
Automatic Verification of Liveness Properties in the Situation Calculus

Jian Li and Yongmei Liu∗

Dept. of Computer Science,
Sun Yat-sen University, Guangzhou 510006, China

lijian77@mail3.sysu.edu.cn, ymliu@mail.sysu.edu.cn

Abstract

In dynamic systems, liveness properties concern whether
something good will eventually happen. Examples of liveness
properties are termination of programs and goal achievabil-
ity. In this paper, we consider the following theorem-proving
problem: given an action theory and a goal, check whether
the goal is achievable in every model of the action theory.
We make the assumption that there are finitely many non-
number objects. We propose to use mathematical induction
to address this problem: we identify a natural number feature
and prove by mathematical induction that for any values of
the feature, the goal is achievable. Both the basis and induc-
tion steps are verified using first-order theorem provers. We
propose a simple method to identify potential features which
are the number of objects satisfying a certain formula by gen-
erating small models of the action theory and calling a clas-
sical planner to achieve the goal. We also propose to regress
the goal via different actions and then verify whether the re-
sulting goals are achievable. We implemented the proposed
method and experimented with the blocks world domain and
a number of other domains from the literature. Experimental
results showed that most goals can be verified within a rea-
sonable amount of time.

Introduction
Two kinds of important properties for dynamic systems are
safety and liveness properties. Safety properties mean that
something bad will never happen. Examples of safety prop-
erties are state constraints and partial correctness of pro-
grams. On the other hand, liveness properties state that
something good will eventually happen. Examples of live-
ness properties are termination of programs and goal achiev-
ability. Model checking (Clarke et al. 1999) techniques and
tools can be efficiently used to verify whether a single dy-
namic system has certain safety or liveness properties. How-
ever, when it comes to verify if a class of possibly infinite
many dynamic systems with similar structures have certain
properties, theorem-proving techniques have to be used. A
class of dynamic systems with similar structures can be con-

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

veniently represented by basic action theories in the situa-
tion calculus (Reiter 2001).

There have been some works on automated verification
of safety properties in the situation calculus. For example,
Li et al. (2013) investigated automatic verification and dis-
covery of state constraints. Li and Liu (2015) and Mo et al.
(2016) explored automatic verification of partial correctness
of Golog programs via discovery of loop invariants.

There has been mainly one work on automated verifi-
cation of liveness properties in the situation calculus. Lin
(2008) proposed a method to verify if a goal is achievable in
a set of initial states under an action theory. They introduced
a notion of reduction between sets of states, and showed that
if the set of the initial states can be reduced to one of its
subsets, then the problem is equivalent to checking whether
the goal is achievable in every initial state of the subset.
However, their method depends on the restrictions that the
preconditions and effects of the actions can be specified by
quantifier-free formulas, and all the variables in the goal are
existentially quantified.

There are also works on automated verification of more
general temporal properties in the situation calculus. Claßen
and Lakemeyer (2008) proposed a method to verify tempo-
ral properties of nonterminating Golog programs based on
fixed-point computation and regression. Claßen (2018) re-
ported an implementation of this method. However, in the
experiments, each domain has a bounded number of objects.
De Giacomo et al. (2010) proposed a method to verify ATL-
like properties of situation calculus game structures. Kmiec
and Lespérance (2014) presented an evaluation-based imple-
mentation of this method for complete initial state theories.
De Giacomo et al. (2016) investigated bounded action theo-
ries: such a theory entails that, in every situation, the number
of object tuples in the extension of any fluent is bounded by
a given constant. They showed that the verification of a first-
order variant of µ-calculus is decidable for such theories.

In this paper, we consider the following theorem-proving
problem: given an action theory and a goal, check whether
the goal is achievable in every model of the action theory.
We make the assumption that there are finitely many non-
number objects. The motivation of our work is to simulate
humans to verify liveness. If humans are able to verify live-

ness for a class of possibly infinitely many dynamic systems,
most likely, inductive proof is used. Thus we propose to use
mathematical induction for liveness verification: we identify
a natural number feature and prove by mathematical induc-
tion that for any values of the feature, the goal is achievable.
Both the basis and induction steps are verified using first-
order theorem provers.

We propose a simple method to identify potential features.
First, we generate a pool of features of the form #x.φ(x),
meaning the number of objects x satisfying φ(x). Then we
generate a number of small models of the initial KB using
SMT solvers. Each small model together with the goal con-
stitutes a classical planning problem. We get a solution for
each planning problem using a classic planner such as the FF
planner. A feature is useful for a planning problem if most
actions in the solution make the values of the feature de-
crease. We consider a feature potential if it is useful for most
planning problems. We also propose to regress the goal via
different actions and then verify whether the resulting goals
are achievable.

To illustrate our main idea, let us consider the example
of verifying whether the goal clear(A) is reachable in any
initial state of blocks world, where A is a block constant.
As humans, we can easily verify this by induction on the
number of blocks above A, i.e., #x.above(x,A). For this
feature, the basis step involves verifying when there is no
block above A, A is clear; and the induction step involves
verifying when there is a block above A, an action can be
executed to reduce the number of blocks above A. Both ba-
sis and induction steps can be easily verified by first-order
theorem provers. We use the method described above to dis-
cover #x.above(x,A) as a potential feature.

We implemented a verification system based on the pro-
posed method and conducted a set of experiments on it. Ex-
perimental results showed that most goals can be verified
within a reasonable amount of time.

Preliminaries
In this section, we introduce the situation calculus and clas-
sical planning.

The situation calculus (Reiter 2001) is a many-sorted
first-order language suitable for describing dynamic worlds.
There are three disjoint sorts: action for actions, situation
for situations, and object for everything else. A situation cal-
culus language has the following components: a constant S0

denoting the initial situation; a binary function do(a, s) de-
noting the successor situation to s resulting from perform-
ing action a; a binary predicate Poss(a, s) meaning that ac-
tion a is possible in situation s; a binary predicate s v s′

meaning that situation s is a subhistory of situation s′; ac-
tion functions, e.g.,move(x, y); a finite number of relational
fluents, i.e., predicates taking a situation term as their last ar-
gument, e.g., ontable(x, s); and a finite number of situation-
independent predicates and functions. We ignore functional
fluents.

To formalize our assumption that there are finitely many
non-number objects, we introduce a sort nat for natural
numbers, and a function symbol µ of sort object → nat.

The intended interpretation of µ is a coding of objects into
natural numbers.

If a formula refers to a particular situation τ , we call it
uniform in τ . We use φ(s) to mean that formula φ is uniform
in s. When a formula φ is uniform in s, we often write its
situation-suppressed version, i.e., the formula resulting from
φ by removing the situation argument from every fluent. For
example, we write above(x,A) ∨ above(x,B) to mean the
formula above(x,A, s) ∨ above(x,B, s).

We use s ≤ s′ to represent that s v s′ and it is possible
to perform the actions from s to s′ one by one:

s ≤ s′ .= s v s′∧∀a, s∗.s v do(a, s∗) v s′ → Poss(a, s∗).

We use exec(s) to denote S0 ≤ s, meaning s is an exe-
cutable situation. For k ≥ 0, we define s ≤k s′, meaning
s ≤ s′ by at most k actions, as follows:
• s ≤0 s

′ .= s′ = s;
• s ≤k+1 s

′ .= s ≤k s
′∨

∃s′′, a.s ≤k s
′′ ∧ Poss(a, s′′) ∧ s′ = do(a, s′′).

In this paper, we use s ≤k s
′ for small k’s.

A particular domain of application where there are finitely
many non-number objects is specified by a finite model basic
action theory (FMBAT) of the following form:

D = Σ ∪ P ∪ C ∪ Dap ∪ Dss ∪ Duna ∪ DS0
∪ Dsc,where

1. Σ is the set of the foundational axioms for situations, in-
cluding do(a1, s1) = do(a2, s2)→ a1 = a2 ∧ s1 = s2.

2. P is the second-order axiomatization of Peano arithmetic.
3. C is the set of the following axioms:
• ∀x, y.µ(x) = µ(y)→ x = y;
• ∃n∀x.µ(x) ≤ n.
The above axioms state that the codings of different ob-
jects are different and there is a largest coding.

4. Dap is a set of action precondition axioms, one for
each action function A, of the form Poss(A(~x), s) ≡
ΠA(~x, s), where ΠA(~x, s) is uniform in s.

5. Dss is a set of successor state axioms (SSAs), one for
each relational fluent F , of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is uniform in s.

6. Duna is the set of unique names axioms for actions.
7. DS0 , the initial KB, is a set of sentences uniform in S0.
8. Dsc is a set of sentences of the form ∀s.exec(s)→ ψ(s),

where ψ is called a state constraint.
We use the following notation:

• D− = Dap ∪ Dss ∪ Duna ∪ DS0
∪

{do(a1, s1) = do(a2, s2)→ a1 = a2 ∧ s1 = s2};
• D−sc = {ψ | ∀s.exec(s)→ ψ(s) is in Dsc}.

Since the foundational axioms include a second-order in-
duction axiom for situations, reasoning in the situation cal-
culus is, in general, a second-order reasoning task. We use
|= to denote entailment in the situation calculus, and use
|=fo to denote classic first-order entailment. In this paper,
we use first-order theorem provers to check for first-order
entailments.

Example 1. In blocks world, an agent is only allowed to
perform two kinds of actions: mt(x) (move x to the ta-
ble, provided x is clear and not on table) and move(x, y)
(move block x to block y, provided x and y are clear).
There are four fluents: clear(x), ontable(x), on(x, y) and
above(x, y). We have the following axioms where free vari-
ables are implicitly universally quantified:
Action precondition axioms:
• Poss(mt(x), s) ≡ clear(x, s)∧¬ontable(x, s)
• Poss(move(x, y), s)≡clear(x, s)∧ clear(y, s)∧x 6= y

Successor state axioms:
• on(x, y, do(a, s)) ≡ a = move(x, y) ∨ on(x, y, s)∧

¬(∃z)a = move(x, z) ∧ a 6= mt(x)

• ontable(x, do(a, s)) ≡ a = mt(x)∨
ontable(x, s) ∧ ¬(∃y)a = move(x, y)

• above(x, y, do(a, s)) ≡ above(x, y, s)∧
¬(∃z)a = move(x, z) ∧ a 6= mt(x)∨
∃z.above(z, y, s)∧a = move(x, z)∨a = move(x, y)

• clear(x, do(a, s)) ≡ clear(x, s) ∧ ∀y.a 6= move(y, x)∨
∃y.on(y, x, s) ∧ (a = mt(y) ∨ ∃z.a = move(y, z))

State constraints (Cook and Liu 2003):
• on(x, y) ≡ above(x, y)∧

¬(∃z)(above(x, z) ∧ above(z, y));
• clear(x) ≡ ¬(∃y)on(y, x);
• ontable(x) ≡ ¬(∃y)on(x, y);
• ¬above(x, x);
• above(x, y) ∧ above(y, z)→ above(x, z);
• above(x, y) ∧ above(x, z)→

y = z ∨ above(y, z) ∨ above(z, y);
• above(y, x) ∧ above(z, x)→

y = z ∨ above(y, z) ∨ above(z, y);
• ontable(x) ∨ (∃y)above(x, y) ∧ ontable(y);
• clear(x) ∨ (∃y)above(y, x) ∧ clear(y);
• above(x, y)→ (∃z)on(x, z) ∨ (∃w)on(w, y)

An important computational mechanism for reasoning
about actions is regression. Here we define a one-step re-
gression operator, and state a simple form of the regression
theorem (Reiter 2001).
Definition 1. We use R(φ) to denote the formula obtained
from φ by replacing each fluent atom F (~t, do(α, σ)) with
ΦF (~t, α, σ) and each precondition atom Poss(A(~t), σ) with
ΠA(~t, σ), and further simplifying the result by using Duna.
Proposition 1. D |= φ ≡ R(φ).

A classical planning problem is a tuple P =
〈O, F,A, I,G〉 where O is a set of objects, F is a set of flu-
ents, A is a set of actions, I is an initial state and G is a goal
condition. Each action a ∈ A is a pair (pre(a), cond(a))
where pre(a) is the precondition, and cond(a) is a set of
conditional effects. Each conditional effect is a pair (C,E)
where C is the condition and E is the effect. Each of the
goal, preconditions, conditions and effects is a set of literals.
A literal is an atom p or its negation ¬p, which are comple-
ments to each other.

A state s can be treated as the set of literals holding in s.
Action a is applicable in state s if pre(a) ⊆ s, and the re-
sulting set of triggered effects, written eff (s, a), is the union
of E such that (C,E) ∈ cond(a) and C ⊆ s. The result
of applying a in s is a new state θ(s, a) = s/¬eff (s, a) ∪
eff (s, a), i.e., the state obtained from s as follows: for each
literal l ∈ eff (s, a), first delete from s the complement of l
and then add l.

A solution for a planning problem P is an action sequence
π = 〈a1, ..., an〉 that induces a state sequence 〈s0, s1, ..., sn〉
such that s0 = I , G ⊆ sn, and for each i such that 1 ≤ i ≤
n, ai is applicable in si−1 and si = θ(si−1, ai).

Main Framework
In this section, we introduce the main framework of our ver-
ification method.

We first formally define our verification problem.
Definition 2. Given an FMBAT D, a goal ϕ(s), i.e., a for-
mula ϕ uniform in s, we say ϕ is achievable if
D |= ∃s.exec(s) ∧ ϕ(s).
We propose to use mathematical induction to address this

problem: we identify a quantitative feature and prove by
mathematical induction that for any values of the feature,
the goal is achievable. Both the basis and induction steps
are verified using first-order theorem provers. There are two
kinds of quantitative features: when the domain involves nat-
ural numbers, we identify candidate features of the form
φ(n), where φ(n) is a formula with a free variable n of
sort natural number; when the domain does not involve nat-
ural numbers, we identify candidate features of the form
#x.φ(x), denoting the number of objects x satisfying the
formula φ(x). We call the first kind number features, and
the second kind size features. We will introduce our method
for generating potential features in the next section.

We complement inductive verification with direct verifi-
cation and verification by regression. When the goal is in-
consistent with the state constraints, we immediately know
that the goal is unachievable. When D− |=fo ∃s.S0 ≤k

s ∧ ϕ(s), we immediately know that the goal is achiev-
able. We can also verify that the goal ϕ is achievable by
verifying the regression of it wrt a ground action α, i.e.,
R(Poss(α, s) ∧ ϕ(do(α, s))), is achievable.

Algorithm 1 attempts to verify by direct verification and
inductive verification. If ϕ is inconsistent with the state con-
straints, then return no. If D− |=fo ∃s.S0 ≤k s∧ϕ(s), then
return yes. Otherwise, generate a set of features F by calling
the procedure genFeatures. Then for each generated fea-
ture f , if ϕ can be proved by induction on f , then return yes.
Finally, return unknown.
Proposition 2. Given an FMBAT D, and a goal ϕ, if
D−sc |=fo ¬ϕ, then ϕ is not achievable.

Example 2. In blocks world, let the goal ϕ be on(A,B) ∧
on(B,A). Since D−sc |=fo ¬ϕ, ϕ is not achievable.
Example 3. In blocks world, suppose the initial KB con-
tains clear(A,S0) ∧ clear(B,S0). Let ϕ = on(A,B) ∨
on(B,A). Then ϕ is achievable via direct verification since
we have: D− |=fo ∃s.S0 ≤1 s ∧ ϕ(s).

Algorithm 1: diverify(D, ϕ)

Input: FMBAT D, goal ϕ
Output: yes/no/unknown

1 if D−sc |=fo ¬ϕ then return no
2 if D− |=fo ∃s.S0 ≤k s ∧ ϕ(s) then return yes
3 F ← genFeatures(D, ϕ)
4 foreach f ∈ F do
5 if indcution(D, ϕ, f) = > then return yes
6 return unknown

Algorithm 2 does a breadth-first search to see if there ex-
ists a sequence of actions δ = α1; . . . αn such that the re-
gression of ϕ wrt δ can be verified by calling diverify.
First, if ϕ is inconsistent with the state constraints, then re-
turn no. Now put the goal ϕ in an empty queue. While the
queue Q is not empty, do the following: remove the first el-
ement ψ from Q; call diverify on ψ; if the result is yes then
return yes; if the result is unknown, then generate a set A of
ground actions, where the constants are those appearing in
the basic action theory or the goal, and for each α of them,
put the regressed goalR(Poss(α, s)∧ψ(do(α, s))) into the
queue. Note that we cannot use depth-first search, because
this might lead us to an infinite branch.

Algorithm 2: verify(D, ϕ)

Input: FMBAT D, goal ϕ
Output: yes/no/unknown

1 if D−sc |=fo ¬ϕ then return no
2 Q← empty queue
3 put ϕ in Q
4 while Q is not empty and not timing-out do
5 remove the first element ψ from Q
6 r ← diverify(D, ψ)
7 if r = yes then return yes
8 if r = unknown then
9 A← genActions(D, ψ)

10 foreach α ∈ A do
11 putR(Poss(α, s) ∧ ψ(do(α, s))) in Q

12 return unknown

Proposition 3. Given an FMBATD, a goal ϕ, and a ground
action α, ifR(Poss(α, s)∧ϕ(do(α, s))) is achievable, then
ϕ is achievable.

Example 4. In blocks world, let the goal ϕ be
on(A,B), and let α be move(A,B). Let ψ be
R(Poss(α, s) ∧ ϕ(do(α, s))), i.e., clear(A) ∧ clear(B).
Then ψ can be proved achievable by induction on
#x.above(x,A) ∨ above(x,B).

Algorithm 3 does inductive verification on the given fea-
ture f . When f is a number feature φ(n), the first step proves
that ∃n.φ(n, S0) holds, the basis step involves proving when
φ(0) holds, the goal is achievable in at most k steps, and the
inductive step involves proving when φ(n) holds and n > 0,

for some n′ < n, φ(n′) is achievable in at most k steps. Now
suppose f is a size feature #x.φ(x). Due to our assumption
that there are finitely many non-number objects, we do not
need a step like that of verifying ∃n.φ(n, S0). The basis step
involves verifying when ∃xφ(x) does not hold, the goal is
achievable. The inductive step involves verifying for some
action function A, when ∃xφ(x) holds, there exists an ac-
tion argument ~y such thatA(~y) is possible and the execution
of A(~y) makes #x.φ(x) decrease.

Algorithm 3: induction(D, ϕ, f)

Input: FMBAT D, goal ϕ, feature f
Output: >/⊥

1 if f is a number feature φ(n) and the following hold:
1. DS0

|=fo ∃n.φ(n, S0)

2. D− |=fo ∀s.D−sc(s) ∧ φ(0, s)→
∃s′.s ≤k s

′ ∧ ϕ(s′)

3. D− |=fo ∀n, s.D−sc(s) ∧ φ(n, s) ∧ n > 0→
∃n′, s′.s ≤k s

′ ∧ φ(n′, s′) ∧ n′ < n

then return > else return ⊥;
if f is a size feature #x.φ(x) and the following hold:

1. D− |=fo ∀s.D−sc(s) ∧ ¬∃xφ(x, s)→
∃s′.s ≤k s

′ ∧ ϕ(s′)

2. forsome action function A we have
D− |=fo ∀s.D−sc(s) ∧ ∃xφ(x, s)→

∃~y.Poss(A(~y), s)∧
∃z(φ(z, s) ∧ ¬φ(z, do(A(~y), s)))∧
∀z(¬φ(z, s)→ ¬φ(z, do(A(~y), s)))

then return > else return ⊥

Proposition 4. Given an FMBATD, a goal ϕ, and a feature
f , if Algorithm 3 returns >, then ϕ is achievable.

Proof. We only prove the case that f is a number feature
φ(n). The proof for the other case is similar. We prove that
D |= ∃s.S0 ≤ s ∧ ϕ(s). Let M be a model of D, and let
σ be an executable situation of M s.t. M,σ |= φ(n, s) for
some n. We prove M,σ |= ∃s′.s ≤ s′ ∧ ϕ(s′) by induction
on n. Hence, as a special case, since M |= φ(n, S0) for
some n (due to the first entailment in Alg. 3), we have M |=
∃s.S0 ≤ s ∧ ϕ(s). Basis: M,σ |= φ(0, s). By the second
entailment in Alg. 3, M,σ |= ∃s′.s ≤ s′ ∧ ϕ(s′). Inductive
step: M,σ |= φ(n, s) where n > 0. By the third entailment
in Alg. 3, M,σ |= ∃s′.s ≤ s′ ∧ φ(n′, s′) for some n′ < n.
Hence there is an executable situation σ′ reachable from σ
such that M,σ′ |= φ(n′, s). By induction, M,σ′ |= ∃s′.s ≤
s′ ∧ ϕ(s′). Hence M,σ |= ∃s′.s ≤ s′ ∧ ϕ(s′).

Example 5. The Oil lamp domain is introduced by (Kmiec
and Lespérance 2014). There is an infinite row of oil lamps,
one for each integer. Each oil lamp x has an igniter which
can be flipped if lamp x+1 is on. Once we do action flip(x),
lamp x will be turned on. We use on(x, s) to represent that
lamp x is on in situation s. We have the following axioms:

• Poss(flip(x), s) ≡ on(x+ 1, s) ∧ ¬on(x, s);

• on(x, do(a, s)) ≡ on(x, s) ∨ ¬on(x, s) ∧ a = flip(x);
• ∃n.on(n, S0).

Let ϕ be on(0). Then ϕ can be proved achievable via induc-
tion on on(n), because the following hold:

1. DS0
|=fo ∃n.on(n, S0);

2. D− |=fo ∀s.on(0, s)→ on(0, s);
3. D− |=fo ∀n, s.on(n+ 1, s)→
on(n, s) ∨ Poss(flip(n, s)) ∧ on(n, do(flip(n), s)).

Example 6. In blocks world, let the goal ϕ be clear(A),
and let feature f = #x.above(x,A). Then ϕ can be proved
achievable via induction on f , because the following hold:

1. D− |=fo∀s.D−sc(s)∧¬(∃x)above(x,A, s)→clear(A, s);
2. D− |=fo ∀s.D−sc(s) ∧ (∃x)above(x,A, s)→
∃y.Poss(mt(y), s)∧
above(y,A, s) ∧ ¬above(y,A, do(mt(y), s))∧
∀z.¬above(z,A, s)→ ¬above(z,A, do(mt(y), s))

We end with the soundness theorem of our verification
method:

Theorem 1. Given an FMBAT D and a goal ϕ, if Algo-
rithm 2 returns yes, then ϕ is achievable; if it returns no,
then ϕ is not achievable.

Proof. If Algorithm 2 returns no, by Proposition 2, ϕ is un-
reachable. If Algorithm 2 returns yes, it must be the case that
diverify(D, ψ) returns yes for some ψ in the queue. Thus ψ
is obtained from ϕ by regressing it over a sequence of ac-
tions. By Proposition 4, ψ is achievable. By repeatedly ap-
plying Proposition 3, ϕ is achievable.

Generation of Quantitative Features
In this section, we introduce how we generate a set of poten-
tial features, given a basic action theory and a goal.

We use induction in the verification of liveness. The key to
using induction is to identify a numerical feature which will
decrease after performing actions. So we came up with the
idea that potential features can be learned from the solutions
of small instances by observing what features are decreased
as actions are taken. It may not be the case that every action
performed makes this feature decrease. So we identify those
features such that most actions make them decrease in most
planning instances.

First, we describe how we generate a pool of features. A
literal is an atom or the negation of an atom. A clause is the
disjunction of literals, and a term is the conjunction of liter-
als. The size of a clause or a term is the number of literals
in it. For a domain involving numbers, the pool of features
is the set of terms φ(n) whose size is bounded. For a do-
main not involving numbers, the pool of features is the set
of #x.φ(x) where φ(x) is a clause with a bounded size.

Example 7. In Oil lamp, if we set the bound of feature
size as 2, the following are examples of generated features:
on(n), on(n) ∧ on(n+ 1).

Example 8. The Corner domain is from (Bonet et al.
2009): An agent can move in four directions on a N × N
grid. Initially, she is at position (N,N). The goal is to move
to position (1, 1). If we set the bound of feature size to 1,
the following are examples of generated features: at(1, n),
¬at(n, 1), at(n,N), ¬at(N,n), at(n, n).

Example 9. In blocks world, let the goal ϕ be clear(A) ∧
clear(B). Set the bound of feature size to 2. Then the fol-
lowing are examples of generated features:
on(x,A) ∨ on(x,B), ¬on(x,A) ∨ above(A, x),
above(x,A) ∨ above(x,B), above(A, x) ∨ above(B, x).

We propose to learn potential size features from the solu-
tions of several small planning instances. We input the union
of DS0

, {¬ϕ}, and state constraints into an SMT solver,
where ϕ is the goal formula. If the set is satisfiable, the
solver will output a model. The small model, used as the ini-
tial state, together with ϕ and the actions, constitutes a clas-
sic planning problem. We can generate multiple small mod-
els by ensuring that they have different numbers of objects.
A number feature φ(n) is a term; the selection of number
features is relatively simple. Our method does not generate
small models for domains involving numbers.

Algorithm 4 generates a set of potential features for a
given FMBAT D and a goal ϕ. If D involves numbers, sim-
ply return a pool of number features. Otherwise, generate
a pool F of size features. Then, by using an SMT solver,
we generate a number of small models of the initial KB to-
gether with the state constraints. Each small model together
with the goal constitutes a planning problem. For each plan-
ning problem P , we do the following: first, solve it with
a classic planner and get a solution 〈a1, . . . , an〉. Then we
compute the sequence of states 〈s0, s1, . . . , sn〉 by apply-
ing the effects of actions. For a state si, for a size fea-
ture f = #x.φ(x), we can compute the value of f at si,
i.e., #x.φ(x, si). Thus, we can compute the number m of
actions ai which make f decrease, i.e., #x.φ(x, si+1) <
#x.φ(x, si). If the ratio m/n is over a certain threshold λ1,
then we say f is a useful feature for P . If a feature is useful
for more than λ2 percentage of the planning problems, we
consider it a potential feature. Finally, we return the set of
potential features.

D

I1 I2D

C

CB

B

E

E

F

G

A A

Figure 1: Two initial blocks world models

Example 10. In blocks world, letϕ = clear(A)∧clear(B).
Let f1 = #x.above(x,A) ∨ above(x,B), and f2 =
#x.above(x,A) ∨ on(x,B). We generate two initial mod-
els described in Figure 1. By calling a classic planner, we
get the following solutions:

Algorithm 4: genFeatures(D, ϕ)

Input: FMBAT D, goal ϕ
Output: a set of potential features

1 if D involves numbers then
2 return a pool of number features
3 Generate a pool F of size features
4 P ← genProblems(D, ϕ)
5 foreach P ∈ P do
6 Generate a solution π = 〈a1, . . . , an〉 for P
7 using a classic planner
8 Compute the sequence of states s0, s1 . . . , sn for π
9 foreach f ∈ F do

10 Count the number m of actions ai that reduce f ,
11 i.e., #x.φ(x, si+1) < #x.φ(x, si)
12 f is useful for P if m/n ≥ λ1

13 return the set of features which is useful
14 for ≥ λ2 percentage of problems

• For I1, mt(D),mt(C),mt(B),mt(E). The values of f1
are decreased 4 times, and f2 4 times too.

• For I2,mt(C),move(D,C),move(E,D),move(F,E),
move(G,F). The values of f1 are decreased 5 times, and
f2 3 times.

If we set both λ1 and λ2 to 0.8, f1 is chosen as a potential
feature, but f2 is not.

Experimentation
We implemented our verification method in python3 using
the FF planner (Hoffmann and Nebel 2001) and the SMT
solver Z3 (de Moura and Bjørner 2008). All experiments
were run on a Linux machine with 2.40GHz CPU and 16GB
RAM. We set up the implementation parameters as follows:
The time-out bound for Z3 is 5 seconds; when generating
potential features, the bound of feature size is 2, the number
of planning problems is 3, λ1 = 0.8 and λ2 = 1.0; the k in
≤k is set to 2.

Table 1 shows our experimental results for blocks world.
The first column goal represents the goal to verify, the sec-
ond column feature gives the feature which is used to
do inductive verification, and the third column time shows
the total time for verification (with unit second). The third
goal ontable(A) ∧ ∀x(x 6= A → above(x,A)) means that
there is a single tower with A at the bottom. The fifth goal
∀x.x = A ∨ above(A, x) means that there is a single tower
with A at the top. The first three goals can be verified di-
rectly by induction. The fourth goal on(A,B) is verified by
regressing it to clear(A) ∧ clear(B), which can be veri-
fied directly by induction. For the fifth goal, our system is
not able to generate a potential feature and hence not able
to accomplish the verification. In fact, there are no suitable
features using our feature language.

We also experimented with the following domains involv-
ing numbers. For each domain, we include the axioms.

Oil lamp See Example 5.

goal feature time(s)
clear(A) #x.above(x,A) 56.78

∀x.ontable(x) #x.¬ontable(x) 70.63
ontable(A)∧
∀x(x 6= A→
above(x,A))

#x.¬above(x,A) 52.42

on(A,B)
#x.above(x,A)∨
above(x,B)

168.66

∀x.x = A∨
above(A, x)

- -

Table 1: Experimental results for blocks world

Oil lamp∗ The same as Oil lamp except that light x can
be flipped if both light x+ 1 and light x+ 2 are on.

• Poss(flip(x), s) ≡ on(x+1, s)∧on(x+2, s)∧¬on(x, s)

Chop tree (Sardiña et al. 2004): There is a tree that can
be chopped down, but the agent does not know how many
times that she needs to chop at it in order to bring it down.
We introduce a size(n) fluent to mean that n is the number
of chops that is needed to bring down the tree. We want to
verify that the tree will eventually be cut down. We use the
encoding from (Lin 2008): down(s) means the tree is down
in situation s, action chop(m,n) decreases the size of the
tree from m to n, provided n = m− 1.

• Poss(chop(m,n), s) ≡
¬down(s) ∧ size(m, s) ∧ n = m− 1

• down(do(a, s)) ≡ a = chop(1, 0)

• size(n, do(a, s)) ≡ ∃m.a = chop(m,n)

• ∃n.size(n, S0)

Pick up Stone: There are n stones in the initial state. An
agent can pick up one stone if there are an odd number of
stones, and she can pick up two stones if there are an even
number of stones. We want to verify that eventually no stone
can be picked up. We use symbols: nstone(n, s) means the
number of stones in situation s is n, action take(m) means
picking up m stones.

• Poss(take(m), s) ≡ ∃n.nstone(n, s) ∧ n > 0∧
(n%2 = 1 ∧m = 1 ∨ n%2 = 0 ∧m = 2)

• nstone(n, do(a, s)) ≡
∃m.a = take(m) ∧ nstone(m+ n, s)

• ∃n.nstone(n, S0)

Corner: See Example 8. We use at(m,n, s) to mean the
agent is at position (m,n) in situation s. There are four ac-
tions: up, down, left, and right.

• Poss(left, s) ≡ ∃m,n.at(m,n, s) ∧m > 0, . . .

• at(m,n, do(a, s)) ≡
a = up∧at(m,n−1, s)∨a = down∧at(m,n+1, s)∨
a = left∧at(m+1, n, s)∨a = right∧at(m−1, n, s)

• at(N,N, S0)

Domain goal feature time(s)
oil lamp on(0) on(n) 4.23

oil lamp* on(0) on(n) ∧ on(n+ 1) 5.70
chop tree down size(n) 3.99
pick stone nstone(0) nstone(n) 7.88

corner at(1, 1) at(n, n) 3.21

Table 2: Experimental results for other domains

Table 2 shows the experimental results for the above do-
mains. All domains are successfully verified. For the Pick
up Stone domain, the proof implies a generalized plan to
achieve the goal: when the initial number of stones is even,
the agent repeatedly picks up two stones; when the initial
number of stones is odd, the agent first picks up one stone,
and then repeatedly picks up two stones. Intuitively, the do-
main Corner can be verified by a double induction. However,
our system verifies it by a single induction, and the feature
used for induction is at(n, n). So the proof implies a gen-
eralized plan to achieve the goal: for n from N to 2, move
from position (n, n) to (n− 1, n− 1) using two actions.

Conclusions
In this paper, we have developed a sound but incomplete
method for automated theorem proving of liveness proper-
ties. The main idea of our method is to prove goal achiev-
ability by induction on quantitative features where both ba-
sis and induction steps can be proved by first-order theorem
provers. We propose a simple method to identify potential
features which are the number of objects satisfying a certain
formula by generating small models of the action theory and
calling a classic planner to achieve the goal. We also pro-
pose to regress the goal via different actions and then verify
whether the resulting goals are achievable. Compared with
Lin’s method to prove goal achievability, a clear advantage
of our method is that we do not restrict the form of the basic
action theory or the goal.

There are two limitations of our current system. Firstly,
it only supports single induction. In the future, we will re-
move this limitation to allow nested induction. Secondly,
our system only generates simple features in the form of
quantifier-free clauses or terms. In the future, we will ex-
plore more expressive features represented by quantified for-
mulas such as ∃x, y.at(x, y) ∧ n = x + y. Moreover, in
our work, the proof of goal achievability implies a gener-
alized plan to achieve the goal, as we show for the Pick
up Stone and Corner examples. Generalized planning aims
at finding a single solution which works for possibly in-
finitely many similar planning problems (Levesque 2005;
Srivastava et al. 2008). So far a challenge for generalized
planning is to guarantee the correctness of solutions. In the
future, we will explore the application of our work in gener-
alized planning with correctness guarantee.

Acknowledgments
We acknowledge support from the Natural Science Founda-
tion of China under Grant No. 61572535.

References
Blai Bonet, Héctor Palacios, and Hector Geffner. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS-09, 2009.
Edmund M. Clarke, Jr., Orna Grumberg, and Doron Peleg.
Model Checking. MIT Press, 1999.
Jens Claßen and Gerhard Lakemeyer. A logic for non-
terminating golog programs. In Proc. KR-08, pages 589–
599, 2008.
Jens Claßen. Symbolic verification of golog programs with
first-order bdds. In Proc. KR-18, pages 524–529, 2018.
Stephen A. Cook and Yongmei Liu. A complete axiomati-
zation for blocks world. J. Log. Comput., 13(4):581–594,
2003.
Giuseppe De Giacomo, Yves Lespérance, and Adrian R.
Pearce. Situation calculus based programs for representing
and reasoning about game structures. In Proc. KR-10, pages
445–455, 2010.
Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi.
Bounded situation calculus action theories. Artif. Intell.,
237:172–203, 2016.
Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an
efficient SMT solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, pages 337–340, 2008.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. J. Artif.
Intell. Res., 14:253–302, 2001.
Slawomir Kmiec and Yves Lespérance. Infinite states ver-
ification in game-theoretic logics: Case studies and imple-
mentation. In Engineering Multi-Agent Systems - Second
International Workshop, EMAS 2014, pages 271–290, 2014.
Hector J. Levesque. Planning with loops. In Proc. IJCAI-05,
pages 509–515, 2005.
Naiqi Li and Yongmei Liu. Automatic verification of partial
correctness of golog programs. In Proc. IJCAI-15, pages
3113–3119, 2015.
Naiqi Li, Yi Fan, and Yongmei Liu. Reasoning about state
constraints in the situation calculus. In Proc. IJCAI-13,
2013.
Fangzhen Lin. Proving goal achievability. In Proc. KR-08,
pages 621–628, 2008.
Peiming Mo, Naiqi Li, and Yongmei Liu. Automatic verifi-
cation of golog programs via predicate abstraction. In Proc.
ECAI-2016, 2016.
Raymond Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.
Sebastian Sardiña, Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. On the semantics of
deliberation in indigolog - from theory to implementation.
Ann. Math. Artif. Intell., 41(2-4):259–299, 2004.
Siddharth Srivastava, Neil Immerman, and Shlomo Zilber-
stein. Learning generalized plans using abstract counting.
In Proc. AAAI-08, pages 991–997, 2008.

