
Potential Heuristics: Weakening Consistency Constraints

Pascal Lauer1,2, Daniel Fišer3

1Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
2School of Computing, The Australian National University, Canberra, Australia

3Aalborg University, Denmark
lauer@cs.uni-saarland.de, danfis@danfis.cz

Abstract

In classical planning, admissible potential heuristics are com-
puted by solving linear programs (LPs) with constraints ex-
pressing consistency and goal-awareness of the heuristic. Po-
tential heuristics can return negative estimates. So, given a
potential heuristic hP, the actual heuristic used in search is
another heuristic defined as hP

0+(s)=max(hP(s), 0) for ev-
ery reachable state s. In this paper, we reformulate the LP
constraints for consistency of hP so that they ensure consis-
tency of hP

0+ instead. This leads to more informative heuristics
with positive impact on the overall performance in exchange
for a more time and memory demanding computation using
mixed integer linear programs instead of LPs.

1 Introduction
Potential heuristics (Pommerening et al. 2015; Pommeren-
ing, Helmert, and Bonet 2017) are a family of heuristics in
classical planning that assign a numerical value, called po-
tential, to each fact (or sets of facts). The heuristic value for
a given state is simply a sum of potential of facts (or sets
of facts) appearing in the state. So far, all methods for find-
ing potentials of admissible potential heuristics are based on
solving linear programs (LPs) where admissibility is ensured
by constraints expressing goal-awareness in all reachable
goal states and consistency over all reachable transitions.
Such formulations allow to obtain different kinds of po-
tential heuristics by changing objective functions of the LP
(Seipp, Pommerening, and Helmert 2015; Fišer, Horčı́k, and
Komenda 2020). A distinctive feature of potential heuristics
is that they are allowed to return negative values, because it
allows to find a more informative potential heuristics. How-
ever, when used during search, negative values are treated as
zeros. More precisely, we first construct a potential heuris-
tic hP that can return negative estimates for some states. But
then, during the search, we use a different heuristic hP0+ de-
fined as hP0+(s) = max(hP(s), 0) for every reachable state s.

In this paper, we focus precisely on this aspect of potential
heuristics. Since hP0+ is the heuristic that is used during the
search, it is not necessary for hP to be consistent. However,
all previous methods for finding potential heuristics enforce
consistency of hP. Here, we show how to reformulate the LP

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraints ensuring consistency of hP so that they ensure
consistency of hP0+ instead. This way, we can lose the consis-
tency of hP, but it does not matter in practice because hP0+ re-
mains consistent and goal-aware and hP0+ is the heuristic that
is used during the search. More importantly, the weaken-
ing of consistency constraints that we propose allows to find
more informative potential heuristics. Unfortunately, ensur-
ing consistency of hP0+ is more computationally demanding
than ensuring consistency of hP, because it requires solv-
ing a mixed integer linear program instead of LP. However,
we show experimentally that it still yields a significantly bet-
ter performance in optimal planning with potential heuristics
maximizing heuristic values for initial states, and a slightly
better performance for other variants of potential heuristics
when used in a simple portfolio planner.

2 Background
An FDR planning task (Bäckström and Nebel 1995) is a
tuple Π = ⟨V ,O, I, G⟩. V is a finite set of variables, each
v ∈ V has a finite domain dom(v). A fact ⟨v, x⟩ is a pair of
v ∈ V and x ∈ dom(v). F = {⟨v, x⟩ | v ∈ V , x ∈ dom(v)}
is the set of all facts, Fv = {⟨v, x⟩ | x ∈ dom(v)} is the
set of facts of variable v, and similarly for sets of variables
V ⊆ V : FV =

⋃
v∈V Fv . Given p ⊆ F , V(p) denotes all

variables appearing in p, i.e., V(p) = {v | ⟨v, x⟩ ∈ p}.
A partial state p ⊆ F is a set of facts such that there

is at most one fact of each variable, i.e., |p ∩ Fv| ≤ 1 for
every v ∈ V . A partial state s is called state if |s| = |V|.
I is an initial state. G is a partial state called goal, and a
state s is a goal state if G ⊆ s. Given partial states p and
t, we say that t extends p if p ⊆ t. O is a finite set of op-
erators, o ∈ O is defined by its partial states precondition
pre(o) and effect eff(o), and a cost cost(o) ∈ R+

0 . We as-
sume pre(o) ∩ eff(o) = ∅. o ∈ O is applicable in a state
s if pre(o) ⊆ s. The resulting state of this application is
oJsK = (s \ FV(eff(o))) ∪ eff(o). A sequence of operators
π = ⟨o1, . . . , on⟩ is applicable in a state s0 if there are states
s1, . . . , sn s.t. oi is applicable in si−1 and si = oiJsi−1K
for i ∈ {1, . . . , n}. The resulting state is πJs0K = sn and
cost(π) =

∑n
i=1 cost(oi) is the cost of π. A sequence of op-

erators π is called an s-plan if π is applicable in s and πJsK
is a goal state. I-plans are simply called plans. An s-plan is
called optimal if its cost is minimal among all s-plans.

A state s is called reachable if there exists a sequence

Proceedings of the Thirty-Fifth International Conference on Automated Planning and Scheduling (ICAPS 2025)

218

of operators π applicable in I s.t. πJIK = s. R denotes the
set of all reachable states in Π. An operator o is reachable
if it is applicable in some reachable state. A triple ⟨s, o, s′⟩,
denoted as s o−→ s′, is called reachable transition if s ∈ R,
o ∈ O is applicable in s and s′ = oJsK. A state s is a dead-
end if G ̸⊆ s and there is no s-plan. A heuristic is a function
h : R 7→ R ∪ {∞} estimating the cost of optimal s-plans.
The optimal heuristic h⋆(s) maps each reachable state s to
the cost of the optimal s-plan or to ∞ if s is a dead-end. A
heuristic h is called (a) forward admissible (f-admissible) if
h(s) ≤ h⋆(s) for every s ∈ R; (b) forward goal-aware (f-
goal-aware) if h(s) ≤ 0 for every reachable goal state s; and
(c) forward consistent (f-consistent) if h(s) ≤ h(oJsK) +
cost(o) for all s ∈ R and o ∈ O applicable in s.

We define heuristics over reachable states (instead of all
states) because we intend to use them in a forward search.
The definition also helps improve heuristic values (h-values)
by state invariants describing (an overapproximation of) the
reachable state space. We allow negative heuristic values, as
is usual in literature on potential heuristics, because it al-
lows to find more informative potential heuristics. It is well-
known that (forward) goal-aware and (forward) consistent
heuristics are also (forward) admissible.

A mutex is a set of facts that is not part of any reachable
state, i.e., M is a mutex if M ̸⊆ s for every s ∈ R. The most
obvious mutex is a fact pair of the same variable, but more
can be found by computing so-called fam-groups (Helmert
2009; Fišer 2020, 2023; Fišer and Komenda 2018), or using
the hm heuristic (Bonet and Geffner 2001; Alcázar and Tor-
ralba 2015). Fišer, Horčı́k, and Komenda (2020) showed that
using mutexes can significantly improve informativeness of
potential heuristics when used to compute disambiguations:

Let v ∈ V denote a variable, and let p denote a partial
state. A set of facts X ⊆ Fv is called a disambiguation of
v for p if for every s ∈ R s.t. p ⊆ s it holds that X ∩ s ̸= ∅.

A disambiguation of a variable v for a partial state p is a
set of facts X ⊆ Fv from the same variable v such that every
reachable state extending p contains a fact from X . So, a dis-
ambiguation of v for p allows us to filter out facts of the vari-
able v that cannot be part of any reachable state extending
p. Disambiguations can be used for finding unreachable op-
erators and determining unsolvability of tasks. If, for some
operator o ∈ O, a disambiguation of some v ∈ V for pre(o)
is empty, then o is unreachable; and if a disambiguation of
some v ∈ V for G is empty, the task is unsolvable. So, from
now on, we will only consider tasks with non-empty disam-
biguations of the goal and the operators’ preconditions.

For notational convenience, we use the following disam-
biguation maps D: Given a variable v ∈ V , DG(v) denotes
a disambiguation of v for G. Given an operator o ∈ O and
v ∈ V(eff(o)), Do(v) denotes a disambiguation of v for
pre(o). Fišer et al. (2020) provide a detailed description of
disambiguations and how to use mutexes to compute them.

3 Potential Heuristics
Potential heuristics (Pommerening et al. 2015), sometimes
also called atomic, map each fact to a numerical value called
potential, and the h-value for a given state s is the sum of po-

tentials of all facts appearing in s. Higher-dimensional po-
tential heuristics (Pommerening, Helmert, and Bonet 2017)
generalize this idea from single facts to sets of facts. Re-
cently, Fišer and Steinmetz (2024) showed that higher-
dimensional potential heuristics can be computed as atomic
potential heuristics using certain compilations where sets
of facts are explicitly represented as single facts. So, here
we consider only atomic potential heuristics as all ideas we
present here directly translate to higher-dimensional poten-
tial heuristics via the aforementioned compilations.
Definition 1. A potential function is a function P : F 7→ R.

A potential heuristic for P, denoted as hP, is defined as
hP(s) =

∑
f∈s P(f) for every reachable state s ∈ R.

All known methods for finding potential functions are
based on solving a linear program (LP) with constraints ex-
pressing goal-awareness and consistency of the resulting po-
tential heuristics. Here, we consider the constraints intro-
duced by Fišer, Horčı́k, and Komenda (2020, Theorem 7)
adapted to our notation, because they often induce more
informative potential heuristics while maintaining forward
goal-awareness and forward consistency.
Theorem 2. Let P denote a potential function, and let D
denote disambiguation maps. If∑

v∈V
max

f∈DG(v)
P(f) ≤ 0 (1)

and ∑
v∈V(eff(o))

max
f∈Do(v)

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o) (2)

for every operator o ∈ O, then hP is forward goal-aware,
forward consistent and forward admissible.

It follows from Theorem 2 that a potential function P in-
ducing forward admissible hP can be obtained as any so-
lution to the LP with variables P(f) for all facts f ∈ F ,
the constraint Eq. 1 ensuring forward goal-awareness, and
the constraint Eq. 2 for each operator o ∈ O ensuring for-
ward consistency. So, the objective function of this LP can
be freely chosen and there are many different ways how to
do that (Pommerening et al. 2015; Seipp, Pommerening, and
Helmert 2015; Fišer, Horčı́k, and Komenda 2020).

The resulting hP can return negative estimates for some
states which is interpreted during search as simply returning
zero. In other words, the actual heuristic function (which we
denote as hP0+) used during search returns, for each state s,
the maximum of hP(s) and zero: Given a potential heuris-
tic hP, hP0+ denotes another heuristic function defined as
hP0+(s) = max(hP(s), 0) for every reachable state s ∈ R.

4 Weakening Consistency Constraints
In this section, we show that we can further weaken the con-
sistency constraint Eq. 2 so that hP (and more importantly
hP0+) is (possibly) more informative and remains forward ad-
missible. The idea is quite simple: Since the actual heuristic
function used in search is hP0+ and not hP, it is enough to
ensure forward goal-awareness and forward consistency of
hP0+, i.e., hP does not need to be forward consistent.

219

V = {t, p}, dom(t) = {l1, l2}, dom(p) = {l1, l2, t}
I = {⟨t, l1⟩, ⟨p, l1⟩}
G = {⟨p, l2⟩}
o ∈ O pre(o) eff(o) cost(o)

drive(x, y) {⟨t, x⟩} {⟨t, y⟩} 10
pickup(z) {⟨t, z⟩, ⟨p, z⟩} {⟨p, t⟩} 1
drop(z) {⟨t, z⟩, ⟨p, t⟩} {⟨p, z⟩} 1
for (x, y) ∈ {(l1, l2), (l2, l1)}, z ∈ {l1, l2}

t, p

l1 l2

Figure 1: Example logistics planning task Π = ⟨V ,O, I, G⟩
with one truck t, one package p and two locations l1 and l2.

Consider the simple logistics example task depicted
in Figure 1 with one truck t, one package p and two
locations l1 and l2. For any potential function P obey-
ing the constraints from Theorem 2, the maximum possi-
ble heuristic value of hP for the initial state is hP(I)=2
(e.g., P(⟨t, l1⟩)=P(⟨t, l2⟩)=0, P(⟨p, l1⟩)=2, P(⟨p, l2⟩)=0,
P(⟨p, t⟩)=1): Since the goal-awareness constraint (Eq. 1) is
maxx∈dom(t) P(⟨t, x⟩)+P(⟨p, l2⟩) ≤ 0, it is possible to have
hP(I) > 2 only if |P(⟨p, l1⟩)− P(⟨p, l2⟩)| > 2. But the con-
sistency constraints (Eq. 2) over pickup and drop actions
imply |P(⟨p, l1⟩)− P(⟨p, l2⟩)| ≤ 2.

However, there exist potential functions P such that hP
is forward admissible and hP(I)=h⋆(I)=12. For example,
P(⟨t, l1⟩)=0, P(⟨t, l2⟩)=−10, P(⟨p, l1⟩)=12, P(⟨p, l2⟩) =
−12, P(⟨p, t⟩)=11. This P violates the consistency con-
straint Eq. 2 for the operator drop(l2). Therefore hP is not
forward consistent, but it turns out hP0+ is forward consistent.
In the following, we show how to find such potential func-
tions maintaining forward consistency of hP0+ by weakening
the consistency constraints (Eq. 2) from Theorem 2.

We start with a lemma showing a simple reformulation of
consistency criteria for heuristics of the form max(h(s), 0)
that will be the basis for our new consistency constraints.

Lemma 3. Let h denote a heuristic function, and let s o−→ s′

denote a reachable transition. Then

max(h(s), 0)−max(h(s′), 0) ≤ cost(o)

if and only if

min(h(s)− h(s′), h(s)) ≤ cost(o).

Proof. Since cost(o) is non-negative, both inequalities hold
for any negative value of h(s). For h(s) ≥ 0, we have that
max(h(s), 0) − max(h(s′), 0) = h(s) − max(h(s′), 0) =
h(s) + min(−h(s′), 0) = min(h(s)− h(s′), h(s)).

For notational convenience, we define the following two
shorthands. Given disambiguation maps D and an operator
o ∈ O, we use Ccon

D (o) to denote the left-hand side of Eq. 2:

Ccon
D (o) =

∑
V ∈V(eff(o))

max
f∈Do(V)

P(f)−
∑

f∈eff(o)

P(f), (3)

and we use Cpre
D (o) to denote an upper bound on the h-

values of hP in reachable states where o is applicable:

Cpre
D (o) =

∑
v∈V

max
f∈Do(v)

P(f). (4)

Note that in case of Cpre
D (o), we use disambiguation to

consider only (an overapproximation of) possible reachable
states extending pre(o). So since we sum over all variables,
the h-values of hP in reachable states where o is applicable
can be at most the value of Cpre

D (o).
Finally, we can formulate the main contribution of this

paper in the following theorem.

Theorem 4. Let P denote a potential function, and let D
denote disambiguation maps. If Eq. 1 holds and

min(Ccon
D (o), Cpre

D (o)) ≤ cost(o) (5)

for every operator o ∈ O, then hP is f-admissible and hP0+ is
f-consistent, f-goal-aware and f-admissible.

Proof. Eq. 1 ensures f-goal-awareness of hP and therefore
also of hP0+. Let s o−→ s′ denote a reachable transition. We
have that hP(s) − hP(s′) ≤ Ccon

D (o), and hP(s) ≤ Cpre
D (o).

Therefore we have that min(hP(s) − hP(s′), hP(s)) ≤
min(Ccon

D (o), Cpre
D (o)) ≤ cost(o). Therefore it follows

from Lemma 3 that hP0+(s) − hP0+(s
′) ≤ cost(o), and there-

fore hP0+ is f-consistent, and therefore also f-admissible.
Lastly, since for every reachable state s ∈ R we have that
hP(s) ≤ hP0+(s), it follows that also hP is f-admissible.

Theorem 4 shows that we can replace Eq. 2 with Eq. 5 and
the resulting hP will remain forward admissible while hP0+
will also be forward consistent (i.e., A⋆ with hP0+ does not
need to re-open states). Moreover, since Ccon

D (o) is the left-
hand side of Eq. 2, the constraint Eq. 5 can only be weaker
than Eq. 2. This means that for a fixed objective function, the
maximum objective value for constraints from Theorem 4 is
at least as high as for constraints from Theorem 2.

Note that we can also mix the consistency constraints
from Theorems 2 and 4, i.e., we can use Eq. 2 for some
operators and Eq. 5 for others. For instance in our exam-
ple task, we can obtain P such that hP(I) = h⋆(I) = 12 by
using Eq. 5 only for drop(l2) and Eq. 2 for all other oper-
ators. However, it is not clear how to decide between Eq. 2
and 5 for each operator so that the resulting potential heuris-
tic is improved. Here, we compare only variants where all
consistency constraints are either Eq. 2 or Eq. 5.

The remaining question is how to implement the con-
straint Eq. 5 in practice. One option is to use a mixed-integer
linear program (MIP) with a big-M formulation: A con-
straint min(a, b) ≤ c can be reformulated as a pair of con-
straints a−xM ≤ c and b−(1−x)M ≤ c where x is a binary
indicator variable and M is a large constant. In our experi-
ments, we found that it is very hard to find a suitable value
of M in a domain-independent manner. However, we used
the CPLEX solver which provides so called indicator con-
straints which allow to easily formulate the constraint Eq. 5.
Nevertheless, it requires having one additional binary vari-
able per operator and therefore it is much harder to solve
these MIPs than the original LPs with constraints from The-
orem 2. So, we run the solver with a time limit and use the
possibly suboptimal solutions found within that time limit.

220

0 1 101 102 n
f0

1

101

102

nf

P-I

P
+
-I

o
p
t-
o
n
ly

0 1 101 102 n
f0

1

101

102

nf

P-I

P
+
-I

Figure 2: Per-task comparison of h-values for initial states;
“nf”: tasks where no potentials were found, “opt-only”: only
values proved optimal within 30 minutes time limit.

5 Experimental Evaluation
The method was implemented1 in C and evaluated on a
cluster with Intel Xeon E5-2650v3 processors. We use all
planning domains from the optimal track of International
Planning Competitions (IPCs) from 1998 to 2023 exclud-
ing the ones containing conditional effects after translation.
We merge, for each domain, all benchmarks from different
IPCs resulting in 54 domains and 1 806 tasks overall. Oper-
ators and facts are pruned with the h2 heuristic in forward
and backward direction (Alcázar and Torralba 2015), and
the translation from PDDL to FDR uses the mutex groups
inference proposed by Fišer (2020, 2023).

We use 30 minutes time and 8 GB memory limit for each
task. We run A⋆ (Hart, Nilsson, and Raphael 1968) with the
baseline potential heuristics, denoted as P, computed using
constraints from Theorem 2, and our method, P+, using The-
orem 4. We also use a simple portfolio, por, where we first
run P and if P terminates after t minutes without finding a
plan, then we run P+ with only 30−t minutes time limit (and
8 GB memory limit). We consider three variants of potential
heuristics: optimized for the maximum h-value of the initial
state (I) (Pommerening et al. 2015), maximum average h-
value for all syntactic states (A) (Seipp, Pommerening, and
Helmert 2015), and the variant A with enforced maximum h-
value for the initial state (AI) (Fišer, Horčı́k, and Komenda
2020). Since P+ often fails to find an optimal solution of the
MIP within 30 minutes, we set the time limit for the MIP
solver to 2 minutes and use the suboptimal solution if avail-
able (otherwise, we abstain from solving the task).

Figure 2 shows per-task comparison of h-values for initial
states when maximizing for that value. P+ found higher h-
values for initial states in 314 tasks spread over 21 domains,
and lower h-values in 142 tasks in 20 domains (data points
below diagonal in Figure 2 (right)). The lower h-values are
due to using suboptimal solutions of MIPs as the optimal
MIP solutions for P+ are guaranteed to dominate the solu-
tions for P. The MIP solver was able to provide optimal so-
lutions within 30 minutes only for 512 tasks, and all of them
were obtained also within 2 minutes. Moreover, using the
MIP solver with 2 minutes time limit allowed to obtain po-
tential functions in 1 236 more tasks.

Table 1 shows the number of solved tasks (coverage) per
domain and overall. We can observe a significantly higher
coverage for the I variant. Interestingly, in most tasks solved
by P+-I but not by P-I, the h-value for the initial state is the

1https://gitlab.com/danfis/cpddl, branch icaps25-pot-hmax0

domain I A AI
P P+ por P P+ por P P+ por

blocks (35) 21 28 28 28 28 28 28 28 28
caldera (20) 10 12 10 12 12 12 12 12 12
driverlog (20) 9 13 13 13 11 13 13 13 13
elevators (50) 31 31 31 31 35 35 31 33 33
freecell (80) 48 60 60 37 37 37 74 69 74
ged (20) 16 18 18 15 15 15 15 18 18
logistics (63) 13 23 23 24 24 24 24 24 24
mprime (35) 18 20 19 25 25 25 25 25 25
nomystery (20) 10 14 14 14 13 14 14 14 14
parking (40) 1 7 7 16 6 16 16 7 16
pipesw-notank (50) 25 26 26 25 25 25 30 28 30
recharging-robots (20) 13 12 13 13 12 13 13 11 13
scanalyzer (50) 25 25 25 23 23 23 27 25 27
snake (20) 15 14 15 14 13 14 16 13 16
spider (20) 14 11 14 14 11 14 16 12 16
tidybot (40) 32 30 32 32 30 32 32 30 32
tpp (30) 6 8 8 6 6 6 8 8 8
trucks (30) 9 14 14 14 11 14 14 14 14
visitall (40) 25 30 30 25 28 28 27 30 30
woodworking (50) 19 27 27 27 25 27 31 31 31
zenotravel (20) 8 11 11 11 11 11 11 11 11

others (1053) 558 566 565 569 566 570 584 582 584

Σ (1806) 926 1 000 1 003 988 967 996 1 061 1 038 1 069

Table 1: Number of solved tasks; “others”: sum over do-
mains where difference between P/P+/por was at most 1 for
all variants I/A/AI.

same for both P and P+. So the question is how much can
different LP/MIP solutions with the same objective value in-
fluence the performance of the planner and whether there is
a way to select the best one, which should be investigated in
future. (Note that P+ only widens the range of possibilities.)

In case of A and AI, using P+ is mostly detrimental. The
reason seems to be that the MIP solver struggles to optimize
for the objective function averaging over all syntactic states
(higher time limits did not lead to better results). In case of
A, out of 30 tasks solved by P but not by P+, solutions of P+
had lower objective value in 18 tasks. In case of AI, out of
33 tasks solved by P but not by P+, P+ ended up with lower
objective value in 19 tasks and it could not find any solution
in 6 tasks. However, the simple portfolio por tends to get the
best of both P and P+, increasing the overall coverage for all
variants of potential heuristics.

6 Conclusion and Future Work

Up until now, all methods for computing potential functions
P were based on enforcing consistency of the resulting po-
tential heuristics hP. Here, we introduce an alternative con-
straint ensuring consistency of heuristics maximizing over
hP and zero, which are the heuristics actually used in the
search instead of hP. This opens up the space of available
potential heuristics in practice and it often leads to more in-
formative heuristics. Nevertheless, these new constraints re-
quire solving MIP instead of LP, which is much more com-
putationally demanding in practice. This could be mitigated
by using the new constraints only for some operators. Find-
ing how to select these operators is left for future research.
Another question open for future is how to apply our method
to the so-called operator potential heuristics (Fišer, Torralba,
and Hoffmann 2024) in the context of symbolic search.

221

Acknowledgments
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project
ID 232722074 – SFB 1102.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), 2–6.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1–2): 5–33.
Fišer, D.; and Komenda, A. 2018. Fact-Alternating Mutex
Groups for Classical Planning. Journal of Artificial Intelli-
gence Research, 61: 475–521.
Fišer, D.; Torralba, Á.; and Hoffmann, J. 2024. Boosting
Optimal Symbolic Planning: Operator-Potential Heuristics.
Artificial Intelligence, 104174.
Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems. In Pro-
ceedings of the 34th AAAI Conference on Artificial Intelli-
gence (AAAI’20), 9835–9842.
Fišer, D. 2023. Operator Pruning Using Lifted Mutex
Groups via Compilation on Lifted Level. In Proceedings of
the 33rd International Conference on Automated Planning
and Scheduling (ICAPS’23), 118–127.
Fišer, D.; Horčı́k, R.; and Komenda, A. 2020. Strengthening
Potential Heuristics with Mutexes and Disambiguations. In
Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS’20), 124–133.
Fišer, D.; and Steinmetz, M. 2024. Towards Feasible Higher-
Dimensional Potential Heuristics. In Proceedings of the
34th International Conference on Automated Planning and
Scheduling (ICAPS’24), 210–220.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
Dimensional Potential Heuristics for Optimal Classical
Planning. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI’17), 3636–3643.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), 3335–3341.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Pro-
ceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), 193–201.

222

