
Efficient and Complete Centralized Multi-Robot Path Planning

Ryan Luna and Kostas E. Bekris

Abstract— Multi-robot path planning is abstracted as the
problem of computing a set of non-colliding paths on a graph
for multiple robots. A naive search of the composite search
space, although complete, has exponential complexity and
becomes computationally prohibitive for problems with just
a few robots. This paper proposes an efficient and complete
algorithm for solving a general class of multi-robot path
planning problems, specifically those where there are at most n-
2 robots in a connected graph of n vertices. This paper provides
a full proof of completeness. The algorithm employs two
primitives: “push”, where a robot moves toward its goal until
no progress can be made, and “swap”, that allows two robots
to swap positions without altering the position of any other
robot. Additionally, this paper provides a smoothing procedure
for improving solution quality. Simulated experiments compare
the proposed approach with several other centralized and
decoupled planners, and show that the proposed technique
improves computation time and solution quality, while scaling to
problems with 100s of robots, solving them in under 5 seconds.

I. INTRODUCTION

Multi-robot path planning [1], [2] requires the computation

of paths for multiple robots on a graph, where the robots

must move from their start positions to unique goals while

avoiding collisions. An efficient solution to this problem is

relevant in many applications, such as warehouse manage-

ment, intelligent transportation, (dis)assembly, autonomous

mining, space exploration, as well as computer games.

A. Background

Traditional solutions to the multi-robot planning problem

consider either a coupled or decoupled approach. In coupled

techniques, the robots are considered a single composite

system with many degrees of freedom, and the solution is

found by searching the composite roadmap Gn = G ×
G × . . . × G, where G is the original graph and n is the

number of robots. The coupled approach guarantees not

only completeness, but optimality as well [3], [4]. These

approaches, however, have exponential complexity in the

number of robots. This complexity has inspired a number

of approaches that attempt to prune the search space while

maintaining completeness. One such method splits the multi-

robot problem into a sequence of fully-coupled subcompo-

nents where each subcomponent can be solved independently

of all others [2]. A hybrid technique plans for each robot

given future paths, and employs a coupled approach for

choosing goals and avoiding deadlocks [5]. For graphs with

The authors’ work on this paper was supported by NSF grant CNS
0932423. This paper does not necessarily reflect the views of the sponsor.
R. Luna and K. E. Bekris are with the Department of Computer Science and
Engineering, University of Nevada, Reno, 1664 N. Virginia St., MS 171,
Reno, NV, 89557 {rluna, bekris}@cse.unr.edu

g3

g1

g2

3

1 2

(a)

Push

2

1

3

(b)

Swap

3

12

(c)

Push

12

3

(d)

Swap

Push

12 3

(e)

Swap Push

12

3

(f)

Fig. 1. A complete example of Push and Swap. (a) Start and goal
configurations. (b) Robot 1 pushes to its goal, moving robot 2. (c) Robot 2
is blocked by 1. 2 swaps with 1. (d) Robot 2 pushes to its goal. (e) Robot 3
pushes and is blocked by 1. 3 swaps position with 1. (f) Robot 3 is blocked
by 2. 3 swaps position with 2, and reaches its goal.

specific topologies, efficient and complete approaches exist

by searching a minimum spanning tree of the roadmap [1],

or restricting the problem domain in grid-worlds (i.e., 4 or

8 connectivity) [6]. It is possible to take advantage of ad-

hoc networks formed when robots are within communication

range by sharing information and utilizing a coupled planner

to compute trajectories for each connected component of the

network [7].

In contrast, decoupled approaches compute individually

optimal paths, and settle conflicts between the paths as they

arise. These approaches compute sub-optimal solutions and

are not usually complete. However, decoupled methods are

typically able to compute solutions in times that are orders

of magnitude faster than coupled planners, making them

prevalent in the multi-robot literature. Prioritized planners

compute paths sequentially for different robots in order of

priority. Paths of high priority robots are considered moving

obstacles that must be avoided by those of lower priority

[8]. The choice of priorities has a significant impact on the

solution quality [9], and searching the space of priorities

can improve performance [10]. Another typical decoupled

approach considers tuning the velocities of robots along the

precomputed trajectories to avoid collisions [11], [12]. These

approaches have evolved over time, and are now able to com-

pute collision free paths for systems with dynamic constraints

[13]. Decoupled approaches suffer from deadlocks, and a

number of planners were created in order to reduce this.

Techniques using incremental planning [14] or coordination

graphs [15], [16] have shown to reduce these deadlocks.

A modern heuristic-search technique for solving multi-

robot path planning considers a dynamic priority scheme

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 3268

for the robots during replanning, and windows the search

in combination with a backwards A∗ heuristic in order to

improve search time and scalability [17]. This method was

further improved with spatial abstraction for faster heuristic

computation and lower memory requirements [18]. Other

search techniques take advantage of the discrete space by cre-

ating a flow network within grid-worlds [19], or decompose

the roadmap into subgraphs with specific properties [20].

B. Contribution

This paper proposes a new method for multi-robot path

planning that is computationally efficient and complete for a

very general class of problems, i.e., all instances where there

are at most n− 2 robots in a graph with n vertices.

The proposed method (Figure 1) is orders of magnitude

faster when compared to traditional coupled A∗. In compar-

ison to existing complete alternatives, the proposed method

provides completeness for a much wider problem class.

Furthermore, it makes no assumptions about the topology

of the underlying graph [19], [6], [1]. Compared to a

general decoupled algorithm [17], an efficient and complete

centralized planner [1], and a coupled planner utilizing

optimal decoupling [2], the proposed technique exhibits

competitive solution times with no dependence on parameter

selection. Empirical results show that the proposed approach

consistently solves multi-robot path planning problems in

times significantly faster than several existing coupled and

decoupled approaches, and returns higher quality solutions.

The approach employs two basic primitives. The first

primitive, “push”, forces robots to clear a specified path for

a robot to get to its goal. In harder instances, robots may

be required to switch positions along their shortest paths.

This is addressed by the second primitive called “swap”.

Once a robot cannot make progress towards its goal by

pushing, it must swap positions with the next robot along

its shortest path. This operation may force other robots to

move in response; potentially all of them. Eventually, all the

robots must be returned to their original positions, with just

two robots swapping positions. This work shows that if it

is not possible to execute a “swap” for two robots, then the

problem is not solvable.

II. SETUP AND NOTATION

Consider a graph G(V, E) and n robots R, where n ≤
|V| − 2. An assignment A : [1, n] → V places the robots

in unique vertices: ∀i, j ∈ [1, n], j 6= i : A[i] ∈ V, A[i] 6=
A[j]. The starting assignment is denoted as S , and the goal

assignment is denoted as T . An action π(Aa,Ab) is a change

between two assignments Aa and Ab so that only one robot

moves between neighboring vertices in the two assignments,

i.e., ∃ i ∈ [1, n] and ∀j ∈ [1, n], j 6= i :

Aa[i] 6= Ab[i], (Aa[i],Ab[i]) ∈ E ,Aa[j] = Ab[j].

A path Π = {A0, . . . ,Ak} is a sequence of assignments, so

that for any two consecutive assignments Ai and Ai+1 in Π
there is an action π(Ai,Ai+1). The objective of multi-robot

path planning is to compute a solution Π∗ = {S, . . . , T },
which is a sequence initiated with S and ending with T .

III. PUSH AND SWAP

The PUSH AND SWAP method sets the current assignment

A to the starting one S and starts building the solution path

Π∗ by inserting S into Π∗ (line 1). It also initializes the set

U to the empty set. This set will be used throughout this

description, indicating a set of static vertices that are treated

as obstacles. It contains vertices of robots that have reached

their goals. Then for each robot r, PUSH AND SWAP tries

first to push r to its goal T [r] by clearing its path from other

robots (lines 2-5). If the push operation fails (line 5), then

a swap operation is initiated with the robot that is blocking

r’s path (line 6). If the swap also fails, then the problem

is not solvable (line 7). If r has not reached its goal, then

the algorithm keeps applying push and swap operations (line

3). When r reaches its goal T [r], A[r] is inserted to the set

U of static robots, whose position must be respected by all

push operations (line 8). Eventually the algorithm returns Π∗,

which is constructed by the calls to PUSH and SWAP.

Algorithm 1 PUSH AND SWAP (G,R,S, T)

1: A ← S , Π∗ ← {S}, U ← ∅
2: for all r ∈ R do

3: while A[r] 6= T [r] do

4: p = SHORTEST PATH (G,A[r], T [r])
5: if PUSH(Π∗,G,A, r, p,U) == FALSE then

6: if SWAP(Π∗,G,A, T , r,U) == FALSE then

7: return ∅ (i.e., Failure)

8: U ← U ∪A[r]
9: return Π∗ (i.e., Success)

A. Push Primitive

PUSH (Algorithm 2) attempts to move robot r along a

given path p∗. This operation will incrementally move any

robot occupying a vertex in p∗ away from this path, as long

the occupied vertex doesn’t belong to the set U . A graphical

example of the operation is shown in Figure 2.

Algorithm 2 PUSH(Π∗,G,A, r, p∗,U)

1: t = last vertex in p∗

2: v ← vertex in p∗ after A[r]
3: while A[r] 6= t do

4: advance r along p∗ until blocked, inserting interme-

diate actions into Π∗

5: if A[r] 6= t then

6: Mark A[r] and U as blocked on G
7: ve ← reachable empty vertex to v on G

8: p← SHORTEST PATH(G, v, ve)
9: if p == ∅ then return FALSE

10: Mark A[r] and U as free on G
11: move robots on p toward ve; insert actions into Π∗

12: return TRUE

PUSH iterates as long as r has not reached the end of the

given path (line 3), and it can still make progress without

any need for swapping (line 9). If the vertices along p∗

are not occupied, then r is moved along these vertices and

the corresponding intermediate assignments are stored on

the solution path (line 4). At this point, if r has traversed

3269

g1

2 31

(a)

2 31

(b)

3

2

1

(c)

2

31

(d)

Fig. 2. Illustration of the push primitive. (a) Robot 1 advances along the
empty vertices in its shortest path. (b) Robot 2 is pushed up, allowing 1 to
advance. (c) Robot 3 is pushed forward, allowing robot 1 to reach its goal.

the entire path , the subproblem for r is solved (line 5).

Otherwise, the next vertex v along p∗ of r is occupied by

another robot. In this case, the algorithm considers whether

it is possible to push the robot blocking the path p∗ out of

the way of r, without altering the position of r or any of

the robots in U (lines 6-11). To do this, PUSH computes the

shortest path p between the robot occupying vertex v and the

closest reachable empty vertex ve to v on G. The vertex ve
is considered reachable if there exists a path between v and

ve that does not pass through any vertex in the set U , or the

vertex occupied by robot r (lines 6-8). If no path is found

(line 9), then robot r cannot push the blocking robot out of its

shortest path, and further progress cannot be made without

swapping. If a path is found (line 10), then all of the robots

along the shortest path between v and ve are pushed one

vertex forward towards ve along p. In this way v is cleared

for r to occupy. The pushing process is then repeated, given

the new assignment of all robots.

B. Swap Primitive

SWAP switches the position of a robot r with the robot s

adjacent to r along r’s shortest path. After SWAP is finished,

the only robots that have changed position are r and s.

Algorithm 3 SWAP (Π∗,G,A, T , r,U)

1: p∗ ← SHORTEST PATH (G,A[r], T [r])
2: s← robot on first vertex in p∗ after A[r]
3: success = FALSE

4: S ← {Vertices of degree ≥ 3, sorted by dist. from r}
5: while S 6= ∅ and success == FALSE do

6: v = S.POP (), Π← ∅
7: p←SHORTEST PATH(G,A[r], v)
8: if PUSH (Π,G,A, {r, s}, p, ∅) == TRUE then

9: if CLEAR (Π,G,A,A[r],A[s]) == TRUE then

10: success = TRUE

11: if success == FALSE then return FALSE

12: Π∗ = Π∗ +Π
13: EXECUTE SWAP (Π∗,G,A[r],A[s])
14: Π = Π.REVERSE (), exchanging paths for r and s

15: Π∗ = Π∗ +Π
16: if T [s] ∈ U then

17: return RESOLVE (Π∗,G,A, T ,U , p∗, r, s)

18: return TRUE

To switch two robots, SWAP selects s, which is adjacent

to r along r’s shortest path (lines 1-2). For a vertex v in G
with degree ≥ 3, the algorithm computes the shortest path

from A[r] to v (line 7). Then, SWAP attempts to push r and

rs

(a)

r

s

(b)

s

r

(c)

r s

(d)

Fig. 3. Illustration of the swap primitive. Robots r and s swap positions.

s to v and one of its neighboring vertices (line 8). This is

achieved by a call to the function PUSH, which will move

the composite agent composed of adjacent agents r and s,

that can also move all other agents indiscriminately; the set

of static vertices passed to PUSH here is empty(line 8). If the

pushing succeeds, then A[r] = v and A[s] is adjacent to v.

For r and s to swap positions at v, two adjacent vertices of

v (excluding the vertex occupied by s) must be evacuated

(line 9). This is the objective of CLEAR, detailed later in this

section. If two adjacent vertices of v cannot be cleared, then

it is impossible for r and s to exchange positions at v, and

another vertex must be checked.

If all vertices of degree ≥ 3 are exhausted and r and

s cannot reach such a vertex with two empty neighbors,

SWAP returns failure (line 11). If the swap can take place,

the actions computed by MULTIPUSH and CLEAR are added

to the global solution (line 12), and the swap is performed

(line 13). The swap is shown in Figure 3. Once the swap

is executed, the actions Π computed by MULTIPUSH and

CLEAR must be reversed so that robots already at their goal

will return there after the swap. Care must be taken during

reversal not to undo the swap of r and s; paths executed by r

will be executed by s and vice versa (line 14). The reversed

set of actions is then added to Π∗ (line 15). Finally, it may

happen that s occupies a vertex in the set U , indicating s was

already at its goal (line 16). After the swap, r and s have

switched positions, and s must be moved back to its goal to

maintain the swap invariant. This is achieved by RESOLVE

(line 17), detailed later in the section.

1) Clear Operation: The CLEAR operation (Algorithm 4)

attempts to free two neighbors of a vertex v so that robots

r and s can swap positions with one another. There are two

cases to consider when freeing the neighborhood of v.

If there are already two empty neighbor vertices of v,

then the clearing is trivially achieved (lines 1-2). Otherwise,

PUSH is used to evacuate the neighbors. During the first step,

CLEAR attempts to push all occupied neighbor vertices of v

to other neighbors excluding v (Figure 4(a), lines 5-9). If two

neighbors of v are freed during this process, CLEAR succeeds

(line 8). Otherwise, if all neighbors of v are exhausted but

there exists a single empty neighbor of v (Figure 4(b)),

the algorithm considers moving an occupied neighbor of v

through v and an empty neighbor where it may be possible

to push further. Only if there is one empty neighbor is this

feasible; note that if it is not possible to push a single robot

away from v, it will not be possible to push a second one. To

a b

s r

(a)

a

s

b

r

(b)

a

r

b

s

(c)

s

ba

r

(d)

Fig. 4. CLEAR operation at vertex v (shaded). (a) Case 1. (b-d) Case 2.

3270

achieve this, the vertex v itself must be cleared (Figure 4(c),

lines 10-11). Then all occupied neighbors of v are checked

to see if it is possible to clear them via an empty vertex of

v (Figure 4(d), lines 14-17). If a single push succeeds, then

two neighbors have been successfully cleared. CLEAR can

then move the robots formerly occupying v and its neighbor

back to their original positions and return success (line 18).

If both steps 1 and 2 fail, then it is not possible to clear vertex

v without additional swapping. Section IV details why these

two cases are sufficient for clearing the neighborhood of v.

Algorithm 4 CLEAR (Π∗,G,A, v, v′)

1: E ← {free neighbors of v}, U ← {v, v′, E}
2: if |E| ≥ 2 then return TRUE

3: for all n ∈ NEIGHBORS (v) \ {E , v′} do

4: for all n′ ∈ NEIGHBORS (n) \ {E , v} do

5: p←SHORTEST PATH (G, n, n′)
6: if PUSH(Π∗,G, ROBOT(G, n), p,U) then

7: E ← E ∪ {n}
8: if |E| == 2 then return TRUE

9: else if |E| == 1 then break

10: p←SHORTEST PATH (G, v, v′)
11: if PUSH(Π∗,G, ROBOT(G, v), p, E) then

12: v′′ = vertex held by robot that formerly held v′

13: U ← {v, v′, v′′, E}
14: for all n ∈ NEIGHBORS (v) \ {E , v′} do

15: for all n′ ∈ NEIGHBORS (E) \ v do

16: p←SHORTEST PATH (G, n, n′)
17: if PUSH(Π∗,G, ROBOT(G, n), p,U ∪ {n}) then

18: move ROBOT(G, v′)to v, ROBOT(G, v′′)to v′

19: return TRUE

20: return FALSE

2) Resolve Operation: The RESOLVE operation repairs the

case in SWAP where a robot switches positions with another

robot already at its goal. RESOLVE returns the robot s to its

goal, while allowing r to make further progress.

g5

g4

2 3 4

1

5

6

7

(a)

2 4 3

1

5

7

6

(b)

2

1

34

7

5

6

(c)

2

1

34

7

5

6

(d)

3

1

42

7

5

6

(e)

3

1

42

7

5 6

(f)

2 4 3

1

5

7

6

(g)

2 4 3

1

5

7

6

(h)

Fig. 5. RESOLVE: Vertices in U ′ are shaded. (a) After robots 1,2 and 3
have planned. (b) Robot 4 swaps with 3. (c) Resolve is invoked (3 was at
goal). 4 swaps with 5 and reaches its goal. (d) Resolve called for 3 and 5;
5 swaps with 4. (e) 5 swaps with 2 invoking Resolve again. (f) 5 pushes to
its goal; third Resolve is successful. (g) 4’s goal is freed; second Resolve
is successful. (h) 3’s goal is free; first Resolve is complete.

RESOLVE first attempts to push robot r further along its

shortest path (lines 2-5). If the push succeeds, then the goal

of s will be free, allowing s to move to it. If this push fails,

then r will have to swap positions again along its shortest

path (line 8). After a successful swap, robot s can attempt to

push from its current position to its goal (line 9). r continues

to swap along its shortest path until the push for s succeeds.

Under some circumstances, r may swap to its goal. In this

case, r has swapped with a robot r′ that was occupying its

goal; r′ must then continue the resolution process in order

to free the goal of s. This is achieved with a recursive call

to RESOLVE, replacing r with r′ (lines 11-15).

Algorithm 5 RESOLVE (Π∗,G,A, T ,U , p∗, r, s)

1: t = vertex in p∗ after A[r], U ′ ← {U ∪{A[s]}}\{T [s]}
2: p =SHORTEST PATH (G,A[r], t)
3: if PUSH (Π∗,G,A, r, p,U ′) then

4: move s from A[s] to T [s]
5: return TRUE

6: else

7: r′ = r, ps ← {A[s], T [s]}
8: while SWAP (Π∗,G,A, T , r′,U ′) do

9: if A[s] == T [s] or PUSH (Π∗,G,A, s, ps,U ′) then

10: return TRUE

11: else if A[r′] == T [r′] then

12: U ′ ← U ′ ∪ {T [r′]}
13: r′ = robot r′ just swapped with

14: p∗ =SHORTEST PATH (G,A[r′], T [r′])
15: return RESOLVE (Π∗,G,A, T ,U ′, p∗, r′, s)
16: return FALSE

C. Post Processing

Post processing the sequence Π∗ PUSH AND SWAP can

yield significant improvements in path quality. Π∗ may have

redundant paths due to multiple calls to SWAP and subse-

quent reversals required for the swap invariant. In SMOOTH

(algorithm 6), if a robot leaves a vertex v at step t, and returns

at t+ j, and no other robot occupies v during (t, t+ j), then

the robot is free to remain at v during (t, t+ j).

Algorithm 6 SMOOTH (Π)

1: removed = TRUE

2: while removed == TRUE do

3: removed = FALSE

4: for all π ∈ Π.REVERSE () do

5: r = ROBOT(π), v = last vertex in π

6: π′ ←next path in Π.REVERSE () containing v

7: if π′ 6= ∅ and r ==ROBOT(π′) then

8: for all π′′ ∈ Π(π′, π] do

9: if ROBOT (π′′) == r then

10: remove (π′′) from Π
11: remove portion of π′ after v

12: removed = TRUE

13: return Π

SMOOTH accepts a solution path Π, and iterates over each

action π ∈ Π in reverse order (line 4). For each action π,

the actions after π in the reversed sequence are checked for

an occurrence of the final vertex v in π. If such an action

π′ exists, and π and π′ are executed by the same robot r

(lines 7-8), then all actions executed by r between π′ and π′

(including π) are removed from Π (lines 9-11). Additionally,

π′ is cut to end at vertex v (line 12). The smoothing process

3271

continues until the entire solution sequence has been iterated

through. SMOOTH continues to iterate over Π in reverse order

until no paths are removed during an entire iteration.

IV. ANALYSIS

This section proves the completeness of PUSH AND SWAP

for instances where the number of robots is ≤ |V| − 2.

Theorem 4.1: PUSH AND SWAP is complete for multi-

robot path planning problems where the number of robots

n is less than or equal to |V| − 2.

To prove this theorem, it must be shown that if two

adjacent robots cannot swap vertices, then the planning

problem itself has no solution. This implies that SWAP must

be able to bring two agents to a degree of 3 or more

and free two neighboring vertices in each solvable instance.

Additionally, it must be shown that progress is always made

when applying PUSH or SWAP and that a solvable instance

will never become unsolvable with those primitives.

Lemma 4.2: PUSH can transfer a composite robot R made

up of two adjacent robots to a vertex v in G if such a transfer

is possible and necessary for SWAP.

Proof: Consider a composite robot R, a destination

v for R on G and p a path from R to v. If there exists an

alternate path p′ from v to R, not passing through an internal

vertex of p, then v belongs to a loop that includes R. If v

belongs to such a loop, and this loop contains at least an

empty vertex or there is an empty vertex reachable from the

loop, then R can simply PUSH the robots along its shortest

path around the loop to reach v.

Otherwise if v does not belong to a loop with R, but

there exists a single path p from the initial position of R

to v, then let ρ be the number of vertices reachable from v

without passing through any internal vertex of p, and η be

the number of robots along p. If ρ ≥ η, then it is possible

to push all robots blocking p into vertices reachable by v.

This completely frees p for R, allowing the composite robot

to reach v. Otherwise, if ρ < η then it is not possible for R

to reach v; there are no free vertices to push the robots in p.

vR v’

Fig. 6. A redundant loop
from R’s vertex to v. Using
PUSH to move R to v is
unnecessary for SWAP (v′

is closer than v).

If there are multiple paths from

the initial position of R to v, then

there must be at least one internal

loop inside G that intersects a path

from R to v. At this intersection,

a vertex v′ of degree 3 or more

exists. For SWAP, this vertex is

closer than the given destination

vertex v, and will be expanded first. In this case, v′ either

belongs to a loop containing R, or a single path exists from

the initial position of R to v′, both of which are discussed

earlier in this proof. Figure 6 shows this case.

Lemma 4.3: CLEAR considers all essential cases when

evacuating two vertices in the neighborhood of a vertex v

for the purposes of swapping robots r and s at v. If CLEAR

fails, then freeing v’s neighborhood for SWAP is not possible.

Proof: There are 3 cases to consider when evacuating

a robot a in the neighborhood of v, (Figure 7): 1) Push a

toward a neighbor vertex that is not v or an empty neighbor

of v. 2) Push a through v and an empty neighbor of v: v′.

Robot a should end at a neighbor of v′, excluding v or an

empty neighbor of v. 3) Swap a with robots r and s in order

to occupy a vertex opposite r and s.

PUSH can be used in case 1 by fixing the positions of r, s,

and any free neighbor of v since PUSH exhaustively searches

for reachable empty positions. Case 2 can also utilize PUSH,

once v itself is cleared by having robot r push toward s one

vertex, placing any free neighbor of v in U . After v is free, a

can be moved through v to the empty neighbor to attempt a

PUSH. For this PUSH the set U is populated with the vertices

occupied by robots r and s, and the vertex v.

Case 3

Case 1

Case 2

Case 2

(unnecessary)

a

rs

Fig. 7. Evacuating a from
the neighborhood of a ver-
tex v (shaded).

Case 3 is an extension of case 2,

where robot a attempts to evacu-

ate the neighborhood of v through

the vertices occupied by robots r

and s. This evacuation, however,

requires a to swap position with r

and s. If it is possible to swap a

with r and s at v, then there must

be two free vertices in the neighborhood of v, and it is not

necessary to evacuate a. Therefore, for a to swap with r

and s, a second swap vertex, v̇ must be used. Note, if it is

possible for a to swap with r and s at v̇, then r and s could

also swap at v̇. Similarly, it may be possible for a to swap

with r at v, and then swap with s at v̇. If it is feasible for a

and s to swap at v̇, it is also possible for r and s to swap at

v̇. Because SWAP searches all possible vertices of degree 3

or more, v̇ will be checked, making case 3 unnecessary.

Lemma 4.4: A multi-robot path planning problem is solv-

able if and only if SWAP can bring robots r and s to a vertex

v with a degree ≥ 3 along with two empty vertices.

Proof: Consider the sequence of vertices along the

shortest path of r to its goal T [r], where s is positioned

between r and T [r]. The ordering of r and s along this

string of vertices has to be swapped in order for the problem

to be solved. Even if r follows a different path to reach its

goal T [r], the ordering of r and s along the shortest path

will change if the problem is solvable. Thus, the problem is

solvable if and only if the two robots can be swapped.

SWAP exhaustively searches all the vertices of degree 3

or more, checking whether it is feasible for adjacent robots

r and s to reach a vertex using PUSH, apply CLEAR at the

vertex, and execute a swap. From lemmas 4.2 and ??, if

SWAP is unable to move two adjacent robots to a vertex v of

degree three or more to execute a swap operation, then the

multi-robot path planning problem is not solvable.

Lemma 4.5: After a successful call to SWAP, the robots

in U are assigned to the same vertices they were assigned

before the call to SWAP, and at least one robot outside of U
has made progress toward its goal.

Proof: SWAP attempts to switch the positions of a

robot r not in U with the robot s blocking r’s shortest path.

Assuming a swap is possible, the swap will result with r

and s switching positions, leaving all other robots intact. The

other robots are guaranteed to be at the vertices they started

in because the actions computed during SWAP is reversed.

3272

Because r is swapped along its shortest path, it will make

progress toward its goal. In the case that s belongs to U ,

RESOLVE is employed to progress r further along its path to

free the goal of s. Because RESOLVE is recursive, more than

one robot may make progress towards its goal.

With these lemmas, the proof of Theorem 4.1 is as follows:

Proof: When planning for a robot r, the algorithm first

attempts to move r towards its goal by pushing robots not

in U away from its shortest path. U contains the vertices

of robots that have previously reached their goals. If PUSH

succeeds, then r reaches its goal. However, if r cannot make

progress using PUSH, then there exists a robot s adjacent to

r along r’s shortest path that must be swapped with r.

To swap robots r and s, it is necessary to move both to a

vertex v with degree ≥ 3, and clear two vertices neighboring

v so that a swap (Figure 3) can be performed. SWAP requires

two empty vertices in the neighborhood of v (achieved by

CLEAR), and forms the basis for the constraint that at least

two empty vertices must exist in G for completeness. SWAP

performs these steps, and from Lemma 4.4, if a SWAP cannot

be executed, then the problem cannot be solved.

Since PUSH never moves robots already at their goals,

and Lemma 4.5 shows that SWAP allows r to make progress

without moving any robot already at its goal, repeated calls

to PUSH and SWAP will eventually bring robot r to its goal

position, leaving those already at their goal intact.

Corollary 4.6: A robot r′ may be pushed away from its

initial vertex during the planning of other robots. Because of

this displacement, it may seem that there is no path for r′

to travel from its current vertex to its goal. Note, however,

that it is possible for r′ to get from its initial vertex to the

current vertex using a series of PUSH and SWAP operations,

and a similar set of operations will allow r′ to return to its

initial vertex. If the initial configuration is solvable, then it is

possible for r′ to reach its goal. The solvability of an instance

depends only on the initial configuration; any configuration

achieved through PUSH AND SWAP can be reversed.

V. EVALUATION

This section evaluates PUSH AND SWAP, and compares its

performance against:

a) A coupled A∗ planner which considers the fully com-

posite robot when planning, and expands actions for a single

robot at a time. This change allows the solution computed

to be directly compared to PUSH AND SWAP, which also

returns a sequential set of actions.

b) WHCA* [17], a modern decoupled planner that consid-

ers a planning window where a prioritized search takes place.

This approach periodically changes the priority of each robot

to avoid worst-case assignments. It also employs a backwards

A∗ heuristic to select the path that “best” completes the

planning window during each replanning cycle.

c) A complete planner that considers movement through

a spanning tree of G [1]. This planner is fast, deterministic,

and complete for problems where the number of leaves in

the spanning tree is greater than the number of robots.

Coupled A∗ WHCA*(5) Sp. Tree Push/Swap
Problem Time Size Time Size Time Size Time Size

Tree 2.54 15 1.18 34.4 1.56 15 0.42 18
Corners 3882 36 0.90 36 ∞ n/a 0.88 50
Tunnel 413 53 ∞ n/a ∞ n/a 2.68 81
String 198 20 1.46 36.1 1.97 38 0.42 26

Cycles 305 19 1.14 30.5 ∞ n/a 0.53 34
Loop ∞ n/a ∞ n/a ∞ n/a 8.45 350

Connect ∞ n/a ∞ n/a ∞ n/a 2.63 86

TABLE I

THE COMPUTATION TIME (MS) AND SOLUTION LENGTH FOR THE

BENCHMARKS. ∞ REPRESENTS A FAILURE TO COMPUTE A SOLUTION.

d) A technique that separates teams of robots into a

sequences of fully coupled sub-components [2]. Each sub-

component can be solved independently of the others by

treating the current positions of all other robots as obstacles.

To evaluate the proposed approach, a series of challenging

instances of multi-robot path planning were created. These

problems include a set of small benchmarks as well as larger

instances. All experiments are performed on a Core 2 Duo

2.5GHz machine with 4GB of memory. Results are given in

terms of solution quality, computational feasibility, and al-

gorithmic scalability. All computations for PUSH AND SWAP

include the path smoothing process shown in section III-C.

A. Benchmark Problems

A series of small, benchmark problems (Figure 8) were

created, ranging in size from 3 to 16 robots. Because of

the small-scale of these problems, a comparison of the

PUSH AND SWAP technique with the coupled A* as well as

the decoupled WHCA* can be shown. The spanning tree

planner is also applicable in some problems because number

of leaves in the tree is greater than the number of robots.

Computation Time: Table I shows the time needed for

the four approaches to compute their respective solutions.

Times of more than 10 minutes are deemed a failure. The

coupled approach computes high quality solutions for small

problems, but becomes infeasible as the number of robots

grows. WHCA* quickly computes solutions for 3 of the

benchmarks, but the success rate for those problems is less

than 50%. WHCA*’s inability to solve other problems can

be attributed to a high degree of coordination necessary to

compute the solution. The spanning tree planner can solve

certain instances, but it has difficulty addressing these bench-

marks because there are too few leaves in the spanning tree.

In contrast, PUSH AND SWAP approach is able to quickly

compute solutions to all of the benchmark problems.

Path quality: The solutions returned by PUSH AND SWAP

and WHCA* are sub-optimal. WHCA* does poorly in the

tree and string problems, computing solutions 2.5 times

longer than the optimal. Only in the corners problem is the

solution competitive with the other techniques. The spanning

tree approach does well in the tree benchmark, but as the size

of the environment increases, the quality of the solution de-

cays considerably. The spanning tree approach had the poor-

est quality in the string benchmark. PUSH AND SWAP can

solve all problems in single milliseconds, while achieving a

solution comparable to the other suboptimal approaches.

3273

1

2

3

3

4

1

2

4

3

2

1

3

4

1

2

5

6

1 2 3 4

5
3

1

2

4

6

5

7 2

4

3

1 5

6

Fig. 8. A set of small benchmark problems. From left: Tree, Corners, Tunnel, String, Cycles, Loop, Connect. Arrows indicate desired goal positions.

WHCA*(5) Push and Swap
Robots Time (s) Path Length Time (s) Path Length

24 0.011 1.86 0.001 2.00
48 0.152 2.00 0.009 2.00
72 0.909 2.10 0.029 2.00
96 3.56 2.07 0.067 2.00

TABLE II

ROTATION PROBLEM: TIME (SECONDS) AND PATH LENGTH.

B. Large Scale Problems

As the number of robots grows, the coupled approach

becomes intractable, and decoupled planners suffer from

deadlocks due to incompleteness.

Rotation Problem: The first large scale experiments test

an environment with the robots arranged in a circular pattern,

with the interior of the environment free (Figure 9(a)). The

goal for each robot is adjacent to the start, with the final result

achieving a rotation of all robots by one vertex. The spanning

tree planner is not applicable because the graph does not

generate enough leaves in a spanning tree. The configuration

of the robots is fully-coupled and cannot be separated into

smaller subsets, making the coupled A∗ planner infeasible

even for the smallest problem with 24 robots.

Table II shows the computation time for WHCA* with

a window size of 5 compared with PUSH AND SWAP.

PUSH AND SWAP computes virtually the same quality so-

lutions as WHCA*, but in substantially less time. All ex-

periments are averages over 20 runs. There was at least one

failure for each WHCA* experiment due to randomness.

Random Problem: The next large-scale experiments

evaluate the Coupled A∗, WHCA*, Spanning Tree, and

PUSH AND SWAP techniques over a randomly populated grid

world with 20% obstacle coverage. Robots are placed in

random, mutually exclusive start and goal vertices. Figure

9(b) shows an example of this experiment with 100 robots.

Similar to the rotation problem, the direct application of

the coupled A∗ is computationally infeasible. However, the

random placement of the robots allows the problem to be

split into a sequence of optimally decoupled composite

robots [2]. Results given in this experiment for the coupled

A∗ approach include costs for optimal decoupling [2].

Computation time: Figure 10 (left) shows the time needed

to compute solutions to the random problem with varying

numbers of robots. WHCA* was executed with two window

sizes, 8 and 16. PUSH AND SWAP shows a slight computa-

tional advantage over WHCA* with the window size of 8.

However, the small window quickly degrades in its ability

to compute a solution, and fails with 50 or more robots.

WHCA* (16) is able to solve much larger numbers of robots,

but suffers from the same decay as the number of robots

24

2 3 4 5 6 7

8

9

10

11

12

13141516171819

20

21

22

23

1

(a)

S34

G58

S23

S92

S45

G95

G67

S5

G94

G22

G12

S58

S32

G18

S2

S59

S54

G81

S48

G23

G11

G55

S64

S53

G25

G19

G98

G62

S74

G87

S56

S96

S3

S69

S97

S4

G27

S99

S0

G8

S85

S49

G82

G61

S87

G41

G30

S12

S80

G51

S98

S24

S79

S28

S35

G44

S18

S50

G92

G76

S70

G15

G35

S15

S7

S8

G46

S65

G13

S41

S88

S62

G20

G79

S83

G24

S21

S67

S43

S44

S63

G40

S82

G64

G71

G31

G78

G2

S26

G50

S66

G32

S52

G69

G43

S17

G33

G86

S68

S16

G6

S31

S13

S33

G47

S57

G0

S47

S6

G38

G14

G7

S78

G36

S39

G1

S42

S1

S14

G54

G3

G49

G21

S46

S94

S95

S22

S75

S81

G93

G72

G48

S51

G34

G70

S72

S20

S93

G60

S25

S11

G73

G91

S76

G59

G85

S9

S89

S71

S27

G83

G29

S90

G57

G45

G17

S77

S30

G68

S73

S84

G63

S91

G88

G89

S40

G77

G90

G39

G66

S61

S19

G52

S86

G42

G9

G97

G65

G84

G26

G37

G16

G75

G99

G10

G53

S37

S38

G5

S36

S55

G80

G28

S29

G74

G56

G96

S10

S60

G4

(b)

Fig. 9. Large-scale experiments: (a) Rotation problem with 24 robots. (b)
Random assignment of 100 robots. Robot i moves from Si to Gi.

increases. Additionally, the larger window size needs much

more computation time due to the larger planning horizon.

When using the Coupled A∗ planner, optimal decoupling

[2] significantly improves computability by separating the

problem into a sequence of largely singular composite robots.

Even so, the optimal decoupling process has exponential

complexity in the size of the roadmap and number of robots.

This approach begins to decay after 50 robots, requiring sub-

stantial amounts of memory and computation time. Results

for coupled A∗ are given for problems with up to 50 robots.

The spanning tree planner is able to effectively operate

in the random environment, solving the 100 robot instance

in under 11 seconds. However, this time is still more than

double the time of PUSH AND SWAP, which solves the 100

robot instance in about 4.5 seconds. PUSH AND SWAP was

able to solve all instances of the random assignment problem

in times faster than the other planners tested against.

It is important to note that WHCA* is not a complete

algorithm. Figure 10 (middle) shows the percentage of

successful random experiments for WHCA* compared to

PUSH AND SWAP. The spanning tree technique is complete,

and also has a 100% success rate. Optimal decoupling [2]

has 100% success as well, but suffers from computational

infeasibility after 50 robots.

Path Quality: PUSH AND SWAP achieves a solution qual-

ity that is noticeably better than the WHCA* and span-

ning tree approaches. Figure 10 (right) shows the ratio of

the solution lengths for the various planners against the

paths computed by PUSH AND SWAP. This graph shows that

PUSH AND SWAP consistently achieves an average solution

length 20% shorter than WHCA*, and more than three times

shorter than the spanning tree approach.

With optimal decoupling, [2] the coupled A∗ approach is

not expected to compute the optimal solution for the entire

problem, but each composite robot will yield its individually

optimal solution. Surprisingly, using this approach does not

3274

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

Number of Robots

Push and Swap
WHCA*(8)

WHCA*(16)
Coupled

Spanning Tree

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
t

S
u

c
c
e

s
s

Number of Robots

Push and Swap
WHCA*(8)

WHCA*(16)
0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 100

R
a

ti
o

Number of Robots

WHCA*(16)
WHCA*(8)

Coupled
Spanning Tree

Fig. 10. Random grid experiment. All values are averages of 20 runs. (left) Computation time for varying numbers of robots using different techniques.
(middle) Success rate for WHCA∗. (right) The ratio of solution lengths for various techniques against those computed by PUSH AND SWAP.

significantly improve solution quality. The PUSH AND SWAP

approach computes solutions just 3% longer.

VI. DISCUSSION

This paper presented an efficient and complete approach

for multi-robot path planning problems with at least two

empty vertices in the graph. Through the combination of

two basic primitives, the algorithm solves a broad set of

problems at least as fast as a well established decoupled

planner and a sophisticated complete approach without rely-

ing on parameter selection or graph topology. Experiments

verify the advantages of the proposed technique against both

coupled and decoupled approaches, showing improvements

in computation time as well as solution quality. In compar-

ison with a coupled A∗ alternative combined with optimal

decoupling [2], an efficient and complete approach [1], and

a general decoupled method [17], PUSH AND SWAP exhibits

computation times faster than all of these approaches, with

path quality comparable to the optimal coupled A∗ solution.

The proposed algorithm can potentially be extended to

solve problems where there is only a single empty vertex

by taking advantage of redundant loops in the graph (e.g.,

the 15-puzzle problem). This requires an extension to the

swap primitive to use redundant loops while maintaining the

invariant for all robots not involved in the swap.

The PUSH AND SWAP approach computes only a sequen-

tial solution and does not provide an optimal solution, but

the solutions computed are comparable to a coupled planner.

A significant extension of this work involves computing an

optimal solution in terms of the total number of moves. It

is interesting to investigate if an optimal solution can be

achieved at a competitive computational cost. There are,

however, competing notions of path optimality in multi-robot

path planning, such as the sum of the path costs for all robots,

or ideas related to Pareto optimality [21] which can be used

to evaluate the quality of a solution.

REFERENCES

[1] M. Peasgood, C. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE

Transactions on Robotics, vol. 24, no. 2, pp. 282–292, 2008.
[2] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized

path planning for multiple robots: Optimal decoupling into sequential
plans,” in Robotics: Science and Systems V, 2009.

[3] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer
Academic Publishers, 1991.

[4] S. M. LaValle, Planning Algorithms. Cambridge, 2006.
[5] S. Qutub, R. Alami, and F. Ingrand, “How to solve deadlock situations

within the plan-merging paradigm for multi-robot cooperation,” in
Proc. of the Inter. Conf. on Intelligent Robots and Systems (IROS),
vol. 3, 1997, pp. 1610–1615.

[6] K.-H. C. Wang and A. Botea, “Tractable Multi-Agent Path Planning
on Grid Maps,” in Proceedings of the International Joint Conference

on Artificial Intelligence IJCAI-09, Pasadena, CA, USA, 2009, pp.
1870–1875.

[7] C. Clark, S. Rock, and J.-C. Latombe, “Motion planning for multiple
robot systems using dynamic networks,” in Proc. IEEE Int. Conf. on

Rob. and Autom. (ICRA), 2003, pp. 4222–4227.
[8] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” in

IEEE Intern. Conference on Robotics and Automation (ICRA), 1986,
pp. 1419–1424.

[9] J. van den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2005, pp. 2217–2222.
[10] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing

solvable priority schemes for decoupled path planning for mobile
robots,” Robotics and Autonomous Systems, vol. 41, no. 2, pp. 89–
99, 2002.

[11] K. Kant and S. Zucker, “Towards efficient trajectory planning: The
path-velocity decomposition,” International Journal of Robotics Re-

search (IJRR), vol. 5, no. 3, pp. 72–89, 1986.
[12] P. O’Donnell and T. Lozano-Perez, “Deadlock-free and collision-free

coordination of two robot manipulators,” in IEEE Int. Conf. Robotics

and Automation (ICRA), 1989, pp. 484–489.
[13] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic

constraints along specified paths,” Int. Journal of Robotics Research,
vol. 24, no. 4, pp. 295–310, 2005.

[14] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” in IEEE/RSJ Int’l Conference on Intelligent Robots and

Systems (IROS), 2006, pp. 5960–5963.
[15] Y. Li, K. Gupta, and S. Payandeh, “Motion planning of multiple agents

in virtual environments using coordination graphs,” in IEEE Int. Conf.

Robotics and Automation (ICRA), 2005, pp. 378–383.
[16] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decentralized planner

that guarantees the safety of communicating vehicles with complex
dynamics that replan online,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2007, pp. 3784–3790.
[17] D. Silver, “Cooperative pathfinding,” in The 1st Conference on Arti-

ficial Intelligence and Interactive Digital Entertainment (AIIDE’05),
2005, pp. 23–28.

[18] N. Sturtevant and M. Buro, “Improving collaborative pathfinding using
map abstraction,” in The Second Artificial Intelligence for Interactive

Digital Entertainment Conference (AIIDE’06), 2006, pp. 80–85.
[19] K.-H. C. Wang and A. Botea, “Fast and Memory-Efficient Multi-Agent

Pathfinding,” in International Conference on Automated Planning and

Scheduling (ICAPS), Sydney, Australia, 2008, pp. 380–387.
[20] M. R. K. Ryan, “Graph decomposition for efficient multi-robot path

planning,” in International Joint Conference on Artificial Intelligence

(IJCAI), 2007, pp. 2003–2008.
[21] R. Ghrist, J. M. O’Kane, and S. M. LaValle, “Pareto optimal coordi-

nation on roadmaps.” in Workshop on the Algorithmic Foundations of

Robotics (WAFR), 2004.

3275

