Multi-valued Pattern Databases

Carlos Linares LopeZ

Abstract. generating a new one. Although this technique has been usually em-
Pattern Databases were a major breakthrough in heuristic searghioyed for solving large sets of instances with respect to the same
by solving hard combinatorial problems various orders of magnitudearget, it could be broadly used when solving problems for distinct
faster than state-of-the-art techniques at that time. Since then, theyoal nodes.
have received a lot of attention. Moreover, pattern databases are alsoAltogether, pattern databases can be used for automatically deriv-
researched in conjunction with other domain-independent techniquesg heuristic functions, and perimeter search serves for improving its
for solving planning tasks. However, they are not the only techniqueestimates. Hence, whether they can be combined or not is an inter-
for improving heuristic estimates. Although more modest, perimeteesting issue which has already been addressed [6]. However, the firs
search can also lead to significant improvements in the humber aksults in this regard showed that perimeter search leads to no benefit
generated nodes and overall running time. Therefore, whether theat all. In this paper, a different technique for combining both ideas is
can be combined or not is a natural and interesting issue. Whilgiscussed.
other researchers have recently proven that a joint application of both
ideas (termed asultiple goa) leads to no progress at all, it is shown 2
here that there are other alternatives for putting both techniques to-
gether —denoted here awnulti-valued This paper shows thatulti- This section succinctly reviews the main concepts underlying both
valuedpattern databases can still improve the performance of starperimeter search and pattern databases. The interested reader should
dard (orsingle-valuedi pattern databases in practice. It also examinesrefer to the cited papers for further information.
how to enhance memory usage when comparingfi-valuedpattern
databases in contraposition to variailsgle-valuedstandard pattern
databases.

Background

2.1 Perimeter Search

Perimeter search was independently and simultaneously introduced
1 Introduction in th.e specialized bibliography by Giovanni Manzini [12] and John

F. Dillenburg and Peter C. Nelson [2]. The key observation of these
Heuristicsplay a central role in problem-solving by guiding search researchers is that the main problems in bidirectional search come
algorithms towards the goal state from an arbitrary state, anywhergom the fact that both searches progress simultaneously. They pro-
in the state space. Before the conceptiorpaftern databasefl], posed, instead, to generate a set of nodes (knoweraseter nodes
heuristics were usually either handcrafted or directly derived by reyyhose descendants exceed a given thresti¢kshown asperimeter
|aXIng the Ol’iginal constraints of the problem at hand. In other Wordsdepth around the target node’ and Only after it has been generated,
pattern databases are an automatic mean for deriving heuristic fungg start a unidirectional search from the source state until a collision
tions which are usually far better informed than others. Thus |eadw|th a perimeter node is detected. From this point of view, perimeter
ing to large improvements in the number of nodes generated and th@arch might be seen as a more simple form of bidirectional search.
overall running time. However, the most prominent feature of this contribution is that it

However, since pattern databases can take large chunks of majiiovides a mean for automatically improving an existing heuristic

memory, various alternatives have been explored to efficiently us@nction,x (-), since the unidirectional search from an arbitrary state,
the available memory. On one hand, it has been shown that pattefnyses the following, better informed, heuristic function

databases can be successfully compressed, at least, in some domains

like the Towers of Hanoi [5]. Also, it has been shown that pattern ha(n,t) = min {h(n,m) + h*(m,t)} (1)
databases can eappedre-using the same symbol instead of using mePy
a one-to-one mapping [9] as originally suggested. whereP; is the perimeter set comprising all nodes generated at depth

Although pattern databases can lead to further improvements by from the targett, andh* (m, t) is the optimal cost of reaching the
exploiting some domain-specific properties (e.g. reflections in theyoal from the perimeter node.
definition of the state or intrinsic characterizations of permutation Although it can be argued that using perimeter search involves
state spaces [7]), they have been used also for solving planning taskss many heuristic calculations as there are perimeter nofy,
in conjunction with other domain-independent techniques [3] withthe truth is that this number decreases with the depth of the forward
very good results. search [12].

In contrast to pattern databaspsrimeter search2, 12] aims at
improving an existing heuristic function, instead of automatlcallyzl2 Pattern Databases

1 Planning and Learning Group, Universidad Carlos Il de NthdAvda. L

los.linares@uc3m.es fer definedpatternsas abstractions of the original state space where

each constant appearing in the state space gets replaced by either &he apparent advantage of this approach is that while standard
dedicated symbol or a special “don’t care” symbol. Tgranular- pattern databases explore the abstracted search space around the goa
ity of the abstraction is defined as the number of constants in thaode, the perimeter generation starts by considering the original state
original state being replaced by the same symbol [8]. For examplspace up to a pre-defined perimeter depth.
v = (3,3,2,1) denotes an abstraction where three constants are re- Nevertheless, the same state can be mappediffarent pattern
placed by one symbol (sayi); another three are replaced by a new databases, tdifferententries which contain the minimum distance
symbolz,; another two constants by a third symhol, and the last to differentperimeter nodes, so that comparisons become more diffi-
constant by a unique symbal,. Although it has not been mentioned cult. In other words, this idea is likely to produce very poor estimates
before in the related literature, it can be easily proven that the numbesy comparing the minimum distance to different perimeter nddes.
of patterns generated with a given granulafitis: Besides, Ariel Felner and Nir Ofek [6] experimentally showed, and
empirically proved, that this approach leads to no improvement at all,
I Mo Zi i i. e., it generates the same number of nodes. Their explanation can
H C ia - H (= > @) be intuitively depicted as follows: the only expected benefit under
P (N_Z]=1 W)’”‘ i this scheme is that patterns happening within the perimeter are now

whereC,, .., is the number of combinations efelements choose, assigned better heuristic estimates, since patterns appearing beyond

: . L the perimeter set shall still get the same minimum distance. Compar-
andN is the total number of constants in the original state space, s0 o : . .

. S . : ing the number of patterns within the perimeter with all the plausible
that N = Zi ~:. Thus, the previous granularity gives raise to:

patterns gives a very small ratio in favour of this approach.

1=1

Co,3 X Cy_(3),3 X Co_(343),2 X Cg_(34312),1 = 5,040
3.2 Multi-valued Pattern Databases
different entries.

Pattern databases are simply hash tables which store, for ednstead, it is suggested herein to store separately the distance to each
ery pattern (or arrangement of symbols in the abstracted stateperimeter node in the pattern database, as shown in figure 1. Thereby,
the minimum number of moves required to place the symbols incomparisons with respect to the same perimeter node become now
the abstracted state space in their goal location —also known deasible, leading to a better informed heuristic function as discussed
goal pattern This value can be easily computed with a backwardsin section 2.1. This is, indeed, the most natural way to implement
brute-force breadth-first search from the goal pattern. So féempa perimeter search. Since every entry contains a vector of values in-
databases are admissible heuristic functions. The index into the pagtead of a scalar, this technique is denotednatti-valuedpattern
tern database assigned to each pattern results from a ranking fundatabases in contraposition to standsing)le-valuepattern databases
tion which is (usually by far) the most expensive operation in searchwhich consist of a unique value per entry.
ing with pattern databasesOriginally, all moves were counted in t
so that when comparing the values retrieved from different pattern
databases (for a collection of different patterns), the only way for _

. L S mi ~ma2 . m;

getting an admissible heuristic is just to take tiex of all values. O @)
However, when the constants appearing in the original state space can / S~ B[] HipZ Ry T5)

L . . ~—> 1 1 1]]-
be split into disjoint sets (as in th€-puzzle or the Towers of Hanoi,
but not in the Rubik’s cube or the TopSpin puzzle), a far better in-
formed heuristic function can be built by computing the summation
of all values [10]. This idea is known as disjoint, or jusiD pattern
databases.

3 Combining Perimeter Search and Pattern

Databases Figure 1. Seeding a different queue with every perimeter node

As mentioned in the introduction, the main contribution of this
work consists of discussing a different way than that previously pro-
posed in [6] for putting together both perimeter search and pattern

databases. At first glance, it might seem that this approach wastes a lot

of space in main memory. However, this is not the case at all in

the vast majority of cases. Consider, for example, the 15-Puzzle
3.1 Mutiple Goal Pattern Databases and asingle-valuedpattern database consisting of 7 different sym-
ols,i.e.(1,1,1,1,1,1,1,9). According to equation (2), this yields

T_he first approach (_:on5|sts of _addressmg the _co_mblnatlon asam 7,657,600 different entries. What is the next bigger pattern daabas
tiple goal problem, i.e. a special case of heuristic search where t

h .
X " . n [t?
problem consists of hitting any of the perimeter nodes generated th at can be built
depthd. A simple, yet beautiful, way for solving this sort of problems . . . -

; ; . i e One option consists of augmenting the original pattern database
with the aid of pattern databases, consists of seeding the queue usedWith an additional svmbol. this is. taking 8 different constants
in the backward breadth-first search with all the perimeter nodes [11]. y ' ' 9 '
This way, the pattern database will store a unique value per entry With |ngeeqd, though not explicitly mentioned in [6], the terminaticondition
the minimum distance to all perimeter nodes. might become more difficult now, since it is not strictly true tthnehen

various pattern databases return zero, a collision wittriangger node has
2 Rankingconsists of converting each item in a collection into a scala been detected, since maybe they are all referring to differedes!

whose granularity i1, 1, 1,1, 1,1, 1, 1, 8). This new, bigger, pat- tern databases ardlank-preserving[8], i. e., the blank tile is al-

tern database consists of 518,918,400 entries and is 9 times biggerys mapped to a unique symbol, instead lwhhk-increasing —

than the original one. which consists of mapping the blank tile to the same symbol used by
e Another option consists of mapping an additional constant in theother tiles, such as the “don't care” symbol. Also, reflections about

original state space to some other symbol currently used. Thighe main diagonal are computed f&ingle-valuedpattern databases

case is represented with granularity 1,1, 1,1,1,2,8) and orig- only if the regular lookup did not exceed the current threshold. Since
inates 259,459,200 entries, 4.5 times more than the original patio domain dependent feature is exploited fionlti-valued pattern

tern database. databases, results with reflections are provided only for the sake of

completeness.

However, the number of perimeter nodes generated in the 15- Table 1 shows the mean time elapsed (in seconds) and the total
Puzzle at deptid = 1 and 2 is|Py| = 2 and 4, respectively. This number of generated nodes for solving the Korf’s test suite, which
means that the resultingulti-valuedpattern databases are smaller consists of 100 problems, when ussiggle-valuedandmulti-valued
than thesingle-valuedpattern databases created in both cases. pattern databases. In the experiments, six different arrangements of

Another consideration tightly related to the size of the resultingpattern databases have been used, where each pattern consists of 5
pattern databases is the number of ranking operations performed gttern tiles —pattern database #6 is the same suggested in [4]. In all
each case. While the number of nodes to consider simultaneously ¥ables sPDBdenotesingle-valuegattern databasesiPDB, stands
multi-valuedpattern databases impose an overhead, they are all rgor multiple-valuedbattern databases generated with perimeter depth
trieved in a row, i.e. with a single ranking operation. This is true ¢ — ; and, finally,rPDB stands for the same pattern databases as in
because the distances to each perimeter node are stored in conti®PDBbut taking advantage of the reflections about the main diago-
ous locations in memory. However, if differemingle-valuedpat- nal.
tern databases are going to be employed (which take altogether the
same space thanmulti-valuedpattern database), each value shall S5I;5E;5B 1#;8 0#526 2#37 0#?9 2#??2 0#‘?7
be retrieved '_separately so that various rankl_ng operat_|0n§ shall be (0.0014Gb) | 0.851 | 0.324 | 1.561 | 0.456 | 1.634 | 0.254
performed. Since ranking is the most expensive operation in pattern mPDE, 049 T 056 | 092 | 081 | 118 | 064

databases, this overhead shall be taken into account as well. (0.0058Gb) | 0.188 | 0.232 | 0.417 | 0.364 | 0.570 | 0.253
rPDB 1.01 0.38 1.48 0.49 1.49 0.44
0.0014Gb)| 0.372 | 0.111 | 0.581 | 0.140 | 0.585 | 0.134

3.3 Reslults ¢)

6-6-3 #1 #2 #3 #4 #5 #6

AlthoughADD pattern databases are known to provide more accurate | _ SPDB 0.83 | 098 | 042 | 077 | 1.77 | 0.39

heuristic values, it is not always possible to apply them. Therefore, (0.0107Gb) | 0.509 | 0.576 | 0.187 | 0.452 | 1.183 | 0.181

. . mPDB, 0.37 0.45 0.30 0.33 1.00 0.50

experiments have been conducted with betip andMAX pattern (0.0429Gb) | 0.113 | 0.144 | 0.086 | 0.108 | 0.434 | 0.181

databases. rPDB 078 | 063 | 036 | 044 | 1.79 | 0.22
In both cases, the perimeter is generated using a brute-force depth{ (0.0107Gb)| 0.248 | 0.186 | 0.092 | 0.119 | 0.638 | 0.056

first search algorithm from the goal which generates all nodes whose

descendants have a cost that exceeds the specified perimeter depifpie 1. Experimental results in the 15-Puzzle with 5-5-5 and 6-6-B8D

Once the perimeter set is generated, different queues are seeded witach cell shows the mean run-time in seconds (above) and totdier of

each perimeter node and a backward breadth-first search is issued generated nodes in thousands of milliond? (below)

with everyone for a given pattern specification. As a resulilti-

valued pattern databases (which are as many times bigger than a

single-valuedpattern database as perimeter nodes were found) are Table 1 shows also the same statistics for another six different ar-

generated. rangements of 6-6-3 pattern databases. Pattern database #6 is the one
For the ease of comparison, the same mapping functions have bestggested in [4]. Next, table 2 depicts the same statistics for four

programmed. Sinceparse mappingncurs in prohibitive wastes of different arrangements of 7-8 pattern databases. In this casenpatter

space for some casesg@ampact mappingas been chosén database #1 is the one widely suggested in the specialized bibliogra-
Because IDA explores the state space in a depth-first fashion, arphy and also cited in [4].

incremental implementation of the Myrvold and Ruskey ranking al-

gorithm [13] has been developed. The current implementation runs <FBE 07531,68 0’:338 0?33)74 0?387
about 20%-30% faster and has no gddltlonal memory rngrements. (0.5369Gb) | 13.721 | 60.347 | 54.323 | 78.370
Unfortunately, due to space constraints no further details regarding mPDB, | 0.0355 | 0.0434 | 0.0435 | 0.0580
this algorithm are provided. It is worth mentioning tisatgle-valued (2.1479Gb) | 10.262 | 15.374 | 15.502 | 18.349
pattern databases are expected to be more sensitive to this improve- rPDB 0.0088 | 0.0993 | 0.0846 | 0.0939
ment thanmulti-valuedpattern databases. The reason is thatti- (0.5369Gb) | 3.832 | 21.646 | 19.379 | 23.594

valued pattern databases, being more informed thagle-valued

pattern databases (according to section 2.1) will generate and rank Table 2. Experimental results in the 15-Puzzle with 7-8 PDBs: mean
less nodes. run-time in seconds (above) and total number of generatedsnndeillions,
10° (below)

3.3.1 Multi-valuedaDD pattern databases

Table 3 shows the same statistics in the 24-Puzzle using two dif-
fent arrangements of 6-6-6-6 pattern databases at depth 3nPatter
atabase #1 is the usual reference in this domain, as suggested in [4].
4 For a thorough discussion on the topic, see [4], sectionphge 289. The test set employed consists of the 25 easiest instances of the test

The domains chosen for experimenting wittulti-valuedApD pat-
tern databases are the 15-Puzzle and the 24-Puzzle. In all cases,

#1 #2 by perimeter search clearly pays-off for the reduction on the number
sPDB 10622.39| 24746.44 of nodes generated.
(0.4750Gb) 3.08 7.02
mPDB3 6162.81 | 12227.45 444 555 6-6-6
(4.7501Gb) 1.00 1.93 (0.0086Mb) | (0.0432Mb) | (0.1730Mb)
rPDB 2390.09 | 10170.26 PDB 0.01 <0.00 <0.00
(0.4750Gb)| 0.41 1.72 S 5.952 0.458 0.104
mPDB; 0.01 < 0.00 < 0.00
Table 3. Experimental results in the 24-Puzzle with 6-6-6-6 PDBs: mean 3.964 0.347 0.077
run-time in seconds (above) and total number of generatedsrinahillions mPDB, < 0.00 < 0.00 < 0.00
of millions, 1012 (below) 3.044 0.263 0.060

. Table 4. Experimental results in th@, 2)-TopSpin: mean run-time in
suite detailed in [10], with solution lengths ranging from 81 to 106 . ¢ (above) and total number of generated nodes i tafitiitions,

moves. 10° (below)
When comparing the performance of varisirsgle-valuegattern

databases versus theiulti-valuedcounterparts, it turns out that the

latter usually outperforms the former, more remarkably inthe 7-8 and Table 5 summarizes the results for both tfi, 2)-TopSpin
6-6-6-6 cases. But this is not always true —see, for example PDB #@nd the (15, 2)-TopSpin. As it can be seemulti-valued pattern

in the 6-6-3. However, when comparing all running-times, the patterrdatabases solved the problems faster and generating less nodes in

database which resulted in faster performance is alwaysnthig- all cases, with no exception.

valuedpattern database (for example, in the 6-6-3 case, the fastest

algorithm usesnulti-valuedpattern databases arranged as in #3), but 5 (612, 2)-TOIDS%IH8 (15%27)';07@!3'“
in the 5-5-5 case. The fact that for some_ grrangemermﬂm-valued (1.2689Mb) | (38.0676Mb)|| (154.6497Mb)
pattern databases do not outperform tls@iigle-valuedcounterpart 994 051 5548

but others do it, can be explained as an effect of the diversity induced | SPDB 1813 0021 2776

by the perimeter nodes. It has been observed that for some arrange mPDB, 6.54 0.16 20.16
ments of pattern databases, the blank tile only reaches a few patterns 1.066 0.013 2.114
when computing the perimeter nodes. The more pattern databases are¢ mppg, 6.07 0.11 16.95
affected, the better the heuristic. For example, in the 7-8 PDB #1 of 0.795 0.008 1572

the 15-PuzzI& allowing the blank to move twice affects both pattern

databases. Thus, the resultimylti-valuedpattern database outper- Table 5. Experimental results in thel2, 2)-TopSpin and the
formed itssingle-valuedcounterpart, even though the latter is very (15, 2)-TopSpin: mean run-time in seconds (above) and total number of
accurate for solving this problem. Correspondingly, when comput- generated nodes in thousands of millions? (below)

ing themulti-valuedpattern database of 5-5-5 #6, only one PDB out
of three gets updated, thus not leading to any improvement on either
the number of nodes generated or the running time.

4 Compressing Multi-valued Pattern Databases

3.3.2 Multi-valuedvax pattern databases From equation (2) it becomes clear that the number of patterns grows
) . .) rapidly for any granularity. Thus, techniques have been developed fo
The domain chosen for these experiments is (tNe &)-TOpSpiNn. efficiently compressing pattern databases both in a lossy and loss-
Max'ing is far less efficient than taking the summation of a few val- o5 \yay [5]. In this section, some preliminary ideas for compress-
ues from different disjoint pattern databases. Thus, the sizes of thg, miti-valuedpattern databases as well are discussed. It should be

instances considered here are smaller than the ones shown in the pfgspighted that the techniques discussed herein are not incompatible
vious paragraph. The number of pattern databases and the number\m h those introduced in [5].

tiles they contain in each case is clearly identifiec_i in th_e tables. For In spite of the discussions in section 3.2, the truth is that disjoint
example, 6-6 stands for two pattern databases with 6 tiles each. Bes; opp) multi-valuedpattern databases take even less space than

sides, they always consist of contiguous locations arranged in suchy, ot it might seem. Consider the 7-8 PDB #1 for the 15-Puzzle gen-
a way that the pattern databases are all equidistant, thus minimizir@rated with perimeter depth—= 1 —see fotnote 5. It is easy to real-

the overlapping among them. In all the subsequent experiments, thee 4t in the two perimeter nodes generated so far, the inferior half
test suites employed consisted of 100 solvable instances generatgde the pattern database with 8 tiles) looks exactly the same than
with the random application of a number of operators between 10 the goal state. SincepD pattern databases do count all moves of

and 500. . . . the blank tile, the values stored in the infermulti-valuedpattern
Table 4 shows the results in ti{@, 2)-TopSpin. This puzzle can = yaiapase are likely to be the same. Thus, it is only necessary to store

be solved so fast that in mogt cases the time spent falls below 0.0%0 values per entry in the superior pattern database, but only one

seconds. The number of perimeter nodes generated atdepti jp, e inferior database. This way, the resultinglti-valuedpattern

and 2ig| Py| = 3 and 6, respectively, so thatmPRBnd mPDB are j5iaha5es take twice the space of the smaifegle-valuectatabase
3 and 6 times larger than the size of the corresponding sPDB, shOW(@he one with 7 tiles) but only once the space of the inferior, larger,

below every arrangement. As it can be seen, the overhead 'mpos%%gle-valuedﬂatabase. This stands for a marginal increment in the

. N L . .
5 In this case, the 15-Puzzle is split into two halves: one aftbe other. size of 10%. Even considering larger perimeter depthsdsay?), it

The one below contains 8 pattern tiles whereas the one ouentains 7, 1S Still possible to apply other compression schemesiiti-valued
because the blank tile is ommitted. pattern databases as discussed below.

This is not true, however, fanax pattern databases because in choice. In other words, instead of storing a vector of heuristic esti-
this case only moves of the pattern tiles are taken into account. Newnations to each perimeter node in every entry of rindti-valued
ertheless, it is still possible to compress the resultmgti-valued pattern database, an index to a small numbef(ef vectors is at-
pattern database relating statistically the distribution of values to eactached. Then, when solving a problem, retrieve the index from the
perimeter node with the distance to the first perimeter node. pattern database and apply &6) vector to get the heuristic esti-

Letd;(7) denote the differenck; (j) — h:(1) whereh;(j) is thej- mations to all the perimeter nodes. Preliminary experiments in the
th component of the vector in thieth entry of amulti-valuedpattern (N, K)-TopSpin suggest that it is feasible to significantly compress
database. In other words,(j) is the difference of the distance to the multi-valuedpattern databases and still running faster than various
j-th perimeter node and the first perimeter node from paiteFhis single-valuedpattern databases generating far less nodes.
way, it is possible to compute the vector of differenégs) for every
entry,, in a givenmulti-valuedpattern database. Also, it is assumed
that P perimeter nodes have been generated.

Now, there are two different ways to compress data in a loosy wayAlthough it might be contrary to intuition, storing various values
without sacrificing admissibility: per entry in a pattern database can outperform the stansiagle-

valued pattern databases, eithebb or MAX. Furthermore, these
Traversal compression consists of forcing alk; () valuesiromthe databases can be compressed with the techniques outlined in the last
same entry; to be equal to the minimum of them all, so that section which are not incompatible with existing techniques for com-
each component takes a new valué;(j) computed as follows: pressingsingle-valuedpattern databases.

P
Ri(5) = hi(1) + mig{éi(j)}ﬂ < j < P. The expected loss in
P

the accuracy of the resulting heuristic values due to the travers
compressionf;, can be computed as:

5 Summary

4cknowledgements

This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and UC3M-CAM project CCG06-

Li(8i(-) =Y (hilG) = hi(5)) p(8:)

UC3M/TIC-0831.

REFERENCES

wherep(d;) stands for the probability of occurrence of the vec-
tor of differences);. Note that the same vector of differencgs
can happen in an arbitrary number of entries in nindti-valued
pattern database other than thig entry.

Applying repeatedly this compression scheme, the resulting pat13]
tern database will be exactly the same than the one generated un-
der themultiple goalapproach in section 3.1.

(1]
(2]

Longitudinal compression merges two different entries, and v, [4]
by forcing theird vectors,d. (-) andd, (-), to be the same so that
h. (i) andh, (i) take new valuesh,, (i) andh;, (i), according to: [5]

Ry (i) = hu(1) + min{8,(4), 6, ()} and, similarly forh;,. As in
the previous case, it is possible to compute the expected loss in
the accuracy of the heuristic values that result after a longitudinall6]
compressionf;, as follows:

Li(8u(-),00(-)) = [7]

n

2(hu(j) — h(3))p(6u)+
("o (3) = By (5))p(80)

Since the preceding expressions allow the measurement of the Ios[g]
in the accuracy of the heuristic function, they serve for compress-
ing any multi-valuedpattern database to any desired ratio of com-
pression degree versus loss of accuracy. In particular, for apgrup
bound on the average loss of the heuristic functidnan algorithm
for efficiently compressing multi-valuedpattern database proceeds
in the following fashion: if the average loss is still beldy com-
pute the expected loss of all the traversal compressions, and also tHé!
expected loss of all the longitudinal compressions for each pair 1]
entries in the pattern database. Next, pick the compression with the
minimum expected loss and update the pattern database. Proceed-
ing in this manner, the number of differencés;), will be mono-
tonically decreasing at each step. If there ardifferent vectors of
differences when the expected loss reaches the upper bGundde [13]
each entry in the pattern database with one of the indexes in the range
[1,1og, n], so thatogan bits are used instead of 8, which is the usual

J

(9]

[12]

Joseph C. Culberson and Jonathan Schaeffer, ‘Pattéabases’Com-
putational Intelligencel4(3), 318—-334, (1998).

John F. Dillenburg and Peter C. Nelson, ‘Perimeter séawtiificial
Intelligence 65, 165-178, (1994).

Stefan Edelkamp, ‘External symbolic heuristic searchhwpattern
databases’, iProceedings of the Fifteenth International Conference on
Automated Planning and Scheduling (ICAPS;@p) 51-60, Monterey,
California, United States, (June 2005).

Ariel Felner, Richard E. Korf, and Sarit Hanan, ‘Addiivpattern
database heuristicsJournal of Artificial Intelligence Researcl22,
279-318, (November 2004).

Ariel Felner, Richard E. Korf, Ram Meshulam, and RobertltEo
‘Compressed pattern databaselsyurnal of Artificial Intelligence Re-
search 30, 213-247, (October 2007).

Ariel Felner and Nir Ofek, ‘Combining perimeter search grattern
database abstractions’, Proceedings of the Seventh Symposium on
Abstraction, Reformulation and Approximation (SARA;®f). 155—
168, Whistler, Canada, (July 2007).

Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, and Rolger Holte,
‘Dual lookups in pattern databases’, Btoceedings of the Nineteenth
International Joint Conference on Artificial IntelligenldCAI-05), pp.
103-108, Edinburgh, Scotland, (July 2005).

Robert Holte, Jack Newton, Ariel Felner, Ram Meshuland &avid
Furcy, ‘Multiple pattern databases’, Proceedings of the Fourteenth
International Conference on Automated Planning and Scliegiu
(ICAPS-04) pp. 122-131, Whistler, British Columbia, Canada, (June
2004).

Robert C. Holte, Ariel Felner, Jack Newton, Ram Meshuland David
Furcy, ‘Maximizing over multiple pattern databases speedbeypis-
tic search’ Artificial Intelligence 170(16-17), 1123-1136, (November
2006).

Richard E. Korf and Ariel Felner, ‘Disjoint pattern @dase heuristics’,
Artificial Intelligence 134(1-2), 9-22, (2002).

Richard E. Korf and Ariel Felner, ‘Recent progress imufistic search:
A case study of the four-peg towers of hanoi problem’Piroceed-
ings of the Twentieth International Joint Conference onfigial Intel-
ligence (IJCAI-07)pp. 2324-2329, Hyderabad, India, (January 2007).
Giovanni Manzini, ‘BIDA*: an improved perimeter search algorithm’,
Artificial Intelligence 75, 347-360, (1995).

W. Myrvold and F. Ruskey, ‘Ranking and unranking perntiotss in
linear time’, Information Processing Letterg9, 281-284, (2001).

