
Multi-valued Pattern Databases
Carlos Linares López1

Abstract.
Pattern Databases were a major breakthrough in heuristic search

by solving hard combinatorial problems various orders of magnitude
faster than state-of-the-art techniques at that time. Since then, they
have received a lot of attention. Moreover, pattern databases are also
researched in conjunction with other domain-independent techniques
for solving planning tasks. However, they are not the only technique
for improving heuristic estimates. Although more modest, perimeter
search can also lead to significant improvements in the number of
generated nodes and overall running time. Therefore, whether they
can be combined or not is a natural and interesting issue. While
other researchers have recently proven that a joint application of both
ideas (termed asmultiple goal) leads to no progress at all, it is shown
here that there are other alternatives for putting both techniques to-
gether —denoted here asmulti-valued. This paper shows thatmulti-
valuedpattern databases can still improve the performance of stan-
dard (orsingle-valued) pattern databases in practice. It also examines
how to enhance memory usage when comparingmulti-valuedpattern
databases in contraposition to varioussingle-valuedstandard pattern
databases.

1 Introduction

Heuristicsplay a central role in problem-solving by guiding search
algorithms towards the goal state from an arbitrary state, anywhere
in the state space. Before the conception ofpattern databases[1],
heuristics were usually either handcrafted or directly derived by re-
laxing the original constraints of the problem at hand. In other words,
pattern databases are an automatic mean for deriving heuristic func-
tions which are usually far better informed than others. Thus lead-
ing to large improvements in the number of nodes generated and the
overall running time.

However, since pattern databases can take large chunks of main
memory, various alternatives have been explored to efficiently use
the available memory. On one hand, it has been shown that pattern
databases can be successfully compressed, at least, in some domains
like the Towers of Hanoi [5]. Also, it has been shown that pattern
databases can bemappedre-using the same symbol instead of using
a one-to-one mapping [9] as originally suggested.

Although pattern databases can lead to further improvements by
exploiting some domain-specific properties (e.g. reflections in the
definition of the state or intrinsic characterizations of permutation
state spaces [7]), they have been used also for solving planning tasks
in conjunction with other domain-independent techniques [3] with
very good results.

In contrast to pattern databases,perimeter search[2, 12] aims at
improving an existing heuristic function, instead of automatically

1 Planning and Learning Group, Universidad Carlos III de Madrid. Avda.
de la Universidad, 30 - 28911 Leganés, Madrid (Spain) email: car-
los.linares@uc3m.es

generating a new one. Although this technique has been usually em-
ployed for solving large sets of instances with respect to the same
target, it could be broadly used when solving problems for distinct
goal nodes.

Altogether, pattern databases can be used for automatically deriv-
ing heuristic functions, and perimeter search serves for improving its
estimates. Hence, whether they can be combined or not is an inter-
esting issue which has already been addressed [6]. However, the first
results in this regard showed that perimeter search leads to no benefit
at all. In this paper, a different technique for combining both ideas is
discussed.

2 Background

This section succinctly reviews the main concepts underlying both
perimeter search and pattern databases. The interested reader should
refer to the cited papers for further information.

2.1 Perimeter Search

Perimeter search was independently and simultaneously introduced
in the specialized bibliography by Giovanni Manzini [12] and John
F. Dillenburg and Peter C. Nelson [2]. The key observation of these
researchers is that the main problems in bidirectional search come
from the fact that both searches progress simultaneously. They pro-
posed, instead, to generate a set of nodes (known asperimeter nodes)
whose descendants exceed a given thresholdd (known asperimeter
depth) around the target node, and only after it has been generated,
to start a unidirectional search from the source state until a collision
with a perimeter node is detected. From this point of view, perimeter
search might be seen as a more simple form of bidirectional search.
However, the most prominent feature of this contribution is that it
provides a mean for automatically improving an existing heuristic
function,h(·), since the unidirectional search from an arbitrary state,
n uses the following, better informed, heuristic functionhd:

hd(n, t) = min
m∈Pd

{h(n, m) + h
∗(m, t)} (1)

wherePd is the perimeter set comprising all nodes generated at depth
d from the target,t, andh∗(m, t) is the optimal cost of reaching the
goal from the perimeter nodem.

Although it can be argued that using perimeter search involves
“as many heuristic calculations as there are perimeter nodes” [11],
the truth is that this number decreases with the depth of the forward
search [12].

2.2 Pattern Databases

In their original work [1], Joseph C. Culberson and Jonathan Schaef-
fer definedpatternsas abstractions of the original state space where

each constant appearing in the state space gets replaced by either a
dedicated symbol or a special “don’t care” symbol. Thegranular-
ity of the abstraction is defined as the number of constants in the
original state being replaced by the same symbol [8]. For example
γ = 〈3, 3, 2, 1〉 denotes an abstraction where three constants are re-
placed by one symbol (sayx1); another three are replaced by a new
symbolx2; another two constants by a third symbol,x3, and the last
constant by a unique symbol,x4. Although it has not been mentioned
before in the related literature, it can be easily proven that the number
of patterns generated with a given granularityγ is:

|γ|
∏

i=1

C(

N−
∑

i−1

j=1
γj

)

,γi

=

|γ|
∏

i=1

(

N −
i−1
∑

j=1

γj

γi

)

(2)

whereCn,m is the number of combinations ofn elements choosem,
andN is the total number of constants in the original state space, so
thatN =

∑

i
γi. Thus, the previous granularity gives raise to:

C9,3 × C9−(3),3 × C9−(3+3),2 × C9−(3+3+2),1 = 5, 040

different entries.
Pattern databases are simply hash tables which store, for ev-

ery pattern (or arrangement of symbols in the abstracted state),
the minimum number of moves required to place the symbols in
the abstracted state space in their goal location —also known as
goal pattern. This value can be easily computed with a backwards
brute-force breadth-first search from the goal pattern. So far, pattern
databases are admissible heuristic functions. The index into the pat-
tern database assigned to each pattern results from a ranking func-
tion which is (usually by far) the most expensive operation in search-
ing with pattern databases2. Originally, all moves were counted in
so that when comparing the values retrieved from different pattern
databases (for a collection of different patterns), the only way for
getting an admissible heuristic is just to take theMAX of all values.
However, when the constants appearing in the original state space can
be split into disjoint sets (as in theN -puzzle or the Towers of Hanoi,
but not in the Rubik’s cube or the TopSpin puzzle), a far better in-
formed heuristic function can be built by computing the summation
of all values [10]. This idea is known as disjoint, or justADD pattern
databases.

3 Combining Perimeter Search and Pattern
Databases

As mentioned in the introduction, the main contribution of this
work consists of discussing a different way than that previously pro-
posed in [6] for putting together both perimeter search and pattern
databases.

3.1 Mutiple Goal Pattern Databases

The first approach consists of addressing the combination as a mul-
tiple goal problem, i.e. a special case of heuristic search where the
problem consists of hitting any of the perimeter nodes generated at
depthd. A simple, yet beautiful, way for solving this sort of problems
with the aid of pattern databases, consists of seeding the queue used
in the backward breadth-first search with all the perimeter nodes [11].
This way, the pattern database will store a unique value per entry with
the minimum distance to all perimeter nodes.

2 Rankingconsists of converting each item in a collection into a scalar.

The apparent advantage of this approach is that while standard
pattern databases explore the abstracted search space around the goal
node, the perimeter generation starts by considering the original state
space up to a pre-defined perimeter depth.

Nevertheless, the same state can be mapped, indifferent pattern
databases, todifferententries which contain the minimum distance
to differentperimeter nodes, so that comparisons become more diffi-
cult. In other words, this idea is likely to produce very poor estimates
by comparing the minimum distance to different perimeter nodes.3

Besides, Ariel Felner and Nir Ofek [6] experimentally showed, and
empirically proved, that this approach leads to no improvement at all,
i. e., it generates the same number of nodes. Their explanation can
be intuitively depicted as follows: the only expected benefit under
this scheme is that patterns happening within the perimeter are now
assigned better heuristic estimates, since patterns appearing beyond
the perimeter set shall still get the same minimum distance. Compar-
ing the number of patterns within the perimeter with all the plausible
patterns gives a very small ratio in favour of this approach.

3.2 Multi-valued Pattern Databases

Instead, it is suggested herein to store separately the distance to each
perimeter node in the pattern database, as shown in figure 1. Thereby,
comparisons with respect to the same perimeter node become now
feasible, leading to a better informed heuristic function as discussed
in section 2.1. This is, indeed, the most natural way to implement
perimeter search. Since every entry contains a vector of values in-
stead of a scalar, this technique is denoted asmulti-valuedpattern
databases in contraposition to standardsingle-valuepattern databases
which consist of a unique value per entry.

t

m1 m2 mj. . .

h1[1] h1[2] h1[j]. . .

h2[1] h2[2] h2[j]. . .

h3[1] h3[2] h3[j]. . .

Figure 1. Seeding a different queue with every perimeter node

At first glance, it might seem that this approach wastes a lot
of space in main memory. However, this is not the case at all in
the vast majority of cases. Consider, for example, the 15-Puzzle
and asingle-valuedpattern database consisting of 7 different sym-
bols, i.e. 〈1, 1, 1, 1, 1, 1, 1, 9〉. According to equation (2), this yields
57,657,600 different entries. What is the next bigger pattern database
that can be built?

• One option consists of augmenting the original pattern database
with an additional symbol, this is, taking 8 different constants,

3 Indeed, though not explicitly mentioned in [6], the termination condition
might become more difficult now, since it is not strictly true that when
various pattern databases return zero, a collision with a perimeter node has
been detected, since maybe they are all referring to different nodes!

whose granularity is〈1, 1, 1, 1, 1, 1, 1, 1, 8〉. This new, bigger, pat-
tern database consists of 518,918,400 entries and is 9 times bigger
than the original one.

• Another option consists of mapping an additional constant in the
original state space to some other symbol currently used. This
case is represented with granularity〈1, 1, 1, 1, 1, 1, 2, 8〉 and orig-
inates 259,459,200 entries, 4.5 times more than the original pat-
tern database.

However, the number of perimeter nodes generated in the 15-
Puzzle at depthd = 1 and 2 is|Pd| = 2 and 4, respectively. This
means that the resultingmulti-valuedpattern databases are smaller
than thesingle-valuedpattern databases created in both cases.

Another consideration tightly related to the size of the resulting
pattern databases is the number of ranking operations performed in
each case. While the number of nodes to consider simultaneously in
multi-valuedpattern databases impose an overhead, they are all re-
trieved in a row, i.e. with a single ranking operation. This is true
because the distances to each perimeter node are stored in contigu-
ous locations in memory. However, if differentsingle-valuedpat-
tern databases are going to be employed (which take altogether the
same space than amulti-valuedpattern database), each value shall
be retrieved separately so that various ranking operations shall be
performed. Since ranking is the most expensive operation in pattern
databases, this overhead shall be taken into account as well.

3.3 Results

AlthoughADD pattern databases are known to provide more accurate
heuristic values, it is not always possible to apply them. Therefore,
experiments have been conducted with bothADD and MAX pattern
databases.

In both cases, the perimeter is generated using a brute-force depth-
first search algorithm from the goal which generates all nodes whose
descendants have a cost that exceeds the specified perimeter depth.
Once the perimeter set is generated, different queues are seeded with
each perimeter node and a backward breadth-first search is issued
with everyone for a given pattern specification. As a result,multi-
valued pattern databases (which are as many times bigger than a
single-valuedpattern database as perimeter nodes were found) are
generated.

For the ease of comparison, the same mapping functions have been
programmed. Sincesparse mappingincurs in prohibitive wastes of
space for some cases, acompact mappinghas been chosen4.

Because IDA∗ explores the state space in a depth-first fashion, an
incremental implementation of the Myrvold and Ruskey ranking al-
gorithm [13] has been developed. The current implementation runs
about 20%–30% faster and has no additional memory requirements.
Unfortunately, due to space constraints no further details regarding
this algorithm are provided. It is worth mentioning thatsingle-valued
pattern databases are expected to be more sensitive to this improve-
ment thanmulti-valuedpattern databases. The reason is thatmulti-
valuedpattern databases, being more informed thansingle-valued
pattern databases (according to section 2.1) will generate and rank
less nodes.

3.3.1 Multi-valuedADD pattern databases

The domains chosen for experimenting withmulti-valuedADD pat-
tern databases are the 15-Puzzle and the 24-Puzzle. In all cases, pat-

4 For a thorough discussion on the topic, see [4], section 4.2,page 289.

tern databases are “blank-preserving” [8], i. e., the blank tile is al-
ways mapped to a unique symbol, instead of “blank-increasing” —
which consists of mapping the blank tile to the same symbol used by
other tiles, such as the “don’t care” symbol. Also, reflections about
the main diagonal are computed forsingle-valuedpattern databases
only if the regular lookup did not exceed the current threshold. Since
no domain dependent feature is exploited formulti-valuedpattern
databases, results with reflections are provided only for the sake of
completeness.

Table 1 shows the mean time elapsed (in seconds) and the total
number of generated nodes for solving the Korf’s test suite, which
consists of 100 problems, when usingsingle-valuedandmulti-valued
pattern databases. In the experiments, six different arrangements of
pattern databases have been used, where each pattern consists of 5
pattern tiles —pattern database #6 is the same suggested in [4]. In all
tables,sPDBdenotessingle-valuedpattern databases;mPDBi stands
for multiple-valuedpattern databases generated with perimeter depth
d = i and, finally,rPDB stands for the same pattern databases as in
sPDBbut taking advantage of the reflections about the main diago-
nal.

5-5-5 #1 #2 #3 #4 #5 #6
sPDB 1.28 0.56 2.17 0.79 2.32 0.47

(0.0014Gb) 0.851 0.324 1.561 0.456 1.634 0.254
mPDB2 0.49 0.56 0.92 0.81 1.18 0.64

(0.0058Gb) 0.188 0.232 0.417 0.364 0.570 0.253
rPDB 1.01 0.38 1.48 0.49 1.49 0.44

(0.0014Gb) 0.372 0.111 0.581 0.140 0.585 0.134

6-6-3 #1 #2 #3 #4 #5 #6
sPDB 0.83 0.98 0.42 0.77 1.77 0.39

(0.0107Gb) 0.509 0.576 0.187 0.452 1.183 0.181
mPDB2 0.37 0.45 0.30 0.33 1.00 0.50

(0.0429Gb) 0.113 0.144 0.086 0.108 0.434 0.181
rPDB 0.78 0.63 0.36 0.44 1.79 0.24

(0.0107Gb) 0.248 0.186 0.092 0.119 0.638 0.056

Table 1. Experimental results in the 15-Puzzle with 5-5-5 and 6-6-3 PDBs:
each cell shows the mean run-time in seconds (above) and total number of

generated nodes in thousands of millions,109 (below)

Table 1 shows also the same statistics for another six different ar-
rangements of 6-6-3 pattern databases. Pattern database #6 is the one
suggested in [4]. Next, table 2 depicts the same statistics for four
different arrangements of 7-8 pattern databases. In this case, pattern
database #1 is the one widely suggested in the specialized bibliogra-
phy and also cited in [4].

#1 #2 #3 #4
sPDB 0.0368 0.1338 0.1374 0.1687

(0.5369Gb) 13.721 60.347 54.323 78.370
mPDB2 0.0355 0.0434 0.0435 0.0580

(2.1479Gb) 10.262 15.374 15.502 18.349
rPDB 0.0088 0.0993 0.0846 0.0939

(0.5369Gb) 3.832 21.646 19.379 23.594

Table 2. Experimental results in the 15-Puzzle with 7-8 PDBs: mean
run-time in seconds (above) and total number of generated nodes in millions,

106 (below)

Table 3 shows the same statistics in the 24-Puzzle using two dif-
ferent arrangements of 6-6-6-6 pattern databases at depth 3. Pattern
database #1 is the usual reference in this domain, as suggested in [4].
The test set employed consists of the 25 easiest instances of the test

#1 #2
sPDB 10622.39 24746.44

(0.4750Gb) 3.08 7.02
mPDB3 6162.81 12227.45

(4.7501Gb) 1.00 1.93
rPDB 2390.09 10170.26

(0.4750Gb) 0.41 1.72

Table 3. Experimental results in the 24-Puzzle with 6-6-6-6 PDBs: mean
run-time in seconds (above) and total number of generated nodes in millions

of millions, 1012 (below)

suite detailed in [10], with solution lengths ranging from 81 to 106
moves.

When comparing the performance of varioussingle-valuedpattern
databases versus theirmulti-valuedcounterparts, it turns out that the
latter usually outperforms the former, more remarkably in the 7-8 and
6-6-6-6 cases. But this is not always true —see, for example PDB #6
in the 6-6-3. However, when comparing all running-times, the pattern
database which resulted in faster performance is always themulti-
valuedpattern database (for example, in the 6-6-3 case, the fastest
algorithm usesmulti-valuedpattern databases arranged as in #3), but
in the 5-5-5 case. The fact that for some arrangements,multi-valued
pattern databases do not outperform theirsingle-valuedcounterpart
but others do it, can be explained as an effect of the diversity induced
by the perimeter nodes. It has been observed that for some arrange-
ments of pattern databases, the blank tile only reaches a few patterns
when computing the perimeter nodes. The more pattern databases are
affected, the better the heuristic. For example, in the 7-8 PDB #1 of
the 15-Puzzle5, allowing the blank to move twice affects both pattern
databases. Thus, the resultingmulti-valuedpattern database outper-
formed itssingle-valuedcounterpart, even though the latter is very
accurate for solving this problem. Correspondingly, when comput-
ing themulti-valuedpattern database of 5-5-5 #6, only one PDB out
of three gets updated, thus not leading to any improvement on either
the number of nodes generated or the running time.

3.3.2 Multi-valuedMAX pattern databases

The domain chosen for these experiments is the(N, K)-TopSpin.
Max’ing is far less efficient than taking the summation of a few val-
ues from different disjoint pattern databases. Thus, the sizes of the
instances considered here are smaller than the ones shown in the pre-
vious paragraph. The number of pattern databases and the number of
tiles they contain in each case is clearly identified in the tables. For
example, 6-6 stands for two pattern databases with 6 tiles each. Be-
sides, they always consist of contiguous locations arranged in such
a way that the pattern databases are all equidistant, thus minimizing
the overlapping among them. In all the subsequent experiments, the
test suites employed consisted of 100 solvable instances generated
with the random application of a number of operators between 100
and 500.

Table 4 shows the results in the(9, 2)-TopSpin. This puzzle can
be solved so fast that in most cases the time spent falls below 0.00
seconds. The number of perimeter nodes generated at depthd = 1
and 2 is|Pd| = 3 and 6, respectively, so that mPDB1 and mPDB2 are
3 and 6 times larger than the size of the corresponding sPDB, shown
below every arrangement. As it can be seen, the overhead imposed

5 In this case, the 15-Puzzle is split into two halves: one above the other.
The one below contains 8 pattern tiles whereas the one over itcontains 7,
because the blank tile is ommitted.

by perimeter search clearly pays-off for the reduction on the number
of nodes generated.

4-4-4 5-5-5 6-6-6
(0.0086Mb) (0.0432Mb) (0.1730Mb)

0.01 ≤ 0.00 ≤ 0.00sPDB
5.952 0.458 0.104
0.01 ≤ 0.00 ≤ 0.00mPDB1 3.964 0.347 0.077

≤ 0.00 ≤ 0.00 ≤ 0.00mPDB2 3.044 0.263 0.060

Table 4. Experimental results in the(9, 2)-TopSpin: mean run-time in
seconds (above) and total number of generated nodes in tenthsof millions,

105 (below)

Table 5 summarizes the results for both the(12, 2)-TopSpin
and the(15, 2)-TopSpin. As it can be seen,multi-valued pattern
databases solved the problems faster and generating less nodes in
all cases, with no exception.

(12, 2)-TopSpin (15, 2)-TopSpin
6-6 8-8 7-7-7-7-7

(1.2689Mb) (38.0676Mb) (154.6497Mb)
9.94 0.21 22.48sPDB
1.813 0.021 2.776
6.54 0.16 20.16mPDB1 1.066 0.013 2.114
6.07 0.11 16.95mPDB2 0.795 0.008 1.572

Table 5. Experimental results in the(12, 2)-TopSpin and the
(15, 2)-TopSpin: mean run-time in seconds (above) and total number of

generated nodes in thousands of millions,109 (below)

4 Compressing Multi-valued Pattern Databases

From equation (2) it becomes clear that the number of patterns grows
rapidly for any granularity. Thus, techniques have been developed for
efficiently compressing pattern databases both in a lossy and loss-
less way [5]. In this section, some preliminary ideas for compress-
ing multi-valuedpattern databases as well are discussed. It should be
highlighted that the techniques discussed herein are not incompatible
with those introduced in [5].

In spite of the discussions in section 3.2, the truth is that disjoint
(or ADD) multi-valuedpattern databases take even less space than
what it might seem. Consider the 7-8 PDB #1 for the 15-Puzzle gen-
erated with perimeter depthd = 1 —see fotnote 5. It is easy to real-
ize that in the two perimeter nodes generated so far, the inferior half
(i. e., the pattern database with 8 tiles) looks exactly the same than
in the goal state. SinceADD pattern databases do count all moves of
the blank tile, the values stored in the inferiormulti-valuedpattern
database are likely to be the same. Thus, it is only necessary to store
two values per entry in the superior pattern database, but only one
in the inferior database. This way, the resultingmulti-valuedpattern
databases take twice the space of the smallersingle-valueddatabase
(the one with 7 tiles) but only once the space of the inferior, larger,
single-valueddatabase. This stands for a marginal increment in the
size of 10%. Even considering larger perimeter depths (sayd = 2), it
is still possible to apply other compression schemes tomulti-valued
pattern databases as discussed below.

This is not true, however, forMAX pattern databases because in
this case only moves of the pattern tiles are taken into account. Nev-
ertheless, it is still possible to compress the resultingmulti-valued
pattern database relating statistically the distribution of values to each
perimeter node with the distance to the first perimeter node.

Let δi(j) denote the differencehi(j)−hi(1) wherehi(j) is thej-
th component of the vector in thei-th entry of amulti-valuedpattern
database. In other words,δi(j) is the difference of the distance to the
j-th perimeter node and the first perimeter node from patterni. This
way, it is possible to compute the vector of differencesδi(·) for every
entry,i, in a givenmulti-valuedpattern database. Also, it is assumed
thatP perimeter nodes have been generated.

Now, there are two different ways to compress data in a loosy way
without sacrificing admissibility:

Traversal compression consists of forcing allhi(j) valuesfrom the
same entryi to be equal to the minimum of them all, so that
each componentj takes a new valueh′

i(j) computed as follows:

h′
i(j) = hi(1) +

P

min
j=2

{δi(j)}, 2 ≤ j ≤ P . The expected loss in

the accuracy of the resulting heuristic values due to the traversal
compression,Lt, can be computed as:

Lt(δi(·)) =

P
∑

j=2

(

hi(j) − h
′
i(j)

)

p(δi)

wherep(δi) stands for the probability of occurrence of the vec-
tor of differencesδi. Note that the same vector of differencesδi

can happen in an arbitrary number of entries in themulti-valued
pattern database other than thei-th entry.
Applying repeatedly this compression scheme, the resulting pat-
tern database will be exactly the same than the one generated un-
der themultiple goalapproach in section 3.1.

Longitudinal compression merges two different entries,u andv,
by forcing theirδ vectors,δu(·) andδv(·), to be the same so that
hu(i) andhv(i) take new values,h′

u(i) andh′
v(i), according to:

h′
u(i) = hu(1) + min{δu(i), δv(i)} and, similarly forh′

v. As in
the previous case, it is possible to compute the expected loss in
the accuracy of the heuristic values that result after a longitudinal
compression,Ll, as follows:

Ll(δu(·), δv(·)) =
P
∑

j=2

(hu(j) − h′
u(j))p(δu)+

(hv(j) − h′
v(j))p(δv)

Since the preceding expressions allow the measurement of the loss
in the accuracy of the heuristic function, they serve for compress-
ing anymulti-valuedpattern database to any desired ratio of com-
pression degree versus loss of accuracy. In particular, for any upper
bound on the average loss of the heuristic function,U , an algorithm
for efficiently compressing amulti-valuedpattern database proceeds
in the following fashion: if the average loss is still belowU , com-
pute the expected loss of all the traversal compressions, and also the
expected loss of all the longitudinal compressions for each pair of
entries in the pattern database. Next, pick the compression with the
minimum expected loss and update the pattern database. Proceed-
ing in this manner, the number of differences,δ(·), will be mono-
tonically decreasing at each step. If there aren different vectors of
differences when the expected loss reaches the upper bound,U , code
each entry in the pattern database with one of the indexes in the range
[1, log2 n], so thatlog2n bits are used instead of 8, which is the usual

choice. In other words, instead of storing a vector of heuristic esti-
mations to each perimeter node in every entry of themulti-valued
pattern database, an index to a small number ofδ(·) vectors is at-
tached. Then, when solving a problem, retrieve the index from the
pattern database and apply itsδ(·) vector to get the heuristic esti-
mations to all the perimeter nodes. Preliminary experiments in the
(N, K)-TopSpin suggest that it is feasible to significantly compress
multi-valuedpattern databases and still running faster than various
single-valuedpattern databases generating far less nodes.

5 Summary

Although it might be contrary to intuition, storing various values
per entry in a pattern database can outperform the standard,single-
valued pattern databases, eitherADD or MAX . Furthermore, these
databases can be compressed with the techniques outlined in the last
section which are not incompatible with existing techniques for com-
pressingsingle-valuedpattern databases.

Acknowledgements

This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and UC3M-CAM project CCG06-
UC3M/TIC-0831.

REFERENCES
[1] Joseph C. Culberson and Jonathan Schaeffer, ‘Pattern databases’,Com-

putational Intelligence, 14(3), 318–334, (1998).
[2] John F. Dillenburg and Peter C. Nelson, ‘Perimeter search’, Artificial

Intelligence, 65, 165–178, (1994).
[3] Stefan Edelkamp, ‘External symbolic heuristic search with pattern

databases’, inProceedings of the Fifteenth International Conference on
Automated Planning and Scheduling (ICAPS-05), pp. 51–60, Monterey,
California, United States, (June 2005).

[4] Ariel Felner, Richard E. Korf, and Sarit Hanan, ‘Additive pattern
database heuristics’,Journal of Artificial Intelligence Research, 22,
279–318, (November 2004).

[5] Ariel Felner, Richard E. Korf, Ram Meshulam, and Robert Holte,
‘Compressed pattern databases’,Journal of Artificial Intelligence Re-
search, 30, 213–247, (October 2007).

[6] Ariel Felner and Nir Ofek, ‘Combining perimeter search andpattern
database abstractions’, inProceedings of the Seventh Symposium on
Abstraction, Reformulation and Approximation (SARA-07), pp. 155–
168, Whistler, Canada, (July 2007).

[7] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, and Robert C. Holte,
‘Dual lookups in pattern databases’, inProceedings of the Nineteenth
International Joint Conference on Artificial Intelligence(IJCAI-05), pp.
103–108, Edinburgh, Scotland, (July 2005).

[8] Robert Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David
Furcy, ‘Multiple pattern databases’, inProceedings of the Fourteenth
International Conference on Automated Planning and Scheduling
(ICAPS-04), pp. 122–131, Whistler, British Columbia, Canada, (June
2004).

[9] Robert C. Holte, Ariel Felner, Jack Newton, Ram Meshulam,and David
Furcy, ‘Maximizing over multiple pattern databases speeds upheuris-
tic search’,Artificial Intelligence, 170(16–17), 1123–1136, (November
2006).

[10] Richard E. Korf and Ariel Felner, ‘Disjoint pattern database heuristics’,
Artificial Intelligence, 134(1–2), 9–22, (2002).

[11] Richard E. Korf and Ariel Felner, ‘Recent progress in heuristic search:
A case study of the four-peg towers of hanoi problem’, inProceed-
ings of the Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI-07), pp. 2324–2329, Hyderabad, India, (January 2007).

[12] Giovanni Manzini, ‘BIDA∗: an improved perimeter search algorithm’,
Artificial Intelligence, 75, 347–360, (1995).

[13] W. Myrvold and F. Ruskey, ‘Ranking and unranking permutations in
linear time’,Information Processing Letters, 79, 281–284, (2001).

