
On Tight Logic Programs and Yet Another Translation from Normal Logic
Programs to Propositional Logic

Abstract

Fages showed that if a program is tight, then ev
ery propositional model of its completion is also its
stable model. Recently, Babovich, Erdem, and Lif-
schitz generalized Fages' result, and showed that
this is also true if the program is tight on the given
model of the completion. As it turned out, this
is quite a general result. Among the commonly
known benchmark domains, only Niemelii's nor
mal logic program encoding of the Hamiltonian
Circuit (HC) problem does not have this property.
In this paper, we propose a new normal logic pro
gram for solving the HC problem, and show that the
program is tight on every model of its completion.
Experimental results showed that for many graphs,
this new encoding improves the performance of
both SMODELS and ASSAT(Chaff2), especially
of the latter system which is based on the SAT
solver Chaff2. We also propose a notion of inher
ently tight logic programs and show that for any
program, it is inherently tight iff all its completion
models are stable models. We then propose a poly
nomial transformation from a logic programs to one
that is inherently tight, thus providing a reduction
of stable model semantics to program completion
semantics and SAT.

1 Introduction
It is well-known that a stable model of a logic program is
also a logical model of the completion of the logic program,
but the converse is not true in general. However, Fages
[1994]. showed that if the program is tight (i.e. it has no
positive loops), then the converse is also true. Recently,
Babovich, Erdem, and Lifschitz 12000] generalized Fages'
result, and showed that the converse is also true if the pro
gram is tight on the given model of the completion. As it
turned out, this is quite a general result as many interest
ing logic programs are indeed tight on every model of their
completions. In fact, among the commonly known bench
mark domains, only Niemelii's normal logic program en
coding of the Hamiltonian Circuit (HC) problem [Niemela,

Corresponding author

1999] is not tight on its completion models. This leads nat
urally to the question: is there a normal logic program en
coding of the HC problem that is tight on every model of its
completion? At first glance, a positive answer seems eas
ily followed from some known results. For instance, us
ing any of the known transformation from logic programs to
propositional theories (e.g. [Ben-Eliyahu and Dechter, 1996;
Lin and Zhao, 2002]), one can translate a program to a set
of clauses, and then back to a logic program that is tight (on
every model of the program's completion). While this is cer
tainly true, it is not really what we wanted. Given a graph,
a logic program for solving the HC problem for the graph
normally should have two parts - a set of facts that defines
the graph in terms of vertices and edges, and a set of general
rules. While the above reasoning shows that it follows from
the known results that for any given graph, a tight logic pro
gram can be found for solving the HC problem on the graph,
it does not follow, although it is true as we shall show in this
paper, that there is a set of general rules such that for any
given graph, the logic program consisting of the set of gen
eral rules and the set of facts encoding the graph is always
tight.

By modifying Niemela's encoding, we propose a new nor
mal logic program for solving the HC problem, and show
that the program is tight on every model of its completion.
Compared with Niemelii's encoding, our new encoding yields
much larger programs - about twice more atoms and rules.
Surprisingly, despite its larger size, for both SMODELS (Si
mons, 2003] and ASSAT [Lin and Zhao, 2002], the new en
coding performs better1 on many randomly generated graphs.
For ASSAT, it also performs better on complete graphs,
which are hard for SMODELS and ASSAT partly because
of the sizes of the programs corresponding to these graphs.
However, our new encoding is slower than Niemelii's on some
of the hand-coded hard graphs in [Lin and Zhao, 2002], which
are constructed by taking a few copies of a graph and con
necting these copies by some arcs. While these experimental
results are mixed, they do suggest that it is worthwhile to try
to encode a problem as a logic program whose stable models
are the same as its completion models.

This motivated us to investigate a sufficient and necessary

All performances in this paper are about computing one stable
model of a program.

NONMONOTONIC REASONING 853

FangzhenLin and JichengZhao*
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{flinjczhao} @cs.ust.hk

condition for a completion model to be a stable model. To
this end, we generalize the notion of tight on a set of atoms
into that of inherently tight on a set of atoms. Specifically,
we call a program P inherently tight on a set S of atoms if
there is a subprogram such that S is a stable model
of Q and Q is tight on S. We show that for any program, a
completion model of this program is also its stable model iff
the program is inherently tight on the model.

We then propose a polynomial transformation from any
logic program to one that is inherently tight on all its com
pletion models. This provides a reduction of stable model se
mantics to completion semantics and SAT. Compared to the
one in [Ben-Eliyahu and Dechter, 19961 which needs ri2 ex
tra atoms and n3 new rules, and the one in [Lin and Zhao,
2002] which docs not introduce any new atom but in the worst
case may add an exponential number of new rules (clauses),
our transformation introduces extra atoms and

extra rules in the worst case, where n is the num
ber of atoms in the original program and m the number of
rules. We have observed that in all of the benchmark logic
programs, the number of rules in a program is smaller than
n2. One useful feature of our transformation is that it is mod
ular w.r.t adding new facts.

This paper is organized as follows. Section 2 introduces
some logical preliminaries. Section 3 studies an encoding
of the HC problem that is tight on every completion model
of the program, and reports some experimental results using
SMODELS and ASSAT(Chaff2). Section 4 proposes a notion
of inherent tightness and a translation from a logic program
to one that is inherently tight. Section 5 concludes this paper.
Due to space limitations, proofs, if given, are only sketched.

2 Logical Preliminaries
Logic programs A normal logic program is a set of rules of
the following form:

where a is either an atom or empty, 6's, and c's are atoms.
When a is empty, then the rule is a constraint, and when in =
u = 0 and a is an atom, then the rule is a fact, asserting
that a is true. Given a rule r, in the following, we denote by
Hrad(r) its head atom, and Pos{r) and Ncg(r) the set of
positive body literals and the set of atoms that occur under
n o t in the body of rule r, respectively. For any set X of
atoms, w e denote the s e t b y not(X). S o a
rule r can be represented as

Given a program P, in the following, we let Atorn(P) be the
set of atoms in P.

Program completion Given a logic program P, its comple
tion, Cornp(P) is the union of the constraints in P and the
Clark completion [Clark,] of P with constraints deleted. In
other words, it consists of the following sentences:

• For any atom a, if are all the rules
about a in P, then is in Cornp(P).
Here we abuse the notation and write G{ both as the

body of a rule and a disjunct in a formula. Its intended
meaning is that when we write a body G in a formula,
it stands for true if G is empty, it is the conjunction of
literals in G with n o t replaced by otherwise. Notice
here that when n — 0, the equivalence for a becomes
a = false;

• If G is a constraint in P, then G is in Comp(P).
The stable model semantics Given a logic program P

without constraints, and a set S of atoms, the Gelfond-
Lifschitz transformation of P on 5, written as Ps is obtained
from P as follows:

• For each atom q and any rule r in P, if q Necj(r) and
q S, then delete the literal n o t q from the body of
rule r.

• In the resulted set of rules, delete all those rules that still
contain a negative literal in their bodies, i.e., for any rule

if there is a such that then
delete this rule r.

It is clear that for any set of atoms 5, P$ is a set of rules
without any negative literals. Thus Ps has a unique mini
mal model, which is the same as the set of atoms that can be
derived from the program by resolution when rules are inter
preted as implications. We denote this set as Cons{P$). A
set S is a stable model iGelfond and Lifschitz, 1988] of P if
and only if s = Cons(Ps).

Now let P be a program that may have constraints, and P'
the result of deleting all constraints in P. Then a set of atoms
is a stable model of P iff it is a stable model of P' and satis
fies all the constraints in P.

Dependency graph The predicate dependency graph [Apt et
ai, 1 of a logic program P is a directed graph with signed
edges. The vertices are atoms mentioned in P. There is a
directed positive (resp. negative) edge from vertex to q if
there is a rule r in P such that Hcad(r) — q and p Pos(r)
(resp. Head(r) — q and p Neg(r)). Informally, a posi
tive (resp. negative) edge from ;; to q means that q depends
positively (resp. negatively) on p.

For any two atoms and in P, there is a positive path
from to if and only if there is a path from vertex to
vertex in the dependence graph Gp and the path has no
negative edges.

3 Tight logic programs and Hamiltonian
Circuit problem

A program P is tight LLifschitz, 1996] if there exists a level
mapping such that, for every rule

(3)
i n P ,

(4)
Here a level mapping is a function from literals to ordinals.

It is not hard to see that a program is tight iff its dependency
graph has no positive cycles. For these programs, the program
completion semantics under classical logic coincides with the
stable model semantics. That is, if a program is tight, then a
set of atoms is its stable model iff it is a classical propositional

854 NONMONOTONIC REASONING

model of its completion [Fages, 1994]. Recently, Babovich,
Erdcm, & Lifschitz [2000] generalized this result to "tight on
a set of literals" by modifying the mapping to a partial level
mapping with respect to a set of literals. Formally, a program
P is tight on a set S of atoms if there exists a partial level
mapping with the domain S such that, for every rule (3) in
P, if a and b\, • • •, then

(5)
They showed that if a normal logic program is tight on a
model of its completion, then this model is also a stable
model. As a result, if the logic program is tight or tight on
all models of its completion, to find stable models of this
logic program, we can reduce it to SAT by computing its
completion. As it turned out, this is quite a general result as
many interesting logic programs, including all constraint sat
isfaction problems and planning problems are indeed tight
on every model of their completions. In fact, among the
commonly known benchmark domains, only Niemela's nor
mal logic program encoding of the Hamiltonian Circuit (HC)
problem [Niemela, 1999] is not always tight on its completion
models.

As the experimental results reported in [Babovich et ah,
2000; Huang et al, 2002; Lin and Zhao, 2002] showed,
for problems like graph coloring and blocks world planning
whose encodings in logic programs are either tight or tight on
their completion models, computing a stable model of these
programs using the state of art SAT solvers on their com
pletions is a lot faster than SMODELS, which is currently
the state of art specialized stable model generator for normal
logic programs. For HC problems, while ASS AT still outper
forms SMODELS, the improvements are not as great as in
other problems. One of the reasons is that when a completion
model may not be a stable model, ASSAT needs to repeatedly
call a SAT solver, and the total computation time is directly
proportional to the number of times a SAT solver is called.
So to see if this was due to the inherent difficulty of the HC
problem or because of the particularity of Niemela's encod
ing [Niemela, 1999], we came up with an encoding of the HC
problem that is always tight on the completion models.

To motivate our new encoding, let's first look at Niemela's
given below:

As one can see, rules (6) - (8) guess some paths with the
property that for every vertex X, if X has at least one out
going arcs, then exactly one of these arcs is chosen to be
in the paths, and similarly if X has at least one incoming
arcs, then exactly one is chosen to be in the paths. The

rest of the rules then make sure, especially by asserting that
reached(X) must be true for every vertex X, that these paths
are in fact a single simple cycle that covers the whole graph.
When grounded, this program is not tight because rule (9)
would create cycles among reached(X) atoms.

Another way of solving the problem is to first guess some
paths that must go through every vertex exactly once, and
then make sure that when we do not count the outgoing arc
from the starting vertex, these paths are in fact a single path
that does not contain any cycles. This is the idea behind our
program in Figure 1 for solving the HC problem:

Figure 1: An encoding of the HC problem that is always tight
on every model of its completion

Notice that rules (16) - (18) are the same as (6) - (8); rules
(12) - (15) are needed to make sure that the chosen path must
go through each vertex exactly once for the cases when a ver
tex has no outgoing (incoming) arcs in the graph; rules (19)
- (21) use the binary predicate rcached(X, Y) to make sure
that when we delete the chosen outgoing arc from the starting
vertex, the chosen path has no cycles, thus must be a single
path. Formally, it can be shown that the program correctly
solves the HC problem and is always tight on every comple
tion model.

Proposition 1 Let be a graph. Let P be the
union of the rules in Figure I and facts represented by the
graph in terms of vertex(X) and are(X, Y). If M is a stable
model of P, then atoms of the form in M correspond
to an HC ofG. Furthermore, P is tight on every model of its
completion.

Given a graph, compared with Niemela's encoding, ours
yields a larger program because reached in our program
is a binary predicate. To evaluate the performance of
this program, we tried SMODELS (version 2.27) and AS-
SAT(Chaff2) (version 1.3 with its simplification feature ac
tivated) on the same set of graphs2 used in [Lin and Zhao,

2These graphs can be downloaded from ASSAT's web site
http://www.cs.ust.hk/assat.

NONMONOTONIC REASONING 855

http://www.cs.ust.hk/assat

2002], which divided it into three categories: randomly
generated graphs, hand-coded hard instances, and complete
graphs. Our experiments were done on Sun Ultra 5 machines
with 256M memory running Solaris. The times given be
low are in CPU seconds as reported by Unix "time" com
mand, and include the times for running Iparse for grounding
the input programs. For randomly generated graphs (see Ta
ble 1), ASS AT clearly performs much better using our new
encoding; SMODELS also seemed to behave better using the
new encoding as the run times are more uniform now. How
ever, for hand-coded graphs (see Table 2), which are formed
by first taking several copies of a small graph and then se
lectively adding some arcs to connect these components, the
old encoding was clearly better for SMODELS. For ASSAT,
some of the graphs became easier with the new encoding, but
many became harder. Finally, for complete graphs, which are
hard partly because they yield huge programs both for the
new and old encodings, the new encoding turned out to be
better for ASSAT but a little worse for SMODELS. For in
stance, for the complete graph with 80 vertices, using the old
encoding, ASSAT returned with a solution in 3297 seconds,
and SMODELS in 5072 seconds, but with the new encoding,
ASSAT took only 170 seconds, but SMODELS needed 12485
seconds.

From these mixed results, it seems that both encodings
have merits, especially if one uses SMODELS. But the ex
periments do suggest that the new encoding, being tight on
every completion model, is better for SAT-based stable model
generators such as ASSAT and Cmodels3. We would not be
surprised that with better and faster SAT solvers, the new en
coding would outperform in all cases.

4 Inherently tight programs
Given the potential benefit of tight logic programs for SAT-
based stable model generators, we now investigate a more
general translation from an arbitrary logic program to one
whose completion models are always stable models. To this
end, we first define a notion of inherently tight on a set of
atoms, and show that it is a sufficient and necessary condition
for a program's completion model to be a stable model.

Definition 1 A program P is inherently tight on a set of
atoms S if there is a program Q such that is a
stable model ofQ and Q is tight on S.

Proposition 2 A normal logic program is inherently tight on
all of its stable models.

Proof: Suppose S is a stable model of P. Notice first that
each rule in Ps has a corresponding one in P under Gelfond-
Lifschitz transformation. Now define W, a set of rules, as
follows:

1. W is initially empty, and T initially Ps;

We also ran experiments for Cmodels
(http://www.cs.utexas.edu/users/tag/cmodels.html). The results
were very similar to the ones for ASSAT. We did not include its data
here because it is not guaranteed to work when the input program is
not tight, like Niemela's encoding of the HC problem here.

Table 1: Randomly generated graphs: nvXaY is a graph with
X vertices and Y arcs.

Table 2: Hand-coded hard graphs: NxG.M is a graph with N
copies of graph G and some arcs connecting the copies.

856 NONMONOTONIC REASONING

2. Choose a fact in T. Suppose r is the corresponding
rule in P. Now let W be W r, and remove all rules
about a from T, and delete a in the bodies of all other
rules in T\

3. Go back to Step 2 until T is empty.
It is clear that W is tight and S is one of its stable models.
Thus P is inherently tight on S.

Theorem 1 Let P be a normal logic program, and S a set of
atoms. Then S is a stable model of P if and only if S is a
model of the completion of P and P is inherently tight on S.

Proof: : By Proposition 2 and the fact that a stable model
is also a model of a program.

: Since S be a model of the completion of P, so S is
closed under P. Since P is inherently tight on 5, there
is a Q P such that S is a stable model of Q and Q is
tight on S. Thus S is supported by Q, hence also supported
by P. Now S is supported by and closed under p thus a
stable model of P (by a theorem in [Babovich et al, 2000]). ■

We say that a program is inherently tight if it is inherently
tight on all models of its completion. Clearly, a program that
is tight on all its completion models is inherently tight. By
Theorem 1, if all models of its completion are also its stable
model, then the program is inherently tight, and vice versa.

We now give a translation from an arbitrary logic progiam
to one that is inherently tight. In the following, a set S of
atoms in a program P is called a strongly connected com
ponent (SCC) if there is a path in Gp from u to v for any

, and S is not a subset of any other such set, where

Gp is the dependency graph of P.
Algorithm 1 Let P be a normal logic program, the following
algorithm transforms it to an inherently tight program Q.
Let Q be empty initially.

1. For any rule of the form

In these rules, and variable X will be instan
tiated to all atoms a if a and a are in the same SCC;

2. If is a constraint, add rule r it into Q.

Intuitively, if a set M is a stable model of Q, then
iff and the rule r in P Contributes' to the calculation
of COIIS(QM)* meaning that rule r is actually used to derive
a. right(u, v) is used to record that atom u is used to prove
v and this is needed to prevent loops. The following example
illustrates the idea.

Example 1 Consider the program
. It has two completion models {a, 6}

and , but only the first one is a stable model. For this
program, there are two SCCs: . Algorithm J
transforms it into the following program Q:

The completion of the program contains the following equiv
alences
Thus it entails So there is only one
model of the completion where a and b are true and c is false,
which is also the only stable model of Q. Notice that in the
stable model of P, a is established by the second rule about
it. Correspondingly, in the stable model of Q, a2 is true while
a\ is not, andright(a, b) is true while right(b, a) is not (a is
established first, and then b is derived from a).

Theorem 2 For any normal logic program P, the program
Q output by Algorithm 1 is inherently tight. Furthermore P
and Q are equivalent on Atom(P), that is, for any subset S
of Atoui(P), S is a stable model of P iff there is exactly one
stable model Sf ofQ such that such that Atom(P).

Proof: We show only that Q is inherently tight. The second
part of the theorem is easier.

We only need to prove that all models of Comp(Q) are its
stable models. Let TV be a model of the completion of Q. We
show that TV satisfies every loop formula of Q, thus it must
be a stable model of Q (Theorem 1 in [Lin and Zhao, 2002])
Suppose L is a positive loop in Q. According to Algorithm 1,
either L i s a loop that does not contain any atom of the form
right or L is a set of atoms of the form right(u, v).

If L is a loop that does not contain any atom of the form
right , suppose v\, • • •, va are all atoms in L. L has
even number of atoms. Atoms in Atom(P) and newly added
atoms occur along the loop alternatively. Suppose the loop is:

where are newly added atoms
and X{ are atoms in Atom(P) If all
s) are in N, it is known that right are in N by rule
25. Further considering rule 26, we have right
N for some /, thus rule 23 can not be satisfied for some x[

NONMONOTONIC REASONING 857

in the loop. So not all atoms in the loop are in N. Now that
TV is a model of the completion, so the loop formula [Lin and
Zhao, 2002] for loop L is satisfied.
• If L is a loop and it contains a set of atoms
right(ai,a>2), right(a2,az), • •, right{av,a1). Sup-
pose right (a, b) is an atom in L and it is deduced by the
rule right(a, b) blyright(a1 c). Suppose there is a rule r
such that Pos(r) L — if Dody(r) is satisfied by TV, the
loop formula of L is satisfied. If there is no such a r, then
the rule right (a, b) <— buright(a, c) must be satisfied. Thus
bi TV. But there is only one rule about bi which requires
right for some for it to be applicable.
However from our assumption that L C TV, and L is a loop,
it must be the case that right for all
This is a contradiction, thus there must be an r as above.

Algorithm 1 effectively provides yet another reduction of
answer set semantics to SAT by calculating the completion
of the translated program. Compared with the mapping in
fBen-Eliyahu and Dechter, 1996], which always adds n2 ex
tra atoms and n3 extra rules, the number of extra atoms and
rules needed for our transformation depends on the number
of rules whose heads and some of positive literals in their
bodies belong to the same SCC. In the worst case, it needs

extra atoms and extra rules, where n is
the number of atoms and m the number of rules in the input
program. Usually, m is a lot less than n2. For instance, for
Niemelii's encoding of the HC problem, given a graph with A:
vertices, there are at most atoms and rules.

One interesting feature of Algorithm 1 is that it is modular
w.r.t. new facts. That is, if P' is a set of facts, then for any
program P, the program returned by the algorithm on
P' is the union of the programs returned by it on P and P'.
This feature wil l be handy when we extend the algorithm to
programs with variables as the instantiation of a program with
variables can be thought of as the union of the program and a
set of ground facts.

We have implemented the algorithm and tried it on
Niemelii's encoding of the HC problem, and found that for
SMODELS, the translated program is still better than the
original one on randomly generated graphs. But on other
types of graphs, the translated program is a lot worse. But
for ASSAT, the translated program was slower even on ran
domly generated programs. Apparently, being (inherently)
tight does not always guarantee better performance even for
SAT-based stable model generators.

5 Conclusions and future work
We have proposed a new solution to the Hamiltonian Circuit
problem. For any given graph, the solution yields a program
that is tight on every model of its completion. Compared with
Niemela's encoding of the same problem, our new encod
ing performs better on both randomly generated graphs and
complete graphs, but is slightly worse on a set of hand-coded
graphs. While these results hold for both SMODELS, which
is a specialized stable model generator, and ASSAT, which
makes use of SAT solver Chaff2, the performance gain seems
greater for ASSAT than for SMODELS.

We also defined a notion of inherent tightness that captures
a sufficient and necessary condition for a program completion
model to be its stable model, and proposed an algorithm for
translating an arbitrary logic program into an inherently tight
one, which provides a reduction of stable model semantics to
completion semantics and SAT.

In terms of future work, we are interested in finding out
more about the relationships between stable model semantics
and completion semantics, especially the kinds of features of
an inherently tight logic program that would be particularly
good for SAT-based stable model generators like ASSAT.

Acknowledgements
We thank Yuting Zhao for useful discussions related to the
topics of this paper, especially for his helps in using ASSAT,
and for providing some experimental data on ASSAT.

This work was supported in part by the Research Grants
Council of Hong Kong under Competitive Earmarked Re
search Grant HKUST6205/02E.

References
[Apt etal,] K. R. Apt, H. A. Blair, and A. Walker. In Jack

Minker, editor, Foundations of deductive databases and
logic programming, pages 89-148.

[Babovichef a/., 2000] Y. Babovich, E. Erdem, and V. Lif-
schitz. Fages' theorem and answer set programming. In
NMR-2000, 2000.

[Ben-Eliyahu and Dechter, 1996] R. Ben-Eliyahu and
R. Dechter. Propositional semantics for disjunctive
logic programs. Annals of Mathematics and Artificial
Intelligence, 12:53-87, 1996.

[Clark,] K. L. Clark. In H Gallaire and J. Minker, editors,
Logics and Databases, pages 293-322.

[Fages, 1994] F. Fages. Consistency of dark\s completion
and existence of stable models. In Journal of Methods of
Logic in Computer Science, volume 1, pages 51-60, 1994.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
ICLP'88, August 1988.

[Huang etal, 2002] G.-S. Huang, X. Jia, C.-J. Liau, and J.-
H. You. Two-literal logic programs and satisfiability rep
resentation of stable models: A comparison. In Proc. 15th
Canadian Conference on AI, LNCS, Springer, 2002.

iLifschitz, 1996] V. Lifschitz. Foundations of logic progrm-
ming. In Priciples of Knowledge Representation, 1996.

[Lin and Zhao, 2002] F. Lin and Y. Zhao. ASSAT: Com
puting answer sets of a logic program by sat solvers. In
AA4/'02,2OO2.

[Niemela, 1999] I. Niemela. Logic programs with stable
model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-
4):241-273,1999.

[Simons, 2003] R Simons. Smodels: a system for computing
the stable models of logic programs, version 2.27, 2003.

858 NONMONOTONIC REASONING

