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Abstract

Classical planning is the problem of finding a sequence of actions to achieve a goal given an exact
characterization of a domain. An algorithm to solve this problem is presented, which searches a
space of plan prefizes, trying to extend one of them to a complete sequence of actions. It is guided
by a heuristic estimator based on regression-match graphs, which attempt to characterize the entire
subgoal structure of the remaining part of the problem. These graphs simplify the structure by
neglecting goal interactions and by assuming that variables in goal conjunctions should be bound in
such a way as to make as many conjuncts as possible true without further work. In some domains,
these approximations work very well, and experiments show that many classical-planning problems
can solved with very little search.

1 Definition of the Problem

The classical planning problem is to generate a sequence of actions that make a given proposition
true, in a domain in which there is perfect information about the initial state of the world and
the effects of every action. Problems of this type are of practical interest, for instance in tightly
controlled domains such as manufacturing, and many algorithms have been proposed for solving
them. However, none of them have been applied in practical domains." The main reason is that
all interesting classes of classical-planning problems are intractable [11], and therefore all planning
algorithms must resort to search. However, there is hope that for some kinds of problems there are
algorithms that do well enough in spite of the intractability. Some recent algorithms succeed by
searching nontraditional spaces [4, 21]. In this paper, the focus is on improving the performance
of classical-planning algorithms by finding improved heuristic estimators for controlling search in a
traditional space.

I will assume that world states (henceforth called situations) are described as collections of atomic
propositions, and that actions® are described using PDDL, the Planning Domain Definition Lan-
guage [25], developed for the AIPS-98 planning competition. This is a descendant of the University

Most applications of “practical planning” algorithms such as Sipe [38] and O-plan [9] have made good use of the
plan-management capacities of these systems, but not much use of their plan-search capacities.

2A note on terminology: I reserve the term operator to refer to transitions in the space of plans, as explained below;
transitions between world states are called actions. Analogously, I use the term state to refer to the state of a search
process, and reserve situation to refer to the state of the world, considered as a set of atomic propositions. A proposition
is a fact; an atomic proposition is the proposition denoted by an atomic formula or its negation. An atomic formula is one
consisting of a predicate followed by several arguments, which in this paper will be written as (P a1 a2 ...an). Please
note that the existence of propositional logic, in which the objects of study are unanalyzed propositions, does not mean
that propositions cannot have more complex structure in other frameworks.



of Washington notation, which is based on Pednault’s Action Description Language [30]. These
notations have a flavor like the Strips notation [13], and share its essential weakness, which is that
it is good with propositions and bad with numbers and geometry.

Tables 1 through 3 show the PDDL definitions for a domain that has been used for one of the
experiments reported below. The notation tends to be Lispish, with atomic formulas and terms
being written (f  args ). Actions are described as terms whose arguments are variables, prefixed
by question marks. The function in such a term is called an action functor. Each action has a
precondition which must be true for the action to be feasible, and several effects which will occur in
the next situation if the action is executed. Effects are defined by the following recursive definition:

1. p: Proposition p becomes true in the next situation. (p must not have functor not, when,
forall or and.)

2. (not p): Proposition p becomes false in the next situation.

3. (change f e): The value f changes to the value of expression e. I will explain exactly what
this means in Section 3.1.

4. (when p e): If proposition p is true in the current situation, then effect e occurs.
5. (and eg...en): All of the effects e; occur.

6. (forall (—wars—) e): Every effect obtained by substituting objects for the variables wvars
in e occurs.

Effects of the first two kinds are called literal effects, in parallel with the usual definition of a literal
as an atomic formula or the negation of an atomic formula.

Note that all the free variables in an effect must be bound in preconditions, either in a proposition
from the :precondition field of an action definition, or in some p from a clause (when p...) that
governs the effect in question. All variables must occur as :parameters of the action being defined,
or be explicitly quantified in the :vars field of the action or in a forall. Note that when variables
are bound they are given a type. Some types, such as integer, are defined in all PDDL theories.
Others, like key, are specific to this domain.

So, according the definition of put_down in Table 2, if the robot is carrying key 7k, then, if the
robot is at an arbitrary location (77, 75), then one effect of (put_down ?7k) is that 7k is now located at
(7i,73). If the robot is located in two places, 7k will be in two places; if the robot is not anywhere,
the key will not be anywhere. Of course, we arrange things so that these pathological cases never
happen.

There is no way to use existential quantifiers in action definitions, or to indicate that an action
has disjunctive effects.

Table 3 completes the domain definition by defining adjacency. Two intersections are adjacent if
they differ by 1 in either the x or y coordinate. The proposition (equation e; e3) just means that
e and ez are equal. The planner is able to solve simple equations such as (equation (+ 7i 1) t),
binding 7i to 4. The proposition (bounded-int ¢ [ h) is true for all integers ¢ between [ and h.
The planner can solve such goals if [ and h are known. In this case, [ and h are simple arithmetic
functions of the domain variable coord_lim, which is bound to 5 in the domain definition.

This action formalism has two valuable properties. One is that it is easy to compute the effect of
an action sequence. Given a complete description of an initial situation Sp, it is easy to generate a
complete description of the situation after executing (A1, ..., A,) starting from that initial situation.
I call this situation the result of executing the action sequence, written result(So, (A1,..., An)).

It is also easy, as I will discuss below, to go the other way: given a proposition and an action
sequence, to infer what must be true before the sequence is executed in order for the proposition to
be true afterward.

I can now give a formal definition of a planning problem: It is a tuple (A, Z, G), where

e Ais a domain definition, in the format exemplified above;



(define (domain grid)

(:requirements :typing :expression-evaluation

:conditional-effects :existential-preconditions)

(:types coord - integer shape key agent direction - object)

(:domain-variables (coord_lim 5) - integer)
(:predicates
(legal_coord ?i - integer)
(locked ?i ?7j - integer)
(loc_shape 7i 7j - integer 7c - shape)
(key_shape 7k - key 7c - shape)
(at 7a - (either agent key) 7i ?7j - integer)
(carrying 7a - agent ?b - key)
(adjacent ?i ?j 7il 7j1 - integer ?d - direction)
(consecutive ?7i ?j - integer))
(:constants left right up down - direction
triangle circle diamond - shape
robot - agent)

(:action move
:parameters (7dir - direction)
:vars (7?1 7j ?il1 7j1 - integer)
:precondition (and (at robot ?i 7j)
(adjacent ?7i 7j 7il ?7j1 7dir)
(not (locked 7il 7j1)))
reffect (and (not (at robot ?7i 7j))
(at robot ?il ?j1)))

(:action unlock
:parameters (7il 7j1 - integer)
:vars (?1 7j - integer)
:precondition (and (at robot 7i 7j)

(exists (?dir - direction)

(adjacent ?i ?j 7il ?7j1 7dir))

(exists (?k - key ?7c - shape)
(and (carrying robot 7k)
(loc_shape 7il 7j1 7c)
(key_shape 7k 7c))))
reffect (when (locked ?7il 7j1)
(not (locked ?7il 7j1))))

Table 1: Grid-World Definition — Part 1

e 7 is an initial situation description, a complete description of all true atomic formulas. We

will use a “closed-world assumption” to keep these descriptions finite: any atomic formula not

mentioned is assumed to be false;

e G is a problem goal, a proposition to be made true. This is a conjunction of literals (atomic

formulas or their negations), possibly containing free variables.

A solution to a planning problem (A, Z, P) is a sequence (A, ..

., Ayp) of variable-free action



(:action pick_up
:parameters (7k - key)
:vars (7?1 7j - integer)
:precondition (and (at 7k 7i 7j)
(at robot ?7i 7j))

reffect (and (not (at 7k 7I 7J))

(carrying robot 7k)

(forall (7k1 - key)

(when (carrying robot 7k1)
(and (not (carrying robot 7k1))
(at ?k1 ?i 73))))))

(raction put_down
:parameters (7k - key)
:precondition (carrying robot 7k)
teffect (and (not (carrying robot 7k))
(forall (?i 7j - integer)
(when (at robot 7i 7j)
(at 7k ?i 7j))))))

Table 2: Grid-World Definition Part 2

terms, such that in the situation resulting from executing the sequence starting in Z, some instance
of P is true.

2 Means-Ends Analysis

The historically dominant framework for solving planning problems is refinement search. A refine-
ment search goes on in a space of potential plans. A potential plan is a partial sketch of a plan, which
can be filled out by applying various planning operators. Different planners use different notions of
potential plan, and different operators for transforming one potential plan into another. What makes
it a “refinement” search is that a potential plan can be thought of as defining a set of plans its
completions —, and operators can be thought of as narrowing these sets. When potential plan P; is
transformed into potential plan P», that corresponds to moving from the set of completions of P; to
the set of completions of P», a subset. The search stops when a potential plan is found all of whose
completions are solutions to the problem[20].

In this paper, I will be discussing a very simple refinement search space for classical planning.
Potential plans are just plan prefizes, that is, sequences of actions that the planner is trying to
extend to a solution plan. The novel contribution is a method of computing an estimate of how
much work is required to finish a plan. Most of the recent research in this area has been in a quite
different paradigm, using search states that consist of networks of partially ordered steps. Search

” in the current

control in this paradigm consists mainly of deciding, using local criteria, which “flaw’
partial plan to fix. [15, 33]. There has been practically no work on heuristic estimators for comparing
potential plans. As a consequence, these planners often search through thousands of plans to solve
seemingly simple problems.

The alternative search space I describe is much closer to the space searched by the Prodigy
planner [36, 34], in that it is based on means-ends analysis, a classic search technique first embodied

in the GPS system [26, 10]. The principal difference is that Prodigy, like GPS and Strips [13], uses as



(define (addendum adjacent-def)
(:domain grid)
(:axiom
:vars (7?1 7j ?7il - integer)
:implies (adjacent 7i 7j ?7il 7j right)
:context (and (equation (+ ?7i 1) 7il)
(legal_coord 7i)
(legal_coord ?7il)))
(:axiom
:vars (7?1 ?7j 7il - integer)
rimplies (adjacent 7i ?7j 7il 7j left)
:context (and (equation (- ?7i 1) 7il)
(legal_coord 7i)
(legal_coord 7il)))
(:axiom
:vars (7?1 7j ?j1 - integer)
:implies (adjacent 7i ?7j 7i ?7j1 up)
:context (and (equation (+ ?7j 1) 7j1)
(legal_coord 7j)
(legal_coord ?7j1)))
(:axiom
:vars (7?1 7j ?j1 - integer)
:implies (adjacent ?i ?j ?7i 7j1 down)
:context (and (equation (- ?7j 1) 7j1)
(legal_coord 7j)
(legal_coord ?7j1)))
(:axiom
:vars (?i - integer)
:implies (legal_coord 7i)
:context (bounded-int 7i (- 1 coord_lim) (- coord_lim 1))))

Table 3: Grid-World Definition — Part 3

a search state an ordered pair containing a plan prefix and a goal structure (called the “head plan”
and “tail plan” respectively by the Prodigy group). There are two sorts of operators: those that
add steps to the prefix, and those that commit to a particular action for achieving an outstanding
goal. In my framework, the goal structure is generated anew at each state, and represents (in a sense
made precise below) all possible ways of achieving the original goal. Prefix lengthening is the only
search operator that is used, that is, the only operation that actually moves the planner through the
space of partial plans, hopefully toward a solution.

Partial-order planners have the advantage that, when goals interact only weakly, they can be
planned for independently and the results combined. But they have a big disadvantage, namely,
that they cannot keep a complete description of any intermediate situation that will arise during
the course of plan execution. Hence it is not possible to compare intermediate situations to the goal
description to look for directions in which to move. The best they can do is to compare individual
propositions that are created by steps proposed so far. Sometimes these comparisons give information
that is too “local,” so that the planner flounders a lot in trying to decide what to do next. The
planner I describe invests a large effort in working out these comparisons, so that for many domains
it has a good picture of the next move to make.



Figure 1: Analysis of Actions and Goals

2.1 Plan-Prefix-Space Search

Suppose the planner is trying to complete the plan prefix (A1, Aa,..., Ax). T will use the term
current situation to denote the situation that obtains after (A1, As,..., Ax) is executed beginning
in the initial situation. Suppose the goal description is G1 A ... A G,. If we match this goal
against the current situation, we may discover that (say) Gi A ... Gy, are true in that situation, and
Gm+1 N ... NG, are false. (In Figure 1, goals true in the current situation are underlined.) We
can say that {Gm+1,...,Grn} is the set of differences between the current situation and the goal
description. (For now, I will ignore any variables that might occur in the goals; pretend there aren’t
any.) This notion of matching to find differences goes all the way back to GPS [26]. If there are no
differences, then the current plan prefix is a solution to the problem. Otherwise, it would seem that
a reasonable idea for improving the plan prefix is to find an action that achieves one of the goals
(Gm+1, say) and tack it on to the end. The planner knows exactly which actions achieve which goals,
because every action has a well defined list of literals that it adds. This idea is called means-ends
analysis, and in this form was first developed by the Strips group [13].

The problem, of course, is that an action that achieves G,,+1 may not be feasible in the current
situation. In Figure 1, action A achieves the goal conjunct, but has preconditions that are not all
true. The obvious tack to take at this point is to “recurse,” and repeat the same operations on the
preconditions of A. Some will be differences, which the planner can achieve by proposing actions,
which in turn have preconditions, and so on. The tree obtained by considering all possible actions
and matches is called the regression-match graph. 1 will be more precise later about exactly what it
consists of and how it is constructed, and why it is a graph and not a tree. If we continue to pretend
it’s a tree for a moment, we can see that its “leaves” are conditions that are true now, or that are
unachievable by any action.?

The regression-match graph is interesting for several reasons:

e Its size serves as an estimate of how hard it is to complete the current plan prefix.

3In some domains, the tree may be infinite or unmanageably large, and a depth cutoff can be imposed, in which case
some goals are leaves because they appear too deep; they behave like unachievable goals for our purposes. See Section 3.3.



e If the tree below a goal bottoms out in unachievable subgoals, then that is evidence that the
goal is impossible to achieve.

e Actions just above the “leaves” of the graph are likely to be those that are feasible in the
current situation, and relevant to achieving the overall goal.

Looking again at Figure 1, we can see that the graph structure suggests two possible ways to
achieve G,1: First By, then A; or first By, then A. Either way, we can estimate that achieving this
conjunct will take 2 steps. If the graph is completed with similar analyses for the other conjuncts
Gm+2, ..., then we will get estimates for how hard it is to achieve those goals, and other possible
first steps might emerge.

Of course, the planner has no way of knowing which action is best to try as the first step toward
solving its problem, By, B, or one of the actions that occur in the analysis of the other goals. But
it can try them all. That is, if the initial search state is the empty plan prefix (), then the possible
next states include (B:) and (B:). See Figure 3. Each state corresponds to a different “current
situation,” either that obtaining after B, is executed, or that obtaining after B, is executed. In each
situation we can repeat the construction of the regression-match graph. This exercise will result in
finding new estimated efforts for the goals, and new feasible actions. It may reveal unforeseen side
effects. For example, B; might delete GG1, thus taking away part of what it gains. So in the state
(B1), the effort of reachieving G1 will be added into the total effort, causing (B>) to become more
attractive.

It is common to label this kind of planner a “state-space search,” and it is, but let me hasten
to point out that the word “state” in this phrase means “world state,” or “situation.” I normally
use the word “state” to refer to search states, and in this sense the phrase “state-space search” is
tautologous. In my terminology, search states are plan prefizes of the form (Ai,..., Ax). Each such
prefix corresponds to a world situation, namely that obtaining after Ay, A», ..., Ay are executed
starting in the initial situation. Hence the planner is for all intents and purposes a situation-space
searcher.

I should also point out that the arrows in Figure 1 may appear to go the wrong way, from children
to parent nodes. The reason is that they are intended to reflect the flow of time and causality, rather
than dependency. I will continue to refer to the nodes at the tails of the arrows as the children of
the nodes at the heads. If node N, can be reached by following zero or more child arcs from N then
Ny is a descendant of N1, and N; is an ancestor of No. In these definitions, N; and N2 may be goal
conjunctions, cohorts, or goal literals, and the arcs may be labeled with action terms or maximal
matches; or, in the case of an arc from a cohort to its elements, left unlabeled.

3 Formal Treatment

Now let’s be more precise about how the regression-graph is defined. It has a layered, tripartite
structure. There are three types of nodes, and a given type of node is always connected to the same
types of neighbors, and by the same kinds of edges. Two of the edge categories are nontrivial, and
I will explain them before describing the overall graph structure. The two nontrivial categories are
regression edges and match edges.

3.1 Regression

The regression of a proposition P through an action A, written [A]®(P) is the weakest condition Q
such that if @ is true before A is executed, then P will be true afterward. This condition is easy
to compute given our Strips-style action formalism [30]. It depends on the action definitions of a
particular theory, and when that is important I will write [A]ﬁmTyP to relativize it.



We can always write the regression of P as
[A)(P) = =P A[AIT(P) V P A [AJ(P)

where [A]®(P) is the weakest precondition that causes P to become true after A when it is false
before; and [A]2(P) is the weakest precondition that keeps P true after A when it is true before. We
call [A]®(P) the causation precondition for P before A, and [A]Z(P) the preservation precondition
for P before A [29, 30]. Until Section 3.7, I will focus only on causation preconditions.

When P is a literal, to compute [A]%(P), it suffices to take the definition of A in T, and examine
all the literal effects. If some literal effect unifies with P with unifier 6, then 6(R) is the desired
condition, where R is the precondition of A. That is, if A is feasible at all, then P will be caused by
it. If an effect is of the form C=-F, then the algorithm is applied recursively to E, taking R A C as
the relevant precondition. C' is not necessary to the feasibility of A, but is necessary to A’s causing
P; in Pednault’s terminology, it is a secondary precondition.

The PDDL language allows the specification of numerical effects using the change notation,
which can effect the truth value of formulas of the form (fluent-test (r e; e2)), where r is a an
inequality (<, >, <, >, #, or =) and ey and ey are arithmetic expressions. If f occurs in ey or es,
then the effect

(change f e)
can potentially make the inequality true. We get the usual precondition, plus the formula
(fluent-test r e} e))

which is obtained by substituting e for f in the original goal. In these goals, f is a fluent term such
as (water_in jug2), that is, a term whose value can change from situation to situation.

3.2 Matching

The second concept we need in order to understand regression-match graphs is matching. In the
simple examples above, I left variables out of the propositions in the graph. But in general, when
we take a goal and regress through an action term with variables, then the result will have variables,
even if the goal did not. For example, in the grid world, the result of computing

[(pick.up 7k2)]%((at k1 2 — 3))

(carrying robotkl) A (at robot 2 —3)A(at ?k2 2 —3)
In other words, one way to cause k1 to be at (2, —3) is to be at that location and pick up some other
key 7k2.

A planner can handle the subgoal (at ?k2 2 -3) in one of several ways. One way is to treat 7k2
as an unknown, a global variable that is “solved for” during the course of the remaining planning
process. Typically, it gets bound when the planner decides what effect of what step to identify with
this goal. If a step causes, e.g., (at keyl4 2 -3) to become true, then the planner can achieve the
later goal (at 7k2 2 -3) by binding 7k2 everywhere it occurs to key14.

The only problem with that idea is that it forces the planner to do nothing with the goal when
it is first produced. In particular, it can have no idea how difficult it is to achieve it compared to
other subgoals it might have adopted instead.

Another approach is to avoid variables by substituting variables in all meaningful ways as early
as possible, either during the formulation of the problem, as SATPLAN does [21], or during the
construction of the planning graph that Graphplan uses [5]. This technique runs the risk of generating
many irrelevant atomic formulas.

An attractive alternative is to guess likely values of the variable as soon as it occurs in a goal.
Suppose that the planner sees that key14 is at (2, —3) in the current situation. Then it is a plausible



guess that as further plans unfold key14 will remain there, and hence remain a candidate for binding
to 7k2. Hence it is reasonable to estimate that the number of steps required to achieve (at 7k2 2
-3) is zero.

In general, the idea is to bind variables in such a way as to make as many conjuncts in a goal
true as possible. That is, whenever a goal arises of the form

Py (?7x) A Pa(7x) A ... A Pi(7x)

where ?x represents all the variables that occur in the conjunction, the planner should find bindings
of ?x to constants so that as many of the P; as possible are made true. The remaining conjuncts
are differences between the goal and the current situation. One estimate of the effort required to
achieve the conjunction is the effort required to achieve the differences resulting from binding the
variables.

To be more precise, define the hit set for a substitution 6 in a set of formulas P =

{PL(7x), Po(7x), . . ., Po(7%)}

with respect to situation S to be the set of all P;(?x) such that #(P;(?x)) is variable-free and true
in S. T’ll write this as hit(f, P, S). Following standard terminology, I'll use the word ground to mean
“variable-free.”

Now define a match substitution for the set P = {Pi1(?x), P»(?x),..., P,(?x)} with respect to
situation S to be a substitution # that binds (some or all of) the variables ?x to constants so that
the conjunction is split into two disjoint parts: P and Ppase such that:

1. P is the hit set for § with respect to S;

2. Pyayse = P — Py is a set of conjuncts, not necessarily ground, that have no true instances in
S;
3. for any proper subset 8’ C 6, the hit set for §' in P is a proper subset of Pj...

A mazimal match of P = P1(7x) A P2(?x) A... A Py(?x)} with situation S is then a substitution
1 that assigns constants to all the variables 7x, such that there is a match substitution 6 C p. 6 will
differ from p only if 0( Pa.) contains free variables; p must bind them all to whatever objects make
sense, as I discuss shortly. The difference set of the maximal match, written diff (u, P, S) is the set
1(Praise) = p(P — hit(, P, S)).

For example, consider the goal P =(at robot ?i 7j) A (at keyl5 ?i ?j), which might arise
as a precondition of the action (pick_up key15). Suppose the robot is currently at location (2, 3),
and key15 is currently at location (5,6). There are two maximal matches:

Substitution Differences
i=2,3=3 (at keyls 2 3)
i=5,j=6 (at robot 5 6)

Differences give rise to subgoals. In the example, two ways of achieving P are proposed: Get
key15 to (2,3), or get the robot to 5,6. Of course, the first of these is silly if the reason to achieve
it is to pick up key15, but further analysis will be required to decide that.

In the example, the substitution p is identical to . They differ when there are free variables that
occur in Pjy,., which must be bound by p. The formal definition allows these variables to be bound
to arbitrary constants, which works fine for formal purposes. However, in practice we usually get
great benefit out of the following optimization. Suppose that P;(?y) is a conjunct of Pfus., where 7y
represents all the variables of ?x that are left unbound by §. Some constants will make no sense when
plugged in as arguments to P;. The resulting differences will be goals like carrying(robot,robot),
or at (key15,2,key13). We avoid all such absurdities in practice by keeping track of the types of
arguments for predicates and action functors, and plugging in only objects of the appropriate types.

Note that we never bind a variable in such a way as to make a conjunct false. A binding is added
to 6 only if it makes some conjunct true; and a binding is added to p only if there are conjuncts
containing the binding’s variable which are false for every way the variable could be bound.



3.3 Regression-Match Graphs

We are now in a position to be precise about regression-match graphs. A regression-match graph
for a goal G (a conjunction of literals, possibly containing variables) is a tuple (C, L, H, E) with the
following properties:

e (' is a collection of goal conjunction nodes, each labeled with a conjunction of literals, possibly
containing variables (I distinguish nodes from their labels only to allow two nodes to have the
same label; in what follows I will relax the distinction and just use the term “goal conjunction”);

e There is a node € C labeled with G;

e L is a collection of goal literals, each containing no variables;

e H is a collection of cohorts, each a collection of goal literals;

e FE is a collection of edges, C (C' x H)U (H x L)U (L x C), some labeled and some unlabeled;

e for every g € C, and for every maximal match u of g with S, u(g) € H, and edge (g, u(g)) € E,
labeled with p;

e for every pu(g) € H, if p is a conjunct of pu(g), then p € L and there is an edge (u(g),p) € E;

e for every p € L such that p is not true in S, and for every n-argument action functor A, if

(Ao . 70)F(0) = g1 V.. Vi

in disjunctive normal form, where the 7v; are distinct variables, and g; is a conjunction of
literals that is not identically false, then there is a goal conjunction € C' labeled with g;, and
(p, 9i) € E, labeled with (A?v; ...%v,). Each such goal conjunction is called a reduction of p.

e C, L, H, and E have no elements not required by a finite number of applications of the previous
rules in this list.

Obviously the regression-match graph for a goal is unique, up to renaming of the variables in goal
conjunctions.

Let me pause to insert an example, drawn from the grid world. In the initial situation, the robot
and key K are at (0, 0), and the goal is to get K to location (1, 0). The initial goal conjunction consists
of a single variable-free goal, so it has a trivial maximal match and just one cohort. Goal conjunctions
are indicated by dotted lozenges drawn around a group of literals. Cohorts are indicated by edges
from their elements (which are goal literals) to the goal conjunction they derive from, with edges
labeled with the maximal matches used to derive them. In this simple example, the initial goal
contains just one ground conjunct, so there is an empty substitution labeling the arc to it from the
goal literal that constitutes its only cohort. There is just one action term such that [A]%((at K 1 0))
is not identically false, namely (put_down ?v). The regression yields a single goal conjunction. As
at the top, it contains no variables, so it has just one cohort, consisting of the two goal literals (at
robot 1 0) and (carrying robot K). (Formulas are abbreviated to avoid clutter.)

Interesting things happen at the next layer. First observe the subgraph attached to (carrying
robot K). There is a unique action term that leads to this conclusion, (pick_up ?v). The regression
of (carrying robot K) through this action yields the goal conjunction

(at robot ?i ?j)A (at K ?i 7j)

This goal conjunction maximally matches the current situation just one way: {i =0,j = 0}. The
resulting cohort has two goal literals that are true in the current situation. The effort required to
achieve them is 0.

We can propagate estimates of the efforts for all nodes in the graph using the following recursive
definition of the estimated effort of goal conjunctions and goal literals:

e If p is a goal literal, and p is true in S, then EE(p) = 0.
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Figure 2: A Regression-Match Graph for a Grid-World Goal

e If p is a goal literal, and p is not true in S, then

EE(p)=1+ min EE(g)

gEreductions(p)

e If g is a goal conjunction, then

EE(g)= min Z EE(p

h€ cohorts(g)

e If applying the previous rules repeatedly does not assign an effort, then the effort is oo.

By this definition, the estimated effort of (carrying robot K) is 1.
On the other branch, (at robot 1 0) is achieved by (move ?7dir), yielding the goal conjunction
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(adjacent 7i ?j 1 0 7dir) A (at robot 7i ?j) A (open 1 0)

There are four maximal matches with the current situation:

Substitution Differences

{i=0,j=0,dir=right} None

{i=2,j=0,dir=left} (at robot 2 0)

{i=1,j=1,dir=down} (at robot 1 1)

{i=1,j=-1,dir=up} (at robot 1 -1)
To avoid clutter, only the first two of the resulting cohorts are shown in the figure. The first
consists of three goal literals that are all true, so there are no differences, and the estimated effort
of the goal conjunction is 0, and the estimated effort of (at robot 1 0) is 1. However, the other
cohort demonstrates an interesting phenomenon. The only difference obtained if dir=1left is (at
robot 2 0). It gets regressed through (move ?dir) in a very similar fashion to the way (at robot
1 0) was regressed, and we once again get four maximal matches. This time only one is shown:
{i=1,j=0,dir=right}, with difference (at robot 1 0). The intuition is that if the robot were at
(1,0), it could get to (2,0) by going right. Of course, this tactic makes no sense. But no harm is
done. The effort for (at robot 1 0) is 1, so the effort for the cohort is 1, the effort for (at robot
2 0) is 2, and this value plays no part in determining the value of (at robot 1 0).

Although the regression-match graph often contains cycles, there is an important class of acyclic
subgraphs that can be extracted. A stratified subgraph is obtained by selecting a single cohort for
each goal conjunction, and a single reduction for each goal literal, in such a way that the resulting
subgraph contains no cycles. More precisely, a stratified subgraph of a goal literal or goal conjunction
G in a regression-match graph (C, L) is a subgraph (C', L', H', E') such that

e C'"CC,L'CL,HCH,E'CE,and G e C';

e for every g € C', either (a) for every maximal match u of g with S (the current situation),
some conjunct of pu(g) is an ancestor of g in (C, L); or (b) there is a single maximal match pu
of g with S and for every conjunct p of u(g), p € L';

e for every p € L' such that p is not true in S, either there is an n-argument action functor define
A, such that

[A(?1, .., 20)] B (D) = g1 V...V gi

in disjunctive normal form, where the 7v; are distinct variables, and some g; is a non-identically-
false conjunction of literals, in which case one such g; € C’; or (b) for every such A and vy, all
the g; are identically false;

e E' consists of exactly the edges both ends of which are in C' U H' U L'.

By minimal T mean that if there is another subgraph (C”,L", H" E") with these properties, and
c'cc,L"CcL,H' CH,E'"CF,then C" =C', L' =L, H' = H',and E' = E'. In
Figure 2, one stratified subgraph has been indicated with heavier lines.

A stratified subgraph all of whose leaves are goal literals that are true in S, the current situation,
is called a coherent subgraph. The subgraph in the figure is also coherent. It should be obvious that
there will be a coherent subgraph of the top-level goal conjunction if and only if its estimated effort
is < oco. If the estimated top-level effort is oo, then every stratified subgraph has at least one leaf
node that is a goal conjunction with effort co, and so there are no coherent subgraphs. Note that a
leaf node of a stratified subgraph is not necessarily a leaf node of the original graph.

You can think of a coherent subgraph it as being a “plan sketch” for how to achieve the top-level
goal. If an action A occurs in a coherent subgraph with precondition goal conjunction G, and there is
a maximal match p that makes G true in the current situation, then p(A) is said to be an initial step
of the subgraph. In the figure, (move right) and (pick_up K) are the initial steps of the indicated
coherent subgraph. Either one is feasible as a first step in an action sequence. What we hope is that
at least one of them makes sense as a first step; i.e., that the sequence can then be continued until
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the problem is solved. That’s true for (pick_up K); whether it’s true for (move right) depends on
whether we count sequences such as ((moveright), (moveleft), (pick_upK), (moveright)) as solutions
or not.

The actions allowed by a regression-match graph are all the actions that occur as initial steps
of some coherent subgraph of the top-level goal conjunction. If a regression-match graph has no
coherent subgraphs, then no actions are allowed by the graph, and it is a good guess (but not always
true) that its top-level goal conjunction is infeasible. The actions allowed by the graph are the only
ones my planning algorithm considers.

The estimated effort of a stratified subgraph is obtained in the obvious way: The effort of a goal
literal is 0 if it is true in S, oo if it is an untrue leaf, and otherwise 14 the effort of its only reduction.
The effort of a goal conjunction is oo if it is a leaf, otherwise the effort of its only cohort.

In general, the effort of a goal literal is equal to 1+ the efforts of its lowest-effort reductions,
unless the literal is true in the current situation, or all its reductions have infinite effort. Any
reduction whose effort is finite, and as low as any other reduction of that goal literal is called an
effective reduction of that goal literal. The others are ineffective, and do not influence the estimated
effort for the goal literal. We can similarly divide the cohorts of a goal conjunction into an effective
and an ineffective category; the effective ones are just those with finite effort less than or equal to
the efforts of all the others. An effective subgraph of a regression-match graph is one obtained by
choosing exactly one effective cohort for the top goal conjunction, then one effective reduction for
each untrue element of that cohort, then one effective cohort for each reduction, and so on. It is
easy to see that if the estimated effort for the top goal conjunction is finite, then at least one such
graph exists, and is a coherent subgraph. The subgraph indicated in Figure 2 is effective. If we
completed the diagram in Figure 2, we would see coherent but ineffective subgraphs, such as the
one involving the action sequence (..., (move up), (move right), (move right), (move down),
(move left), ...).

For every action allowed by the graph, there is an estimated effort associated with that action,
which is just the lowest effort of any coherent subgraph for which the action is an initial step. If
u(A) is allowed by the graph, and occurs in an effective subgraph, then it is said to be favored by
the graph. If the action is favored by the graph, this value is the same as the estimated effort of the
overall graph.

Note that if a literal is not added by any action, then it will always have effort co. For example,
suppose it is true in the current situation that (at robot 0 0), and the goal (at robot 2 0)
occurs in the regression-match graph. Regressing through the action (move 7dir), we obtain the
goal conjunction

(adjacent 7i 7j 2 0 7dir) A (at robot 7i 7j) A (open 2 0)
This goal has eight maximal matches:

Substitution Differences
{i=1,j=0,dir=right} (at robot 1 0)
{i=3,j=0,dir=left} (at robot 3 0)
{i=2,j=1,dir=down} (at robot 2 1)
{i=2,j=-1,dir=up} (at robot 2 -1)
{i=0,j=0,dir=right} (adjacent 0 0 2 O right)
{i=0,j=0,dir=left} (adjacent 0 0 2 0 left)
{i=0,j=0,dir=down} (adjacent 0 0 2 0 down)
{i=0,j=0,dir=up} (adjacent 0 0 2 0 up)

But the last four of these are absurd, because there is no way to make (0,0) adjacent to (2,0)
from any direction. The estimated effort for the cohort resulting from each match is therefore co.
In the implementation, such impossible goals are weeded out at a very early stage (see Section 5),
and do not actually appear in the graph.
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In some domains it may be necessary to impose a depth cutoff on a regression-match graph
because the whole graph is infinite, or too large to be manageable. A depth-limited regression-match
graph with depth limit d is then defined as the largest subgraph of the whole graph in which the
depth of the shortest path from the root (G) to any goal conjunction is < d. We define the depth
of a path as the number of goal literals it contains. The depth-limited graph can contain some goal
literals with no reductions because they would be too depp. The definition of estimated effort (EE)
is the same for depth-limited subgraphs. The definition of stratified subgraph has to change slightly:

e for every p € L' such that p is not true in S, either p is at depth d; or one of the cases (a) and
(b) listed above holds, i.e., p has at most one reduction.

In cases where no natural numbers are involved, the regression-match graph is guaranteed to be
finite, and, by an argument analogous to that of [5] for planning graphs, to have size polynomial in
the number of symbols in the domain, provided we have a bound on the arity of all the predicates
involved. This bound doesn’t mean much unless the graphs are of manageable size in practice, but,
as illustrated in Section 6, they usually are.

3.4 Search Space

Now I can be more formal about the search space my planner uses. The order in which it searches
the space is the topic of Section 3.5.

To define a search space, we need to define three things: the initial state, the operators, and
the success criterion. I said in Section 1 that the state space is the set of all action sequences, so
you might expect the initial state to be the empty sequence. However, in order to get the details
to work out, we actually define the space so that sequences always end in an action allowed by
some regression-match graph. That is, if the sequence (A1,...,A,—1, Ay) is in the space, then A,
is allowed by the regression-match graph for the goal with respect to the situation resulting from
(141,...,14”,1).

So: The initial state is the set of all singleton sequences (A), where A is some action allowed by
the regression-match graph for the goal with respect to the initial situation.*

The operators take an action sequence

<A1, ce 7An)7 and extend it to <A1, N 7An7An+1)
where A, is allowed by the regression-match graph for the problem goal with respect to
result(Z, (A1, ..., Ayn)).

The success criterion is that a sequence result in a situation where the top-level goal is true.

This is essentially a situation-space search, because the main feature of an action sequence that
we care about is the situation that results from it. In particular, if two sequences result in the
same situation, then it is wasteful to attempt to extend both of them. The second time a sequence
is seen, it should be discarded. See Figure 3, in which transitions that cause discards are drawn
with a dotted line. (Of course, exactly which transitions cause discards depends on the order in
which situations are encountered.) The data structure required to test for repeated occurrence of a
situation is described in Section 5.

The only remaining piece of the puzzle to supply is the heuristic evaluation function, the “score”
we assign to each search state. If the state is (A1,..., A,_1, A,), then its score is n — 1 plus
the estimated effort of A, in the regression-match graph for the problem goal in the situation
result(Z,(A1,..., An_1)). (Recall that the estimated effort of a feasible action is the effort of the
cheapest coherent subgraph of which it is an initial step.)

4To be technically precise, we must allow for the case where the goal is true in the initial situation. We can stipulate
that in that case the search space has just one state: the empty action sequence.
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Figure 3: Situation-Space Search

3.5 Search Strategies

Now that we have a search space, we have to choose a strategy to use in exploring it. The search
space gives the “legal moves” the planner can make; the strategy decides which ones to try. I have
experimented with two strategies: best-first search, and hill-climbing search with restarts.

Best-first search is implemented in the usual way: The program keeps a queue of plan prefixes.

It chooses the prefix (Ai,...,A,) with the lowest score (estimated effort), builds the regression-
match graph for it, finds all the actions Bi, B», ..., By allowed by the graph, plus their efforts, and
generates k new prefixes (Ai,..., A,, B;) for 1 < j < k. These are sorted and merged back onto
the queue, and the process is repeated. It terminates as soon as an action sequence is found whose
result is a situation in which the problem goal is true.

Best-first search often works quite well, especially for the sort of “toy” problems that are found
in the literature. But what I observe in many cases is that estimated effort is a better local estimator
than a global one. That is, it often correctly ranks the possible next actions, without necessarily
comparing those moves accurately with competitors from a completely different part of the space. If
it says that (A1,..., A,, B1) is better than (A1,..., A,, B2), then it’s often right. When it reports
that (A},...,A}.), a random competitor found on the queue, is just as good as (Ai,..., A,, B1),
it’s often wrong. The reason is that the inaccuracies in estimated effort, are often balanced across
near relatives in the space. If one is weighting one subproblem too heavily, the other probably is,
too. But for distant relatives the errors tend to depend on the wrong factors. Typically errors in
effort estimates tend to be correlated with the length of plan prefixes. The shorter the prefix, the
further it is from a solution, the larger the effective subgraph, and the greater the error tends to be.
The problem is especially severe if short prefixes look too good. Then a best-first search tends to
degenerate into a breadth-first search.

We can usually avoid these problems by the use of hill climbing, in which we discard all but the
locally best successors to the current plan prefix, pick one randomly, and pursue it. The locally best
successors of a search state are those that are better than all the other successors. There may be
more than one. We give up on this branch of the search space only when a state has no successors.



In that case we pick at random one of the states that was locally best at some previous state and
restart the search from there.’

For all the experiments reported in this paper, I used a hybrid search scheme, in which the planner
searched best-first until it decided that approach was ineffective, then switched to hill climbing with
restart. The details appear in Section 5.

In practice, whenever either search strategy is used, Unpop is supplied with a bound on plan
length. This serves two roles: it allows the system to discard plans that are too long, and it can be
used as a bound on the depth of the regression-match graph. The latter is the more important bound,
because where the depth cuts off influences how big the search space really is and how expensive it
is to explore one search state. Applying the maximum plan length as a depth bound is a generous
constraint, because the estimated effort extracted from a graph is usually larger than its depth.

In hill-climbing mode, the bound on plan length is often useful for limiting search for reasons
having nothing to do with the depth cutoff on the regression-match graph. Without the length limit,
Unpop can get itself into searching an infinite branch containing no solutions; it keeps lengthening
the plan hoping to get closer. Giving Unpop a length limit may sound like giving it too much of
a hint, but it isn’t, for the following reason. We have to give it a limit on the number of plans to
search anyway, because if the problem has no solution the planner can go for a long time before
exhausting the entire search space. In all the experiments, the plan-length bound was set to %B,
where B is the plan-number bound. Unpop uses up a search state for every step it adds to a partial
plan. Therefore, if it is distracted by an incorrect partial plan that is discarded only when it reaches
length L ~ %B, then after giving up on that branch it has only another %B partial plans to try, so if
it’s lost it’s almost sure to fail. Hence this policy prevents Unpop from using the plan-length bound
to skip unpromising plans and go for the correct part of the search space.

3.6 Plan Incoherence

The algorithm as presented so far has an attention-deficit disorder. At each state in the search space,
it recomputes the entire regression-match graph, and gives equal weight to all the favored actions.
Suppose that the planner is in a part of the search space where there are two overall goals, neither
of which is true. The regression-match graph will have two parts, one for each goal. If the planner
tries an action that helps achieve Goal 1, then in the graph computed in the resulting situation the
subgraph for Goal 1 will be a bit smaller, and the subgraph for Goal 2 will typically be the same size
or even a bit larger. If the planner takes an action from the subgraph for Goal 2, then it runs the risk
of making that subgraph smaller while the graph for Goal 1 gets larger. This risk is especially great
using hill-climbing-with-restart search, because the planner cannot backtrack to undo the damage
until it has explored a large portion of the zone of the situation space resulting from the bad action.

An example occurs in the “fridge” problem from the University of Washington corpus (see Section
6.2). To fix a refrigerator, it is necessary to turn the refrigerator off, remove the backplane, change
the compressor, reattach the backplane, and turn the refrigerator back on. The problem is difficult
because removing the backplane requires unscrewing four screws, and the refrigerator can’t be turned
on until all four screws are back in place. Let’s focus on what happens after one screw has been
unscrewed, or, more formally, when the current situation is the result of

((unscrew s1) )

Figure 4 is a simplified diagram of the situation, in which there are just three screws. Screw s1 is
unscrewed and s2 remains to be unscrewed. In the regression-match graph, there are three possible

5Tn the earlier report on this work[24], T described this process in terms of Ginsberg and Harvey’s limited-discrepancy
search [16]. The current description is more accurate given what the program actually does in practice. For those familiar
with limited-discrepancy search, the following may explain: My program searches the subspace of discrepancy 0. Although
I programmed it to follow up with a search of the subspaces of discrepancy 1, 2, 3, etc., it never actually found a solution
in any but the subspace of discrepancy 0. It may be of interest that when there is a solution to a planning problem, there

is almost always a solution of discrepancy 0, even if it’s not optimal.
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Figure 4: The Infamous “Fridge” Problem

initial steps: (unscrew s2) and (unscrew s3) to achieve a precondition of (remove backplane),
and (screw s1), to achieve a precondition of (start_fridge f1). (The actual terms are different,
as explained in Section 6.2.)

The algorithm as presented so far will have no reason to favor (unscrew s2) and (unscrew s3)
over (screw s1). In the simplified version, the prefix

((unscrew s1), (screw s1))

will be rejected quickly because it repeats the previous situation. But there is no way to reject
prefixes such as

((unscrew s1), (unscrew s2), (screw sl1))

which will become an option after (unscrew s2) is added to the prefix. If there are N screws,
then there are 2V situations to be explored in which various combinations of screws are unscrewed.
Unpop will explore a large subset of them. A person can see that if you've just unscrewed some of
the screws, then you should keep unscrewing them. Unless there is a good reason, you shouldn’t
switch from one goal to another.

One way to diagnose this problem is to recall that coherent subgraphs of the regression-match
graph correspond to sketches of plans for achieving subgoals, and to observe that in the absence of
any advice to the contrary, the planner should pursue sequences of actions drawn from one coherent
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subgraph rather than jumping back and forth between subgraphs. Put another way, the planner
should pretend it is actually executing a plan (even though it is really only projecting possible plans).
As T described in Section 3.4, a search state is a sequence of actions

<A11" . 7ATL7ATL+1>
where A, is allowed by the regression-match graph for the problem goal with respect to
result(Z, (A1,...,An))

Because A,41 is allowed, there is a coherent subgraph such that it occurs in that subgraph with
only true goals as preconditions. Let’s look a little more closely at the information extractable from
that coherent subgraph. For clarity, forget A,11’s position in the plan prefix, and relabel it as Co,
an arbitrary step allowed by the regression-match graph, and focus on a minimal-effort coherent
subgraph C of which it is an initial step. (As it happens, Figure 4 shows exactly one coherent
subgraph.) In Figure 4, T have labeled unscrew(s2) as Cy. Define the following partial order on
action occurrences in that subgraph:

Definition 1 If action occurrences C; and C5> occur in C, then C, is beforec,c, Co if and only if
either Cy # C5 and

e (; is a descendant of Cs; or

e There is an action occurrence C’ in C such that Cy and C; are descendants of C' and Cs is
not. (C' may be identical to Cy or C1.)

Note that C; and C» are action occurrences, and so may be distinct even if they refer to the same
action.

Now we can define the “incoherence” of an action:

Definition 2 If C is a coherent subgraph, and Cy and C: occur in it, then the incoherence of
action occurrence C with respect to Cp in C is the number of action occurrences C such that

Co beforee ¢, C beforee ¢, Ch

If Ap is an action allowed by a regression-match graph, then the incoherence of action A after
Ag is then defined as follows. Let

G(A) = {(C,Cv)|Cis a coherent subgraph in which Cy is an initial step and an occurrence of Ao}
Then the incoherence of A with respect to Ag is

min min incoherence of C1 with respect to Cy in C
(C.Co)€G(A) occurrences ¢, of A

In Figure 4, the incoherence of each step with respect to Cy is written next to the step inside a
diamond. In this case, no two steps have the same incoherence, but if Cp had had two sibling steps
(say, unscrew(s3) and unscrew(s4)), then they both would have had incoherence 0, and the parent,
remove (backplane), would have had incoherence 2.

The incoherence of an action is essentially its distance from an initial step of a coherent subgraph.
The plan embodied in a coherent subgraph can be thought of as: “Do the initial step, then all the
steps of incoherence zero (either feasible siblings or, if there aren’t any, the immediate ancestor of
the initial step), then all the steps of the next level of incoherence, and so forth.” If after taking the
initial step there is a choice among followup actions, it’s better to take an action with incoherence
0 than an action with incoherence 1, if one is available.

Hence we can use incoherence to differentiate between two plan-prefix extensions that have the
same estimated effort. If one has lower incoherence, we favor it. More formally, we can amend the
definition of the heuristic estimator:
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If the state is (A1,..., An_1, Ayn), then its score is an ordered pair (n—1+FE, H), where
E is the estimated effort of A, in the regression-match graph for the problem goal in the
situation result(Z,(A1,..., An_1)); and H is the incoherence of A, after A,_; in the
regression-match graph for the problem goal in the situation result(Z, (A1,..., An—2)).
(If n < 2 then H = 0.) Two scores S1 = (E1,Hi) and S» = (E», Hy) are compared
lexicographically. That is, S; < S» if and only if E1 < E» or E; = E» and Hy, < Ho.

The graph of Figure 4 is constructed for the plan prefix ((unscrew s1)). In that graph, the
incoherence of (unscrew s3) after (unscrew s2) is 0, while the incoherence of (screw s1) after
(unscrew s2) is 3. Hence the score of

((unscrew s1), (unscrew s2), (unscrew s3))

is (2 + E,0), where F is the estimated effort of (unscrew s3) in the graph obtained after adding
the action (unscrew s2) to the prefix®; while the score of

((unscrew s1), (unscrew s2), (screw sl1))

is (2+ E, 3), which is inferior.
Computing incoherence exactly is expensive. As described in Section 5, in practice we need only
to approximate it.

3.7 Preservation Preconditions

In Section 3.1, I pointed out that the regression of P through A could be analyzed in terms of
causation and preservation preconditions. So far I have described an algorithm that deals only in
causation conditions. In the framework of this algorithm, there is no problem with such “secondary”
preconditions. In building the regression-match graph, we don’t care whether the goal conjunctions
come from primary or secondary preconditions.

Things are different when we turn to thinking about preservation. Consider the “briefcase prob-
lem,” due to Ed Pednault, whose formalization appears in Tables 4 and 5.

The algorithm as presented so far will build a regression-match graph in which (at paycheck1
home) has effort 0 (being true already), and the only way to achieve (at briefcase2 office) is to
move it there. Unfortunately, in the resulting situation, the goal (at paycheckl home) is false, and
the only way to make it true is to move the briefcase home again. The algorithm now detects a loop
in the space of situations, and halts, reporting failure.

The correct solution is, of course,

((take_out paycheckl briefcase2), (move briefcase2 home office)). The problem is to find
it. The only reason to perform the take_out action is to make the goal (at paycheckl home) true,
but at the time it is executed the goal is already true, so the motivation for performing it is obscure.

The solution is to wait until the one-step plan

((move briefcase2 home office))

has been proposed, then realize that one way to achieve the (now false) goal (at paycheckl home)
is to take the paycheck out of the briefcase before the last step. More generally, if A, is the last
step of a plan prefix (A1, As,..., An_1, A,), then one possible step in plan space to achieve a goal
G that is true after A, 1 is to move to the plan (A1, As,..., A, 1, B), where B achieves [4,]Z(G),
the preservation precondition of G before A,. Note that we must discard A,, because it may not be
feasible after B. Presumably, if it is feasible and relevant at that point, the algorithm will propose
it again on the next iteration.

This still isn’t quite general enough, because B may be relevant to achieving [4,]Z(G), but
not feasible. But addressing this issue is the whole purpose of the regression-match graph. All we
need to do is build a piece of the graph for [4,]2(G) , but build it relative to the situation that

6 = 6 if you take the graph seriously, which you shouldn’t.
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(define (domain briefcase-world)

(:requirements :strips :equality :typing :conditional-effects)

(:types place)
(:constants B P D)
(:predicates (at ?thing - object
?1 - place)
(in ?thing - object))

(:action mov-b
:parameters (7m 7?1 - place)
:precondition (and (at B 7m) (not (= ?m 71)))
:effect (and (at b ?1) (not (at B 7m))
(when (in P)
(and (at P 71) (not (at P 7m))))
(when (in D)
(and (at D ?71) (not (at D 7m))))))

(:action take-out
:parameters (7x)
:precondition (in 7x)
reffect (not (in 7x)))

(:action put-in
:parameters (7x - object 71 - place)

:precondition (and (at ?x 71) (at B 71) (mot (= ?7x B)))
:effect (in 7x)))

Table 4: The Briefcase Domain

(define (problem get-paid)

(:domain briefcase-world)

(:objects home office bank - place)

(:init (at B home) (at P home) (at D home) (in P))
(:goal (and (at B home) (at D office) (at P bank))))

Table 5: PDDL Definition of Briefcase Problem

obtains after A, _;. This extension requires that different pieces of the graph be relative to different
situations. In other words, we must extend goal literals, goal conjunctions, and cohorts so that they
are pairs of the form (goal, situation), where the situation is normally the current situation (i.e., that
obtaining after execution of the current plan prefix), but will become a previous situation whenever
a preservation goal is generated.

To make this idea work, we must provide a method for computing preservation preconditions from
action definitions. The key is to notice that each definition provides a specification (a necessary and
sufficient condition) for when it deletes a proposition. Hence to ensure that the action fails to delete
a proposition, we must simply find the negation of that specification, and express it as a disjunction
of conjunctions. Each such conjunction is a sufficient condition for the preservation of the given
goal.
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In most cases, this kind of complexity is not necessary. In the given example, the only way that
(move briefcase2 office) can delete (at paycheckl home) is if (in paycheckl briefcase2) is
true. Hence —(in paycheckl briefcase2) is the desired preservation precondition, and the algo-
rithm generates the goal literal

(—(in paycheckl briefcase2),7)

(an ordered pair in the new scheme). This goal literal is achieved by the action (take_out paycheckl
briefcase2), given a causation precondition that yields the goal conjunction

((in paycheckl briefcase), 7)
which has estimated effort zero. Next the algorithm considers the plan prefix
((take_out paycheckl briefcase2))

and then solves the problem by rediscovering the move action.
There is one remaining complexity. Suppose that the paycheck and briefcase had started off at
the office instead of at home; in other words, that the initial situation had had

(at briefcase2 office) A (at paycheckl office)
true. Now the algorithm would have first generated the plan prefix
( (move briefcase2 home))
to get the paycheck home, and then
((move briefcase2 home), (move briefcase2 office))

to get the briefcase back to the office. But it will refuse to consider this prefix any further, because
it appears to return the entire world to its initial situation without accomplishing anything. The
preservation machinery doesn’t get a chance to try to insert a new action before the last one.

To avoid this problem, the system does not discard situation-repeating plan prefixes immediately,
but allows only search-space moves that discard the last step of such a prefix. In the experiments
reported in Section 6, however, this feature was turned off. In those experiments, preservation pre-
conditions never occurred, and it speeded things up to avoid considering plan prefixes that repeated
previously encountered situations.

4 Limitations

Using regression-match graphs does not solve all classical-planning problems. There are a variety of
reasons.

First, the method is incomplete, because sometimes solving a problem requires actions that are
not allowed by the regression-match graph. The idea of bindings variables using maximal matches
is only a heuristic, and it is not hard to contrive examples where the correct bindings are missed.
I expected some such examples to occur in practice, but they never did. In all the experiments
described in Section 6, as far as I know this heuristic never failed.

Of course, when no variables are involved and actions do not have context-dependent effects,
as in the artificial domains of Section 6.5, the regression-graph technique is complete. This is so
obvious that I won’t glorify it with a formal statement and proof.

The algorithms I have described have two classical limitations: they don’t worry about finding
optimal plans, and they are not very good at inferring that a problem has no solutions. The former
issue is one that is often dealt with ambivalently in the literature. Officially plan optimality is not
part of the classical-planning problem, but unofficially some of the research (e.g., [32, 21]) has been
driven by attempts to avoid redundant plan steps. Unpop shares this ambivalence. On one hand, its
heuristic estimator explicitly takes plan length into account  the value of a plan prefix is its length
plus the estimated effort of achieving the goal by extending it. On the other hand, this estimator is
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often systematically inaccurate. And in hill-climbing-with-restart mode it sticks with a plan prefix
as long as it can, which often means fixing plan blemishes by adding steps instead of backtracking
to a point where the blemish doesn’t happen.

The other issue, proving that a plan doesn’t exist, is more fundamental. Unpop, like many search
systems, is oriented entirely towards finding a solution. If no solution exists, the only way it can tell
that is by exploring its space exhaustively. In practice, however, reporting that a problem can’t be
found in a certain amount of time may be almost as useful as reporting that it can’t be solved at all.

On some problems Unpop takes a very long time, even though the space searched doesn’t seem
that large. Closer investigation showed that the system was doing a lot of unifications while searching
for maximal matches. As with other deductive systems, the order in which conjuncts appear in an
action definition can have a big impact on how efficiently the conjunction can be handled. It
would be nice if a preoprocessor could find and correct such problems; but for now some tuning
is necessary. In general, however, very little rewriting is required. For the experiments reported
here, no rewriting is required; some of the domains from other researchers are expressed in a very
unnatural way for Unpop, but I avoided any revisions. For example, in the Fridge domain, the
actions to remove and attach the backplane of a refrigerator are written to include all the screws
involved: (remove-backplane bl f1 s3 s4 sl s2), for instance. This is because it was originally
produced for a planner that couldn’t handle context-dependent effects. That means that there are
24 (= 4!) different equivalent actions, one for each permutation of the screws. It is a real nuisance
for Unpop to think about all these, but it does.

Finally, the regression-match graph often provides an inaccurate estimate of the effort required to
achieve a goal. The major reason for this limitation is that the mechanism doesn’t count desctructive
effects of plan steps. It doesn’t distinguish between steps that achieve one goal and delete another,
and steps that achieve one goal while preserving another. Because so much of the research in the
planning literature is concerned with this kind of negative interaction, it may be a mystery how
Unpop works at all. The answer is that in many cases it is acceptable to handle deletion by waiting
for it to be projected. After the planner has added an action that deletes a goal, the newly constructed
regression-match graph will contain a nonzero estimate for the cost of reachieving it. In best-first
mode, the result is often a polyonimal amount of backtracking. For example, in the blocks world,
if the system chooses a destination for a block that covers up a block that is supposed to be clear,
then on the next iteration it will backtrack and try a different place. There is only a bounded list of
places to try. However, in some problems this technique is not satisfactory. Without the incoherence
fetaure, Unpop thrashes badly on problems like the “Fridge” problem in which a long sequence of
goals must be deleted that are true now and must be true in the end. In hill-climbing-with-restart
mode the poor handling of deletion means that the planner’s estimate of the actual work remaining
can steer it in the wrong direction for a long time.

Another source of inaccuracy in effort estimates is the failure to count multiple occurrences of
subgraphs properly. Consider a domain in which a robot is able to carry two objects, and it has to a
long distance to reach them. The estimated effort will count the steps of the trip twice. To alleviate
this problem, I experimented with a version of the algorithm that returned a multiset of actions
instead of a single number. This multiset was defined as follows, letting AS(p) be the “action set”
for a node of the regression-match graph:

e If p is a goal literal, and p is true in S, then AS(p) = {p};

e If p is a goal literal, and p is not true in S, then
AS(p) = p + smallest ge reductions (v) AS(g)

where the “+” sign means to add an occurrence of p to the multiset.

e If g is a goal conjunction, then

AS(g) = |smallesthe cohorts(g) Upen AS(p)|

22



where U refers to multiset union: the number of occurrences of z in S; U S5 is the max of the

number of occurrences in S; and the number of occurrences in Ss.

e If the previous rules do not assign an action set, then assign a multiset in which every action
occurs infinitely often.

(Compare the definition of EE in Section 3.3.) Now instead of estimated effort we can take the size
of the multiset that is associated with the top node. The hope was that if a subgraph occurred more
than once its actions would be counted just once in the action set. In the example I just gave, the
sequence of motion actions would give rise to a multiset of “moves,” which would be counted just
once.

This scheme didn’t work as well as I hoped. It tends to underestimate the effort about as often
as the numerical scheme overestimates. More subtly, it has little effect on the differential powers of
effort estimates. That is, if the numerical scheme rates two successor plans about the same, so will
the multiset scheme. This lack of discrimination is especially important in hill climbing.

5 Implementation

Unpop is implemented using the Nisp macro package [23] on top of Harlequin Common Lisp. Because
Nisp is a macro package, it affects only the compile times for programs, and not execution times
(except to the extent that its presence alters the behavior of the garbage collector).

Problems and domains are presented to Unpop using the PDDL formalism [25]. For each domain
there is stored:

1. Lists of all the object types and constant symbols associated with the theory.
2. For each predicate and action functor, the type constraints on its arguments.

3. An index of all the action definitions in the theory. Each action definition specifies the precon-
ditions and effects of an action.

4. An index of all the deductive rules associated with the theory. These are used for backward
chaining, Prolog-style.

5. A list of facts that are true in every situation. (These involve only constant symbols, and
cannot be changed by actions.)

6. Indexes for maintaining unique copies of propositions and actions. This enables them to be
EQ-tested and EQ-hashed when necessary. I use the term occasion to refer to a “uniquified”
proposition of this kind.

7. A list of domain variables, such as the dimensions of the grid.
8. An action-difference table, which for each action stores all its regressions.

9. An “achievability table,” which specifies for each predicate whether it can be altered by any
action.

PDDL supplies a simple inheritance mechanism for domain theories, so that one theory can be
defined to be equal to another theory, with the addition of further predicates, rules, actions, or
whatever.

The action-difference table corresponds to the operator-difference table of GPS [26]. It is built
up incrementally. Every time Unpop computes the regression of an action, it caches it in the table,
so the next lookup will be much faster. This table does not depend on the particular problem being
solved, so it is saved from run to run.

The “indexes” in the list, and the action-difference table, are implemented as discrimination trees
on symbolic expressions [8, 28]. Each node discriminates on a particular position in the expression
(CAR, CADR, etc.) and partitions the expressions it is storing into buckets depending on whatever
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content it finds at that position. When a bucket gets to be too large, it is further discriminated.
These indexes are used to fetch rules, propositions, or action definitions that unify with a particular
goal. They are efficient enough that in practice 95% of the unifications the system tries succeed.

To define a problem, you must tell Unpop three things: the domain, the initial situation, and
goal. An initial situation defines a situation space, defined as the set of all situations that can be
reached by taking sequences of legal actions starting in the initial situation. A situation space is
represented by a data structure that specifies, among other things, a situation indez that enables
Unpop to tell very quickly whether a newly generated situation has been encountered previously.
(See Figure 3.) This index is also implemented as a discrimination tree, whose nonleaf nodes are
labeled with occasions. If the label is occasion C, then the node has two subnodes, one containing
all the situations stored in the node in which C is true, the other containing all those in which C is
false. The contents of nodes are further discriminated whenever they contain five or more situations,
provided there exists a C that is not true in all the situations or false in all of them.

In an earlier version of Unpop, instead of this situation-index mechanism, situation spaces were
represented as lists of situations; which were linearly searched. For certain sorts of abstract problems
(such as the artificial domains mentioned in Section 6.5), thousands of situations can be generated,
and Unpop would spend most of its time deciding if a newly computed situation had been seen
before. The situation index reduces this time drastically.

In Figure 3, the dotted arcs are drawn based on the assumption that a situation is first seen when
the planner explores one of the shortest paths to it. In fact, especially in hill-climbing-with-restart
mode, the planner may well encounter a situation first when it is pursuing the longer path. In this
case it does not discard the shorter path when it is found, but continues to work on it.

The heart of Unpop is the module for computing regression-match graphs, which calls two main
subroutines: one to compute regressions and one to compute maximal matches. I’ll describe the
graph manager itself first.

The implemented system differs from what I’ve described here in various ways. Mathematically
it’s convenient to talk in terms of goal conjunctions, cohorts, and goal literals. In practice, it’s more
convenient to keep track of two things:

1. The goal literals
2. For each goal literal, the set of all its reductions.

The reduction of a goal literal g is a pair (A, 1), where A is an action and [ is a list of goal literals.
The reduction indicates that there is an action definition for action term A, = a(?v1,...,?v,) and
a substitution p such that [4,]%(g) = ¢ and p is a maximal match of ¢ with the current situation,
and A = u(A,) and I = p(c). That is, having computed the maximal match, we combine it with the
action definition and discard it.

The regression-match graph is built breadth-first. I experimented with depth-first schemes, but
in some domains they visit the same goal literal repeatedly at different depths. In domains in which
a depth cutoff is necessary, it matters what depth a node is encountered at, so it’s best to encounter
it first at its least depth. A breadth-first scheme makes that more likely.

After the graph has been built, a second pass through it computes effective efforts and feasible
actions. A feasible action specification consists of the following:

1. A (uniquified) action term;

2. A plan prefix. (This is always just the current plan prefix, unless the preservation machinery
of Section 3.7 is in use, when it might be some prefix of the current prefix.)

3. The effective effort of the action (the minimal effort of any coherent subgraph of which it is an
initial step; see Section 3.3).

4. The subsequent-steps table of the feasible action, which is a table giving, for each action that
occurs in the tree, an estimate of its incoherence after this feasible action (see Section 3.6).
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A few more words about incoherence are in order. Recall that the incoherence of action A; after
action Ag is the least number of actions between Ay and A; in any coherent subgraph of which
Ap is an initial step. Unfortunately, there is no way to compute this number without enumerating
all the coherent subgraphs, which would be very expensive. Instead, the Unpop system computes
the following approximation: the least number of “incoherence layers” between Ag and A; in any
coherent subgraph, where an “incoherence layer” is a set of actions that all have the same incoherence.
That is, it assigns 0 to all feasible steps in pursuit of immediate siblings of the purpose of Ag, or,
if there aren’t any, Ag’s immediate successor action. It then assigns 1 to all feasible steps that are
successors of siblings. These numbers can be computed simply by computing siblings and successors
at each level, as the estimated efforts are being propagated up the regression-match graph. In
practice, the main role of incoherence measures is to distinguish steps with incoherence 0 from steps
with incoherence > 0, and this approximation agrees with the exact definition in what it assigns the
value 0 to. In fact, above some threshold (the MAX-INCOHERENCE#* parameter), the system does not
distinguish among different incoherence values.

I experimented with best-first and hill-climbing search schemes. For most tests I settled on a
hybrid scheme that runs best-first until the search tree has gotten to be too bushy, then switches
to hill climbing on the most promising branch, restarting randomly as describe in Section 3.4. For
many problems such a hybrid approach does almost as well as the better of the other two schemes
would do. The criterion of “bushiness” is the “obesity” of the queue of search states, defined as the
number of search states that occur at approximately the same depth, and with approximately the
same score, as the current search state. When this number exceeds FAT-THRESH*, usually set to 10,
the system switches to hill-climbing mode.

The “inner loop” of the whole Unpop system is the algorithm for computing maximal matches.
This operation is in itself NP-hard in the worst case, although in practice that doesn’t seem to matter
much. The maximal-match algorithm works as follows. Given a goal of the form gl; A ga A ... A g,
it recurses into two subcases: finding matches for which g; is in the hit set P,.., and matches for
which it is in Pjs.. (See Section 3.2.) The former are obtained by finding all insances of g; that
are true in the current situation, and the associated substitutions. For each such substitution 6, the
match finder is called recursively with the goals 6(g2) A ... A 0(g).

The other recursive branch is somewhat more interesting. The match finder is looking for any
match 6 of g» A ... A gr such that 6(g1) has no true instances in the current situation. If g; is
variable-free, the this branch can be pruned if g, has true instances; if g1 has no true instances, then
it is added to a list of differences. Otherwise, when it has variables and true instances, it must be
passed down the recursion as an element of an “avoid” list, a list of goals that must not be satisfiable
when all variables are bound. Every time a substitution is found, the avoid list must be checked.
If an element becomes variable-free and true, the branch is pruned; if variable-free and false, the
instantiated goal is added to the difference list. Otherwise, it is retained on the “avoid” list.

The recursion ends when the matcher runs out of conjuncts. At that point it has a list of known
differences (ground literals that are false in the current situation), and the “avoid” list, literals with
variables that must have no true instances in the current situation. If any element of the “avoid” list
has true instances, the branch is pruned. Otherwise, the only remaining task is to instantiate these
variables. The matcher does this by finding the type constraints for all the predicates mentioned in
the difference list and avoid list, and finding all true instances of them. In the example described at
the beginning of Section 3.2, the system requires maximal matches of

(carrying robot k1) A (at robot 2 -3) A (at 7k2 2 -3)

Suppose that the first two conjuncts are true, but there is no key at (2, —3). Then the only branch
of the maximal-match search that is not pruned bottoms out with difference list

{(carrying robot k1), (at robot 2 -3)}

and “avoid” list
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{(at 7x2 2 -3)}
The type constraint on the at predicate is
(at 7a - (either agent key) ?i ?j - coord)

So the set of maximal matches is the set {k =z} for all  such that”
(agent z) V (key x)

There is one last optimization in the maximal-match finder. Before a literal is added to the
“avoid” list, it is checked to verify that it is achievable. A literal is achievable if there is any rule
that mentions its predicate in an effect. Once a predicate has been checked by searching through the
rules, its achievability is cached so it can be checked quicker the next time. The maximal matcher
prunes any branch of its recursion that requires putting an unachievable formula in the difference
list. That’s how the absurd matches described at the end of Section 3.3 are eliminated.

6 Results

Unpop has been run on a wide variety of planning problems, including the Blocks World, the
Grid World described in Section 1, a corpus of problems from the University of Washington, the
“Mystery” domains from the AIPS competition, the “Rocket” problem of [5], and the artificial
domains of [3]. On some of these it exhibits exponential behavior, but on many of them its behavior
is polynomial, especially when you measure the number of plans (search states) tried. In this section
I will summarize these results. The data reported below were obtained by running on a 300 MHz Dell
Pentium-II workstation with 128MBytes of primary memory, using Windows NT as the operating
system and Harlequin Common Lisp as the programming language. The running times below include
garbage-collection times, because I don’t think it makes sense to talk about Lisp run times without
including garbage collection.® If someone is interested in how long this algorithm will take to solve
a problem they care about, they need to know how long it will actually take, not how long it would
take in an ideal world where garbage collection was free. It is no doubt true that when and if this
style of algorithm becomes useful for practical applications, it will have to be rewritten in a clumsier
but more efficient language such as C++. However, there are many factors that would make it run
faster if so translated; there is no reason to single out garbage collection.

All the experiments were run using the hybrid search scheme outlined above. The maximum
number of plans considered varied from problem to problem, and, as explained in Section 3.5,
the maximum plan length was always one-half of the maximum number of plans. Like any other
refinement planner, Unpop must consider at least N + 1 partial plans when it succeeds in finding a
solution of length N. (N + 1 because the empty plan it starts with is counted.) In the tables below,
the “Search” column gives the number of plans generated that are not on the path to the solution.
Therefore, in the case where it finds a solution, the “Search” number is the total number examined
—(N +1) . When it doesn’t find a solution, the “Search” is the total number examined, which is
usually equal to the bound it was given; however, in some cases it runs out of plans to try much
sooner because the regression-match graph can detect that the problem is unsolvable.

In all the experiments below the system was run with the same parameter settings, with one
exception described in Section 6.5. The settings are:

CONSIDER-PRESERVATION* Value: false
This turns off the preservation-precondition machinery described in Section 3.7. In many
domains it just slows things down by causing the system to artificially consider undoing its last
action in order to look for ways to achieve a preservation precondition before it.

7 Actually, if you check Section 3.2, you’ll see that the context makes the first disjunct of this goal absurd.
8Because of a memory leak, either in my code or in the Harlequin system, the Lisp had to be restarted periodically to
avoid thrashing. It was never allowed to grow to more than 80Mb.
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COUNT-INCOHERENCE#* Value: true
This turns on the incoherence machinery of Section 3.6.

MAX-INCOHERENCE* Value: 3
Plan-prefix extensions with incoherence 3 or greater are counted the same.

MAX-MERGED-QUT* Value: 5 except in Section 6.5, where it had value 20.

MAX-HYB-BRANCHING* Value: 20
In some domains the planner finds a large number (> 20) of feasible actions in a state. Such a
huge branching factor makes one false step deadly. To avoid such a fate, we limit the number
of feasible actions generated as preconditions of a single action to be < MAX-MERGED-0UT*, and
limit the number used to generate successor states to be < MAX-HYB-BRANCHING*. If the limits
are exceeded, the actions are sorted using their estimated efforts and incoherences, and only
the best are retained.

SCRAMBLE-SUCCESSORS* Value: true
The list of favored actions is scrambled before being sorted and added to the search queue.
This prevents the planner from being harmed by or profiting from a lucky coincidence in the
ordering of actions tried.

HC-BACKTRACK-DEPTH-FIRST* Value: false
In hill-climbing mode, when a state has no successors and this flag is true, the planner backs
up to the chronologically most recent untried locally best branch. If it’s false, it does a random
restart from an arbitrary ancestor node, again picking some locally best branch. The planner
tends to do better on the average when this flag is true, but (a) I don’t know why, and (b)
when it does worse, it can do a lot worse, because it must explore a bad part of the space
exhaustively. So I made it false.

FAT-THRESH* Value: 9
As explained in Section 5, once the search-state queue’s “obesity’ exceeds this threshold, the
system switches from best-first search to hill climbing.

MAX-HYB-QUEUE-LENGTH* Value: 100
In the hybrid search algorithm, there is no point in letting the search-state queue get to be
long, because if it’s long it’s probably obese, and once the program gets into hill-climbing mode
it rarely examines more than a small fraction of the states on the queue. Once the queue has
more than MAX-HYB-QUEUE-LENGTH* states, the once past that horizon are discarded.

All of the problems discussed in this section are accessible from my web page:

http://www.cs.yale.edu/users/mcdermott.html

6.1 The Grid World

A typical problem in this world is as specified by Figure 5. The shapes are keys. The squares with
holes in them represent locks. Initially, all intersections with locks are locked. The robot can open
a locked intersection (i,j) by standing next to it with a key of the same shape as the lock, and
executing the action open(i,j). The goal is to get the diamond-shaped key DK to location (3,0). To
do that requires unlocking intersection (3,1), which is locked with a circular key. It does no good
to try to use a triangular key, because the only one is trapped inside a ring of triangular-locked
intersections. Hence the robot must use dk to open (—4,0), (—3,1), or (—3,—1), carry the circular
key ck to where the intersection (3,1) can be unlocked, then go back and retrieve dk. (The robot
can carry only one key at a time.) The optimal plan has 43 steps. Unpop did not find it in the five
runs reported here, but did find a 48-step plan:

((move right) (move up) (move right)
(pick_up dk) (move left) (move left) (move left)
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Problem Optimal Unpop’s behavior
Length ~ Search  Time
Grid World 43 48 30 214
48 30 205
48 30 194
48 30 196
48 30 197

Times are in seconds

Table 6: Grid World Results

dk

<3,0:

Figure 5: The Grid World

(move up) (move left) (move left)

(unlock -3 1) (move down) (move down)

(pick_up ck) (move up) (move up)

(move right) (move right) (move right) (move right) (move right) (move right)
(unlock 3 1) (move down) (move down)

(put_down ck) (move up)

(move left) (move left) (move left) (move left)

(move up) (move left) (move left)

(move down) (move down)

(pick_up dk) (move up) (move up)

(move right) (move right) (move right) (move right) (move right) (move right)
(move down) (move down)

(put_down dk))

The results of 5 runs are shown in Table 6. In each case the maximum number of plans explored
was set at 200, and the maximum plan length to 100.

28



Unpop switches from best-first to hill-climbing mode after finding about a 25-step plan (in the
usual case). This plan is optimal “so far” (meaning that it could have been extended to an optimal
plan), but the search had gotten to be too bushy, so Unpop gave up on exploring all the possibilities.
This class of problems is a good example of the global inaccuracies that can occur in estimated
efforts. The robot must go back and forth several times to achieve its goals; the regression-match
graph contains several pointers to the substructure for these trips; but there is no way to tell how
many occurrences of the substructure will actually need to occur in the final plan. It depends on
factors like what the robot needs to carry when it moves. For instance, when the robot has just
executed (pick_up ck), it must unlock the lock at location (3,1), then move dk to (3, 0). Both goals
require a trip from the second quadrant to the first quadrant; the second goal requires the robot
to be holding dk. This second goal appears simple, because the robot is still at the same location
as dk. However, it can’t pick dk up without dropping ck. As it moves back to the right carrying
ck, the goal to get ck to (3,1) looks easier and easier, while the goal to pick up dk looks harder
and harder. Consequently, the estimated effort stays constant. After (3,1) has been unlocked, the
robot must go back to get dk. Now the goal starts to look more and more difficult, as the planner is
forced to realize step by step that it’s going to have to retrace the steps it’s taking. If the planner
stayed in best-first-search mode, it would have to prove that all the alternative side trips, themselves
overoptimistically assessed, would do no better if pursued. In hill-climbing mode, the system just
plods ahead looking at the locally best successor plan, and solves the problem with almost no search,
albeit with a few suboptimalities.

Problems like those in the grid world are difficult for traditional planners. A system like
Ucpop [37] or Prodigy [36] has trouble because it represents only a single goal structure in its
partial-plan representation. Because it has no way of knowing from which direction to approach
an intersection, when it is looking for a path of length n it has to consider O(4™) alternative goal
reductions before getting to goals that can be satisfied by feasible actions.

6.2 The University of Washington Corpus

The University of Washington Planning Group has a corpus of planning problems that have been
attempted or solve by their planner (Ucpop) and planners from other institutions. It is accessible
from the URL

http://www.cs.washington.edu/research/projects/ai/www/ucpop.html

These may be compared with the versions at my web site to see exactly what changes were made
in order to get Unpop to run on them. In each case, the problem specification was edited as little
as possible. The major change was to introduce argument types for predicates and actions. In most
cases, this was straightforward and enhanced the clarity of the specification. Without these changes,
the maximal-match finder would have produced way too many matches, as explained in Section 3.2.
On some of the domains minor bugs had to be fixed to make the problems solvable. In some, such
severe bugs were found that it was impossible to figure out the intent. Timing results for sample
problems in most of the remaining domains are given in Table 7, in increasing order of difficulty.
Some of these problems are so easy that it was not necessary for Unpop to be run multiple times;
for others there was more variety. A detailed comparison with UCPOP is not possible, because the
corpus does not include systematic performance data; my impression is that UCPOP cannot solve
the Strips, Fridge, and Flat-tire problems in a reasonable amount of time.

The “Ferry” and “Robot” problems are toys. The “Molgen” domain is inspired by the work
of [31]. But the problem in the corpus (“rat-insulin”) is probably not representative of problems
solved by the real Molgen planner. The “Monkey” problem(“monkey-test3” in the corpus) involves
a monkey, some boxes, some bananas, and so forth. The goal is to get some bananas and a glass of
water.
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Problem  Optimal Unpop’s behavior
Bound  Length  Search  Time
Ferry 7 20 7 2 0.2
Robot 7 30 7 2 0.2
Molgen 10 80 10 13 1.6
Monkey 12 80 13 5 3.5
Flat tire 19 300 00 301 14.6
35 213 10.0
27 205 8.1
29 66 2.6
21 41 1.7
Blocks 8 100 10 19 10.3
15 1 5.5
26 20 19.1
15 12 12.8
10 1 4.8
Prodigy 13 100 20 19 3.7
30 21 4.2
20 10 2.9
20 5 24
18 5 1.6
Fridge 13 80 13 37 19.8
13 13 6.8
13 26 94
13 11 5.6
13 1 3.1
Strips 14 100 17 22 54.6
19 29 64.2
18 19 46.6
17 42 79.3
17 14 38.6

Times are in seconds

Table 7: Results for University of Washington Corpus

The “Flat Tire” problem (“fixit” in the corpus) was originally due to Stuart Russell. To fix a flat
tire, it is necessary to take tools out of a car’s trunk (or “boot,” as the problem so quaintly says),
use them in various straightforward ways, then put them away (along with the bad tire) and close
the boot. Unpop quickly switches from best-first search to hill climbing with restarts. Every time
it happens to choose to close the boot, it can’t reopen it again without repeating a state, so it does
a random restart. It usually finds a solution eventually, but it can take a long time; in one of the
five runs it failed (indicated by a value of co for solution length). Note that it had to be given a
plan-number bound of 300 to avoid giving up prematurely.

The blocks world contains a single action (puton block destination origin), with the usual ax-
iomatization, involving a clear predicate and a restriction that every block have at most one block
on top of it (except for a big block called “table”). The problem in Table 7 is the most difficult for
Unpop: Starting from a situation in which five blocks are stacked up in increasing order (“B5 on B4
on B3 on B2 on B1 on the table”), achieve the following goal:

(on B3 B2) A (on B4 B3) A (on B5 B4) A (on Bl B5)
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which requires undoing every goal but the last before reachieving all of them, with no hint about
where B2 must be in the end. This problem is not in the corpus, but is harder than any that appears
there.

The “Prodigy” problem is another version of the blocks world, closer to Nilsson’s [27] specification,
in which there are separate actions of the form unstack(block, off-block), stack(block, on-block),
pick_up (block), etc. The one for which results are reported is “prodigy-p22” in the corpus.

I discussed the “Fridge problem” (corpus label: “fixb”) in Section 3.6, in connection with the
incoherence mechanism. That mechanism sharply reduces the search required to solve the problem,
although the system still has a high probability of choosing the wrong action when it must reattach
the backplane before putting the screws back. The problem is that it has a 0.8 chance of choosing
to put a screw back. In hill-climbing mode, once it has gone down this path it has to explore it to
a dead end before giving up and trying another path.

The “Strips” problem (“move-boxes-1” in the corpus) involves a robot pushing boxes from room
to room, as the Shakey robot [12] did. Solving the problem does not require a lot of search, at least
not in limited-discrepancy mode, but it does take a lot of time. Obviously, the reason is that the
maximal matcher is doing a lot of work. The number of unifications done for the Strips problem is
as high as 648,000, of which more than 90% are successful. This is about 9000 per search state. For
comparison, in the Monkey problem there are about 1100 unifications per search state.

6.3 The Mystery World

The “Mystery World” was designed for the AIPS-98 Planning Competition. It is actually three
domains, called Mystery, Mystery-Prime, and Mystery-Two. In each the world consists of a planar
graph of locations, each having zero or more cargo items, zero or more vehicles, and some amount
of fuel. The possible actions are to load a cargo item onto a vehicle at the same location, to move a
vehicle from a location to an adjacent one, and to unload a cargo item from a vehicle. An item can’t
be loaded unless there is room for it on the vehicle, and a vehicle can’t move unless there is fuel
for it at the location. One trip takes one unit of fuel. Mystery-prime differs from Mystery in that
any location with at least two units of fuel can “leak” a unit to any other location. Mystery-two is
the same as Mystery-prime except that fuel can leak only between adjacent locations. See Table 8
and 9.

Note the use of the change construct of PDDL to express changes in numerical quantities (and the
:functors field to declare the fluent functors fuel and space). These constructs allow for a succinct
statement of what the leak action accomplishes, and allows the regression system to determine, for
instance, that in Mystery-two you can make (> (fuel n22) 0) by finding a node ?n1 such that

(conn ?n1 n22) A (> (fuel ?n1) 1) A (> (+ (fuel n22) 1) 0)

In the AIPS competition, the true nature of the domain was concealed by calling locations “foods,”
vehicles “pleasures,” cargo items “pains,” and so forth. Numbers were simulated with a clumsy sys-
tem of constants and special relations. (None of the contestants could handle the change construct.)
Since Unpop can handle numbers, there seemed no point in expressing the domain in an unnatural
way.

Tables 10 and 11 give the results for Mystery and Mystery-prime. (The results for Mystery-two
were not qualitatively different from those from Mystery-prime.) There were 35 problems in each
domain, and they were the same for each domain. The planner was given a length bound of 30
for each problem (no problem required a plan more than 16 steps long), and a search-space size of
60. After searching 60 partial plans with no solution, the search was aborted. In at least one case
the planner could have found a plan of length 33 if allowed to continue (although the optimal plan
was of length 12, so this isn’t so brilliant). Note that for unsolvable problems X-7 (size 264), Y-3
(size 373), and X-18 (size 383), Unpop did no search at all, but inferred from the regression graph
constructed at the first step that no action would get it anywhere.
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(define (domain mystery)
(:requirements :typing :existential-preconditions :conditional-effects
:expression-evaluation :fluents)
(:types physob node - object
vehicle cargo - physob)
(:predicates
(conn ?n1 ?n2 - node)
(loc ?v - physob ?n - node)
(aboard 7c - cargo ?v - vehicle))
(:functors
(fuel ?n - node)
(space ?v - vehicle)
- (fluent integer))
(:action load
:parameters (7c - cargo ?v - vehicle)
:vars (?n - node)
:precondition (and (loc ?c ?n)
(loc ?v 7n)
(fluent-test (> (space 7v) 0)))
:effect (and (not (loc 7c ?n))
(aboard 7c ?v)
(change (space ?v) (- (space 7v) 1))))
(:action move
:parameters (?v - vehicle ?nl 7n2 - node)
:precondition (and (loc ?v ?7nl)
(conn 7nl1 7n2)
(fluent-test (> (fuel ?nl1) 0)))
reffect (and (not (loc ?v 7nl))
(loc ?v 7n2)
(change (fuel 7n1) (- (fuel ?nl1) 1))))
(:action unload
:parameters (7c - cargo ?v - vehicle)
:vars (?n - node)
:precondition (and (aboard ?c 7v)
(loc ?v 7n))
:effect (and (not (aboard 7c ?7v))
(loc ?c 7n)

(change (space ?v) (+ (space ?v) 1)))))

Table 8: “Mystery” Domain

Any plan that is legal in Mystery is legal in Mystery-two, and any plan legal in Mystery-two
is legal in Mystery-prime, so it’s reasonable to assume that if a planner can solve a problem in
the Mystery domain, it can also solve it in the other two. However, the search space changes, and
there are cases where Unpop (and the AIPS contestants) fail to solve a Mystery-prime problem even
though they solved it for the simpler Mystery domain.

The actual problems are too big to display here. See the web site referred to earlier for a complete
list. In tables 10 and 11 I have arranged the problems in order of increasing size (as measured by
the number of symbols in their PDDL definitions). Obviously, this is only a rough measure of how
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(define (domain mystery-prime)
(:extends mystery)
(:action leak
:parameters (7nl ?n2 - node)
:precondition (fluent-test (> (fuel 7nl) 1))
:effect (and (change (fuel ?nl1) (- (fuel 7nl) 1))
(change (fuel 7n2) (+ (fuel 7n2) 1)))))

(define (domain mystery-two)

(:extends mystery)

(:action leak
:parameters (7nl ?n2 - node)
:precondition (and (conn ?nl 7n2)

(fluent-test (> (fuel 7nl1) 1)))
:effect (and (change (fuel ?nl1) (- (fuel 7nl) 1))
(change (fuel 7n2) (+ (fuel 7n2) 1)))))

Table 9: “Mystery-prime” and “Mystery-two” Domains

difficult the problems were.

Each line of the table gives numbers for a single problem. “Best AIPS” gives the length of the
shortest plan found by any contestant at the AIPS competition, and the time required to find that
plan. If the length is 0o, no plan was found (which may or may not mean that no plan exists). If
the length is “—” then the problem was not attempted during the competition. (The “Y” problems
were from Round 2 of the competition, and so were treated as being Mystery-prime problems only.)
No time is given for the cases where no AIPS contestants could find a solution to a problem, because
not all programs specified a time for problems they couldn’t solve, and also because some programs
just gave up after a while (as Unpop does) while others were able to prove there was no solution,
thus making comparisons between them meaningless.

Obviously, the times Unpop takes on these problems is usually larger than the time taken by
the contestants. However, most of the AIPS contestants are C programs, whereas Unpop is written
in Lisp. When Unpop can solve a problem, it usually does very little search, as shown by the fact
that the number of partial plans considered is only a bit larger than the length of the plan found.
Insisting that it try 61 plans before declaring failure is probably too conservative; if the threshold
had been set at 30 the results would not have changed, but the run times for the case where it failed
to find a plan would have been half as long.

For very large problems Unpop’s directedness pays off. Of the 16 largest problems in the Mystery-
prime domain, Unpop was able to find solutions for 13, whereas all the AIPS contestants together
were able to solve 3. I don’t know if the three problems Unpop couldn’t solve have solutions. Unpop
took up to 5 minutes to solve the largest of these problems, and conceivably the AIPS contestants
could have solved them with that amount of time. However, my impression is that they all ran out
of memory space due to their insistence on advance instantiation of all terms.

Figures 6 and 7 plot the time per “plan-symbol” for these two domains. This number is just the
ratio of running time by the product of problem size (number of symbols) times number of plans
considered® If the number is constant, then all the time Unpop spends can be accounted for by
an increase in problem size and number of plans considered. Although there is considerable noise
(because number of symbols is only an approximate measure of how hard each problem is), the ratio
appears to grow linearly for both of these domains. Because the number of plans considered grows

9Remember that, when a solution is found, this number is “Search” + solution length + 1.
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Prob

X-25
X-1
X-28
Y-5
X-27
X-11
X-12
X-29
X-9
X-4
X-5
Y-2
X-3
X-2
X-26
X-16
Y-1
Y-4
X-7
X-30
X-8
X-19
X-21
X-20
X-15

X-17
X-23
X-18
X-6

X-24
X-10
X-22
X-13
X-14

lem  Size Best AIPS Unpop

Length  Time | Length  Search  Time
92 4 0.10 4 0 0.4
107 5 0.04 5 0 0.3
118 7 0.06 9 3 14
130 oo 61 12.8
158 5 4.3 9 2 3.8
161 7 0.4 11 2 1.4
162 00 — 00 61 20.1
175 4 0.11 4 1 0.9
182 8 0.16 8 2 3.3
188 0o — 0o 61 8.2
207 0o — 0o 61 31.6
208 — — 8 5 3.7
228 4 0.20 4 0 2.1
228 9 0.41 10 1 5.0
236 6 1.78 6 2 6.0
240 o0 — o0 3 3.6
255 4 0 5.3
258 4 0 2.2
264 o0 — o0 1 0.3
265 12 5.64 14 1 20.8
326 0o oo 61 104.2
327 8 0.87 6 1 11.8
352 0o oo 61 47.9
356 10 56.5 7 1 22.5
369 0o — 6 1 17.3
373 oo 1 0.8
376 4 17.8 5 1 13.1
377 o0 — o0 61 101.9
383 o0 — o0 1 2.3
384 0o oo 61 1774
385 0o oo 61 33.5
485 8 9.1 00 61 123.1
515 o0 — o0 61 3024
521 16 1.79 16 44  370.1
548 0o 18 23 162.1

Table 10: Results for “Mystery” Domain

almost linearly with solution length, the conclusion is that, for solvable problems, running time is
growing proportionally to the cube of problem size.

6.4 The Rocket Problem

This problem, drawn from [5], is very hard for Unpop. You are given two rockets and N cargo
objects, all in London. Any amount of cargo can be loaded onto a rocket, but the rocket can be
flown only once. Some subset of the objects must go to New York and some subset to Paris. Although
considerable variation in the order of steps is possible, there is essentially only one solution to each
such problem: Load the objects destined for Paris into one rocket; load those destined for New York
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Problem  Size Best AIPS Unpop

Length  Time | Length  Search  Time
X-25 92 4 0.1 4 1 0.5
X-1 107 5 3.7 5 0 0.4
X-28 118 7 79.7 11 1 1.6
Y-5 130 6 0.5 8 1 4.0
X-27 158 8 3.2 7 2 2.8
X-11 161 8 1.8 11 0 2.9
X-12 162 9 4.5 12 1 8.0
X-29 175 5 2.3 4 1 1.5
X-9 182 8 1.9 8 1 13.5
X-4 188 9 0.8 9 1 3.9
X-5 207 11 8.1 17 2 19.2
Y-2 208 7 2.5 9 2 7.0
X-3 228 4 0.9 4 0 5.9
X-2 228 9 6.5 10 1 7.5
X-26 236 7 13.3 14 0 16.4
X-16 240 11 5.2 13 1 25.2
Y-1 255 4 7.3 4 1 10.1
Y-4 258 4 8.4 2 5.6
X-7 264 5 1.6 5 0 4.0
X-30 265 00 — 12 2 17.7
X-8 326 7 2.8 10 2 52.5
X-19 327 00 6 2 24.7
X-21 352 7 1.1 11 2 22.1
X-20 356 0o — 17 2 62.8
X-15 369 0o — 6 0 14.6
Y-3 373 0o 13 0 18.8
X-17 376 4 7.1 5 0 12.3
X-23 377 0o — 18 0 55.0
X-18 383 0o — 0o 61 27.4
X-6 384 0o oo 61 313.9
X-24 385 00 15 2 24.8
X-10 485 0o — 19 1 79.0
X-22 515 ) — 16 1 135.7
X-13 521 0o — 15 2 89.3
X-14 548 00 00 61 289.2

Table 11: Results for “Mystery-prime” Domain

into the other; fly each rocket; unload in Paris; unload in New York. If IV objects are to be taken,
the optimal solution takes 2NV + 2 steps.

Regression-match graphs are little help with this problem, because you get almost zero infor-
mation about progress from a single step. The problem is that getting each cargo object to its
destination is trivial. The hard part is realizing that exactly one rocket can go to London and one
to Paris. Unpop’s performance is summarized in Table 12. Unpop eventually stumbles on the right
plan, but it must search a huge number of plans (on the average about 4") that are essentially the
same except for step ordering. The planner was given a bound of 100 plans to try, so it can’t solve
a problem of size greater than 3.
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6.5 Artificial Domains

I tested Unpop on most of the problem domains described in [3]. None of these domains used variables
in any nontrivial way, so there was always exactly one maximal match for every goal conjunction.
However, they do involve lots of action interactions, so the order of steps is important. In [3], the
total-order planners usually do very poorly on these problems, becoming exponential for all but the
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Size Optimal Unpop’s Behavior

(No. of cargo items) Length  Search  Time
1 3 34 0.8 0.3
2 6 6.0 44 1.1
3 8 8.0 22.2 4.0
4 10 00 101.0 15.2

All numbers averaged over 5 runs. Times are in seconds
For problem of size N, optimal solution is size 2N + 2; Unpop finds it.

Table 12: Results for Blum and Furst’s “Rocket Problem”

simplest classes. In addition, with MAX-MERGED-0UT#* set to 5, as for all the more “realistic” problems,
Unpop was unable to solve many of the artificial problems, because these problems have unusually
high branching factors. The larger problems typically had 15 unrelated goals, whose first steps were
by design equally attractive. Consequently, I set the parameter to 20 for these experiments. In
the interests of space, Ill comment on only two of the domains, D'S', in which its behavior is
acceptable, and D™ S?%, for which it is hopelessly exponential.

In D'S', there are 15 actions, A1 through A15, and 30 propositions, 11, ..., I15,G1, ..., G15. All
the Ik are true initially. Each Ak requires Ik to be true, adds Gk and deletes I(k —1). A problem of
size n consists of a random selection of the G’s. Within any contiguous sequence of G’s that happens
to be included, the corresponding A’s to achieve them must be in numerical order. This sounds like
it might be difficult for a total-order planner (as it was for the ones Barrett and Weld tried), but
in actuality Unpop can take but one false step before having to backtrack. That is, if a plan prefix
cannot be extended to a complete plan, Unpop will realize it immediately after producing it. The
performance is graphed as a function of problem size in Figure 8. For this problem, the bound on
number of plans searched was set to 500, and the bound on plan length was set to 250. Oddly
enough, Unpop actually does worst for problems of medium size in this problem class. I have not
succeeded in explaining this phenomenon, although it is very repeatable. For comparison the dotted
line shows the behavior of a partial-order planner on the same problem, from [3]. My total-order
planner does not succeed in being linear, but it’s not exponential either.

In the domain D™S?%, there are 13 actions, two of the form Akl and Ak2 for k =1,...,6, and
a special action A*. There are 7 goals, with Gk achieved by Ak2, and G* achieved only by A*. The
action Ak2 requires precondition Pk. This precondition is achieved only by Ak1l, which also requires
Ik as a precondition. Unfortunately, each Ak deletes Pj for j < k. The action A* deletes every
goal except Gx, plus all of the Ik conditions. Initially all the Ik’s are true. A problem consists of
a random sample of Gk’s, plus G*. A solution is a sequence of Ak1’s in decreasing k order, followed
by Ax, followed by all of the Ak2’s in increasing k order. For example, to achieve G4, G5, G6, and G*,
you must execute

(A61, A51, A41, A%, A42, A52, A62)

Unpop’s behavior is shown in Figure 9. It is quite exponential, just like the planners in [3]. It also
does not find the optimal plan, but adds in pointless occurrences of Ak2. The plan it finds for the
example problem is

(A61, A62, AB1, AB2, A41l, A%, A42, A52, A62)

The reason is that its coherence heuristic causes it to try to achieve Gk as soon as possible. Because
it’s in hill-climbing mode, it never undoes this decision.
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7 Relation to Previous Work

The present work derives from an attempt to simplify the GPS control structure, which, as described
by [10], is rather arcane and complex. The idea of cashing out all matching operations to generate
a graph structure linking top-level goals to feasible actions first appeared in [7], Section 5.7, where
the phrase “operator-difference tree” was used for what I now call the “regression-match graph.”
However, I did not at the time appreciate the need for clear definition of the match layers of the
graph.

The most recent planning work that is related to the Unpop algorithm is the Prodigy plan-
ner of Carbonell and Veloso[36, 14], and especially its incarnation as the “FLECS” commitment
strategy.[35]. Kambhampati[18] introduced a similar framework in the context of partial-order plan-
ning.

What these papers have in common is that they model plans as collections of goals and subgoals.
Alternative goals and subgoals are reached only by switching to another part of the search space
(i.e., backtracking). More recent algorithms have begun to represent explicit alternatives the way
Unpop does. See [17, 19]. However, all of these previous works omit the idea of matching as a way
of zeroing in on relevant actions. On the plus side, they do a better job than Unpop in reasoning
about destructive interactions among subplans.

The currently most successful (and fashionable) approaches to planning are based on the idea of
avoiding variables by reasoning only about fully instantiated action and proposition terms. Graph-
plan [5] constructs a “planning graph” containing all propositions that could conceivably become
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true as the result of a series of actions. The resulting structure is extremely useful; it would be
nice to incorporate some of these ideas into Unpop, and I have some suggestions below. The orig-
inal Graphplan had trouble with context-dependent effects, but this has been fixed in recent work
by Kéhler et al. [22] and by Anderson et al. [2]. SATPLAN [21] treats planning as a satisfiability
problem. This requires representing all possible propositions and actions at all possible times, which
sounds unlikely to work, but can be made to work with ingenious coding tricks. Both of these ap-
proaches currently dominate Unpop. The idea of solving a problem with a huge amount of search by
an incredibly optimized search engine may or may not win out over doing less search with a slower
program. As shown in Section 6, the space greed of these algorithms begin to catch up with them,
when a more plodding approach just keeps on going.

Since the original paper on Unpop appeared [24], a similar idea was independently discovered by
Bonet, Loerincs, and Geffner [6]. Their version avoids matching by working with fully instantiated
propositions from the beginning, much as SATPLAN does. However, it uses the same idea of
estimating the effort required to achieve a goal by constructing tree of subgoals all the way to
currently true propositions before taking a step. The resulting program performed well in the AIPS-
98 Planning Competition.

8 Conclusions and Future Work

Total-order planning is more promising than its critics have implied. Although it doesn’t solve
everything, it has one big advantage over some of the other approaches to classical planning: it
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represents a current situation in exact detail, which allows the planner to compare that situation to
the goal description, and produce estimates of how much work remains to be done. In some cases,
the regression-match graph proposed here produces an excellent estimate; in other cases, it’s not so
good. When it works, it typically allows a planner to avoid search almost completely, at the cost of
a polynomial-size computation at each step through plan space. The moral of the story is that we
should be looking for better heuristic estimators to guide the search through plan space.

Of course, no algorithm will work well on all planning problems; because planning is NP-
complete [11]. Unpop can be expected to work well whenever the negative effects of inserting a
step too early are revealed quickly. In that case, its ability to look far ahead into the the structure of
subgoals and actions gives it an excellent estimate of the difficulty of the problem and the potential
of the feasible actions. I believe many of the problems in the literature are like this. Unpop doesn’t
do so well when the the precise order of steps matters and the problems with bad orderings are not
revealed until they are almost complete. It is not designed to handle problems with this sort of
“combination lock” flavor, such as the Rocket problem.

The currently most attractive alternatives to the approach proposed here are algorithms based
on planning graphs [5, 22] and algorithms based on propositional satisfiability [21]. So far those
approaches have had to sacrifice expressivity in order to allow their algorithms to work. By contrast,
the approach embodied in my planner handles a larger subset of the PDDL language, including some
simple numerical reasoning. In principle, it can operate in any domain in which there is a reasonable
notion of regression, the inference of a weak precondition for a goal.

There are plenty of interesting research directions suggested by this work. Because the hill-
climbing strategy often finds suboptimal plans, it might be possible to find a better plan by restarting
the planner using the length of the first plan found as a bound on plan length; this idea could
be expanded into a branch-and-bound algorithm. The rewriting technique of [1] might also be
applicable.

One main direction for future work is to make management of the regression-match graph incre-
mental. Currently the graph is rebuilt before the selection of every planning operator. For domains
of interesting size, such as the grid world and mystery world described above, the graphs are fairly
large and change only slightly after each action. After some preliminary design, I think it would be
cost-effective to represent the graph as a growing data structure with edges labeled by the situations
in which they are present. The label system would work in such a way that when a successor situ-
ation were created, it would automatically inherit all the edges of its predecessors, unless overriden
by the incremental changes due to the effects of the action leading to the situation.

The key element that would make the scheme work is an efficient method for finding all the
maximal matches that must be redone as the result of additions and deletions. It turns out to be
fairly easy to characterize the set of literals a change in whose status would affect a given maximal
match. The regression-match graph must be supplemented with an efficient lookup table for finding
those points after every action.

The other main direction is to improve Unpop’s blind spot with respect to negative interactions
among goals. There are two main cases where its blindness causes it serious problems, both involving
two sibling goals G1 and G» from the same conjunction:

e The effective subgraph for G relies on true literals that are going to be deleted by the actions
in the subgraph for Gb.

e The actions in the subgraph for G2 deletes G;.

It would not be too tricky to detect these two situations during the feasible-action-computation phase
described in Section 5. It would take time, but only a polynomial amount (because the program
wouldn’t do anything like trying all possible orderings of the two sibling subgraphs). However, even
a polynomial amount of time may be too much, unless the system gains a significant amount of
search control. It is impossible to be sure if the investment is worth it without a detailed study.
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