
On Tight Logic Programs and Yet Another Translation from Normal Logic 
Programs to Propositional Logic 

Abstract 

Fages showed that if a program is tight, then ev
ery propositional model of its completion is also its 
stable model. Recently, Babovich, Erdem, and Lif-
schitz generalized Fages' result, and showed that 
this is also true if the program is tight on the given 
model of the completion. As it turned out, this 
is quite a general result. Among the commonly 
known benchmark domains, only Niemelii's nor
mal logic program encoding of the Hamiltonian 
Circuit (HC) problem does not have this property. 
In this paper, we propose a new normal logic pro
gram for solving the HC problem, and show that the 
program is tight on every model of its completion. 
Experimental results showed that for many graphs, 
this new encoding improves the performance of 
both SMODELS and ASSAT(Chaff2), especially 
of the latter system which is based on the SAT 
solver Chaff2. We also propose a notion of inher
ently tight logic programs and show that for any 
program, it is inherently tight iff all its completion 
models are stable models. We then propose a poly
nomial transformation from a logic programs to one 
that is inherently tight, thus providing a reduction 
of stable model semantics to program completion 
semantics and SAT. 

1 Introduction 
It is well-known that a stable model of a logic program is 
also a logical model of the completion of the logic program, 
but the converse is not true in general. However, Fages 
[ 1994]. showed that if the program is tight (i.e. it has no 
positive loops), then the converse is also true. Recently, 
Babovich, Erdem, and Lifschitz 12000] generalized Fages' 
result, and showed that the converse is also true if the pro
gram is tight on the given model of the completion. As it 
turned out, this is quite a general result as many interest
ing logic programs are indeed tight on every model of their 
completions. In fact, among the commonly known bench
mark domains, only Niemelii's normal logic program en
coding of the Hamiltonian Circuit (HC) problem [Niemela, 
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1999] is not tight on its completion models. This leads nat
urally to the question: is there a normal logic program en
coding of the HC problem that is tight on every model of its 
completion? At first glance, a positive answer seems eas
ily followed from some known results. For instance, us
ing any of the known transformation from logic programs to 
propositional theories (e.g. [Ben-Eliyahu and Dechter, 1996; 
Lin and Zhao, 2002]), one can translate a program to a set 
of clauses, and then back to a logic program that is tight (on 
every model of the program's completion). While this is cer
tainly true, it is not really what we wanted. Given a graph, 
a logic program for solving the HC problem for the graph 
normally should have two parts - a set of facts that defines 
the graph in terms of vertices and edges, and a set of general 
rules. While the above reasoning shows that it follows from 
the known results that for any given graph, a tight logic pro
gram can be found for solving the HC problem on the graph, 
it does not follow, although it is true as we shall show in this 
paper, that there is a set of general rules such that for any 
given graph, the logic program consisting of the set of gen
eral rules and the set of facts encoding the graph is always 
tight. 

By modifying Niemela's encoding, we propose a new nor
mal logic program for solving the HC problem, and show 
that the program is tight on every model of its completion. 
Compared with Niemelii's encoding, our new encoding yields 
much larger programs - about twice more atoms and rules. 
Surprisingly, despite its larger size, for both SMODELS (Si
mons, 2003] and ASSAT [Lin and Zhao, 2002], the new en
coding performs better1 on many randomly generated graphs. 
For ASSAT, it also performs better on complete graphs, 
which are hard for SMODELS and ASSAT partly because 
of the sizes of the programs corresponding to these graphs. 
However, our new encoding is slower than Niemelii's on some 
of the hand-coded hard graphs in [Lin and Zhao, 2002], which 
are constructed by taking a few copies of a graph and con
necting these copies by some arcs. While these experimental 
results are mixed, they do suggest that it is worthwhile to try 
to encode a problem as a logic program whose stable models 
are the same as its completion models. 

This motivated us to investigate a sufficient and necessary 

All performances in this paper are about computing one stable 
model of a program. 
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condition for a completion model to be a stable model. To 
this end, we generalize the notion of tight on a set of atoms 
into that of inherently tight on a set of atoms. Specifically, 
we call a program P inherently tight on a set S of atoms if 
there is a subprogram such that S is a stable model 
of Q and Q is tight on S. We show that for any program, a 
completion model of this program is also its stable model iff 
the program is inherently tight on the model. 

We then propose a polynomial transformation from any 
logic program to one that is inherently tight on all its com
pletion models. This provides a reduction of stable model se
mantics to completion semantics and SAT. Compared to the 
one in [Ben-Eliyahu and Dechter, 19961 which needs ri2 ex
tra atoms and n3 new rules, and the one in [Lin and Zhao, 
2002] which docs not introduce any new atom but in the worst 
case may add an exponential number of new rules (clauses), 
our transformation introduces extra atoms and 

extra rules in the worst case, where n is the num
ber of atoms in the original program and m the number of 
rules. We have observed that in all of the benchmark logic 
programs, the number of rules in a program is smaller than 
n2. One useful feature of our transformation is that it is mod
ular w.r.t adding new facts. 

This paper is organized as follows. Section 2 introduces 
some logical preliminaries. Section 3 studies an encoding 
of the HC problem that is tight on every completion model 
of the program, and reports some experimental results using 
SMODELS and ASSAT(Chaff2). Section 4 proposes a notion 
of inherent tightness and a translation from a logic program 
to one that is inherently tight. Section 5 concludes this paper. 
Due to space limitations, proofs, if given, are only sketched. 

2 Logical Preliminaries 
Logic programs A normal logic program is a set of rules of 
the following form: 

where a is either an atom or empty, 6's, and c's are atoms. 
When a is empty, then the rule is a constraint, and when in = 
u = 0 and a is an atom, then the rule is a fact, asserting 
that a is true. Given a rule r, in the following, we denote by 
Hrad(r) its head atom, and Pos{r) and Ncg(r) the set of 
positive body literals and the set of atoms that occur under 
n o t in the body of rule r, respectively. For any set X of 
atoms, w e denote the s e t b y not(X). S o a 
rule r can be represented as 

Given a program P, in the following, we let Atorn(P) be the 
set of atoms in P. 

Program completion Given a logic program P, its comple
tion, Cornp(P) is the union of the constraints in P and the 
Clark completion [Clark, ] of P with constraints deleted. In 
other words, it consists of the following sentences: 

• For any atom a, if are all the rules 
about a in P, then is in Cornp(P). 
Here we abuse the notation and write G{ both as the 

body of a rule and a disjunct in a formula. Its intended 
meaning is that when we write a body G in a formula, 
it stands for true if G is empty, it is the conjunction of 
literals in G with n o t replaced by otherwise. Notice 
here that when n — 0, the equivalence for a becomes 
a = false; 

• If G is a constraint in P, then G is in Comp(P). 
The stable model semantics Given a logic program P 

without constraints, and a set S of atoms, the Gelfond-
Lifschitz transformation of P on 5, written as Ps is obtained 
from P as follows: 

• For each atom q and any rule r in P, if q Necj(r) and 
q S, then delete the literal n o t q from the body of 
rule r. 

• In the resulted set of rules, delete all those rules that still 
contain a negative literal in their bodies, i.e., for any rule 

if there is a such that then 
delete this rule r. 

It is clear that for any set of atoms 5, P$ is a set of rules 
without any negative literals. Thus Ps has a unique mini
mal model, which is the same as the set of atoms that can be 
derived from the program by resolution when rules are inter
preted as implications. We denote this set as Cons{P$). A 
set S is a stable model iGelfond and Lifschitz, 1988] of P if 
and only if s = Cons(Ps). 

Now let P be a program that may have constraints, and P' 
the result of deleting all constraints in P. Then a set of atoms 
is a stable model of P iff it is a stable model of P' and satis
fies all the constraints in P. 

Dependency graph The predicate dependency graph [Apt et 
ai, 1 of a logic program P is a directed graph with signed 
edges. The vertices are atoms mentioned in P. There is a 
directed positive (resp. negative) edge from vertex to q if 
there is a rule r in P such that Hcad(r) — q and p Pos(r) 
(resp. Head(r) — q and p Neg(r)). Informally, a posi
tive (resp. negative) edge from ;; to q means that q depends 
positively (resp. negatively) on p. 

For any two atoms and in P, there is a positive path 
from to if and only if there is a path from vertex to 
vertex in the dependence graph Gp and the path has no 
negative edges. 

3 Tight logic programs and Hamiltonian 
Circuit problem 

A program P is tight LLifschitz, 1996] if there exists a level 
mapping such that, for every rule 

(3) 
i n P , 

(4) 
Here a level mapping is a function from literals to ordinals. 

It is not hard to see that a program is tight iff its dependency 
graph has no positive cycles. For these programs, the program 
completion semantics under classical logic coincides with the 
stable model semantics. That is, if a program is tight, then a 
set of atoms is its stable model iff it is a classical propositional 

854 NONMONOTONIC REASONING 



model of its completion [Fages, 1994]. Recently, Babovich, 
Erdcm, & Lifschitz [2000] generalized this result to "tight on 
a set of literals" by modifying the mapping to a partial level 
mapping with respect to a set of literals. Formally, a program 
P is tight on a set S of atoms if there exists a partial level 
mapping with the domain S such that, for every rule (3) in 
P, if a and b\, • • •, then 

(5) 
They showed that if a normal logic program is tight on a 
model of its completion, then this model is also a stable 
model. As a result, if the logic program is tight or tight on 
all models of its completion, to find stable models of this 
logic program, we can reduce it to SAT by computing its 
completion. As it turned out, this is quite a general result as 
many interesting logic programs, including all constraint sat
isfaction problems and planning problems are indeed tight 
on every model of their completions. In fact, among the 
commonly known benchmark domains, only Niemela's nor
mal logic program encoding of the Hamiltonian Circuit (HC) 
problem [Niemela, 1999] is not always tight on its completion 
models. 

As the experimental results reported in [Babovich et ah, 
2000; Huang et al, 2002; Lin and Zhao, 2002] showed, 
for problems like graph coloring and blocks world planning 
whose encodings in logic programs are either tight or tight on 
their completion models, computing a stable model of these 
programs using the state of art SAT solvers on their com
pletions is a lot faster than SMODELS, which is currently 
the state of art specialized stable model generator for normal 
logic programs. For HC problems, while ASS AT still outper
forms SMODELS, the improvements are not as great as in 
other problems. One of the reasons is that when a completion 
model may not be a stable model, ASSAT needs to repeatedly 
call a SAT solver, and the total computation time is directly 
proportional to the number of times a SAT solver is called. 
So to see if this was due to the inherent difficulty of the HC 
problem or because of the particularity of Niemela's encod
ing [Niemela, 1999], we came up with an encoding of the HC 
problem that is always tight on the completion models. 

To motivate our new encoding, let's first look at Niemela's 
given below: 

As one can see, rules (6) - (8) guess some paths with the 
property that for every vertex X, if X has at least one out
going arcs, then exactly one of these arcs is chosen to be 
in the paths, and similarly if X has at least one incoming 
arcs, then exactly one is chosen to be in the paths. The 

rest of the rules then make sure, especially by asserting that 
reached(X) must be true for every vertex X, that these paths 
are in fact a single simple cycle that covers the whole graph. 
When grounded, this program is not tight because rule (9) 
would create cycles among reached(X) atoms. 

Another way of solving the problem is to first guess some 
paths that must go through every vertex exactly once, and 
then make sure that when we do not count the outgoing arc 
from the starting vertex, these paths are in fact a single path 
that does not contain any cycles. This is the idea behind our 
program in Figure 1 for solving the HC problem: 

Figure 1: An encoding of the HC problem that is always tight 
on every model of its completion 

Notice that rules (16) - (18) are the same as (6) - (8); rules 
(12) - (15) are needed to make sure that the chosen path must 
go through each vertex exactly once for the cases when a ver
tex has no outgoing (incoming) arcs in the graph; rules (19) 
- (21) use the binary predicate rcached(X, Y) to make sure 
that when we delete the chosen outgoing arc from the starting 
vertex, the chosen path has no cycles, thus must be a single 
path. Formally, it can be shown that the program correctly 
solves the HC problem and is always tight on every comple
tion model. 

Proposition 1 Let be a graph. Let P be the 
union of the rules in Figure I and facts represented by the 
graph in terms of vertex(X) and are(X, Y). If M is a stable 
model of P, then atoms of the form in M correspond 
to an HC ofG. Furthermore, P is tight on every model of its 
completion. 

Given a graph, compared with Niemela's encoding, ours 
yields a larger program because reached in our program 
is a binary predicate. To evaluate the performance of 
this program, we tried SMODELS (version 2.27) and AS-
SAT(Chaff2) (version 1.3 with its simplification feature ac
tivated) on the same set of graphs2 used in [Lin and Zhao, 

2These graphs can be downloaded from ASSAT's web site 
http://www.cs.ust.hk/assat. 
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2002], which divided it into three categories: randomly 
generated graphs, hand-coded hard instances, and complete 
graphs. Our experiments were done on Sun Ultra 5 machines 
with 256M memory running Solaris. The times given be
low are in CPU seconds as reported by Unix "time" com
mand, and include the times for running Iparse for grounding 
the input programs. For randomly generated graphs (see Ta
ble 1), ASS AT clearly performs much better using our new 
encoding; SMODELS also seemed to behave better using the 
new encoding as the run times are more uniform now. How
ever, for hand-coded graphs (see Table 2), which are formed 
by first taking several copies of a small graph and then se
lectively adding some arcs to connect these components, the 
old encoding was clearly better for SMODELS. For ASSAT, 
some of the graphs became easier with the new encoding, but 
many became harder. Finally, for complete graphs, which are 
hard partly because they yield huge programs both for the 
new and old encodings, the new encoding turned out to be 
better for ASSAT but a little worse for SMODELS. For in
stance, for the complete graph with 80 vertices, using the old 
encoding, ASSAT returned with a solution in 3297 seconds, 
and SMODELS in 5072 seconds, but with the new encoding, 
ASSAT took only 170 seconds, but SMODELS needed 12485 
seconds. 

From these mixed results, it seems that both encodings 
have merits, especially if one uses SMODELS. But the ex
periments do suggest that the new encoding, being tight on 
every completion model, is better for SAT-based stable model 
generators such as ASSAT and Cmodels3. We would not be 
surprised that with better and faster SAT solvers, the new en
coding would outperform in all cases. 

4 Inherently tight programs 
Given the potential benefit of tight logic programs for SAT-
based stable model generators, we now investigate a more 
general translation from an arbitrary logic program to one 
whose completion models are always stable models. To this 
end, we first define a notion of inherently tight on a set of 
atoms, and show that it is a sufficient and necessary condition 
for a program's completion model to be a stable model. 

Definition 1 A program P is inherently tight on a set of 
atoms S if there is a program Q such that is a 
stable model ofQ and Q is tight on S. 

Proposition 2 A normal logic program is inherently tight on 
all of its stable models. 

Proof: Suppose S is a stable model of P. Notice first that 
each rule in Ps has a corresponding one in P under Gelfond-
Lifschitz transformation. Now define W, a set of rules, as 
follows: 

1. W is initially empty, and T initially Ps; 

We also ran experiments for Cmodels 
(http://www.cs.utexas.edu/users/tag/cmodels.html). The results 
were very similar to the ones for ASSAT. We did not include its data 
here because it is not guaranteed to work when the input program is 
not tight, like Niemela's encoding of the HC problem here. 

Table 1: Randomly generated graphs: nvXaY is a graph with 
X vertices and Y arcs. 

Table 2: Hand-coded hard graphs: NxG.M is a graph with N 
copies of graph G and some arcs connecting the copies. 
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2. Choose a fact in T. Suppose r is the corresponding 
rule in P. Now let W be W r, and remove all rules 
about a from T, and delete a in the bodies of all other 
rules in T\ 

3. Go back to Step 2 until T is empty. 
It is clear that W is tight and S is one of its stable models. 
Thus P is inherently tight on S.  

Theorem 1 Let P be a normal logic program, and S a set of 
atoms. Then S is a stable model of P if and only if S is a 
model of the completion of P and P is inherently tight on S. 

Proof: : By Proposition 2 and the fact that a stable model 
is also a model of a program. 

: Since S be a model of the completion of P, so S is 
closed under P. Since P is inherently tight on 5, there 
is a Q P such that S is a stable model of Q and Q is 
tight on S. Thus S is supported by Q, hence also supported 
by P. Now S is supported by and closed under p thus a 
stable model of P (by a theorem in [Babovich et al, 2000]). ■ 

We say that a program is inherently tight if it is inherently 
tight on all models of its completion. Clearly, a program that 
is tight on all its completion models is inherently tight. By 
Theorem 1, if all models of its completion are also its stable 
model, then the program is inherently tight, and vice versa. 

We now give a translation from an arbitrary logic progiam 
to one that is inherently tight. In the following, a set S of 
atoms in a program P is called a strongly connected com
ponent (SCC) if there is a path in Gp from u to v for any 

, and S is not a subset of any other such set, where 

Gp is the dependency graph of P. 
Algorithm 1 Let P be a normal logic program, the following 
algorithm transforms it to an inherently tight program Q. 
Let Q be empty initially. 

1. For any rule of the form 

In these rules, and variable X will be instan
tiated to all atoms a if a and a are in the same SCC; 

2. If is a constraint, add rule r it into Q. 

Intuitively, if a set M is a stable model of Q, then 
iff and the rule r in P Contributes' to the calculation 
of COIIS(QM)* meaning that rule r is actually used to derive 
a. right(u, v) is used to record that atom u is used to prove 
v and this is needed to prevent loops. The following example 
illustrates the idea. 

Example 1 Consider the program  
. It has two completion models {a, 6} 

and , but only the first one is a stable model. For this 
program, there are two SCCs: . Algorithm J 
transforms it into the following program Q: 

The completion of the program contains the following equiv
alences  
Thus it entails So there is only one 
model of the completion where a and b are true and c is false, 
which is also the only stable model of Q. Notice that in the 
stable model of P, a is established by the second rule about 
it. Correspondingly, in the stable model of Q, a2 is true while 
a\ is not, andright(a, b) is true while right(b, a) is not (a is 
established first, and then b is derived from a). 

Theorem 2 For any normal logic program P, the program 
Q output by Algorithm 1 is inherently tight. Furthermore P 
and Q are equivalent on Atom(P), that is, for any subset S 
of Atoui(P), S is a stable model of P iff there is exactly one 
stable model Sf ofQ such that such that Atom(P). 

Proof: We show only that Q is inherently tight. The second 
part of the theorem is easier. 

We only need to prove that all models of Comp(Q) are its 
stable models. Let TV be a model of the completion of Q. We 
show that TV satisfies every loop formula of Q, thus it must 
be a stable model of Q (Theorem 1 in [Lin and Zhao, 2002]) 
Suppose L is a positive loop in Q. According to Algorithm 1, 
either L i s a loop that does not contain any atom of the form 
right or L is a set of atoms of the form right(u, v). 

If L is a loop that does not contain any atom of the form 
right , suppose v\, • • •, va are all atoms in L. L has 
even number of atoms. Atoms in Atom(P) and newly added 
atoms occur along the loop alternatively. Suppose the loop is: 

where are newly added atoms 
and X{ are atoms in Atom(P) If all  
s) are in N, it is known that right are in N by rule 
25. Further considering rule 26, we have right 
N for some /, thus rule 23 can not be satisfied for some x[ 
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in the loop. So not all atoms in the loop are in N. Now that 
TV is a model of the completion, so the loop formula [Lin and 
Zhao, 2002] for loop L is satisfied. 
• If L is a loop and it contains a set of atoms 
right(ai,a>2), right(a2,az), • •, right{av,a1). Sup-
pose right (a, b) is an atom in L and it is deduced by the 
rule right(a, b) blyright(a1 c). Suppose there is a rule r 
such that Pos(r) L — if Dody(r) is satisfied by TV, the 
loop formula of L is satisfied. If there is no such a r, then 
the rule right (a, b) <— buright(a, c) must be satisfied. Thus 
bi TV. But there is only one rule about bi which requires 
right for some for it to be applicable. 
However from our assumption that L C TV, and L is a loop, 
it must be the case that right for all  
This is a contradiction, thus there must be an r as above.  

Algorithm 1 effectively provides yet another reduction of 
answer set semantics to SAT by calculating the completion 
of the translated program. Compared with the mapping in 
fBen-Eliyahu and Dechter, 1996], which always adds n2 ex
tra atoms and n3 extra rules, the number of extra atoms and 
rules needed for our transformation depends on the number 
of rules whose heads and some of positive literals in their 
bodies belong to the same SCC. In the worst case, it needs 

extra atoms and extra rules, where n is 
the number of atoms and m the number of rules in the input 
program. Usually, m is a lot less than n2. For instance, for 
Niemelii's encoding of the HC problem, given a graph with A: 
vertices, there are at most atoms and rules. 

One interesting feature of Algorithm 1 is that it is modular 
w.r.t. new facts. That is, if P' is a set of facts, then for any 
program P, the program returned by the algorithm on 
P' is the union of the programs returned by it on P and P'. 
This feature wil l be handy when we extend the algorithm to 
programs with variables as the instantiation of a program with 
variables can be thought of as the union of the program and a 
set of ground facts. 

We have implemented the algorithm and tried it on 
Niemelii's encoding of the HC problem, and found that for 
SMODELS, the translated program is still better than the 
original one on randomly generated graphs. But on other 
types of graphs, the translated program is a lot worse. But 
for ASSAT, the translated program was slower even on ran
domly generated programs. Apparently, being (inherently) 
tight does not always guarantee better performance even for 
SAT-based stable model generators. 

5 Conclusions and future work 
We have proposed a new solution to the Hamiltonian Circuit 
problem. For any given graph, the solution yields a program 
that is tight on every model of its completion. Compared with 
Niemela's encoding of the same problem, our new encod
ing performs better on both randomly generated graphs and 
complete graphs, but is slightly worse on a set of hand-coded 
graphs. While these results hold for both SMODELS, which 
is a specialized stable model generator, and ASSAT, which 
makes use of SAT solver Chaff2, the performance gain seems 
greater for ASSAT than for SMODELS. 

We also defined a notion of inherent tightness that captures 
a sufficient and necessary condition for a program completion 
model to be its stable model, and proposed an algorithm for 
translating an arbitrary logic program into an inherently tight 
one, which provides a reduction of stable model semantics to 
completion semantics and SAT. 

In terms of future work, we are interested in finding out 
more about the relationships between stable model semantics 
and completion semantics, especially the kinds of features of 
an inherently tight logic program that would be particularly 
good for SAT-based stable model generators like ASSAT. 
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