From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Speeding Up the Calculation of Heuristics
for Heuristic Search-Based Planning

Yaxin Liu, Sven Koenig and David Furcy
College of Computing
Georgia Institute of Technology
Atlanta, GA 30312-0280
{yxliu,skoenig,dfurcy@cc.gatech.edu

Abstract

Heuristic search-based planners, such as HSP 2.0, solve
STRIPS-style planning problems efficiently but spend about
eighty percent of their planning time on calculating the
heuristic values. In this paper, we systematically evaluate al-
ternative methods for calculating the heuristic values for HSP
2.0 and demonstrate that the resulting planning times differ
substantially. HSP 2.0 calculates each heuristic value by solv-
ing a relaxed planning problem with a dynamic programming
method similar to value iteration. We identify two different
approaches for speeding up the calculation of heuristic val-
ues, namely to order the value updates and to reuse infor-
mation from the calculation of previous heuristic values. We
then show how these two approaches can be combined, re-
sulting in our PINCH method. PINCH outperforms both of
the other approaches individually as well as the methods used
by HSP 1.0 and HSP 2.0 for most of the large planning prob-
lems tested. In fact, it speeds up the planning time of HSP 2.0
by up to eighty percent in several domains and, in general, the
amount of savings grows with the size of the domains, allow-
ing HSP 2.0 to solve larger planning problems than was pos-
sible before in the same amount of time and without changing
its overall operation.

Introduction

Heuristic search-based planners were introduced by (Mc-
Dermott 1996) and (Bonet, Loerincs, & Geffner 1997) and
are now very popular. Several of them entered the sec-
ond planning competition at AIPS-2000, including HSP 2.0
(Bonet & Geffner 2001a), FF (Hoffmann & Nebel 2001a),
GRT (Refanidis & Vlahavas 2001), and AltAlt (Nguyen,
Kambhampati, & Nigenda 2002). Heuristic search-based
planners perform a heuristic forward or backward search
in the space of world states to find a path from the start
state to a goal state. In this paper, we study HSP 2.0,
a prominent heuristic search-based planner that won one
of four honorable mentions for overall exceptional perfor-
mance at the AIPS-2000 planning competition. It was one
of the first planners that demonstrated how one can obtain
informed heuristic values for STRIPS-style planning prob-
lems to make planning tractable. In its default configura-
tion, it uses weighted A* searches with inadmissible heuris-
tic values to perform forward searches in the space of world

Copyright © 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

484 AAAI-02

states. However, the calculation of heuristic values is time-
consuming since HSP 2.0 calculates the heuristic value of
each state that it encounters during the search by solving
a relaxed planning problem. Consequently, its calculation
of heuristic values comprises about 80 percent of its plan-
ning time (Bonet & Geffner 2001b). This suggests that
one might be able to speed up its planning time by speed-
ing up its calculation of heuristic values. Some heuristic
search-based planners, for example, remove irrelevant op-
erators before calculating the heuristic values (Hoffmann
& Nebel 2001b) and other planners cache information ob-
tained in a preprocessing phase to simplify the calculation of
all heuristic values for a given planning problem (Bonet &
Geffner 1999; Refanidis & Vlahavas 2001; Edelkamp 2001;
Nguyen, Kambhampati, & Nigenda 2002).

Different from these approaches, we speed up HSP 2.0
without changing its heuristic values or overall operation. In
this paper, we study whether different methods for calculat-
ing the heuristic values for HSP 2.0 result in different plan-
ning times. We systematically evaluate a large humber of
different methods and demonstrate that, indeed, the result-
ing planning times differ substantially. HSP 2.0 calculates
each heuristic value by solving a relaxed planning problem
with a dynamic programming method similar to value iter-
ation. We identify two different approaches for speeding
up the calculation of heuristic values, namely to order the
value updates and to reuse information from the calculation
of previous heuristic values by performing incremental cal-
culations. Each of these approaches can be implemented
individually in rather straightforward ways. The question
arises, then, how to combine them and whether this is ben-
eficial. Since the approaches cannot be combined easily,
we develop a new method. The PINCH (Prioritized, IN-
Cremental Heuristics calculation) method exploits the fact
that the relaxed planning problems that are used to deter-
mine the heuristic values for two different states are similar
if the states are similar. Thus, we use a method from al-
gorithm theory to avoid the parts of the plan-construction
process that are identical to the previous ones and order the
remaining value updates in an efficient way. We demonstrate
that PINCH outperforms both of the other approaches indi-
vidually as well as the methods used by HSP 1.0 and HSP
2.0 for most of the large planning problems tested. In fact,
it speeds up the planning time of HSP 2.0 by up to eighty

Non-Incremental Computationg Incremental Computations procedure Main()

Unordered Updates| VI, HSP2 VI forever do

Ordered Updates GBF, HSP1, GD PINCH sets to the state whose heuristic value needs to get computed next
foreachg € P U O \ sdosetrg := oo

e . L. . foreachp € s dosetry, := 0

Table 1: Classification of Heuristic-Calculation Methods repeat

foreacho € O dosetr, := 3 ,c prec(o) Tp
foreachp € P\ sdosetry := min,co|pcadd(o) [l + ol
percent in several domains and, in generaL the amount of until the values of alk, remain unchanged during an iteration
: - . . . Fusehggq(s) = *
savings grows with the size of the domains, allowing HSP Wehada(®) = L pea o
2.0 to solve larger planning problems in the same amount
of time than was possible before and without changing its Figure 1: VI
overall operation.

Heuristic Search-Based Planning: HSP 2.0

In this section, we describe how HSP 2.0 operates. We first Then, the heuristic valug,qq(s) of states € S can be
describe the planning problems that it solves and then how Calculated aaaa(s) = 3-,cq 95(p). This allows HSP 2.0

it calculates its heuristic values. We follow the notation and 0 Solve large planning problems, although it is not guaran-
description from (Bonet & Geffner 2001b). teed to find shortest paths.

The Problem Calculation of Heuristics

HSP 2.0 solves STRIPS-style planning problems with Inthe next sections, we describe different methods that solve
ground operators. Such STRIPS-style planning problems Equations 1 and 2. These methods are summarized in Ta-
consist of a set of propositionB that are used to describe ble 1. To describe them, we use a varigbléits values are

the states and operators, a set of ground operaiorhe guaranteed to be propositions, a variabl¢ its values are
start statel C P, and the partially specified go&l C P. guaranteed to be operators, and a varighféts values can
Each operatoo € O has a precondition lisPrec(o) C P, be either propositions or operators. We also use variables
an add listAdd(o) C P, and a delete lisDelete(o) C P. z, (a proposition variable) fop € P andz, (an opera-

The STRIPS planning problem induces a graph search prob- tor variable) foro € O. In principle, the value of variable
lem that consists of a set of states (vertic®$) a start state ~ z,, satisfiesz, = g,(p) after termination and the value of

I, a set of goal state§X C P|G C X}, a set of ac- variablez, satisfiesr, = gs(o) after termination, except for
tions (directed edgedp € O|Prec(o) C s} for each state some methods that terminate immediately after the variables
s C P where actiorp transitions from state C P to state x, for p € G have their correct values because this already
s — Delete(o) + Add(o) C P with cost one. All opera- allows them to calculate the heuristic value.

tor sequences (paths) from the start state to any goal state in _ _ o
the graph (plans) are solutions of the STRIPS-style planning VI and HSP2: Simple Calculation of Heuristics

problem. The shorter the path, the higher the quality of the Figure 1 shows a simple dynamic programming method that

solution. solves the equations using a form of value iteration. This
. . VI (Value lteration) method initializes the variables to

The Method and its Heuristics zero ifp € s, and initializes all other variables to inﬁity. It

In its default configuration, HSP 2.0 performs a forward then repeatedly sweeps over all variables and updates them

search in the space of world states using weighted A* (Pearl according to Equations 1 and 2, until no value changes any

1985) with inadmissible heuristic values. It calculates the |onger.

heuristic value of a given state by solving a relaxed version HSP 2.0 uses a variant of VI that eliminates the vari-

of the planning problem, where it recursively approximates ablesx, by combining Equations 1 and 2. Thus, this HSP2

(by ignoring all delete lists) the cost of achieving each goal method performs only the following operation as part of its

proposition individually from the given state and then com- repeat-until loop:

bines the estimates to obtain the heuristic value of the given

state. In the following, we explain the calculation of heuris- ~ "reachr € P sdosetr, :=minoeo|pe add(o) 1 2 /e prec(o) /)

tic values in detail. We usg; (p) to denote the approximate HSP2 needs more time than VI for each sweep but re-
cost of achieving propositiop € P from states C P, and duces the number of sweeps. For example, it needs only 5.0
gs(0) to denote the approximate cost of achieving the pre- sweeps on average in the Logistics domain, while VI needs
conditions of operatoo € O from states C P. HSP 2.0 7.9 sweeps.

defines these quantities recursively. It defines fos all P,

p € P,ando € O (the minimum of an empty set is defined Speeding Up the Calculation of Heuristics

to be infinity and an empty sum is defined to be zero): We investigate two orthogonal approaches for speeding up

HSP 2.0’s calculation of heuristic values, namely to order

gs(p) = { 0 ifpes (1) the value updates (ordered updates) and to reuse information
min,eopeadd(o)[1 + 9s(0)] otherwise from the calculation of previous heuristic values (incremen-
gs(0) = Z gs(p).) tal computations), as shown in Table 1. We then describe

pePrec(o) how to combine them.

AAAI-02 485

procedure Main()
forever do
sets to the state whose heuristic value needs to get computed next
foreachq € P U O \ sdosetry := oo
foreachp € s dosetr) := 0
repeat
foreacho € O do

new ,

setzg " 1= 3 e prec(o) Tp
if 27" # x, then
setx, = Ig,ew
foreachp € Add(o) do
setxy 1= min(zyp, 1 +)
until the values of alkc, remain unchanged during an iteration
Pusehgga(s) =X peg xp

Figure 2: GBF

IVI: Reusing Results from Previous Searches

When HSP 2.0 calculates a heuristic valyg,(s), it solves
equations ings(p) and gs(o). When HSP 2.0 then calcu-
lates the heuristic valuk,44(s’) of some other state’, it
solves equations in, (p) andg, (o). If gs(p) = g« (p) for
somep € P andg;(o) = g4 (o) for someo € O, one could
just cache these values during the calculatiohgf;(s) and
then reuse them during the calculation/gf;;(s’). Unfor-
tunately, it is nontrivial to determine which values remain
unchanged. We explain later, in the context of our PINCH
method, how this can be done. For now, we exploit the fact
that the valueg;(p) andg. (p) for the same € P and the
valuesg; (o) andgs (o) for the same € O are often similar

if s ands’ are similar. Since HSP 2.0 calculates the heuristic
values of all children of a state in a row when it expands the
state, it often calculates the heuristic values of similar states
in succession. This fact can be exploited by changing VI so
that it initializesz), to zero ifp € s but does not re-initialize
the other variables, resulting in the IVI (Incremental Value
Iteration) method. IVI repeatedly sweeps over all variables
until no value changes any longer. If the number of sweeps
becomes larger than a given threshold then IVI terminates
the sweeps and simply calls VI to determine the values. VI
needs fewer sweeps than VI if HSP 2.0 calculates the heuris-

tics of similar states in succession because then the valuesof all g
S

of the corresponding variableg tend to be similar as well.
For example, IVI needs only 6.2 sweeps on average in the
Logistics domain, while VI needs 7.9 sweeps.

GBF, HSP1 and GD: Ordering the Value Updates

VI and IVI sweep over all variables in an arbitrary order.
Their number of sweeps can be reduced by ordering the vari-
ables appropriately, similarly to the way values are ordered
in the Prioritized Sweeping method used for reinforcement
learning (Moore & Atkeson 1993).

Figure 2 shows the GBF (Generalized Bellman-Ford)
method, that is similar to the variant of the Bellman-Ford
method in (Cormen, Leiserson, & Rivest 1990). It orders
the value updates of the variables It sweeps over all vari-
ablesz, and updates their values according to Equation 2.
If the update changes the value of variable GBF iterates
over the variables,, for the propositiong in the add list of
operatofo and updates their values according to Equation 1.
Thus, GBF updates the values of the variahtgsonly if
their values might have changed.

486 AAAI-02

procedure Main()
forever do
sets to the state whose heuristic value needs to get computed next
foreachg € P U O \ sdosetrg := oo
foreachp € s dosetry, := 0

setLy := s

while L, # 0
setL, := the set of operators with no preconditions
foreachp € Ly dosetL, := L, U {o|p € Prec(o)}
setLy := 0

for eachp € P do setr) " := x,
for eacho € L, do
setr, 1= ZPEPT‘&C(Q) zp
foreachp € Add(o)
if Igew >1+ 2z,
setz;““’ =14z,
setLy, := L, U {p}
foreachp € P dosetx), := z;z,ew
“usehgqda(s) =2 pea @p

.

Figure 3: HSP1

Figure 3 shows the method used by HSP 1.0. The HSP1
method orders the value updates of the variahlgsand
xp, Similar to the variant of the Bellman-Ford method in
(Bertsekas 2001). It uses an unordered list to remember
the propositions whose variables changed their values. It
sweeps over all variables, that have these propositions as
preconditions and updates their values according to Equa-
tion 2. After each update of the value of a variable GBF
iterates over the variables, for the propositiong in the
add list of operatop and updates their values according to
Equation 1. The unordered list is then updated to contain
all propositions whose variables changed their values in this
step. Thus, HSP1 updates the values of the variahlesd
x,, only if their values might have changed.

Finally, the GD (Generalized Dijkstra) method (Knuth
1977) is a generalization of Dijkstra’s graph search method
(Dijkstra 1959) and uses a priority queue to sweep over the
variablese, andz, in the order of increasing values. Similar
to HSP1, its priority queue contains only those variablgs
andz, whose values might have changed. To make it even
more efficient, we terminate it immediately once the values
(p) for p € G are known to be correct. We do not
give pseudocode for GD because it is a special case of the
PINCH method, that we discuss néxt.

PINCH: The Best of Both Worlds

The two approaches for speeding up the calculation of
heuristic values discussed above are orthogonal. We now
describe our main contribution in this paper, namely how
to combine them. This is complicated by the fact that the
approaches themselves cannot be combined easily because
the methods that order the value updates exploit the prop-
erty that the values of the variables cannot increase during
each computation of a heuristic value. Unfortunately, this
property no longer holds when reusing the values of the vari-
ables from the calculation of previous heuristic values. We

!PINCH from Figure 5 reduces to GD if one empties its priority
queue and reinitializes the variableg andrhs, before SolveE-
quations() is called again as well as modifies the while loop of
SolveEquations() to terminate immediately once the values of all
gs(p) for p € G are known to be correct.

thus need to develop a new method based on a method from

algorithm theory. The resulting PINCH (Prioritized, INCre-
mental Heuristics calculation) method solves Equations 1
and 2 by calculating only those valugs(p) andg (o) that

are different from the corresponding valug$p) andg; (o)
from the calculation of previous heuristic values. PINCH

also orders the variables so that it updates the value of each

variable at most twice. We will demonstrate in the experi-
mental section that PINCH outperforms the other methods
in many large planning domains and is not worse in most
other large planning domains.

DynamicSWSF-FP

In this section, we describe DynamicSWSF-FP (Rama-
lingam & Reps 1996), the method from algorithm theory
that we extend to speed up the calculation of the heuristic
values for HSP 2.0. We follow the presentation in (Rama-
lingam & Reps 1996). A functiog(zy, .. CXE):

Ri — R, is called a strict weakly superior func-
tion (in short: swsf) if, for every; € 1...k, it

is monotone non-decreasing in varialle and satisfies:
g(@1, ..y, o) < o= og(e, . xg, . TE) =
g(x1,...,00,...,x). The swsf fixed point (in short: swsf-
fp) problem is to compute the unique fixed pointkoéqua-
tions, namely the equations = g¢;(z1,...,zx), in thek
variableszy, . .., xx, where theg; are swsffori = 1...k.

The dynamic swsf-fp problem is to maintain the unique fixed
point of the swsf equations after some or all of the functions
g; have been replaced by other swsf’s. DynamicSWSF-FP
solves the dynamic swsf-fp problem efficiently by recalcu-
lating only the values of variables that change, rather than
the values of all variables. The authors of DynamicSWSF-

.,ij,.

procedure AdjustVariable(
if ¢ € Pthen
if ¢ € sthensetrhsq := 0
elsesetrhsg := 1 4+ min,co|qe Add(o) To
else/*q € O*setrhsq := 143 cprec(q) Tp
if g is in the priority queue then delete it
if x4 # rhsq theninserty into the priority queue with prioritynin (x4, rhsq)

procedure SolveEquations()
while the priority queue is not empty do
delete the element with the smallest priority from the priority queue and assigg it to
if rhsq < xq then
setxq = rhsq
if ¢ € P thenforeacto € O suchthaiy € Prec(o) do AdjustVariablef)
elseifqg € O then foreactp € Add(q) withp ¢ s do AdjustVariablep)
else
setxq := oo
AdjustVariableg)
if ¢ € P thenforeacto € O suchthaiy € Prec(o) do AdjustVariableg)
elseifg € O then foreactp € Add(q) with p & s do AdjustVariablep)

procedure Main()

empty the priority queue

sets to the state whose heuristic value needs to get computed

foreachg € P U O dosetrg := oo

for eachq € P U O do AdjustVariableg)

forever do
SolveEquations()
I*usehggq(s) =1/2 ZPEG xp
sets’ := s ands to the state whose heuristic value needs to get computed next
foreachp € (s \ s’) U (s’ \ s) do AdjustVariable(p)

Figure 4: PINCH

The only difference is in the calculation gf(o). The
transformed equations specify a swsf-fp problem sifce
min,eo|peadd(o)[l + gs(0)], and1 + Zpec gs(p) are all
swsfing,(p) andg, (o) for all p € P and allo € O. This
means that the transformed equations can be solved with
DynamicSWSF-FP. They can be used to calculatg;(s)
since it is easy to show that(p) 1/2¢%(p) and thus

FP have proved its correctness, completeness, and otherfaad(s) = Y_,cq 9s(P) = 1/23 e 95(p)-

properties and applied it to grammar problems and shortest
path problems (Ramalingam & Reps 1996).

Terminology and Variables

We use the following terminology to explain how to use
DynamicSWSF-FP to calculate the heuristic values for HSP
2.0. Ifx; = gi(x1,...,2) thenz; is called consistent.
Otherwise it is called inconsistent. 4f is inconsistent then
eitherz; < g;(z1,...,zk), in which case we calt; under-
consistent, orr; > g;(x1,...,2%), in which case we call

x; overconsistent. We use the variabléss; to keep track

of the current values aof;(z1, ..., zx). It always holds that
rhs; = g;i(x1,...,x) (Invariant 1). We can therefore com-
parex; andrhs; to check whether; is overconsistent or
underconsistent. We maintain a priority queue that always
contains exactly the inconsistent(to be precise: it stores
rather thane;) with prioritiesmin(z;, rhs;) (Invariant 2).

Transforming the Equations

We transform Equations 1 and 2 as follows to ensure that
they specify a swsf-fp problem, for all C P, p € P and

o€ O:

, B 0 ifpes
gs(p) = { Min,co|peadd(o) [l + gs(0)] otherwise 3)
gio) = 14+ Y gup). @

pEPrec(o)

Calculation of Heuristics with DynamicSWSF-FP

We apply DynamicSWSF-FP to the problem of calculating
the heuristic values of HSP 2.0, which reduces to solving
the swsf fixed point problem defined by Equations 3 and 4.
The solution is obtained by SolveEquations() shown in Fig-
ure 4. In the algorithm, each, is a variable that contains
the corresponding’(p) value, and each, is a variable that
contains the corresponding(o) value.

PINCH calls AdjustVariable() for each, to ensure that
Invariants 1 and 2 hold before it calls SolveEquations() for
the first time. It needs to call AdjustVariable() only for those
x4 Whose functiory, has changed before it calls SolveEqua-
tions() again. The invariants will automatically continue to
hold for all otherz,,. If the state whose heuristic value needs
to get computed changes fraifito s, then this changes only
those functiong, that correspond to the right-hand side of
Equation 3 for whictp € (s \ s') U (s"\ s), in other words,
wherep is no longer part ok (and the corresponding vari-
able thus is no longer clamped to zero) or just became part of
s (and the corresponding variable thus just became clamped
to zero). SolveEquations() then operates as follows. The
x4 solve Equations 3 and 4 if they are all consistent. Thus,
SolveEquations() adjusts the values of the inconsistgnt
It always removes the, with the smallest priority from
the priority queue. lfz, is overconsistent then SolveEqua-

AAAI-02 487

procedure AdjustVariable(
if x4 # rhsq then
if q is notin the priority queue then insert it with prioritpin (z ¢, rhsq)
else change the priority af in the priority queue tanin(xq, rhsq)
else ifg is in the priority queue then delete it

procedure SolveEquations()
while the priority queue is not empty do
assign the element with the smallest priority in the priority queug to
if ¢ € Pthen
if rhsq < x4 then
deleteq from the priority queue
setr,1q 1= zq
setxy := rhsq
for eacho € O suchthay € Prec(o) do
if rhs, = oo then
setrhs, := 1+ Zpeprec(o) Tp
else setrhs, := Thse — To1qd + g
AdjustVariablep)
else
setrg := oo
if ¢ € sthen
setrhsqg = 1+ min,co|ge Add(o) To
AdjustVariableg)
for eacho € O suchthaly € Prec(o) do
setrhsy := oo
AdjustVariablep)
else/*q € O*
if rhsq < x4 then
deleteq from the priority queue
setxy := rhsq
foreachp € Add(q) withp ¢ s
rhsp = min(rhsp, 1 4 xq)
AdjustVariablep)
else
setx,1q 1= zq
setxy := oo
setrhsg := 1+ Zpep,,,ec(q) Tp
AdjustVariableg)
foreachp € Add(q) withp ¢ s
if rhsp =14 2,4 then
setrhsp := 1+ min,co|peAdd(o) To
AdjustVariablep)

procedure Main()
empty the priority queue
sets to the state whose heuristic value needs to get computed
foreachg € P U O dosetrhsq := x4 := 00
for eacho € O with Prec(o) = @ dosetrhs, := z, := 1
for eachp € s do
rhsp := 0
AdjustVariablep)
forever do
SolveEquations()
Fuseh,gqq(s) =1/2 ZPEG xp ¥/
sets’ := s ands to the state whose heuristic value needs to get computed next
foreachp € s \ s’ do
rhsp :=0
AdjustVariablep)
foreachp € s’ \ s do
rhsp =14+ min,co|pe add(o) To
AdjustVariablep)

Figure 5: Optimized PINCH

tions() sets it to the value efis,. This makes:, consistent.

Algorithmic Optimizations

PINCH can be optimized further. Its main inefficiency is
that it often iterates over a large number of propositions or
operators. Consider, for example, the case whefeD has

the smallest priority during an iteration of the while-loop in
SolveEquations() andhs, < z,. At some point in time,
SolveEquations() then executes the following loop

for eachp € Add(q) with p ¢ s do AdjustVariableg)

The for-loop iterates over all propositions that satisfy its con-
dition. For each of them, the call AdjustVariakhig€xecutes

setrhs, 1= 1 + min,eco|peadd(o) To

The calculation of-hs, therefore iterates over all operators
that containp in their add list. However, this iteration can
be avoided. Sincehs, < z, according to our assumption,
SolveEquations() sets the valuexf to rhs, and thus de-
creases it. All other values remain the same. Thuas,,
cannot increase and one can recalculate it faster as follows

setrhsp := min(rhsp, 1 + z4)

Figure 5 shows PINCH after this and other optimizations. In
the experimental section, we use this method rather than the
unoptimized one to reduce the planning time. This reduces
the planning time, for example, by 20 percent in the Logis-
tics domain and up to 90 percent in the Freecell domain.

Summary of Methods

Table 1 summarizes the methods that we have discussed and
classifies them according to whether they order the value up-
dates (ordered updates) and whether they reuse information
from the calculation of previous heuristic values (incremen-
tal computations).

Both VI and IVI perform full sweeps over all variables
and thus perform unordered updates. IVI reuses the values
of variables from the computation of the previous heuris-
tic value and is an incremental version of VI. We included
HSP2 although it is very similar to VI and belongs to the
same class because it is the method used by HSP 2.0. Its
only difference from VI is that it eliminates all operator vari-
ables, which simplifies the code.

GBF, HSP1, and GD order the value updates. They are
listed from left to right in order of increasing number of
binary ordering constraints between value updates. GBF
performs full sweeps over all operator variables interleaved

Otherwisez,, is underconsistent and SolveEquations() sets with partial sweeps over those proposition variables whose

it to infinity. This makesz, either consistent or overcon-
sistent. In the latter case, it remains in the priority queue.
Whetherz, was underconsistent or overconsistent, its value
got changed. SolveEquations() then calls AdjustVariable()
to maintain the Invariants 1 and 2. Once the priority queue
is empty, SolveEquations() terminates sincexgllare con-

values might have changed because they depend on oper-
ator variables whose values have just changed. HSP1, the
method used by HSP 1.0, alternates partial sweeps over op-
erator variables and partial sweeps over proposition vari-
ables. Finally, both GD and PINCH order the value updates
completely and thus do not perform any sweeps. This en-

sistent and thus solve Equations 3 and 4. One can prove ables GD to update the value of each variable only once

that it changes the value of each at most twice, namely

and PINCH to update the value of each variable only twice.

at most once when it is underconsistent and at most once PINCH reuses the values of variables from the computation
when it is overconsistent, and thus terminates in finite time of the previous heuristic value and is an incremental version

(Ramalingam & Reps 1996).

488 AAAI-02

of GD.

Problem Size

#P #0 |Length| #CV | #CV#P | HSP2 Vi VI GBF HSP1 GD PINCH

[OGISTICS-4-0 73 78 | 26 | 1510 | 11.98% 0.07 0.09 (-29%) 0.00 ((29%) | 0.06 (14%)| 0.06 (14%) 0.09 (-29%) | 0.05 (29%)
LOGISTICS-7-0 99 | 174 | 52 | 29.43 | 10.78% 0.82 1.13 (-38%) 0.97 (-18%) | 058 (29%)| 0.60 (27%) 1.13 (-38%) | 0.49 (40%)
LOGISTICS-10-0 | 168 | 308 | 59 | 39.73 | 8.35% 1.06 1.54 (-45%) 1.32 (-25%) | 0.69 (35%)| 0.76 (28%) 151 (-42%)| 052 (51%)
LOGISTICS-13-0 | 275 | 650 | 102 | 5248 | 5.67% 5.25 8.08 (-54%) 6.54 (-23%) | 352 (33%) | 3.77 (28%)| 13.75 (-162%)| 2.05 (61%)
LOGISTICS-16-0 | 384 | 936 | 121 | 63.33 | 4.80% 12.01 18.27 (52%)| 15.03 (-25%)| 7.86 (35%) | 8.13 (32%)| 19.69 (-64%)| 4.11 (66%)
LOGISTICS-19-0 | 511 | 1274 | 144 | 84.26 | 4.72% 30.93 4312 (-39%) | 34.36 (-11%) | 18.25 (41%)| 18.55 (40%)| 45.45 (-47%)| 9.16 (70%)
LOGISTICS-22-0 | 656 | 1664 | 160 | 108.65 | 4.68% | 101.72 | 165.72 (-63%)| 137.86 (-36%)| 69.67 (32%)| 71.64 (30%)| 178.57 (-76%)| 34.98 (66%)
LOGISTICS-25-0 | 855 | 2664 | 206 | 10428 | 2.96% | 104.12 | 168.14 (-61%)| 12858 (-23%)| 73.15 (30%)| 87.08 (16%)| 188.62 (-81%)| 27.99 (73%)
LOGISTICS-28-0 | 1040 | 3290 | 243 | 12414 | 2.86% | 201.38 | 316.96 (-57%)| 249.55 (-24%)| 140.38 (30%)| 151.34 (25%)| 362.90 (-80%)| 51.09 (75%)
LOGISTICS-31-0 | 1243 | 3982 | 269 | 148.05 | 2.83% | 31595 | 491.25 (-55%)| 382.49 (-21%)| 201.35 (36%)| 220.12 (30%)| 546.57 (-73%)| 72.86 (77%)
LOGISTICS-34-0 | 1464 | 4740 | 291 | 161.16 | 2.60% | 434.81 | 688.98 (-58%)| 518.06 (-19%)| 296.51 (32%)| 307.26 (29%)| 801.60 (-84%)| 105.07 (76%)
LOGISTICS-37-0 | 1755 | 6734 | 316 | 165.82 | 1.95% | 1043.80 | 1663.30 (-59%)| 1333.00 (-28%)| 759.29 (27%)| 824.53 (21%)| 2132.00 (-104%)| 219.82 (79%)
LOGISTICS-40-0 | 2016 | 7812 | 337 | 186.08 | 1.89% | 1314.80 | 2112.70 (-61%)| 1464.30 (-11%)| 900.32 (32%)| 936.42 (29%)| 2488.30 (-89%)| 275.39 (79%)

Table 2: Experimental Resu

Experimental Evaluation

After describing our experimental setup and the collected
data, we discuss the results and draw conclusions.

Experimental Setup

To compare the various methods for calculating the heuristic
values, we integrated them into the publicly available code
for HSP 2.0? We used the default configuration of HSP 2.0
for all experiments, namely forward weighted A* searches
with a weight of 2.0.

HSP2 is already part of the publicly available code for

Its in the Logistics Domain

the AIPS-00 competition since HSP 2.0 solved most Lo-
gistics problems in the competition with backward search
(Bonet & Geffner 2001a). The rows corresponds to prob-
lems of increasing size. The first column contains the prob-
lem name. The next two columns contain the number #P of
propositions that are contained in at least one add or delete
list of the applicable ground operators and the number #0
of applicable ground operators, respectively. The sum of #O
and #P is the size of the graph used to compute the heuristic
values. The fourth column contains the length of the plan
found by HSP 2.0. The fifth column contains the average
number #CV of proposition variables whose values changed

HSP 2.0. We therefore used it as the baseline method againstfrom the calculation of one heuristic value to the next. The

which we compared the other methods. To make this base-
line as efficient as possible, we deleted all code from the

existing implementation of HSP2 whose results are not used
when planning with the default configuration, which reduces

the planning time of HSP2, for example, by over 20 percent

in the Logistics domain.

Most of our test problems came from the publicly avail-
able AIPS-98 and AIPS-00 competition problem sets. We
used all instances of the Gripper, Mprime and Mystery do-
mains from AIPS-98. In addition, we generated random
problems in the Gripper domain that are larger than those
from AIPS-98. We used all domains from AIPS-00: all in-
stances of the Blocks World, Elevator, Freecell, and Logis-
tics domains and small instances (with two to nine parts)
from the Schedule domain. Finally, we generated additional
problems in the Blocks World domain that are larger than
those from AIPS-00. These problems, randomly drawn from
a uniform distribution of problems, allow us to reliably iden-
tify a trend for large problems (these results appear in a sep-
arate graph).

We performed the experiments on a cluster of 32 Sun
Sparc Ultra 10 workstations with 256 MBytes of memory
each. We limited the planning time to 10 minutes for each
problem.

Reported Data

Table 2 contains detailed data for the Logistics domain.
These results are not directly comparable to the results from

2We followed the publicly available code for HSP 1.0 when
reimplementing HSP1. All priority queues were implemented as
binary heaps. The threshold on the number of sweeps for the 1VI
method was set to 10.

sixth column contains the ratio of #CV and #P. The seventh
column contains the planning time for HSP2, our baseline.
Finally, the next six columns contain both the planning times
of the other methods and their relative speedup over HSP2.
None of the planning times include the time required for
generating the propositions and ground operators because it
is the same for each method.

Figure 6 contains less detailed data for all planning do-
mains. It plots, for each domain, the relative speedup in
planning time of all methods over HSP2 as a function of
the size of the graph used to compute the heuristic val-
ues. (Thus, the horizontal line at y=0 corresponds to HSP2.)
Each data point corresponds to a single problem. Lines av-
erage over all problems of the same size. When a problem
could not be solved within 10 minutes, we approximated the
relative speedup in planning time with the relative speedup
in node generation rate and indicated this with a dashed line.
This approximation is justified because we checked empiri-
cally that the node generation rate remains roughly constant
over time.

Results and Discussion

The relative speedups of the methods in planning time over
HSP2 vary substantially, both across different methods in
the same domain and across different domains for the same
method. However, we can draw two conclusions.

First, PINCH and GBF are the best and second best meth-
ods for large domains, respectively. Indeed, PINCH is sig-
nificantly faster than GBF in five domains, about as fast as
GBF in two other domains, and only significantly slower
than GBF in the Freecell domain. (GBF, in turn, is signif-
icantly faster than all methods other than PINCH in all but
three domains.) Furthermore, the relative speedup in plan-

AAAI-02 489

Blocks World Blocks World: Random Instances Elevator

3

3

8

&
AT
s baka
T By
\: s
Uk ooim
»owm b
=l wlw
. wo
«
PRETTS
x> mp o D
Sy b
ke O
7 wlbioo
e voon
~k e
4da vl
g
K5 o
we b
=
g B
AP -
i oo
o x w e
wreb
1y
Relative Speedup in Planning Time (%)
8 3
T
reA:dN
B NS
e Rnioy
- Qz‘n
- \(.ﬁ
W
+eparp
N
[Re
+ o+
3
’, +
- : !
/
*)
\
.
\
o
Relative Speedup in Planning Time (%)

Relative Speedup in Planning Time (%)

8

1000 2000 3000 2000 5000 6000 7000 05 1 15 2 2 3 35 4 1000 1500 2000 2500 3000 3500
Problem Size (#P + #0) Problem Size (#P + #0) x10' Problem Size (#P + #0)

Freecell Logistics Schedule

5 8 8

8

Relative Speedup in Planning Time (%)
Relative Speedup in Planning Time (%)
Relative Speedup in Planning Time (%)

-60[- * PINCH
o GBF
A HsPL
80 + oD
i
& Vi
0a 06 o8 i 15 1s 2 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 500 2000 2500 3000 3500
Problem Slze (#P + #0) x10° Problem Size (#P + #0) Problem Size (#P + #0)
Gripper Mprime Mystery
PINCH
= 80| — ‘_g&* W*sﬂuiiﬂikw‘i—?i/"&*ﬁ&? :\o‘ ;@
S e N M:H z &3 <
O e0f * A(A ahaxttaTne Ayt e o o
£ £ £ GBF
= \ N = By (W . AT T T T T - A’l‘ B
40,
c 3 H - -
§ J k< < e
o o o -
c o ,x,** f‘u«‘%\xr*/“)éx«ydwv*x,*: c P . /2t S
a - + 15 o a AN AN A/ o o7 -
S W g 3 3 o T T s
T -20F A - Rt _ -
2 WA P \\,,. P L e o T T sy
o ¥ =% =% ~
[» - [S
o o
2 2 2 N
T sor + PINCH © - T * PINCH
> GBF > kot o GBF
& A HsP1L & & & HSPL
-80 + GD - + GD
w - VI
» i Y]
1000 2000 3000 4000 5000 5000 05 1 15 2 25 3 _ 35 4 45 5 15 2 25 3 35 4 a5
Problem Size (#P + #0) Problem Size (#P + #0O) x10° Problem Size (#P + #0O) x10°

Figure 6: Relative Speedup in Planning Time over HSP2

ning time of PINCH over HSP2 tends to increase with the Freecell domain. In all other domains, the dissimilarity mea-
problem size. For example, PINCH outperforms HSP2 by sure is negatively correlated with the problem size, with neg-
over 80 percent for large problems in several domains. Ac- ative correlation coefficients ranging from -0.92 to -0.57. In
cording to theoretical results given in (Ramalingam & Reps the Freecell domain, however, the dissimilarity measure is
1996), the complexity of PINCH depends on the number positively correlated with the problem size, with a positive
of operator and proposition variables whose values change correlation coefficient of 0.68. The Freecell domain repre-
from the calculation of one heuristic value to the next. sents a solitaire game. As the problem size increases, the
Since some methods do not use operator variables, we only number of cards increases while the numbers of columns
counted the number of proposition variables whose values and free cells remain constant. This results in additional
changed. Table 2 lists the resulting dissimilarity measure constraints on the values of both proposition and operator
for the Logistics domain. In this domain, #CV/#P is a good variables and thus in a larger number of value changes from
predictor of the relative speedup in planning time of PINCH one calculation of the heuristic value to the next. This in-
over HSP2, with a negative correlation coefficient of -0.96. creases the dissimilarity measure and thus decreases the rel-
More generally, the dissimilarity measure is a good predic- ative speedup of PINCH over HSP2. Finally, there are prob-
tor of the relative speedup in planning time of PINCH over lems that HSP 2.0 with PINCH could solve in the 10-minute
HSP2 in all domains, with negative correlation coefficients time limit that neither the standard HSP 2.0 distribution, nor
ranging from -0.96 to -0.36. This insight can be used to HSP 2.0 with GBF, could solve. The Logistics domain is
explain the relatively poor scaling behavior of PINCH inthe such a domain.

490 AAAI-02

Second, GBF is at least as fast as HSP1 and HSP1 is atas well as an IBM faculty partnership award. The views
least as fast as GD. Thus, the stricter the ordering of the vari- and conclusions contained in this document are those of the
able updates among the three methods with ordered updatesauthors and should not be interpreted as representing the of-
and nonincremental computations, the smaller their relative ficial policies, either expressed or implied, of the sponsoring
speedup over HSP2. This can be explained with the increas- organizations, agencies, companies or the U.S. government.
ing overhead that results from the need to maintain the or-
dering constraints with increasingly complex data structures. References
GBF doeS not use any additional data Stl‘UCtUI’eS, HSP1 uses Bertsekas’ D. 200Dynam|c Programming and Opt|ma| Control
an unordered list, and GD uses a priority queue. (We imple- Athena Scientific, 2nd edition.
mented the priority queue in turn as a binary heap, Fibonacci gonet, B., and Geffner, H. 1999. Planning as heuristic search:
heap, and a multi-level bucket to ensure that this conclusion New results. InProceedings of the 5th European Conference on
is independent of its implementation.) Since PINCH with- Planning 360-372.
out value reuse reduces to GD, our experiments demonstrate onet, B., and Geffner, H. 2001a. Heuristic search planner 2.0.
that it is value reuse that allows PINCH to counteract the Artificial Intelligence Magazin@2(3):77—80.
overhead associated with the priority queue, and makes the ponet B. and Geffrer, H. 2001b. Planning as heuristic

planning time of PINCH so competitive. search Artificial Intelligence — Special Issue on Heuristic Search
129(1):5-33.
Conclusions Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and

fast action selection mechanism. Pnoceedings of the National

In this paper, we systematically evaluated methods for calcu- Conference on Artificial Intelligenc@14-719.

lating the heuristic values for HSP 2.0 with thg;,; heuris- o _ i)
tics and demonstrated that the resulting planning times dif- €ormen. T., Leiserson, C.; and Rivest, R. 19%@uoduction to

fer substantially. We identified two different approaches for ~A901ithms MIT Press. , o
speeding up the calculation of the heuristic values, namely Dilkstra, E. 1959. A note on two problems in connection with
to order the value updates and to reuse information from the 9raphs.Numerical Mathematic$:269-271.

calculation of previous heuristic values. We then showed Edelkamp, S. 2001. Planning with pattern databaseBrdoeed-
how these two approaches can be combined, resulting in ngs of the 6th European Conference on Plannit-24.

our PINCH (Prioritized, INCremental Heuristics calcula- Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
tion) method. PINCH outperforms both of the other ap- Mal planning. InProceedings of the International Conference on
proaches individually as well as the methods used by HSp Artificial Intelligence Planning and Scheduling0-82.

1.0 and HSP 2.0 for most of the large planning problems Hoffmann, J., and Nebel, B. 2001a. The FF planning system:
tested. In fact, it speeds up the planning time of HSP 2.0 by ~ Fast plan generation through heuristic seaddlirnal of Artificial

up to eighty percent in several domains and, in general, the 'Ntelligence Research4:253-302.

amount of savings grows with the size of the domains. This Hoffmann, J., and Nebel, B. 2001b. RIFO revisited: Detecting re-
is an important property since, if a method has a high relative laxed |rre_Ievance. IProceedings of the 6th European Conference
speedup for small problems, it wins by fractions of a second " Planning 325-336.) .

which is insignificant in practice. However, if a method has ~ Knuth, D. 1977. A generalization of Dijkstra’s algorithrimfor-

a high relative speedup for large problems, it wins by min- ~ mation Processing Lettef(1):1-5.

utes. Thus, PINCH allows HSP 2.0 to solve larger planning M(_:D_ermott, D 1996. A hel_Jristic estimator for_means-ends anal-
problems than was possible before in the same amount of YSis in planning. IrProceedings of the International Conference
time and without changing its operation. We also have pre- on Artificial Intelligence Planning and Schedulintd2—-149.
liminary results that show that PINCH speeds up HSP 2.0 Moore, A., and Atkeson, C. 1993. Prioritized sweeping: Rein-
with the h,,,.. heuristics (Bonet & Geffner 2001b) by over forcement learning with less data and less tilwkachine Learn-

20 percent and HSP 2.0 with thé, = (Haslum & Geffner ing 13(1):103-130. _ _

2000) heuristic by over 80 percent for small blocks world in- ~ Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002. Plan-
stances. We are currently working on demonstrating similar ~ 1ing graph as the basis for deriving heuristics for plan synthesis
savings for other heuristic search-based planners. For exam- ?32’35'["’“9 space and csp searitificial Intelligence135(1-2):73—
ple, PINCH also applies in principle to the first stage of FF '

; ; Pearl, J. 1985Heuristics: Intelligent Search Strategies for Com-
g:;;frr]nann & Nebel 2001a), where FF builds the planning puter Problem SolvingAddison-Wesley.

Ramalingam, G., and Reps, T. 1996. An incremental algorithm
for a generalization of the shortest-path problefournal of Al-
Acknowledgments gorith?‘n521:267—305. Pamp
We thank Blai Bonet and Hector Geffner for making the Refanidis, I., and Vlahavas, I. 2001. The GRT planning system:
code of HSP 1.0 and HSP 2.0 available to us and for answer- Backward heuristic construction in forward state-space planning.
ing our questions. We also thank Sylvie €haux and John Journal of Artificial Intelligence Researcdtb:115-161.
Slaney for making their blocksworld planning task genera-
tor available to us. The Intelligent Decision-Making Group
is partly supported by NSF awards to Sven Koenig under
contracts 11S-9984827, 11S-0098807, and ITR/AP-0113881

AAAI-02 491

