
Searching for Plans with Carefully Designed Probes

Nir Lipovetzky
DTIC Universitat Pompeu Fabra

Barcelona, SPAIN
nir.lipovetzky@upf.edu

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

We define a probe to be a single action sequence computed
greedily from a given state that either terminates in the goal
or fails. We show that by designing these probes carefully
using a number of existing and new polynomial techniques
such as helpful actions, landmarks, commitments, and con-
sistent subgoals, a single probe from the initial state solves
by itself 683 out of 980 problems from previous IPCs, a num-
ber that compares well with the 627 problems solved by FF
in EHC mode, with similar times and plan lengths. We also
show that by launching one probe from each expanded state
in a standard greedy best first search informed by the addi-
tive heuristic, the number of problems solved jumps to 900
(92%), as opposed to FF that solves 827 problems (84%),
and LAMA that solves 879 (89%). The success of probes
suggests that many domains can be solved easily once a suit-
able serialization of the landmarks is found, an observation
that may open new connections between recent work in plan-
ning and more classical work concerning goal serialization
and problem decomposition in planning and search.

Introduction
Heuristic search has been the mainstream approach in plan-
ning for more than a decade, with planners such as FF,
FD, and LAMA being able to solve problems with hun-
dreds of actions and variables in a few seconds (Hoff-
mann and Nebel 2001; Helmert 2006; Richter and Westphal
2010). The basic idea behind these planners is to search
for plans using a search algorithm guided by heuristic es-
timators derived automatically from the problem (McDer-
mott 1996; Bonet and Geffner 2001). State-of-the-art plan-
ners, however, go well beyond this idea, adding a number
of techniques that are specific to planning. These tech-
niques, such as helpful actions and landmarks (Hoffmann
and Nebel 2001; Hoffmann, Porteous, and Sebastia 2004;
Richter, Helmert, and Westphal 2008), are designed to ex-
ploit the propositional structure of planning problems; a
structure that is absent in traditional heuristic search where
states and heuristic evaluations are used as black boxes.
Moreover, new search algorithms have been devised to make
use of these techniques. FF, for example, triggers a best-first

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search when an incomplete but effective greedy search (en-
forced hill climbing) that uses helpful actions only, fails. In
FD and LAMA, the use of helpful or preferred operators is
not restricted to the first phase of the search, but to one of
the open lists maintained in a multi-queue search algorithm.
In both cases, dual search architectures that appeal either to
two successive searches or to a single search with multiple
open lists, are aimed at quickly solving, large problems that
are simple, without giving up completeness on problems that
are not.

In this work, we formulate and test a new dual search ar-
chitecture for planning that is based on the idea of probes:
single action sequences computed without search from a
given state that can quickly go deep into the state space, ter-
minating either in the goal or in failure. We show that by
designing these probes carefully using a number of existing
and new polynomial inference techniques, 683 out of 980
(70%) problems from previous IPCs can be solved with a
single probe from the initial state. Moreover, by using one
probe as a lookahead mechanism from each expanded state
in a standard greedy best first search informed by the addi-
tive heuristic, the number of problems solved jumps to 900
(92%), a number that compares well to state-of-the-art plan-
ners like FF and LAMA that solve 827 (84%) and 879 (89%)
problems respectively.

The main contribution of the paper is the design of these
probes. A probe is an action sequence computed greedily
from a seed state for achieving a serialization of the prob-
lem subgoals that is computed dynamically along with the
probe. The next subgoal to achieve in a probe is chosen
among the first unachieved landmarks that are consistent.
Roughly, a subgoal that must remain true until another sub-
goal is achieved, is consistent, if once it is made true, it does
not have to be undone in order to make the second sub-
goal achievable. The action sequence to achieve the next
subgoal uses standard heuristics and helpful actions, while
maintaining and enforcing the reasons for which the previ-
ous actions have been selected in the form of commitments
akin to causal links. The computational value of the subgoal
serialization, the consistency checks, and the use of commit-
ments, is evaluated empirically as well.

The use of lookahead in search and planning is very old
in AI, and appears more recently in the YAHSP planner that
makes an attempt to look ahead by using sequences of ac-

tions extracted from the relaxed plan (Vidal 2004). While
PROBE also looks ahead by using sequences of actions, the
design and use of these sequences is completely different
in the two planners. In particular, while in YAHSP, the ac-
tion sequences are executable prefixes of the relaxed plan,
in PROBE, they are computed from scratch to achieve each
one of the remaining subgoals in sequence. The range of do-
mains that are solved by just throwing a single probe from
the initial state is much larger. In this sense, the motiva-
tion for PROBE is related to the motivation behind other
recent planners such as eCPT (Vidal and Geffner 2005) and
C3 (Lipovetzky and Geffner 2009) that also aim to solve
simple, non-puzzle-like domains, with little or no search at
all. This requires capturing in a domain-independent form
the inferences that render the search superfluous in such do-
mains. This task is non-trivial, but as shown here, it can pay
off even in planners that do search.

The idea of searching with probes has been considered
before in the form of random probes (Langley 1992). Lim-
ited discrepancy search can be thought of as a systematic
method for searching with probes (Harvey and Ginsberg
1995), while Monte Carlo planning, as a non-systematic
method that uses multiple random probes (Nakhost and
Müller 2009). PROBE, in contrast, uses single, carefully
designed probes. Below, we present the planner first, the
experimental results, and then some conclusions.

PROBE: The Planner
Heuristic search planners that just plug a delete-relaxation
heuristic into a well known search algorithm are nice, as
they can be easily understood. A problem that they face,
however, are the search plateaus, a situation that arises when
goals are in ‘conflict’, and approaching one means to move
away from the others. Since the formulation of more effec-
tive estimators hasn’t been simple after more than a decade,
the solution to this problem has given rise to other types of
inferences and techniques. These techniques are absent in
the first generation of planners such as UNPOP and HSP,
but are present in FF, FD, and LAMA. These planners are
less monolithic, and their details are often more difficult to
follow, but it’s precisely those ‘details’ that make the dif-
ference. The planner PROBE is no exception to this trend
towards ‘finer-grained planning’, and incorporates a number
of design decisions that we explain below.

PROBE is a complete, standard greedy-best first (GBFS)
STRIPS planner using the standard additive heuristic, with
just one change: when a state is selected for expansion, it
first launches a probe from the state to the goal. If the probe
reaches the goal, the problem is solved and the solution is
returned. Otherwise, the states expanded by the probe are
added to the open list, and control returns to the GBFS loop.
The crucial and only novel part in the planning algorithm is
the definition and computation of the probes.

We assume a STRIPS problem whose top goals G are the
preconditions of a dummy End action that adds a dummy
goal Gd. As in POCL planning, this is needed due to the use
of causal commitments that are similar to causal links (Tate
1977; McAllester and Rosenblitt 1991).

Probes
A probe is an action sequence a0, a1, . . . , ak that generates
a sequence n0, n1, . . . , nk+1 of nodes, each of which is a
pair ni = 〈si, Ci〉 made up of the problem state si and a
set of causal commitments Ci. The initial node of a probe
is n0 = 〈s, ∅〉 where s is the state from which the probe
is triggered, and ∅ is the empty set of commitments. The
action selection criterion decides the action ai to choose in
node ni = 〈si, Ci〉 greedily without search. This action
generates the new node to ni+1 = 〈si+1, Ci+1〉, where si+1

is the result of progressing the state si through ai, and Ci+1

is Ci updated with the causal commitments consumed by
ai removed, and the causal commitments produced by ai
added.

Probe Construction
The actions in a probe are selected in order to achieve sub-
goals chosen from the landmarks that are yet to be achieved.
A number of techniques are used to make the greedy se-
lection of the next subgoal to achieve and the actions for
achieving it, effective. A probe that reaches the goal is the
composition of the action sequences selected to achieve the
next subgoal, the one following it, and so on, until all land-
marks including the dummy goal Gd are achieved. Probes
are not and need not be complete; yet they are supposed to
capture the plans that characterize ‘simple domains’ even if
a formal characterization of such domains is still missing.

The subgoal to pursue next is selected in a node n in two
cases: when n is the first node of the probe, or when the
subgoal g associated with its parent node n′ in the probe is
achieved in n. Otherwise, n inherits the subgoal from its
parent node. The action a selected in a node n is then the
action that appears to be ‘best’ for the subgoal g associated
with n. If a does not achieve g, then g stays active for the
next node, where the action to include in the probe is se-
lected in the same way.

The formal definition of the subgoal and action selection
criteria below uses notions that will be made fully precise
later on, like the heuristic h(G|s, C) that takes both the state
s and the commitments C into account, the precomputed
partial ordering among landmarks, and the conditions un-
der which a subgoal is deemed as consistent from a given
node.

Subgoal and Action Selection
The criterion for selecting the subgoal g in node n = 〈s, C〉
is the following. First, the set S of first unachieved land-
marks that are consistent in n = 〈s, C〉 is computed. Then,
the landmark p ∈ S that is nearest according to the heuristic
h(p|s, C) is selected as the subgoal for n.

The selection of the action a in n is in turn the follow-
ing. First, the set of actions a that are deemed helpful in
n = 〈s, C〉 for either the subgoal or commitments asso-
ciated with n are computed, and those that lead to a node
n′ = 〈s′, C ′〉 for which either h(G|s′, C ′) is infinity or s′
has been already generated are pruned.1 Then, among the re-
maining actions, if any, the action that minimizes the heuris-

1Notice that we are forcing probes to explore new states only.

tic h(g|s′, C ′) is selected.2 In case of ties, two other crite-
ria are used lexicographically: first ‘min

∑
L h(L|s′, C ′)’,

where L ranges over the first unachieved landmarks, then
‘min h(Gd|s′, C ′)’, where Gd is the dummy goal.

If a node n = 〈s, C〉 is reached such that all helpful
actions are pruned, a second attempt to extend the current
probe is made before giving up. PROBE recomputes the re-
laxed plan from n with those actions excluded, resulting in
a new set of helpful actions if the heuristic does not become
infinite. The new set of helpful actions is pruned again as
above, and the process is iterated, until a non-pruned helpful
action is obtained at s, or the heuristic becomes infinite. In
the latter case, the probe terminates with failure. If before
failing, it reaches a goal state, it terminates successfully with
the problem solved.

In the next few sections, we fully specify the notions as-
sumed in these definitions.

Commitments and Heuristic
A causal commitment is a triple 〈a, p,B〉 where a is an ac-
tion, p is a fluent added by a, and B is a set of fluents. The
intuition is that fluent p was added by a in order to achieve
(at least) one of the fluents in B, and hence that p should
remain true until an action adds some fluent in B, consum-
ing the causal commitment. A result of this is that in a node
n = 〈s, C〉 with a commitment 〈a, p,B〉 in C, any action a
applicable in s that deletes p but does not add any fluent in
B, is taken to violate the commitments in C, and is pruned
from the set of applicable actions.

A heuristic h(G|s, C) is used to estimate the cost to a set
G of fluents from a node n = 〈s, C〉. This heuristic takes
the set of causal commitments C into account and is defined
like the standard additive heuristic:

h(G|s, C) =
∑
p∈G

h(p|s, C) (1)

where

h(p|s, C) =
{

0 if p ∈ s
mina∈O(p)[cost(a) + h(a|s, C)] otherwise

(2)
and

h(a|s, C) = δ(a, s, C) + h(Pre(a)|s, C) . (3)

where O(p) stands for the actions adding p and Pre(a) for
the preconditions of a.

The only novelty in this definition is the offset term
δ(a, s, C) that penalizes actions a that violate causal com-
mitments 〈ai, pi, Bi〉 in C. The offset for such actions is the
cost of achieving one of the fluents in Bi, as the action a

This is an heuristic decision that does not compromise the com-
pleteness of the best-first search algorithm that uses probes.

2Except for a few details, this criterion is similar to the one used
by LAMA for preferring actions in the landmark heuristic queue;
namely, that “if no acceptable landmark can be achieved within one
step, the preferred operators are those which occur in a relaxed plan
to the nearest simple acceptable landmark” (Richter and Westphal
2010).

cannot be executed until those commitments are consumed.
More precisely:

δ(a, s, C) =

{
0 if a violates no commitment in C
maxi minq∈Bi h(q|s, C) otherwise,

where Bi are the sets of fluents in the commitments
〈ai, pi, Bi〉 in C violated by a.

The result of the offsets arising from the commitments C
is that actions a applicable in s may get a heuristic value
h(a|s, C) greater than zero when they violate a commitment
in C. Likewise, a goal G reachable from s may get an in-
finite heuristic value h(G|s, C), as for example when G re-
quires an action a with an infinite offset δ(a, s, C). This can
happen when in order to consume any of the commitments
〈ai, pi, Bi〉 in C violated by a, it is necessary to violate one
of such commitments. For instance, if the goal G stands
for the atoms on(1, 2) and on(2, 3) in Blocks, the heuristic
h(Gd|s, C) associated with the node n = 〈s, C〉 that results
from stacking 1 on 2 when 2 is not on 3, will have infinite
value. The reason is that the offset δ(a, s, C) for the re-
quired action a = unstack(1, 2) is infinite, as a violates the
commitment 〈stack(1, 2), on(1, 2), {Gd}〉 in C, which can-
not be consumed from the state s by any other action, as Gd

cannot be achieved without undoing first on(1, 2).
The relaxed plan associated with a node n = 〈s, C〉 and a

goal G is obtained by collecting backwards from G, the best
supporters ap for each p in G, and recursively the best sup-
porters for their preconditions that are not true in s (Keyder
and Geffner 2008). The best supporter for an atom p is an
action a that adds p and has minimum h(a|s, C) value. The
helpful actions for a subgoal g in a node n = 〈s, C〉 are de-
fined as in FF, as the actions a with heuristic h(a|s, C) = 0
that add a precondition or goal in the relaxed plan. For con-
venience, however, this relaxed plan is not defined as the
relaxed plan for g in n, but as the relaxed plan for the joint
goal formed by g and the (disjunctive) targetsBi in the com-
mitments 〈ai, pi, Bi〉 in C. This reflects that such targets
also represent subgoals associated with the node n = 〈s, C〉,
even if unlike g, they do not have to be achieved necessar-
ily.3

An action a selected in a node n = 〈s, C〉 generates the
new node n′ = 〈s′, C ′〉 where s′ is the result of progressing
s through a, and C ′ is the result of removing the commit-
ments consumed by a in n, and adding the commitments
made by a in n. The action a consumes a commitment
〈ai, pi, Bi〉 in C if a adds a fluent in Bi (whether or not
a deletes pi). Likewise, a makes the commitments 〈a, p,B〉
in n = 〈s, C〉, if p is a fluent added by a, and B is the set of
fluents added by actions in the relaxed plan in n that have p
as a precondition.

Disjunctive Commitments
For the purpose of the presentation, we have made a simpli-
fication that we now correct. From the description above, it’s
clear that an action a can introduce commitments 〈a, pi, Bi〉
for more than one effect pi of a. This will be the case when

3Indeed, a probe may reach the goal with a non-empty set of
commitments.

the preconditions of the actions in the relaxed plan involve
more than one effect of a. The heuristic h(G|s, C) and
the notions above are all correct provided that this situation
doesn’t arise. On the other hand, when it does, the above
definitions interpret multiple commitments 〈a, pi, Bi〉 in C
for a common action a conjunctively, as if each such com-
mitment must be respected. This, however, is too restrictive.
If a adds two relevant effects p1 and p2, this rules out the
possibility that a is the causal support of p1 in the plan but
not of p2. This happens for example when a block A must
be placed on top of block C, given that A is on B, and B on
C. In such a case, the action pickup(A,B) is done in order
to get the precondition clear(B) of pickup(B,C), but not
for getting the precondition hold(A) of stack(A,C). Thus,
in PROBE, multiple commitments 〈a, pi, Bi〉 for the same
action a in C are treated not conjunctively, but disjunctively.
Namely, it’s assumed that every action in a probe is made
with some purpose encoded by a commitment, but not with
all purposes that are possible. This means three things. First,
an action a in a node n = 〈s, C〉 will be taken to violate
a disjunctive commitment 〈b, pi, Bi〉, i = 1, . . . , nb, when
these are all the commitments involving the action b in C,
and a violates each one of them; i.e. it deletes each pi with-
out adding any fluent in Bi, for i = 1, . . . , nb. Second, the
offsets δ(a, s, C) for the heuristic h(G|s, C) must be defined
as:

δ(a, s, C)
def
=

{
0 if a violates no disjunctive commitment in C
maxb maxi=1,nb minq∈Bi h(q|s, C) otherwise

(4)
where 〈b, pi, Bi〉, i = 1, . . . , nb, nb ≥ 1, constitute the
disjunctive commitments violated by action a. Finally, the
commitments C ′ in the node n′ = 〈s′, C ′〉 that follow the
action a in node n = 〈s, C〉 are formed from C by remov-
ing the disjunctive commitments consumed by a (the set of
commitments 〈b, pi, Bi〉 with a common action b such that a
adds a fluent in someBi), by adding the disjunctive commit-
ments made by a (as already defined), and last, by updating
the rest of the disjunctive commitments in C. A disjunctive
commitment 〈b, pi, Bi〉 in C, i = 1, . . . , nb, is updated by
removing from C the individual commitments 〈b, pi, Bi〉 vi-
olated by a. Notice that at least one such commitment must
remain in C if a is a helpful action according to the heuristic
h(G|s, C).

Landmark Graph
The overall picture for landmarks and their ordering is not
too different from LAMA except that we don’t deal with
disjunctive landmarks, nor with a landmark heuristic. A mi-
nor difference is that we define and compute landmarks us-
ing a formulation that is a slight variation of the set-additive
heuristic (Keyder and Geffner 2008; Keyder, Richter, and
Helmert 2010).

The landmarks are computed as a preprocessing step from
the equations below, where L(p) and L(a) stand for the
landmarks needed in order to achieve p or apply a from the
given initial state s, and O(p) stands for the actions that add
p:

L(p) =

{
{p} if p ∈ s
∩a∈O(p) L(a) otherwise (5)

where
L(a) = ∪q∈Pre(a)L(q) .

Provided that all labels L(p), except for p ∈ s, are initialized
to L(p) = ⊥ (‘undefined’), and that no ‘undefined’ label is
propagated, the computation converges to labels L(p) that
are sound and complete relative to the delete-relaxation.

The landmarks of the problem are then those in L(Gd),
where Gd is the dummy goal. These landmarks are ordered
by means of a directed acyclic graph such that an edge p→
q means that p is a landmark for q, i.e. p ∈ L(q), without
being a landmark for another r, r ∈ L(q).

Greedy necessary orderings (Hoffmann, Porteous, and
Sebastia 2004): an edge p →gn q denoting that p is greedy
necessary for q (i.e. that p must be true right before q), is
added if p ∈ L(q), and all the first achievers of q have p in
their preconditions. The first achievers of q are those actions
a for which q ∈ add(a) and q 6∈ L(a).

The landmark graph is extended by adding extra edges
between top goals in G, taking advantage that they must all
be true at the same time. For all pairs p, q ∈ G, an edge
p → q is added when all the actions adding p e-delete q4.
This is simply because one can show then that the last action
in a plan that achieves p and q jointly, must be the action that
adds q.

The set of achieved landmarks contains initially the land-
marks that are true in the initial state. Then, a landmark is
added to the set when an action adds it, and is deleted from
the set when an action deletes it while being greedy neces-
sary landmark for an unachieved landmark.

The unachieved landmarks in a state s are the landmarks
in L(Gd) for the dummy goal Gd that are not in the set of
achieved landmarks.

The first unachieved landmarks are the unachieved land-
marks that are not strictly preceded by any other unachieved
landmark, i.e the roots of the unachieved landmark graph.

Consistency
When a subgoal must be selected in a node n, it is chosen
as the nearest first unachieved landmark that is consistent
relative to n. The notion of consistency is adapted from the
planner C3 (Lipovetzky and Geffner 2009).

A first unachieved landmark g is consistent in n = 〈s, C〉
if it heads a consistent greedy chain of unachieved land-
marks. A greedy chain is a sequence of unachieved land-
marks p1, p2, ..., pk, k ≥ 1, where p1 is a first unachieved
landmark, pi is greedy necessary for pi+1, and pk does not
precede an unachieved landmark, or precedes an unachieved
landmark r, i.e., p → r, but pk is not greedy necessary for
it.5

Intuitively, a greedy chain p1, . . . , pk is consistent when
it doesn’t need to be broken; i.e, when the landmark pi+1

can be achieved from the state si that results from achieving
the precedent landmark pi, while keeping pi true until pi+1

4An action e-deletes a fluent when the fluent must be false after
the action, or more precisely, when the action either deletes the
fluent, has a precondition that is mutex, or adds a mutex.

5A greedy chain can contain a single atom p1 if p1 complies
with the conditions on pk.

is true, i = 1, . . . , k − 1. Indeed, it does not make sense
to choose p1 as the next subgoal, in order to achieve then
p2, . . . , pk, if this chain of causal commitments cannot be
sustained.

For example, in Blocks, when on(1, 2) and on(2, 3) must
be achieved starting with both blocks on the table, it doesn’t
make sense to adopt the ‘first unachieved landmark’ hold(1)
as a subgoal in order to achieve on(1, 2), and then the
dummy goal Gd, as indeed, after achieving hold(1), ei-
ther hold(1) or on(1, 2) will have to be undone in order to
achieve Gd. Thus, while a greedy chain headed by a land-
mark p1 provides a potential reason for selecting p1 as the
next subgoal, the notion of consistency is aimed at detecting
that some of these reasons are spurious.

The definition of the conditions under which a greedy
chain is consistent borrows a number of ideas from (Lipovet-
zky and Geffner 2009), in particular, the notion of projected
states that provide a fast approximation of the state that re-
sults from the achievement of a given goal.

Given a chain p1, . . . , pk, k ≥ 1 relative to a node n =
〈s, C〉, the projected node n1 = 〈s1, C1〉 is obtained from
the relaxed plan π for the goal G1 = {p1} from n. The state
s1 is defined as s extended with the atoms p added by the
actions in π. Yet since some of these atoms are mutex with
p1, the process is iterated by extending the goal G1 and the
relaxed plan π, until π includes actions that delete the atoms
in s1 that are mutex with p1; a process that can potentially
add new atoms into s1. Likewise, the set of commitments
C1 true in the projected node n1 are those in C, but with the
commitments consumed by actions in π removed.

The projected node ni+1 = 〈si+1, Ci+1〉 for the greedy
chain p1, . . . , pk is defined in a slightly different way for
i > 1, as while the choice of the chain makes p1 the first
unachieved subgoal, it does not necessarily make p2 the sec-
ond. Instead, after achieving p1, the probe may select to
achieve other landmarks and only then come back to p2. For
this reason, si+1 is defined as the set of atoms reachable
from si that are not mutex with pi+1. Three type of actions
a must be excluded in this reachability analysis: those with
infinite offsets δ(a, si, Ci), those that make pi false without
making pi+1 true, and those with pi+1 in the precondition.
Similarly, Ci+1 is obtained from Ci by removing the com-
mitments consumed by the remaining reachable actions.

Given the projected nodes ni = 〈si, Ci〉 along a greedy
chain p1, . . . , pk, i = 1, . . . , k, with n0 = 〈s, C〉, the chain
is consistent if neither h(Gd|sk, Ck) nor h(pi|si−1, Ci−1) is
infinite, for i = 1, . . . , k.

Summary
Wrapping up, PROBE is a greedy best-first planner that each
time that a state s is expanded, throws a probe from the node
n = 〈s, C0〉 where C0 is the empty set of commitments.
The best-first search makes the planning algorithm com-
plete, while the probes are designed to reach the goal greed-
ily and fast. A probe is a sequence of actions that is com-
puted without search by selecting at each node n = 〈s, C〉
the action that is helpful to the subgoal g associated with
n or the commitments C in n. A node n = 〈s, C〉 inher-
its the subgoal g from its parent node in the probe, except

when s achieves g or n is the first node of the probe. In
these two cases, the subgoal g is selected as the nearest first
unachieved landmark that heads a consistent greedy chain.
Probes terminate in the goal or in failure, and they are not
allowed to visit states in memory (open or closed). All the
states expanded by failed probes are added nonetheless to
the open list of the best-first search algorithm.

Experimental Results
We compare PROBE with FF and LAMA over a broad range
of IPC domains.6 PROBE is written in C++ and uses Metric-
FF as an ADL to Propositional STRIPS compiler (Hoffmann
2003). LAMA is executed without the plan improvement
option, reporting the first plan that it finds. All experiments
were conducted on a dual-processor Xeon ’Woodcrest’ run-
ning at 2.33 GHz and 8 GB of RAM. Processes time or
memory out after 30 minutes or 2 GB. All action costs are
assumed to be 1 so that plan cost is plan length.

Table 1 compares PROBE with FF and LAMA over 980
instances from previous IPCs. In terms of coverage, PROBE
solves 21 more problems than LAMA and 73 more than
FF. More remarkably, 70% of them are solved with just one
probe (56 problems more than FF in EHC). There are several
domains, like Mystery and Storage7, where PROBE solves
more problems than LAMA and FF; the largest difference
to LAMA, however, being in Mprime that LAMA doesn’t
process well.8 On the other hand, the largest gain of LAMA
and FF over PROBE is in Sokoban, where LAMA and FF
solve 12 and 13 more instances respectively.

Column #P shows the average number of probes required
in each domain, which corresponds to the number of nodes
expanded in the greedy best first search (not the total number
of nodes shown that includes the probes). Interestingly, this
number is one in most domains, and large in three domains
only, Sokoban, Trucks, and Pegsol, where probes do not pay
off.

A measure of the search effort is given by the number of
nodes that each planner expands over the instances solved
by all three planners. LAMA expands around 7 times more
nodes than PROBE and FF 36 times more. In some do-
mains this difference is larger. In Depots, for example,
LAMA solves less instances than PROBE and it expands
414 times more nodes. This, however, does not mean that
PROBE is faster. One reason is the use of deferred evalua-
tion by LAMA, which leads to faster node expansions and
fewer heuristic evaluations. Another one is the overhead in
PROBE. Interestingly, FF is fastest in 18 out of the 30 do-
mains, while LAMA and Probe are each fastest in 6. The

6FF is FF2.3, while LAMA is the version used in the 2008 IPC,
except for the two Pipesworld domains, where the most recent 2010
version that fixes some problems in the parsing and preprocessing
was used.

7A problem proved to be unsolvable by a planner, is counted as
solved.

8LAMA has problems processing the original IPC version of
Mprime where it can solve 4 instances only. There is an amended
version of this domain, however, that allows LAMA to solve 35
instances, actually one more than FF and PROBE.

FF LAMA PROBE

Domain I S EHC EX T Q S EX T Q S 1P EX #P T Q
Blocks World 50 42 42 9,193 0.22 39 (9) 50 1,077 0.69 86 (1) 50 50 40 1.0 0.21 40 (2)
Cyber 30 4 4 228 0.74 30 (0) 25 73 48.48 30 (0) 24 13 30 111.5 1.46 30 (0)
Depots 22 22 19 71,649 38.28 47 (0) 20 44,738 46.58 52 (1) 22 14 108 11.8 3.01 42 (6)
Driver 20 16 6 11,476 11.73 34 (2) 20 2,445 1.32 37 (4) 20 15 54 2.1 0.99 50 (1)
Elevator 30 30 30 1,429 1.34 86 (4) 30 666 3.28 88 (0) 30 25 114 1.2 30.81 110 (0)
Ferry 50 50 50 50 0.01 28 (0) 50 108 0.18 29 (0) 50 50 29 1.0 0.02 29 (1)
Freecell 20 20 14 1,506 2.81 55 (7) 20 2,071 19.78 64 (0) 18 7 261 35.1 45.45 67 (1)
Grid 5 5 5 301 0.30 61 (1) 5 174 6.43 56 (1) 5 5 59 1.0 7.74 59 (1)
Gripper 50 50 50 102 0.01 76 (0) 50 79 0.26 76 (0) 50 50 101 1.0 0.06 101 (0)
Logistics 28 28 28 94 0.01 41 (1) 28 97 0.25 42 (0) 28 28 55 1.0 0.13 55 (0)
Miconic 50 50 50 52 0.01 30 (0) 50 37 0.15 30 (0) 50 50 45 1.0 0.02 45 (0)
Mprime 35 34 34 23 0.03 6 (1) 4 12 3.72 6 (0) 34 33 7 1.0 2.62 7 (0)
Mystery 30 18 15 258 0.08 7 (0) 22 238 2.36 6 (4) 25 23 8 1.1 1.21 8 (0)
Openstacks 30 30 30 504 0.46 136 (0) 30 124 3.03 145 (0) 30 30 121 1.0 20.22 139 (0)
Openstacks-IPC6 30 30 30 968 0.59 156 (0) 30 146 3.68 159 (0) 30 30 139 1.0 54.76 158 (0)
Parc-Printer 30 30 21 173 0.03 32 (0) 24 409 0.41 34 (0) 27 21 49 9.7 0.26 31 (0)
Pegsol 30 30 0 15,287 1.35 34 (0) 30 5,174 1.34 35 (0) 29 1 1,681 864.7 2.10 34 (0)
Pipesworld-No-Tan 50 35 17 3,540 0.45 28 (5) 44 1,363 1.04 37 (1) 45 19 65 6.4 0.35 33 (5)
Pipesworld-Tan 50 22 4 46,189 62.23 30 (8) 39 40,015 32.41 31 (2) 41 16 1,055 108.7 59.14 55 (5)
PSR-Small 50 41 0 39,533 60.96 17 (1) 50 276 0.89 17 (0) 50 0 70 30.8 0.07 20 (0)
Rovers 40 40 40 10,341 26.97 100 (4) 40 1,750 13.44 106 (1) 40 38 114 1.1 28.16 113 (0)
Satellite 20 20 20 389 0.10 38 (0) 20 412 0.90 39 (1) 20 20 41 1.0 0.86 41 (0)
Scanalyzer 30 30 22 1,905 1.89 24 (1) 28 257 8.52 24 (2) 28 26 39 2.8 6.15 24 (4)
Sokoban 30 27 0 19,355 0.82 141 (2) 26 16,066 3.52 138 (4) 14 0 12,027 11,120.6 96.71 160 (0)
Storage 30 18 3 261,299 49.90 16 (0) 18 3,645 1.62 20 (0) 21 15 15 2.5 0.08 15 (6)
TPP 30 28 28 28,388 42.41 122 (0) 30 1,340 6.91 104 (8) 30 30 119 1.0 20.88 119 (0)
Transport 30 29 29 45,593 133.52 28 (1) 30 4,964 41.23 27 (0) 30 24 157 1.2 42.27 26 (4)
Trucks 30 11 6 135,863 5.66 23 (0) 16 169 0.61 24 (0) 9 0 2,762 2,818.4 20.55 26 (0)
Woodworking 30 17 12 1,329 0.26 117 (1) 30 7,040 5.84 100 (15) 30 30 31 1.0 5.45 154 (0)
Zeno Travel 20 20 18 148 0.13 31 (13) 20 482 3.55 36 (1) 20 20 50 1.0 6.21 50 (0)

Total 980 827 627 23,572 14.77 54 879 4,515 8.75 56 900 683 648 15.26 61
Percentage 84% 64% 89% 92% 70%

Table 1: PROBE vs. FF and LAMA on instances of previous IPCs: I is number of instances, S is number of solved instances, EHC is number
of instances solved by EHC, EX is avg. number of expanded nodes, 1P is number of instances solved with one probe, #P is avg. number of
probes triggered, T is avg. time in sec. and Q is avg. plan length. EX, T and Q are reported for problems solved by all three planners. In
parenthesis is the number of problems where each planner produces solutions that are at least 10% better than the other two planners.

average plan length of the instances solved by the three plan-
ners is 61 for PROBE, 56 for LAMA and 54 for FF. PROBE
is worst in quality in Sokoban and Gripper, while best in
Depots and Blocks.

We have also evaluated the impact of the different de-
sign decisions made in PROBE. The results are summa-
rized in Table 2 where the columns show the percentage
of problems solved, the percentage of problems solved with
a single probe and the avg. plan length and time that re-
sults from dropping some feature from PROBE; namely,
the probes themselves, the subgoal consistent tests, the sub-
goaling mechanism itself, and the commitments.9 In this ta-
ble, the averages are computed over the problems solved by
PROBE with all these features, and thus they differ from
the averages in the previous table computed over the prob-
lems solved by the three planners. As it can be seen from
the table, dropping the probes from PROBE, i.e., making it

9The removal of the subgoaling mechanism means that the
heuristic minimization used to select the action to do next is not
done for the selected subgoal, but over all possible first subgoals.

a standard greedy BFS planner, reduces the coverage from
92% to 75%, while the times increase by a factor of 3. The
removal of consistent tests and the removal of the whole sub-
goaling mechanism, in turn, do not affect coverage as much,
but reduce the percentage of problems solved with a single
probe from 67% to 40% and 44%, while increasing times
and lengths by roughly 50% and 25% respectively. Like-
wise, if only commitments are dropped, the loss is mainly
on the avg. length of plans that jumps up 26%.

From these figures, a number of conclusions can be
drawn. First, the use of probes helps significantly along
all relevant dimensions. Second, subgoaling helps as well
but only when used in combination with the consistency
tests (degradation from turning off consistency is similar to
degradation from turning off the whole subgoaling mecha-
nism). Third, commitments help but mainly to improve the
quality of the resulting plans; something that is achieved by
keeping track of the reasons for the introduction of the ac-
tions in the plan.

Feature Off S 1P Q T
None 92% 70% 67.0 34.8
Probes 75% – 71.0 99.6
Consistency 91% 40% 91.4 56.9
Subgoaling 86% 44% 80.7 55.2
Commitments 90% 63% 85.0 39.0

Table 2: Ablation Study. The columns indicate the feature of
PROBE that was turned off, the % of problems solved (S) and
solved by a single probe (1P), and the avg. plan length (Q) and
time (T) in seconds. The averages are computed over all problems
solved by PROBE.

Example
PROBE is a ‘fine-grained’ planner that can solve many prob-
lems without search, and thus it is illustrative to see its be-
havior over concrete instances.

The Sussman Anomaly is a Block World problem that
starts with blocks b and a on the table, and c on top of a,
and requires some form of goal interleaving for achieving
the goals b on c and a on b. Indeed no goal can be tackled
first while leaving the other goal aside; progress towards the
two subgoals needs to be interleaved, which can defeat naive
serialization schemes.

The landmark graph generated for this problem is shown
in Figure 1. The goal on(b,c) must be achieved before
on(a,b), as the actions that add the first goal e-delete the sec-
ond. The landmarks of on(a,b) are hold(a), which is greedy
necessary for on(a,b), and clear(a) which is greedy neces-
sary for hold(a). The goal on(b,c) is preceded only by the
greedy necessary landmark hold(b). The two goals are in
turn greedy necessary for the dummy end goal g.

As described above, the first probe is launched from the
initial state. First, it must select a subgoal. The selec-
tion process computes the set of consistent first unachieved
landmarks and chooses the one with the lowest heuristic
value. In this case, the only consistent landmark is clear(a).
The other first unachieved landmark hold(b) is not consis-
tent, as the heuristic over the state s2 that results from the
projection when on(b, c) is achieved in the greedy chain
hold(b), on(b, c), g, is infinite, meaning that from that state
on(a, b) can’t be achieved by maintaining on(b, c).

Once the subgoal clear(a) is selected, the action selec-
tion process is triggered. There is one helpful action with
respect to hold(a), unstack(c, a), which leaves the subgoal
at distance 0. The action a0 = unstack(c, a) adds the com-
mitment

〈a0, clear(a), {hold(a)}〉
that can only be consumed by the action pickup(a) given
that a is on the table. Notice that committing to maintain
clear(a) until hold(a) is achieved results in all possible
stack(X, a) actions being penalized with an offset by the
heuristic.

In the resulting node, goal selection is triggered because
the previous subgoal has been made true in the parent node.
Among the two first unachieved landmarks hold(a) and
hold(b), only the latter is consistent. hold(a) is not consis-
tent as h(on(b, c)|s3, C3) = ∞, where the pair s3, C3 rep-

Figure 1: The landmark graph for Sussman’s anomaly. Top goals
and their landmarks are shown as elliptical and rectangular nodes
respectively, and the arrows represent ordering relations between
them. Greedy necessary orderings marked ‘GN’

resents the state and set of commitments resulting from the
projection along the chain p1, p2, p3 = hold(a), on(a, b), g.
Once hold(b) is selected as the new subgoal, the helpful ac-
tions with respect to hold(b) and hold(a) are computed. No-
tice that though hold(a) is not the current subgoal, helpful
actions are computed for it as well, as it is a goal of one of
the active commitments. The only action that respects the
current commitments is then a1 = putdown(c), adding the
commitment

〈a1, freearm, {hold(a), hold(b)}〉 .
As the current subgoal is not yet achieved in the resulting

node, goal selection is skipped and the action selection pro-
cedure computes the helpful actions with respect to hold(b)
and hold(a). There are two actions: pickup(b) which leaves
the subgoal at distance 0, and pickup(a) that leaves the sub-
goal at distance 2. Therefore, a2 = pickup(b) is selected,
consuming the last commitment and adding instead the com-
mitment

〈a2, hold(b), {on(b, c)}〉 .
In the resulting node, goal selection is triggered again, se-

lecting the top goal on(b, c) and discarding hold(a), because
it still does not begin a consistent greedy chain. The only
helpful action for on(b, c) and hold(a) is a3 = stack(b, c),
which consumes the last commitment, and adds the disjunc-
tive commitment
〈a3, on(b, c), {g}〉 ∨ 〈a3, freearm, {hold(a)}〉 .

The probe continues, selecting the only possible new sub-
goal hold(a), which is consistent because on(b, c) is already
true in the current state. It then selects the helpful action
a4 = pickup(a) that consumes the two existing commit-
ments (a0, a3), and adds

〈a4, hold(a), {on(a, b)}〉 .
Finally the subgoal on(a, b) is selected, and the helpful ac-
tion a5 = stack(a, b) is applied, consuming the last com-
mitment and adding 〈a5, on(a, b), {g}〉. The probe ends suc-
cessfully with the selection of the End action that adds that
last landmark, that stands for the dummy goal g.

Conclusions
We have formulated and tested a new dual search architec-
ture for planning based on the notion of probes: single ac-
tion sequences constructed greedily but carefully, that can

quickly get deep into the state space, terminating in the goal
or in failure. The probes are used as part of a greedy best-
first search algorithm that throws a single probe from every
state that is expanded. We have shown that most IPC do-
mains are solved with a single probe, while in a few difficult
domains such as Sokoban and Trucks, probes do not help
and introduce overhead. Overall, the performance of the
planner is comparable with state-of-the-art planners such as
FF and LAMA.

The design of probes uses and extends a number of tech-
niques developed in modern planners that go well beyond
the use of heuristic functions to guide the search. They in-
clude helpful actions, landmarks, causal commitments, sub-
goals, and consistency tests, all of which help in the greedy
selection of the subgoal to achieve next, and the actions
needed to reach it.

From the success of probes and their computation, in
which problems are mapped into a series of subgoals that
are heuristically computed along with the probes, two con-
clusions can be drawn. The first is that most of the classi-
cal benchmarks admit good serializations of the landmarks
under which the solution of the problems becomes simple.
The second is that while not every serialization is good,
the mechanisms in PROBE and in particular the consistency
tests, appear to find good ones.10 These observations raise
two questions that we would like to address in the future.
The first is which methods are good for finding good seri-
alizations when they exist. PROBE implements one such
method but it’s not necessarily the best such method. The
second question is which methods are good for finding and
exploiting serializations in problems that have good but no
perfect decompositions. The 8-puzzle is an example of this
situation: one can place the tile 1 in position 1, the tile 2 in
position 2, but then one needs to undo this last subgoal, in
order to have tiles 2 and 3 at their target positions.

The ideas of goal serialization and problem decomposi-
tion have received a lot of attention in search and in the early
days of planning (Korf 1987), and it may be worth revisit-
ing those ideas equipped with the techniques that have been
developed more recently in planning research. The chal-
lenge is to explicitly recognize and exploit the structure of
problems that are nearly-decomposable, even if they are not
perfectly decomposable. Indeed, planning used to be de-
fined originally as being mainly concerned with those prob-
lems (Newell and Simon 1963). While the notion has practi-
cally disappeared from the modern language of planning, it
is still very much there: classical planners do best on those
problems11, simply because the heuristics used, like delete-
relaxation heuristics, assume that problems are in fact de-
composable. Nonetheless, there is the possibility that mod-
ern planners could do better still on nearly-decomposable
problems, if they would recognize and exploit the good but

10Landmarks are used in a subgoaling scheme in (Hoffmann,
Porteous, and Sebastia 2004), but the results do not appear to be
as good. One possible explanation for this, is that no additional
inference is made to distinguish good serializations from bad ones.

11Planners can solve other problems too, but expanding much
larger number of nodes, and not scaling up that well.

not perfect serializations that such problems hide.

Acknowledgements
We thank the anonymous reviewers for useful comments.
This work is partially supported by grants TIN2009-10232,
MICINN, Spain, and EC-7PM-SpaceBook.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Harvey, W., and Ginsberg, M. 1995. Limited discrepancy
search. In Proc. IJCAI-95.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating ”ignoring delete lists” to numeric state variables. JAIR
20:291–341.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI-08.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In Proc. ECAI-10.
Korf, R. 1987. Planning as search: A quantitative approach.
Artificial Intelligence 33(1):65–88.
Langley, P. 1992. Systematic and non-systematic search
strategies. In Proc. AIPS-92.
Lipovetzky, N., and Geffner, H. 2009. Inference and decom-
position in planning using causal consistent chains. In Proc.
ICAPS-09.
McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. AAAI-91.
McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proc. AIPS-96.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In Proc. IJCAI-09.
Newell, A., and Simon, H. 1963. GPS: a program that sim-
ulates human thought. In Feigenbaum, E., and Feldman, J.,
eds., Computers and Thought. McGraw Hill. 279–293.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:122–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI-08.
Tate, A. 1977. Generating project networks. In Proc. IJCAI-
77.
Vidal, V., and Geffner, H. 2005. Solving simple planning
problems with more inference and no search. In Proc. CP-
05. Springer.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS-04.

