, A42, A52, A62iThe reason is that its coherence heuristic causes it to try to achieve Gk as soon as possible. Becauseit's in hill-climbing mode, it never undoes this decision.
37

0 5 10 15
0

1

2

3

4

5

6

7

8

9

Problem Size

T
im

e
(s

ec
)

Times are in tenths of a second Figure 8: Graph of Results for D1S17 Relation to Previous WorkThe present work derives from an attempt to simplify the GPS control structure, which, as describedby [10], is rather arcane and complex. The idea of cashing out all matching operations to generatea graph structure linking top-level goals to feasible actions �rst appeared in [7], Section 5.7, wherethe phrase \operator-di�erence tree" was used for what I now call the \regression-match graph."However, I did not at the time appreciate the need for clear de�nition of the match layers of thegraph.The most recent planning work that is related to the Unpop algorithm is the Prodigy plan-ner of Carbonell and Veloso[36, 14], and especially its incarnation as the \FLECS" commitmentstrategy.[35]. Kambhampati[18] introduced a similar framework in the context of partial-order plan-ning.What these papers have in common is that they model plans as collections of goals and subgoals.Alternative goals and subgoals are reached only by switching to another part of the search space(i.e., backtracking). More recent algorithms have begun to represent explicit alternatives the wayUnpop does. See [17, 19]. However, all of these previous works omit the idea of matching as a wayof zeroing in on relevant actions. On the plus side, they do a better job than Unpop in reasoningabout destructive interactions among subplans.The currently most successful (and fashionable) approaches to planning are based on the idea ofavoiding variables by reasoning only about fully instantiated action and proposition terms. Graph-plan [5] constructs a \planning graph" containing all propositions that could conceivably become38

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

8

9

Problem Size

T
im

e
(s

ec
)

Times are in tenths of a second Figure 9: Graph of Results for DmS2�true as the result of a series of actions. The resulting structure is extremely useful; it would benice to incorporate some of these ideas into Unpop, and I have some suggestions below. The orig-inal Graphplan had trouble with context-dependent e�ects, but this has been �xed in recent workby K�ohler et al. [22] and by Anderson et al. [2]. SATPLAN [21] treats planning as a satis�abilityproblem. This requires representing all possible propositions and actions at all possible times, whichsounds unlikely to work, but can be made to work with ingenious coding tricks. Both of these ap-proaches currently dominate Unpop. The idea of solving a problem with a huge amount of search byan incredibly optimized search engine may or may not win out over doing less search with a slowerprogram. As shown in Section 6, the space greed of these algorithms begin to catch up with them,when a more plodding approach just keeps on going.Since the original paper on Unpop appeared [24], a similar idea was independently discovered byBonet, Loerincs, and Ge�ner [6]. Their version avoids matching by working with fully instantiatedpropositions from the beginning, much as SATPLAN does. However, it uses the same idea ofestimating the e�ort required to achieve a goal by constructing tree of subgoals all the way tocurrently true propositions before taking a step. The resulting program performed well in the AIPS-98 Planning Competition.8 Conclusions and Future WorkTotal-order planning is more promising than its critics have implied. Although it doesn't solveeverything, it has one big advantage over some of the other approaches to classical planning: it39

represents a current situation in exact detail, which allows the planner to compare that situation tothe goal description, and produce estimates of how much work remains to be done. In some cases,the regression-match graph proposed here produces an excellent estimate; in other cases, it's not sogood. When it works, it typically allows a planner to avoid search almost completely, at the cost ofa polynomial-size computation at each step through plan space. The moral of the story is that weshould be looking for better heuristic estimators to guide the search through plan space.Of course, no algorithm will work well on all planning problems, because planning is NP-complete [11]. Unpop can be expected to work well whenever the negative e�ects of inserting astep too early are revealed quickly. In that case, its ability to look far ahead into the the structure ofsubgoals and actions gives it an excellent estimate of the di�culty of the problem and the potentialof the feasible actions. I believe many of the problems in the literature are like this. Unpop doesn'tdo so well when the the precise order of steps matters and the problems with bad orderings are notrevealed until they are almost complete. It is not designed to handle problems with this sort of\combination lock" avor, such as the Rocket problem.The currently most attractive alternatives to the approach proposed here are algorithms basedon planning graphs [5, 22] and algorithms based on propositional satis�ability [21]. So far thoseapproaches have had to sacri�ce expressivity in order to allow their algorithms to work. By contrast,the approach embodied in my planner handles a larger subset of the PDDL language, including somesimple numerical reasoning. In principle, it can operate in any domain in which there is a reasonablenotion of regression, the inference of a weak precondition for a goal.There are plenty of interesting research directions suggested by this work. Because the hill-climbing strategy often �nds suboptimal plans, it might be possible to �nd a better plan by restartingthe planner using the length of the �rst plan found as a bound on plan length; this idea couldbe expanded into a branch-and-bound algorithm. The rewriting technique of [1] might also beapplicable.One main direction for future work is to make management of the regression-match graph incre-mental. Currently the graph is rebuilt before the selection of every planning operator. For domainsof interesting size, such as the grid world and mystery world described above, the graphs are fairlylarge and change only slightly after each action. After some preliminary design, I think it would becost-e�ective to represent the graph as a growing data structure with edges labeled by the situationsin which they are present. The label system would work in such a way that when a successor situ-ation were created, it would automatically inherit all the edges of its predecessors, unless overridenby the incremental changes due to the e�ects of the action leading to the situation.The key element that would make the scheme work is an e�cient method for �nding all themaximal matches that must be redone as the result of additions and deletions. It turns out to befairly easy to characterize the set of literals a change in whose status would a�ect a given maximalmatch. The regression-match graph must be supplemented with an e�cient lookup table for �ndingthose points after every action.The other main direction is to improve Unpop's blind spot with respect to negative interactionsamong goals. There are two main cases where its blindness causes it serious problems, both involvingtwo sibling goals G1 and G2 from the same conjunction:� The e�ective subgraph for G1 relies on true literals that are going to be deleted by the actionsin the subgraph for G2.� The actions in the subgraph for G2 deletes G1.It would not be too tricky to detect these two situations during the feasible-action-computation phasedescribed in Section 5. It would take time, but only a polynomial amount (because the programwouldn't do anything like trying all possible orderings of the two sibling subgraphs). However, evena polynomial amount of time may be too much, unless the system gains a signi�cant amount ofsearch control. It is impossible to be sure if the investment is worth it without a detailed study.40

Acknowledgements: This work was supported in part by the Advanced Research Projects Agency ofthe U.S. Department of Defense, administered through ONR contract N00014-93-1-1235.References[1] Jos�e Luis Ambite and Craig A. Knoblock. Planning by rewriting: e�ciently generating high-quality plans. In Proc. Fourteenth National Conference on Arti�cial Intelligence, 1997.[2] Corin Anderson, Dan Weld, and David Smith. Conditional e�ects in Graphplan. In Proc. ofthe 4th Int. Conf. AI Planning Systems, 1998.[3] Anthony Barrett and Daniel S. Weld. Partial-order planning: evaluating possible e�ciencygains. Arti�cial Intelligence , 67(1):71{112, 1994.[4] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. In Proc.Ijcai, 1995.[5] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. Arti�cialIntelligence 1{2, 90:279{298, 1997.[6] B. Bonet, G. Loerincs, and H. Ge�ner. A fast and robust action selection mechanism forplanning. In Proc. AAAI-97, 1997.[7] Eugene Charniak and Drew McDermott. Introduction to Arti�cial Intelligence. Addison-Wesley,1985.[8] Eugene Charniak, Christopher Riesbeck, Drew McDermott, and James Meehan. Arti�cialIntelligence Programming. Lawrence Erlbaum Associates, 1987. second edition.[9] Ken Currie and Austin Tate. O-plan: the open planning architecture. Arti�cial Intelligence ,52(1):49{86, 1991.[10] George W. Ernst and Allen Newell. GPS: A Case Study in Generality and Problem Solving.Academic Press, 1969.[11] Kutluhan Erol, Dana Nau, and V.S. Subrahmanian. Complexity, decidability and undecidabilityresults for domain-independent planning. In Drew McDermott and James Hendler, editors,Arti�cial Intelligence 76, Special Issue on Planning and Scheduling, pages 75{88. NIL, 1995.[12] Richard Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized robotplans. Arti�cial Intelligence , 3(4):349{371, 1972.[13] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem provingto problem solving. Arti�cial Intelligence 2, pages 189{208, 1971.[14] Eugene Fink and Manuela Veloso. Prodigy planning algorithm. Technical Report 94-123, CMUSchool of Computer Science, 1994.[15] Alfonso Gerevini and Lenhart K. Schubert. Accelerating partial-order planners: some techniquesfor e�ective search control and pruning. J. of Art. Intell. Res , 5:95{137, 1996.[16] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proc. Ijcai95,pages 607{613, 1995.[17] David Joslin and Martha Pollack. Passive and active decision postponement in plan generation.In Proc. 3rd European Workshop on Planning, 1995.[18] Subbarao Kambhampati. Universal classical planner: an algorithm for unifying state-space andplan-space planning. In Proc. AAAI-95, 1995.[19] Subbarao Kambhampati. On the role of disjunctive representations and constraint propagationin re�nement planning. In Proc. Conf. on Knowledge Representation and Reasoning, 1996.41

[20] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as re�nement search:a uni�ed framework for evaluating design tradeo�s in partial-order planning. In Drew McDer-mott and James Hendler, editors, Arti�cial Intelligence 76, Special Issue on Planning andScheduling, pages 167{238. NIL, 1995.[21] Henry A. Kautz, David McAllester, and Bart Selman. Encoding Plans in Propositional Logic.In Proc. KR-96, 1996.[22] Jana Koehler, Bernhard Nebel, J. Ho�mann, and Y. Dimopoulos. Extending Planning Graphsto an Adl Subset. In Proc. European Conference on Planning, 1997.[23] Drew McDermott. Revised Nisp Manual. Technical Report 642, Yale Computer Science De-partment, 1988.[24] Drew McDermott. A Heuristic Estimator for Means-ends Analysis in Planning. In Proc. Inter-national Conference on AI Planning Systems 3, pages 142{149, 1996.[25] Drew McDermott. The Planning Domain De�nition Language Manual. Technical Report 1165,Yale Computer Science, 1998. (CVC Report 98-003).[26] Allen Newell and Herbert Simon. Gps: a program that simulates human thought. In LernendeAutomaten, pages 279{293. R. Oldenbourg KG. Reprinted in Feigenbaum and Feldman 1963,1961.[27] Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Company, 1980.[28] Peter Norvig. Paradigms of Arti�cial Intelligence Programming:Case Studies in Lisp. MorganKaufmann, 1992.[29] Edwin Peter Dawson Pednault. Toward a Mathematical Theory of Plan Synthesis. PhD thesis,1986.[30] Edwin Peter Dawson Pednault. Adl: Exploring the middle ground between Strips and thesituation calculus. In Proc. Conf. on Knowledge Representation and Reasoning 1, pages 324{332, 1989.[31] Mark Ste�k. Planning with constraints. Arti�cial Intelligence , 16(2):111{139, 1980.[32] Gerald J. Sussman. A Computer Model of Skill Acquisition. American Elsevier PublishingCompany, 1975.[33] Reiko Tsuneto, Dana Nau, and James Hendler. Plan-re�nement strategies and search-spacesize. In Proc. Fourth European Conf. on Planning (ECP-97), 1997.[34] Manueal Veloso and P. Stone. \Flecs: Planning with a Flexible Commitment Strategy. J. ofArt. Intel. Res , 3:25{52, 1995. ".[35] Manuela Veloso and James Blythe. Linkability: examining causal link commitments in partial-order planning. In Proc. AIPS-94, 1994.[36] Manuela Veloso and Jaime Carbonell. Derivational analogy in prodigy: automating caseacquisition, storage, and utilization. Machine Learning , 10:249{278, 1993.[37] Daniel Weld. An introduction to least-commitment planning. AI Magazine, 1994.[38] David Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. MorganKaufmann Publishers, Inc, 1988.
42

