
An Efficient Branch-and-Bound Algorithm Based on
MaxSAT for the Maximum Clique Problem

Chu-Min Li
Huazhong University of Science and Technology,

Wuhan, China
Université de Picardie Jules Verne, Amiens, France

http://www.laria.u-picardie.fr/˜cli/
chu-min.li@u-picardie.fr

Zhe Quan
Université de Picardie Jules Verne, Amiens, France

quanzhe@gmail.com

Abstract

State-of-the-art branch-and-bound algorithms for the maxi-
mum clique problem (Maxclique) frequently use an upper
bound based on a partition P of a graph into independent sets
for a maximum clique of the graph, which cannot be very
tight for imperfect graphs. In this paper we propose a new
encoding from Maxclique into MaxSAT and use MaxSAT
technology to improve the upper bound based on the partition
P . In this way, the strength of specific algorithms for Max-
clique in partitioning a graph and the strength of MaxSAT
technology in propositional reasoning are naturally combined
to solve Maxclique. Experimental results show that the ap-
proach is very effective on hard random graphs and on DI-
MACS Maxclique benchmarks, and allows to close an open
DIMACS problem.

Keywords: Branch-and-Bound, Maxclique, MaxSAT

Introduction

Consider an undirected graph G=(V , E), where V is a set of
n vertices {v1, v2, ..., vn} and E is a set of m edges. Edge
(vi, vj) with i 6= j is said to connect vertices vi and vj . A
clique of G is a subset C of V such that every two vertices in
C are connected by an edge. The maximum clique problem
(Maxclique for short) consists in finding a clique of G of the
largest cardinality ω(G).

An independent set of G is a subset I of V such that no
two vertices in I are connected. Given G, the Graph Col-
oring Problem (GCP) asks to find the minimum number of
colors (i.e., the chromatic number χ(G)) necessary to color
the vertices of G such that no two connected vertices share
the same color. Solving GCP is equivalent to partitioning
G into a minimum number of independent sets, because all
vertices sharing the same color in G constitute an indepen-
dent set. We have χ(G)≥ω(G), since each vertex in a clique
should be assigned a different color. A graph G is perfect if
χ(G′)=ω(G′) for any induced subgraph G′ of G.

Maxclique is a very important NP-hard combinatorial
problem, because it appears in many real-world applications.
A huge amount of effort has been devoted to solve it. Pardo-
los and Xu (1994) gave a survey of the early intensive work
on Maxclique. In the literature, we mainly distinguish two
types of algorithms for Maxclique: approximation methods

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

including stochastic local search algorithms, e.g. (Pullan
& Hoos 2006), and exact algorithms including branch-and-
bound algorithms, e.g. (Tomita & Kameda 2007; Konc &
Janezic 2007; Ostergard 2002; Carraghan & Pardalos 1990;
Fahle 2002; Regin 2003). Approximation algorithms are
able to solve large and hard Maxclique problems but cannot
guarantee the optimality of their solutions. Exact algorithms
guarantee the optimality of the solutions they find. In this
paper, we focus on branch-and-bound algorithms for Max-
clique.

State-of-the-art branch-and-bound algorithms for Max-
clique frequently use a heuristic solution to GCP as an up-
per bound. There are two drawbacks in this approach: (i)
the number of independent sets in a partition of G generally
is not minimum, since GCP itself is NP-hard; (ii) even if
the partition is minimum, there can be a large difference be-
tween χ(G) and ω(G) when G is not perfect, so that χ(G)
is not a tight upper bound of ω(G). The two drawbacks
might probably explain the stagnation of the research on ex-
act algorithms for Maxclique. So, tighter upper bounds are
needed in branch-and-bound algorithms for Maxclique.

There has recently been considerable progress in MaxSAT
solving (see (Li & Manyà 2009) for a survey). Given a set of
Boolean variables {x1,x2,...,xn}, a literal l is a variable xi

or its negation x̄i, a clause is a logical or of literals. A CNF
formula φ is a set of clauses. The MaxSAT problem asks
to find an assignment of truth values (0 or 1) to the Boolean
variables to maximize the number of satisfied clauses in φ.
Maxclique can be encoded into MaxSAT and then solved
using a MaxSAT solver. Unfortunately, MaxSAT solvers are
not competitive to solve Maxclique, because their reasoning
is not guided by the structural properties of the graph.

In this paper, we show that MaxSAT technology devel-
oped for MaxSAT solvers can be used to improve upper
bounds in specific branch-and-bound algorithms for Max-
clique. We first present some preliminaries and a ba-
sic branch-and-bound algorithm for Maxclique called Max-
CLQ, before reviewing some previous successful upper
bounds for Maxclique. Then we propose a new encod-
ing from Maxclique into MaxSAT, which allows us to use
MaxSAT technology to improve previous upper bounds for
Maxclique. We then study the behaviour of our approach in
MaxCLQ and compare MaxCLQ with the best state-of-the-
art exact algorithms on random graphs and on the widely

128

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

used DIMACS Maxclique benchmark1. The experimental
results show that MaxCLQ is very efficient thanks to the in-
tegrated MaxSAT technology and, to our best knowledge, is
able to solve an open DIMACS problem for the first time.

Preliminaries

A clique C of a graph G=(V , E) is maximum if no clique of
larger cardinality exists in G. G can have several maximum
cliques. Let V ′ be a subset of V , the subgraph G′ of G
induced by V ′ is defined as G′=(V ′, E′), where E′={(vi,
vj) ∈ E | vi, vj ∈ V ′}. Given a vertex v of G, the set of
neighbor vertices of v is denoted by Γ(v)={v′|(v, v′) ∈ E}.
The cardinality |Γ(v)| of Γ(v) is called the degree of v. Gv

denotes the subgraph induced by Γ(v), and G\v denotes the
subgraph induced by V \{v}. G\v is obtained by removing
v and all edges connecting v from G. The density of a graph
of n vertices and m edges is computed as 2m/(n(n− 1)).

Given a MaxSAT problem φ, an assignment of truth val-
ues to Boolean variables satisfies a positive literal x if x=1,
satisfies a negative literal x̄ if x=0, satisfies a clause if at
least one literal in the clause is satisfied. We specially distin-
guish unit clauses which contain only one literal, and empty
clauses which do not contain any literal and cannot be satis-
fied. The MaxSAT problem φ is said to be partial, if some
clauses of φ are hard, i.e., they should be satisfied in every
solution, and the rest of clauses are soft and can be unsatis-
fied in a solution. A partial MaxSAT problem asks to find an
assignment satisfying all the hard clauses and maximizing
the number of satisfied soft clauses.

The usual way to encode a Maxclique problem into a
MaxSAT problem is to introduce a Boolean variable x for
each vertex v of G, with the meaning that x=1 if and only
if v is in the maximum clique. Then a hard clause x̄i ∨ x̄j

is added for every pair of vertices vi and vj which are not
connected, meaning that vi and vj cannot be in the same
clique. It is clear that every assignment satisfying all the
hard clauses gives a clique. Finally, a soft unit clause x is
added for every vertex v. Maximizing the number of satis-
fied soft clauses while satisfying all the hard clauses gives a
maximum clique.

For example, the Maxclique instance in Figure 1 can
be encoded as a MaxSAT instance consisting of the soft
clauses: {x1, x2, x3, x4, x5, x6}, and the hard clauses:
{x̄1 ∨ x̄4, x̄1 ∨ x̄5, x̄2 ∨ x̄3, x̄2 ∨ x̄5, x̄3 ∨ x̄4, x̄1 ∨ x̄6,
x̄2 ∨ x̄6, x̄4 ∨ x̄6, x̄5 ∨ x̄6}.

v1

v2 v3

v4 v5

v6

Figure 1: A simple imperfect graph (χ(G)=3 and ω(G)=2)

1available at http://cs.hbg.psu.edu/txn131/clique.html

Algorithm 1: MaxCLQ(G, C, LB), a branch and bound
algorithm for Maxclique

Input: A graph G=(V , E), a clique C, and the
cardinality LB of the largest clique found so far

Output: C∪C′, where C′ is a maximum clique of G, if
|C∪C′|>LB, ∅ otherwise

begin1

if |V |=0 then return C;2

UB ← overestimation(G)+|C|;3

if LB ≥ UB then return ∅;4

select a vertex v from G of the minimum degree;5

C1 ←MaxCLQ(Gv, C∪{v}, LB);6

if |C1| > LB then LB← |C1| ;7

C2 ←MaxCLQ(G\v, C, LB);8

if |C1| ≥ |C2| then return C1; else return C2;9

end10

A Basic Branch-and-Bound Maxclique Solver

Algorithm 1 shows the pseudo-code of a branch-and-bound
algorithm for Maxclique, inspired by the branch-and-bound
algorithm MaxSatz for MaxSAT (Li et al. 2007). We il-
lustrate the principle of this algorithm using the graph G in
Figure 1. Initially C=∅ and LB=0, and MaxCLQ(G, ∅, 0)
returns a maximum clique ({v3, v6}) of G as follows.

In line 3, the function overestimation(G) gives an upper
bound for a maximum clique in G which is clearly larger
than 0. Then MaxCLQ chooses v6 as the branching vertex
(line 5), since it is of the minimum degree, so that all cliques
of G are implicitly divided into two sets: the set of cliques
containing v6 and the set of cliques not containing v6. The
first recursive call (line 6) MaxCLQ(Gv6

, {v6}, 0) returns a
clique ({v3, v6}) containing v6, where Gv6

=({v3}, ∅).
Then in line 7, the lower bound LB becomes 2. The

second recursive call MaxCLQ(G\v6, ∅, 2) tries to find a
clique not containing v6 and larger than 2 in G\v6 (line 8),
where G\v6 is the cycle consisting of {v1,v2,v3,v4,v5}. If
overestimation(G\v6) uses a coloring process and returns
an upper bound 3 (recall that χ(G\v6)=3) for a maximum
clique in G\v6, MaxCLQ(G\v6, ∅, 2) has to make two fur-
ther recursive calls by choosing a branching vertex, e.g. v1:
MaxCLQ((G\v6)v1

, {v1}, 2) and MaxCLQ((G\v6)\v1, ∅,
2). The execution of both calls returns ∅ (do it to see this).
So, MaxCLQ(G\v6, ∅, 2) returns ∅ in line 9. However, if
overestimation(G\v6) uses the approach proposed in this pa-
per, it will return an upper bound 2, so that UB=LB and
MaxCLQ(G\v6, ∅, 2) directly returns ∅ (line 4) without fur-
ther recursive calls, since UB=LB means that a clique of
larger cardinality cannot be found.

Finally, MaxCLQ(G, ∅, 0) returns C1={v3, v6} in line 9.

Review of Previous Upper Bounds

Branch-and-bound algorithms for Maxclique frequently use
heuristic solutions of GCP that can be obtained in reasonable
time as their upper bound, based on the following property:

Proposition 1 Let ω(G) denote the cardinality of a maxi-
mum clique of the graph G. If G can be partitioned into k

129

independent sets, then ω(G) ≤ k.

As a preprocessing, Algorithm Cliquer (Ostergard 2002)
partitions G by determining an independent set at a time. As
long as there are vertices that can be added into the inde-
pendent set, one of these vertices with the largest degree is
added. Then Cliquer constructs a maximum clique by incre-
mentally considering vertices in the inverse order in which
the vertices are added into independent sets, the upper bound
for the largest cliques containing a certain vertex is quickly
determined as a by-product.

Falhe (2002) improves the algorithm of Carraghan
and Pardalos (1990), by using the constructive heuristic
DSATUR to color vertices one by one, and by partitioning in
parallel the graph into independent sets. As vertices are col-
ored or inserted into an independent set in decreasing and
increasing order of their degree respectively, four heuristic
solutions of GCP are obtained, and the best one is used as
the upper bound.

Regin (2003) uses an upper bound based on a matching
algorithm. A matching, which corresponds to a set of inde-
pendent sets of size 2 here, is computed by traversing the
vertices of a graph and considering that an edge exists if two
vertices are not connected.

MCQ (Tomita & Seki 2003) colors vertices in a predeter-
mined order. Suppose that the current independent sets are
S1, S2, ..., Sk (in this order, k is 0 at the beginning of the col-
oring process), MCQ inserts the current first vertex v into the
first Si such that v is non-connected to all vertices already in
Si. If such a Si does not exist, a new independent set Sk+1

is opened and v is inserted here. After all vertices are parti-
tioned into independent sets, they are reordered according to
their independent set, vertices in Si coming before vertices
in Sj if i < j. This coloring process is executed for Gv after
each branching on the vertex v. The predetermined order of
vertices in Gv is inherited from G. MCR (Tomita & Kameda
2007) improves MCQ with a better initial order of vertices
in the initial input graph, but uses the same coloring process
to compute the upper bound.

MaxCliqueDyn (Konc & Janezic 2007) is also improved
from MCQ. While MCQ (as well as MCR) only computes
the degree of vertices at the root of the search tree for the
initial input graph, MaxCliqueDyn dynamically recomputes
the degree of vertices at some nodes near the root of the
search tree chosen using a parameter, and re-orders the ver-
tices in the decreasing order of their degree before color-
ing these vertices. The dynamic degree computation near
the root of the search tree makes MaxCliqueDyn faster than
MCQ for random graphs when their density is between
0.7–0.95, but slower than MCQ when the graph density is
smaller than 0.7.

New Encodings from Maxclique into MaxSAT

Definition 1 Let G be a graph partitioned into independent
sets, the independent set based MaxSAT encoding of Max-
clique is defined as follows: (1) each vertex v in G is repre-
sented by a Boolean variable x, (2) a hard clause x̄i ∨ x̄j is
added for each pair of non-connected vertices (vi, vj), and
(3) a soft clause is added for each independent set which is

a logical or of the variables representing the vertices in the
independent set.

It is easy to see that the usual encoding from Maxclique
into MaxSAT presented in Section preliminaries is a par-
ticular case of Definition 1, in which each independent set
contains only one vertex.

For example, the graph in Figure 1 can be partitioned into
three independent sets {v1, v4, v6}, {v2, v3}, {v5}. There-
fore, the independent set based MaxSAT encoding consists
of the soft clauses: {x1 ∨ x4 ∨ x6, x2 ∨ x3, x5}, and the
hard clauses: {x̄1 ∨ x̄4, x̄1 ∨ x̄5, x̄2 ∨ x̄3, x̄2 ∨ x̄5, x̄3 ∨ x̄4,
x̄1 ∨ x̄6, x̄2 ∨ x̄6, x̄4 ∨ x̄6, x̄5 ∨ x̄6}.

The hard clauses oblige that at most one literal can be sat-
isfied in a soft clause. Given an assignment satisfying all
the hard clauses, a satisfied soft clause has exactly one sat-
isfied literal because of the hard clauses. The corresponding
independent set has one vertex in the clique given by the
assignment. So, we have

Proposition 2 Let φ be an independent set based MaxSAT
encoding for a graph G, the set of variables evaluated to
true in any optimal assignment of φ give a maximum clique
of G.

Different partitions of G into independent sets produce
different MaxSAT instances. Table 1 compares three en-
codings on random graphs of 200 vertices and on some DI-
MACS graphs. The Max encoding is based on a partition
computed using the coloring algorithm of MCQ to insert
vertices one by one into an independent set in the decreas-
ing order of their degree (i.e. vertices with the maximum
degree are inserted first), Min is similar to Max except that
vertices are inserted in the increasing order of their degree
(i.e. vertices with the minimum degree are inserted first).
We report, for each encoding, the number of independent
sets in the graph, and the time needed to find a maximum
clique by two state-of-the-art MaxSAT solvers MaxSatz (Li
et al. 2007) and Minimaxsat (Heras et al. 2008). At each
density of random graphs, 50 graphs are generated and en-
coded into MaxSAT. The average runtime and the average
number of independent sets k are reported, k being also the
number of soft clauses in the encoding. For both MaxSAT
solvers, Max is the best performing encoding, the number
of soft clauses being the smallest. We will use this encoding
to apply MaxSAT technology in the next section.

Using MaxSAT Technology to Improve the

Upper Bound for Maxclique

Given a partial MaxSAT instance, a branch-and-bound
MaxSAT solver should find an assignment that minimizes
the number of unsatisfied soft clauses and satisfies all the
hard clauses. For this purpose, the solver should underesti-
mate, at a search tree node, the number of soft clauses that
will be unsatisfied by any complete assignment extending
the current partial assignment. An approach proposed in (Li
et al. 2005) and proved very powerful in MaxSatz and Min-
imaxsat consists in detecting disjoint inconsistent subsets of
soft clauses. A subset of soft clauses is inconsistent if the
subset, in conjunction with the set of hard clauses, allows to

130

Table 1: Run time [sec.] of Maxsatz (version 2009, MSZ in the
table) and Minimaxsat (Mini in the table) on a Macpro 2.8 Ghz with
4Gb of memory for different MaxSAT encodings of Maxclique, k
is the number of soft clauses in an encoding

Graph usual Min Max

name density k MSZ Mini k MSZ Mini k MSZ Mini

200 0.40 200 2.11 2.25 30.6 1.31 0.80 27.3 1.10 0.76

200 0.60 200 36.8 18.3 45.4 11.2 7.68 40.8 7.22 7.27

200 0.80 200 9691 576.3 67.4 265.7 278.5 61.1 117.8 269.2

brock200 1 0.74 200 1344 156.7 60 103.6 100.4 56 52.9 67.5

brock200 2 0.50 200 6.72 4.36 36 2.58 2.09 33 2.28 1.79

brock200 3 0.61 200 45.3 13.7 45 9.44 7.95 43 7.48 6.88

keller4 0.65 171 40.5 34.0 34 6.16 8.81 32 2.89 7.39

p hat300-1 0.24 300 3.09 2.67 33 2.51 1.12 22 1.81 0.96

p hat300-2 0.49 300 105.3 7.54 69 69.7 3.64 46 3.06 2.72

p hat300-3 0.74 300 >3h 452.1 95 2326 163.5 72 185.3 129.2

derive a contradiction (i.e. an empty clause). The number of
disjoint inconsistent subsets of soft clauses is a lower bound
of the number of soft clauses unsatisfied by any complete
assignment extending the current partial assignment and sat-
isfying all the hard clauses. Observe that there is at least
one unsatisfied soft clause in each inconsistent subset of soft
clauses.

This approach, called UP, detects disjoint inconsistent
subsets of clauses using propagation of unit clauses (unit
propagation) as follows.

Given a CNF formula φ, UP stores all the unit clauses of
φ in a queue Q, and applies unit propagation in a copy ϕ
of φ, by repeatedly taking a unit clause l from Q to satisfy
it (i.e. l=1). The satisfaction of l means that all clauses
containing l are satisfied and removed from ϕ, and that l̄
is removed from the other clauses, which may produce new
unit clauses and empty clauses in ϕ (a clause becomes empty
if it contained only l̄). New unit clauses are stored at the
end of Q. The unit propagation continues until there is no
more unit clause in Q or an empty clause is produced. In the
latter case, the clauses used in the propagation to produce
the empty clause constitute an inconsistent subset of clauses.
Once an inconsistent subset of clauses is identified, these
clauses are removed from φ. UP continues to detect other
inconsistent subsets of clauses in this way as long as there
are unit clauses in φ. UP is enhanced in (Li et al. 2006)
by failed literal detection. A literal l is failed if when it is
satisfied and l̄ removed from all clauses containing it, unit
propagation produces an empty clause. If both l and l̄ are
failed literals, the union of the clauses used to produce the
two empty clauses constitutes an inconsistent subset.

In a partial MaxSAT case, after an inconsistent subset of
clauses is obtained using the above approaches, the hard
clauses in the subset are not removed from φ and can be used
to derive other contradictions, but the soft clauses in the sub-
set are removed from φ. In other words, hard clauses can be-
long to several inconsistent subsets of clauses, because they
have to be satisfied anyway. However, a soft clause cannot
belong to two different inconsistent subsets of clauses.

We adapt failed literal detection to detect inconsistent sub-
sets of soft clauses in a partial MaxSAT instance encoding
a MaxClique instance. We do not detect whether a negative
literal is failed or not, because a variable can have many neg-

ative occurrences but only one positive occurrence (in a soft
clause). Instead, we detect if every literal in a soft clause is
failed. In fact, given a soft clause c=x1 ∨ x2 ∨ ... ∨ xt, if
every xi (1 ≤ i ≤ t) is a failed literal, the union of all the
soft clauses used to produce an empty clause for every xi,
together with c, constitute an inconsistent subset.

For example, in the independent set based MaxSAT en-
coding of the graph in Figure 1 presented in the last section,
there are three soft clauses {x1∨x4∨x6, x2∨x3, x5} corre-
sponding to the three independent sets in an optimal partition
of the graph. The hard clauses are: {x̄1∨x̄4, x̄1∨x̄5, x̄2∨x̄3,
x̄2 ∨ x̄5, x̄3 ∨ x̄4, x̄1 ∨ x̄6, x̄2 ∨ x̄6, x̄4 ∨ x̄6, x̄5 ∨ x̄6}. The
initial upper bound for a maximum clique is 3, which is the
tightest upper bound that can be obtained by using a color-
ing process. Let us see that x5 is a failed literal, and allows
us to improve the upper bound. Set x5=1 to satisfy the third
soft clause, x̄5 is removed from the hard clauses x̄1 ∨ x̄5,
x̄2 ∨ x̄5, and x̄5 ∨ x̄6, the three new unit clauses imply that
x1=0, x2=0 and x6=0, then x1 and x6 are removed from the
first soft clause, and x2 from the second, which become unit.
So, x4 and x3 should be assigned 1, making the hard clause
x̄3 ∨ x̄4 empty. So, x5 is a failed literal and the three soft
clauses used in the propagation to produce the empty clause
constitute an inconsistent subset, because this subset, in con-
junction with hard clauses, allows to derive a contradiction.
Since at most two soft clauses can be satisfied by any assign-
ment satisfying all the hard clauses, we improve the upper
bound for a maximum clique from 3 to 2.

In general, we have

Proposition 3 Let ω(G) denote the cardinality of a maxi-
mum clique of a graph G. If G can be partitioned into k
independent sets, and there are s disjoint inconsistent sub-
sets of soft clauses in the independent set based MaxSAT
encoding, then ω(G) ≤ k − s.

Based on Proposition 3, Function overestimation(G) pre-
sented in Algorithm 2 first partitions G into independent
sets in the same way as MCQ, except that the degree of
each vertex in G is exact, so that the quality of the par-
tition is presumably better (i.e., the partition presumably
contains fewer independent sets), since vertices more con-
strained (i.e. with more neighbors) are inserted first into in-
dependent sets. Then the function encodes the graph into a
MaxSAT instance based on the partition, which corresponds
to the Max encoding presented in the last section, and uses
effective MaxSAT technology to improve the upper bound
given by the partition.

Using overestimation(G), the essential difference of Max-
CLQ with a MaxSAT solver for Maxclique is as follows.
While a MaxSAT solver uses a fixed MaxSAT encoding and
never re-partitions the subgraphs during search, MaxCLQ
dynamically partitions a subgraph and encodes the subgraph
into MaxSAT to improve the upper bound given by the par-
tition at every node of the search tree, so that the strength of
the specific algorithms for Maxclique in partitioning a graph
and the strength of the MaxSAT technology in propositional
reasoning are naturally combined in MaxCLQ to solve Max-
clique.

131

Algorithm 2: overestimation(G), an overestimation of
the maximum cardinality of a clique of G

Input: A graph G=(V , E)
Output: upper bound for a maximum clique of G
begin1

P ← ∅;2

while G is not empty do3

v← the vertex of G of the maximum degree;4

remove v from G;5

if there is an independent set S in P in which v6

is not connected to any vertex then
insert v into S;7

else8

create a new independent set S = {v};9

P ← P ∪ {S};10

Encode G into a MaxSAT formula φ based on P ;11

s← 0;12

while φ contains a non-tested soft clause do13

c← the soft clause of φ of the minimum size14

that is not tested;
mark c as tested;15

if every literal l in c is a failed literal then16

remove c and all the soft clauses making the17

literals of c failed from φ;
s← s+1;18

return |P | – s;19

end20

Comparative Evaluation of MaxCLQ

We compare the performance of MaxCLQ with MaxCLQ−,
which is identical to MaxCLQ except that it does not use
MaxSAT technology to improve the upper bound in Func-
tion overestimation(G) (i.e., the function always returns |P |
in MaxCLQ−), and the best exact algorithms for Maxclique
in our knowledge: Cliquer, Algorithm Regin, MCR, Max-
CliqueDyn (MCQdyn in short). The runtimes of MaxCLQ,
MaxCLQ−, Cliquer and MCQdyn are obtained on a Macpro
with 2.8Ghz intel Xeon processor and 4 Gb memory (pro-
duced in early 2008) with MAC OS X 10.5. We use the
last version of Cliquer released in 20082 and run it with its
default parameters. MCQdyn was obtained from one of its
authors (D. Janezic) in Jan. 2010 and run with the best pa-
rameter 0.025. The runtimes of MCR and Regin are normal-
ized from the reported runtimes as follows.

The runtimes of the benchmark program dfmax for DI-
MACS graphs r100.5, r200.5, r300.5, r400.5, and r500.5
on the Macpro are respectively 0.002, 0.033, 0.270,
1.639, 6.281. The corresponding runtimes reported for
the computer (Pentium4 2.20 GHz CPU with Linux)
running MCR are 0.00213, 0.0635, 0.562, 3.48, 13.3.
So, we divide the reported runtimes of MCR by 2.12
(=(13.3/6.281+3.48/1.639)/2, the average of the two largest
ratios). The runtimes of dfmax for r100.5-r500.5 of Regin’s
computer (Pentium4 mobile 2Ghz with 512 Mb of memory)

2available at http://users.tkk.fi/pat/cliquer.html

are not reported, but Regin’s computer is about 10% slower
than the computer running MCR, so we divide Regin’s re-
ported runtimes by 2.33. This normalization is based on
the way established in the Second DIMACS Implementation
Challenge for Cliques, Coloring, and Satisfiability, and is
also used in (Tomita & Kameda 2007) to compare MCR with
other algorithms. Regin (2003) normalizes the runtimes of
algorithms by comparing different computers.

Table 2 compares the real runtimes of MaxCLQ,
MaxCLQ−, Cliquer, and MCQdyn with the normalized run-
times of MCR for random graphs up to 500 vertices. Max-
CLQ, MaxCLQ−, Cliquer, and MCQdyn solve 50 graphs at
each point and the average runtime is reported. The graphs
of low densities (e.g. graphs of 150 vertices and density 0.7)
that are solved in less than 1 second by all the five algo-
rithms are excluded to save space. MaxCLQ is substantially
better than MaxCLQ− and the speed-up grows with density
when the number of vertices is fixed, and with the number of
vertices when the density is fixed. MCR is faster than Max-
CLQ for the relatively easy sparse graphs (density < 0.7),
because it does not recompute the vertex degree at search
tree nodes other than the root. However, MaxCLQ is sub-
stancially faster than MCR and other algorithms for graphs
of density≥ 0.7, and the speed-up also grows with the num-
ber of vertices and the graph density.

Table 2: Runtimes [sec] for random graphs. For Cliquer, MCQdyn
and MaxCLQ−, “-” means that an instance cannot be solved in 3
hours; for MCR, “-” means that the runtime is not available. The
runtimes of Regin for random graphs are not available. s is the
average upper bound improvement by MaxSAT, and Rate is the
success rate of MaxSAT technology in MaxCLQ to prune subtrees
(explained later), averaged for 50 graphs at each point.

n density Cliquer MCR MCQdyn MaxCLQ− MaxCLQ s Rate

150 0.80 3.49 0.36 0.32 0.64 0.16 2.85 0.85

150 0.90 433.3 3.59 1.74 2.69 0.25 4.15 0.87

150 0.95 1513 2.01 0.74 1.17 0.05 2.68 0.54

200 0.70 2.06 0.44 0.47 1.06 0.44 2.35 0.82

200 0.80 125.0 8.32 5.12 10.12 2.27 3.19 0.87

200 0.90 - 462.4 90.73 138.3 9.98 4.87 0.91

200 0.95 - - 81.4 121.9 2.40 6.10 0.90

300 0.60 3.27 0.87 1.02 2.32 1.49 2.18 0.74

300 0.70 112.1 14.57 12.12 28.25 10.29 2.81 0.82

300 0.80 - 844.3 423.8 805.9 158.3 3.39 0.88

300 0.90 - - - - 6695 5.52 0.92

500 0.50 7.08 2.13 2.87 6.87 6.25 2.17 0.60

500 0.60 176.7 37.71 38.84 107.9 54.27 2.70 0.74

500 0.70 - 1797 1496 3527 1147 2.95 0.83

Table 3 compares the real runtimes of MaxCLQ,
MaxCLQ−, Cliquer, and MCQdyn with the normalized run-
times of MCR and Regin on DIMACS Maxclique bench-
marks. In order to save space, we exclude the very easy
instances that are solved by all the six algorithms in less
than 2 seconds and the five open instances (MANN a81,
hamming10-4, johnson32-2-4, keller6, and p hat1500-3)
that no exact algorithm in our knowledge is able to solve.
Except 8 easy instances that MaxCLQ also solves quickly,
MaxCLQ is significantly faster than all the other algorithms,
especially for hard and dense graphs. Moreover, MaxCLQ
is able to close the open instance p hat1000-3.

132

Table 3: Runtimes [sec] for DIMACS benchmarks. “d” stands
for the density. For Cliquer, MCQdyn and MaxCLQ−, “-” means
that an instance cannot be solved in 24 hours, except the instances
keller5, p hat1500-2 and p hat1000-3 that cannot be solved in 5
days; for Regin and MCR, “-” means that the runtime is not avail-
able. s is the average upper bound improvement by MaxSAT, and
Rate is the success rate of MaxSAT technology in MaxCLQ to
prune subtrees (explained later).

name n d ω Cliquer Regin MCR MCQdyn MaxCLQ− MaxCLQ s Rate

brock200 1 200 0.74 21 6.37 4.60 1.13 0.96 2.28 0.67 2.66 0.86

brock400 1 400 0.75 27 22182 4867 1137 703.5 1447 370.84 2.92 0.86

brock400 2 400 0.75 29 5617 3395 465.10 309.0 664.9 178.70 2.86 0.86

brock400 3 400 0.75 31 1667 1922 766.51 565.0 971.3 290.06 2.81 0.85

brock400 4 400 0.75 33 247.7 2597 409.43 320.4 605.6 167.30 3.15 0.85

brock800 1 800 0.65 23 - - 10712 8821 22821 8815 2.92 0.80

brock800 2 800 0.65 24 - - 9679 8125 21001 7690 2.77 0.81

brock800 3 800 0.65 25 26014 - 6546 5565 13559 5285 2.73 0.80

brock800 4 800 0.65 26 6108 - 4561 4240 9625 3880 2.71 0.80

MANN a27 378 0.99 126 - 7.93 1.98 3.10 6.86 0.66 3.21 0.75

MANN a45 1035 0.996 345 - - 2931 2006 8965 255.67 6.30 0.91

hamming10-2 1024 0.99 512 0.19 0.45 0.16 2.26 69.54 7.92 0.34 0.07

keller5 776 0.75 27 - - - 31038 78505 9687 3.60 0.87

p hat300-3 300 0.74 36 496.6 17.47 7.45 4.91 9.79 2.07 3.07 0.85

p hat500-2 500 0.50 36 134.6 14.03 2.12 1.53 3.92 0.90 3.26 0.83

p hat500-3 500 0.75 50 - 5470 1256 349.4 634.4 55.95 4.56 0.91

p hat700-1 700 0.25 11 0.09 2.58 0.07 0.14 0.71 0.80 1.88 0.33

p hat700-2 700 0.50 44 15417 109.8 30.19 12.6 25.80 4.87 3.79 0.84

p hat700-3 700 0.75 62 - - - 6187 12178 1033 4.64 0.91

p hat1000-1 1000 0.24 10 1.11 11.93 0.35 0.58 2.84 2.53 1.21 0.77

p hat1000-2 1000 0.49 46 - 7230 1656 412.9 1038 146.54 4.21 0.89

p hat1000-3 1000 0.74 68 - - - - - 200760 5.45 0.93

p hat1500-1 1500 0.25 12 8.01 206.4 2.97 4.31 22.37 15.85 2.19 0.82

p hat1500-2 1500 0.51 65 - - - 61461 105909 8848 4.95 0.92

san1000 1000 0.50 15 0.08 44.12 3.35 0.74 1.56 1.46 1.67 0.61

san200 0.9 2 200 0.90 60 13.36 1.124 2.92 0.79 1.14 0.10 3.39 0.58

san200 0.9 3 200 0.90 44 503.4 78.41 0.11 3.43 5.80 0.22 4.86 0.82

san400 0.7 1 400 0.70 40 - 9.99 1.09 0.52 0.67 0.21 3.95 0.78

san400 0.7 2 400 0.70 30 3081 28.98 0.21 0.20 0.09 0.09 1.10 0.19

san400 0.7 3 400 0.70 22 4.47 117.3 2.12 2.04 2.67 0.75 2.66 0.83

san400 0.9 1 400 0.90 100 - 729.6 2.5 30.95 56.99 1.97 6.58 0.86

sanr200 0.7 200 0.70 18 1.88 1.845 0.37 0.39 0.86 0.38 2.40 0.80

sanr200 0.9 200 0.90 42 46593 64.41 204.72 51.57 80.51 5.72 5.07 0.91

sanr400 0.5 400 0.50 13 0.97 7.35 0.52 0.74 2.13 1.73 2.36 0.57

sanr400 0.7 400 0.70 21 2852 1347 237.26 177.8 429.25 141.48 2.52 0.85

In a search tree of MaxCLQ, let q denote the number of
nodes in which MaxSAT technology sucessfully decreases
the upper bound to the lower bound (i.e., |P |+|C|>LB,
but |P | – s+|C|≤LB) to prune the subtrees rooted at these
nodes, and let r denote the number of nodes in which
MaxSAT technology fails to decrease the upper bound to the
lower bound (i.e., |P | – s+|C|>LB). In Table 2 and Table 3,
in addition to runtimes, we report for MaxCLQ the average
improvement s of the upper bound in these (q+r) nodes due
to the MaxSAT technology, and the success rate q/(q+r) of
the MaxSAT technology to prune subtrees. The success rate
is quite high, especially for large and dense graphs (up to
93%), explaining the good performance of MaxCLQ.

Conclusion

We have proposed a new encoding from Maxclique into
MaxSAT based on a partition of a graph into independent

sets, each independent set being encoded into a soft clause.
The number of soft clauses is substantially smaller than in
the usual MaxSAT encoding of Maxclique. The new encod-
ing allows us to naturally integrate MaxSAT technology into
a branch-and-bound algorithm to improve the upper bound
based on the partition. Experimental results show that many
subtrees are pruned in this way and the resulting algorithm
MaxCLQ is very efficient, especially for hard instances, and
is able to close an open DIMACS instance.

We believe that using MaxSAT technology to improve the
upper bound for Maxclique is a very promising research di-
rection. In the future, we plan to integrate other effective
MaxSAT technology into MaxCLQ to further improve its
upper bound and to solve the harder Maxclique instances
such as those in the BHOSLIB benchmark3.

References
R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum
clique problem. Operations Research Letters 9(6): 375-382 (1990)

T. Fahle, Simple and fast: Improving a branch-and-bound algo-
rithm for maximum clique. In Proceedings of ESA-2002, pp. 485-
498, 2002.

F. Heras, J. Larrosa, and A. Oliveras, MiniMaxSAT: An efficient
weighted Max-SAT solver. Journal of Artificial Intelligence Re-
search, 31:1-32, 2008.

J. Konc, D. Janezic, An improved branch and bound algorithm for
the maximum clique problem, Communications in Mathematical
and in Computer Chemistry 58 (2007) pp. 569-590.

C. M. Li and F. Manyà, Max-sat, hard and soft constraints. In A.
Biere, H. van Maaren, and T. Walsh, editors, Handbook of Satisfi-
ability. Pages 613-631, IOS Press, 2009.

C. M. Li, F. Manyà, and J. Planes, New inference rules for Max-
SAT. Journal of Artificial Intelligence Research, 30:321-359, 2007.

C. M. Li, F. Manyà, and Jordi. Planes, Detecting disjoint incon-
sistent subformulas for computing lower bounds for max-sat, In
Proceedings of AAAI’06, pages 86-91. AAAI Press, 2006.

C. M. Li, F. Manyà and J. Planes, Exploiting unit propagation to
compute lower bounds in branch and bound MaxSAT solvers, In
proceedings of CP’05, LNCS 3709 Springer, 2005, pp 403-414.

P. R. J. Ostergard, A fast algorithm for the maximum clique prob-
lem, Discrete Applied Mathematics 120 (2002), 197-207.

P. M. Pardalos, J. Xue, The maximum clique problem. Journal of
Global Optimization 4: 301-328, 1994

W. Pullan, H. H. Hoos, Dynamic Local Search for the Maximum
Clique Problem. Journal of Artificial Intelligence Research, Vol.
25, pp. 159-185, 2006.

J.-C. Regin, Solving the maximum clique problem with constraint
programming. In Proceedings of CPAIOR’03, Springer, LNCS
2883, pp. 634-648, 2003.

E. Tomita, T. Kameda, An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments. J.
Glob Optim (2007) 37:95-111.

E. Tomita, T. Seki, An efficient branch-and-bound algorithm for
finding a maximum clique. In Proc. Discrete Mathematics and
Theoretical Computer Science. LNCS 2731, pp. 278-289 (2003).

3http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-
benchmarks.htm

133

