Proceedings of the Thirty-Fifth International Conference on Automated Planning and Scheduling (ICAPS 2025)

Potential Heuristics: Weakening Consistency Constraints

Pascal Lauer'?, Daniel FiSer’

!'Saarland Informatics Campus, Saarland University, Saarbriicken, Germany
2School of Computing, The Australian National University, Canberra, Australia
3 Aalborg University, Denmark
lauer @cs.uni-saarland.de, danfis@danfis.cz

Abstract

In classical planning, admissible potential heuristics are com-
puted by solving linear programs (LPs) with constraints ex-
pressing consistency and goal-awareness of the heuristic. Po-
tential heuristics can return negative estimates. So, given a
potential heuristic h¥, the actual heuristic used in search is
another heuristic defined as h, (s)=max(h"(s),0) for ev-
ery reachable state s. In this paper, we reformulate the LP
constraints for consistency of A’ so that they ensure consis-
tency of hf, instead. This leads to more informative heuristics
with positive impact on the overall performance in exchange
for a more time and memory demanding computation using
mixed integer linear programs instead of LPs.

1 Introduction

Potential heuristics (Pommerening et al. 2015; Pommeren-
ing, Helmert, and Bonet 2017) are a family of heuristics in
classical planning that assign a numerical value, called po-
tential, to each fact (or sets of facts). The heuristic value for
a given state is simply a sum of potential of facts (or sets
of facts) appearing in the state. So far, all methods for find-
ing potentials of admissible potential heuristics are based on
solving linear programs (LPs) where admissibility is ensured
by constraints expressing goal-awareness in all reachable
goal states and consistency over all reachable transitions.
Such formulations allow to obtain different kinds of po-
tential heuristics by changing objective functions of the LP
(Seipp, Pommerening, and Helmert 2015; Fiser, Horcik, and
Komenda 2020). A distinctive feature of potential heuristics
is that they are allowed to return negative values, because it
allows to find a more informative potential heuristics. How-
ever, when used during search, negative values are treated as
zeros. More precisely, we first construct a potential heuris-
tic A® that can return negative estimates for some states. But
then, during the search, we use a different heuristic hf), de-
fined as hf, (s) = max(h®(s),0) for every reachable state s.

In this paper, we focus precisely on this aspect of potential
heuristics. Since hf, is the heuristic that is used during the
search, it is not necessary for h¥ to be consistent. However,
all previous methods for finding potential heuristics enforce
consistency of h¥. Here, we show how to reformulate the LP

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

218

constraints ensuring consistency of h¥ so that they ensure
consistency of hf, instead. This way, we can lose the consis-
tency of 1P, but it does not matter in practice because hf, re-
mains consistent and goal-aware and hf), is the heuristic that
is used during the search. More importantly, the weaken-
ing of consistency constraints that we propose allows to find
more informative potential heuristics. Unfortunately, ensur-
ing consistency of hf, is more computationally demanding
than ensuring consistency of hF, because it requires solv-
ing a mixed integer linear program instead of LP. However,
we show experimentally that it still yields a significantly bet-
ter performance in optimal planning with potential heuristics
maximizing heuristic values for initial states, and a slightly
better performance for other variants of potential heuristics
when used in a simple portfolio planner.

2 Background

An FDR planning task (Béckstrom and Nebel 1995) is a
tuple IT = (V, O, I,G). V is a finite set of variables, each
v € V has a finite domain dom(v). A fact (v,) is a pair of
ve€Vandx € dom(v). F = {{v,z) | v € V,z € dom(v)}
is the set of all facts, 7, = {(v,z) | * € dom(v)} is the
set of facts of variable v, and similarly for sets of variables
V CV: Fy = U,ey Fo- Given p C F, V(p) denotes all
variables appearing in p, i.e., V(p) = {v | (v, z) € p}.

A partial state p C F is a set of facts such that there
is at most one fact of each variable, i.e., |[pNF,| < 1 for
every v € V. A partial state s is called state if |s| = |V|.
I is an initial state. GG is a partial state called goal, and a
state s is a goal state if G C s. Given partial states p and
t, we say that ¢ extends p if p C ¢. O is a finite set of op-
erators, o € O is defined by its partial states precondition
pre(o) and effect eff(0), and a cost cost(o) € R{. We as-
sume pre(o) Neff(0) = 0. 0 € O is applicable in a state
s if pre(o) C s. The resulting state of this application is
ofs] = (s \ Fu(efi(o))) U eff (0). A sequence of operators
7w = (01,...,0y) is applicable in a state sy if there are states
S1y.-.,8n S.t. 0; is applicable in s;_1 and s; = 0;[s;—1]
fori € {1,...,n}. The resulting state is w[so] = s, and
cost(m) = Y i, cost(o;) is the cost of 7. A sequence of op-
erators 7 is called an s-plan if 7 is applicable in s and 7[s]
is a goal state. I-plans are simply called plans. An s-plan is
called optimal if its cost is minimal among all s-plans.

A state s is called reachable if there exists a sequence

of operators 7 applicable in I s.t. 7[I] = s. R denotes the
set of all reachable states in II. An operator o is reachable
if it is applicable in some reachable state. A triple (s, 0, s'},

denoted as s 2 ¢, is called reachable transition if s € R,
o € O is applicable in s and s’ = o[s]. A state s is a dead-
end if G ¢ s and there is no s-plan. A heuristic is a function
h: R — RU{oco} estimating the cost of optimal s-plans.
The optimal heuristic »*(s) maps each reachable state s to
the cost of the optimal s-plan or to oo if s is a dead-end. A
heuristic h is called (a) forward admissible (f-admissible) if
h(s) < h*(s) for every s € R; (b) forward goal-aware (f-
goal-aware) if h(s) < 0 for every reachable goal state s; and
(c) forward consistent (f-consistent) if i(s) < h(o[s]) +
cost(o) forall s € R and 0 € O applicable in s.

We define heuristics over reachable states (instead of all
states) because we intend to use them in a forward search.
The definition also helps improve heuristic values (h-values)
by state invariants describing (an overapproximation of) the
reachable state space. We allow negative heuristic values, as
is usual in literature on potential heuristics, because it al-
lows to find more informative potential heuristics. It is well-
known that (forward) goal-aware and (forward) consistent
heuristics are also (forward) admissible.

A mutex is a set of facts that is not part of any reachable
state, i.e., M is amutex if M ¢ s for every s € R. The most
obvious mutex is a fact pair of the same variable, but more
can be found by computing so-called fam-groups (Helmert
2009; Fiser 2020, 2023; Fiser and Komenda 2018), or using
the h" heuristic (Bonet and Geffner 2001; Alcazar and Tor-
ralba 2015). Fiser, Hor¢ik, and Komenda (2020) showed that
using mutexes can significantly improve informativeness of
potential heuristics when used to compute disambiguations:

Let v € V denote a variable, and let p denote a partial
state. A set of facts X C F, is called a disambiguation of
v for p if for every s € R s.t. p C s it holds that X N s # (.

A disambiguation of a variable v for a partial state p is a
set of facts X C F, from the same variable v such that every
reachable state extending p contains a fact from X. So, a dis-
ambiguation of v for p allows us to filter out facts of the vari-
able v that cannot be part of any reachable state extending
p. Disambiguations can be used for finding unreachable op-
erators and determining unsolvability of tasks. If, for some
operator o € O, a disambiguation of some v € V for pre(o)
is empty, then o is unreachable; and if a disambiguation of
some v € V for G is empty, the task is unsolvable. So, from
now on, we will only consider tasks with non-empty disam-
biguations of the goal and the operators’ preconditions.

For notational convenience, we use the following disam-
biguation maps D: Given a variable v € V, D(v) denotes
a disambiguation of v for G. Given an operator o € O and
v € V(eff(0)), Do(v) denotes a disambiguation of v for
pre(o). Fiser et al. (2020) provide a detailed description of
disambiguations and how to use mutexes to compute them.

3 Potential Heuristics

Potential heuristics (Pommerening et al. 2015), sometimes
also called atomic, map each fact to a numerical value called
potential, and the h-value for a given state s is the sum of po-

219

tentials of all facts appearing in s. Higher-dimensional po-
tential heuristics (Pommerening, Helmert, and Bonet 2017)
generalize this idea from single facts to sets of facts. Re-
cently, FiSer and Steinmetz (2024) showed that higher-
dimensional potential heuristics can be computed as atomic
potential heuristics using certain compilations where sets
of facts are explicitly represented as single facts. So, here
we consider only atomic potential heuristics as all ideas we
present here directly translate to higher-dimensional poten-
tial heuristics via the aforementioned compilations.

Definition 1. A potential function is a functionP : 7 — R.
A potential heuristic for P, denoted as A%, is defined as
hP(s) = > ¢, P(f) for every reachable state s € R.

All known methods for finding potential functions are
based on solving a linear program (LP) with constraints ex-
pressing goal-awareness and consistency of the resulting po-
tential heuristics. Here, we consider the constraints intro-
duced by Fiser, Hor¢ik, and Komenda (2020, Theorem 7)
adapted to our notation, because they often induce more
informative potential heuristics while maintaining forward
goal-awareness and forward consistency.

Theorem 2. Let P denote a potential function, and let D
denote disambiguation maps. If

max P(f) < (D
UEZV f€Dg(v)
and
max P(f P(f) < cost(2
> max P(f)=) P(f () @

veV(eff(0)) feef (o)

for every operator o € O, then h is forward goal-aware,
forward consistent and forward admissible.

It follows from Theorem 2 that a potential function P in-
ducing forward admissible h* can be obtained as any so-
lution to the LP with variables P(f) for all facts f € F,
the constraint Eq. 1 ensuring forward goal-awareness, and
the constraint Eq. 2 for each operator o € O ensuring for-
ward consistency. So, the objective function of this LP can
be freely chosen and there are many different ways how to
do that (Pommerening et al. 2015; Seipp, Pommerening, and
Helmert 2015; Fiser, Hor¢ik, and Komenda 2020).

The resulting h® can return negative estimates for some
states which is interpreted during search as simply returning
zero. In other words, the actual heuristic function (which we
denote as hf,,) used during search returns, for each state s,
the maximum of /% (s) and zero: Given a potential heuris-
tic h®, hf, denotes another heuristic function defined as
hf, (s) = max(h®(s),0) for every reachable state s € R.

4 Weakening Consistency Constraints

In this section, we show that we can further weaken the con-
sistency constraint Eq. 2 so that A¥ (and more importantly
hg +) 1s (possibly) more informative and remains forward ad-
missible. The idea is quite simple: Since the actual heuristic
function used in search is hg . and not RhF, it is enough to
ensure forward goal-awareness and forward consistency of
hf,, i.e., h* does not need to be forward consistent.

V = {t,p}, dom(t) = {11, I}, dom(p) = {11, 2, 1}
I = {<t,ll>7 <pall>}

G ={(p,l2)} (2
0€ O |pre(o) |eff(0) | cost(o)
d;ive(:c,y) {(t,z)} {{t,y)} |10
pickup(z) |{(t,2), (p,2)} |{{p: 1)} |1

drOp(Z) {<t7 Z>7<p,t>} {<p’ Z>} 1

for (z,y) € {(l1,12), (I2, 1)}, z € {l1,l2}

Figure 1: Example logistics planning task IT = (V, O, I, G)
with one truck ¢, one package p and two locations /; and I5.

Consider the simple logistics example task depicted
in Figure 1 with one truck ¢, one package p and two
locations [y and [5. For any potential function P obey-
ing the constraints from Theorem 2, the maximum possi-
ble heuristic value of h® for the initial state is h*(I)=2
(e.g., P((t,11))=P({t,12))=0, P({p,11))=2, P((p,l2))=0,
P((p,t))=1): Since the goal-awareness constraint (Eq. 1) is
maX,cdom(t) P((t, 7)) +P((p,l2)) < 0,itis possible to have
RP(I) > 2 only if |P({p,11)) — P({p,l2))| > 2. But the con-
sistency constraints (Eq. 2) over pickup and drop actions
imply [P((p, (1)) — P((p,12))| < 2.

However, there exist potential functions P such that h?
is forward admissible and h¥(I)=h*(I)=12. For example,
P((t, ll>):0’ P(<t7 l2))=-10, P((p, ll>):12’ P({p, l2>) =
—12, P({(p,t))=11. This P violates the consistency con-
straint Eq. 2 for the operator drop(ls). Therefore i is not
forward consistent, but it turns out i, is forward consistent.
In the following, we show how to find such potential func-
tions maintaining forward consistency of hf), by weakening
the consistency constraints (Eq. 2) from Theorem 2.

We start with a lemma showing a simple reformulation of
consistency criteria for heuristics of the form max(h(s),0)
that will be the basis for our new consistency constraints.

Lemma 3. Let h denote a heuristic function, and let s 28
denote a reachable transition. Then

max(h(s),0) — max(h(s’),0) < cost(o)
if and only if
min(h(s) — h(s"), h(s)) < cost(o).

Proof. Since cost(0) is non-negative, both inequalities hold
for any negative value of h(s). For h(s) > 0, we have that
max(h(s),0) — max(h(s"),0) = h(s) — max(h(s'),0)
h(s) + min(—h(s"),0) = min(h(s) — h(s’), h(s)).

O

For notational convenience, we define the following two
shorthands. Given disambiguation maps D and an operator
0 € O, we use CH"(0) to denote the left-hand side of Eq. 2:

S HOENDY D PR, 3

Vev(eff(o)) f€eff(o)

P —
1355,)

and we use C}7°(0) to denote an upper bound on the h-
values of hF in reachable states where o is applicable:

CY (o) = Z max P(f).

pey) fE€D,H(v)

“

220

Note that in case of C} (o), we use disambiguation to
consider only (an overapproximation of) possible reachable
states extending pre(o). So since we sum over all variables,
the h-values of h® in reachable states where o is applicable
can be at most the value of C})°(0).

Finally, we can formulate the main contribution of this
paper in the following theorem.

Theorem 4. Let P denote a potential function, and let D
denote disambiguation maps. If Eq. 1 holds and

min(CH" (0), CH°(0)) < cost(o) (3)
for every operator o € O, then h* is f-admissible and hY), is
f-consistent, f-goal-aware and f-admissible.

Proof. Eq. 1 ensures f-goal-awareness of k¥ and therefore

also of hf,. Let s = s’ denote a reachable transition. We
have that hP(s) — hP(s") < C5™(0), and h¥(s) < CH°(0).
Therefore we have that min(h?F(s) — h¥(s'),h"(s)) <
min(C$™(0), CY¢(0)) < cost(o). Therefore it follows
from Lemma 3 that hf, (s) — hf,(s") < cost(0), and there-
fore h8+ is f-consistent, and therefore also f-admissible.
Lastly, since for every reachable state s € R we have that

hP(s) < h§,(s), it follows that also A® is f-admissible. [J

Theorem 4 shows that we can replace Eq. 2 with Eq. 5 and
the resulting h* will remain forward admissible while hf,
will also be forward consistent (i.e., A* with hf, does not
need to re-open states). Moreover, since C$" (o) is the left-
hand side of Eq. 2, the constraint Eq. 5 can only be weaker
than Eq. 2. This means that for a fixed objective function, the
maximum objective value for constraints from Theorem 4 is
at least as high as for constraints from Theorem 2.

Note that we can also mix the consistency constraints
from Theorems 2 and 4, i.e., we can use Eq. 2 for some
operators and Eq. 5 for others. For instance in our exam-
ple task, we can obtain P such that h¥ (1) = h*(I) = 12 by
using Eq. 5 only for drop(l2) and Eq. 2 for all other oper-
ators. However, it is not clear how to decide between Eq. 2
and 5 for each operator so that the resulting potential heuris-
tic is improved. Here, we compare only variants where all
consistency constraints are either Eq. 2 or Eq. 5.

The remaining question is how to implement the con-
straint Eq. 5 in practice. One option is to use a mixed-integer
linear program (MIP) with a big-M formulation: A con-
straint min(a, b) < ¢ can be reformulated as a pair of con-
straints a—z M < cand b—(1—z)M < c where z is a binary
indicator variable and M is a large constant. In our experi-
ments, we found that it is very hard to find a suitable value
of M in a domain-independent manner. However, we used
the CPLEX solver which provides so called indicator con-
straints which allow to easily formulate the constraint Eq. 5.
Nevertheless, it requires having one additional binary vari-
able per operator and therefore it is much harder to solve
these MIPs than the original LPs with constraints from The-
orem 2. So, we run the solver with a time limit and use the
possibly suboptimal solutions found within that time limit.

= nfy—
=]
2107 1 o
2 . .
10l 3 = | +
— 10 :;r]
+ 1 .
] 0 I I I
01 10'10% 01 10" 10> %
P-I P-I

Figure 2: Per-task comparison of h-values for initial states;
“nf”: tasks where no potentials were found, “opt-only”: only
values proved optimal within 30 minutes time limit.

5 Experimental Evaluation

The method was implemented' in C and evaluated on a
cluster with Intel Xeon E5-2650v3 processors. We use all
planning domains from the optimal track of International
Planning Competitions (IPCs) from 1998 to 2023 exclud-
ing the ones containing conditional effects after translation.
We merge, for each domain, all benchmarks from different
IPCs resulting in 54 domains and 1 806 tasks overall. Oper-
ators and facts are pruned with the h? heuristic in forward
and backward direction (Alcdzar and Torralba 2015), and
the translation from PDDL to FDR uses the mutex groups
inference proposed by FiSer (2020, 2023).

We use 30 minutes time and 8 GB memory limit for each
task. We run A* (Hart, Nilsson, and Raphael 1968) with the
baseline potential heuristics, denoted as P, computed using
constraints from Theorem 2, and our method, P+, using The-
orem 4. We also use a simple portfolio, por, where we first
run P and if P terminates after ¢ minutes without finding a
plan, then we run P+ with only 30 —¢ minutes time limit (and
8 GB memory limit). We consider three variants of potential
heuristics: optimized for the maximum h-value of the initial
state (I) (Pommerening et al. 2015), maximum average h-
value for all syntactic states (A) (Seipp, Pommerening, and
Helmert 2015), and the variant A with enforced maximum h-
value for the initial state (AI) (FiSer, Horcik, and Komenda
2020). Since P+ often fails to find an optimal solution of the
MIP within 30 minutes, we set the time limit for the MIP
solver to 2 minutes and use the suboptimal solution if avail-
able (otherwise, we abstain from solving the task).

Figure 2 shows per-task comparison of h-values for initial
states when maximizing for that value. P+ found higher h-
values for initial states in 314 tasks spread over 21 domains,
and lower h-values in 142 tasks in 20 domains (data points
below diagonal in Figure 2 (right)). The lower h-values are
due to using suboptimal solutions of MIPs as the optimal
MIP solutions for P+ are guaranteed to dominate the solu-
tions for P. The MIP solver was able to provide optimal so-
lutions within 30 minutes only for 512 tasks, and all of them
were obtained also within 2 minutes. Moreover, using the
MIP solver with 2 minutes time limit allowed to obtain po-
tential functions in 1 236 more tasks.

Table 1 shows the number of solved tasks (coverage) per
domain and overall. We can observe a significantly higher
coverage for the I variant. Interestingly, in most tasks solved
by P+-I but not by P-I, the h-value for the initial state is the

"https://gitlab.com/danfis/cpddl, branch icaps25-pot-hmax0

221

. I A AT
domain P P+ por | P P+ por| P P+ por
blocks (35) 21 28 28| 28 28 28 28 28 28
caldera (20) 10 12 10 12 12 12 12 12 12
driverlog (20) 9 13 13| 13 11 13 13 13 13
elevators (50) 31 31 311 31 35 35 31 33 33
freecell (80) 48 60 60| 37 37 37 74 69 74
ged (20) 16 18 18| 15 15 15 15 18 18
logistics (63) 13 23 23| 24 24 24 24 24 24
mprime (35) 18 20 191 25 25 25 25 25 25
nomystery (20) 10 14 14| 14 13 14 14 14 14
parking (40) 1 7 71 16 6 16 16 7 16

pipesw-notank (50)
recharging-robots (20) [13 12 13| 13 12 13 13 11 13

scanalyzer (50) 25 25 251 23 23 23 27 25 27
snake (20) 15 14 15| 14 13 14 16 13 16
spider (20) 14 11 14| 14 11 14 16 12 16
tidybot (40) 32 30 32| 32 30 32 32 30 32
tpp (30) 6 8 8 6 6 6 8 8 8
trucks (30) 9 14 14| 14 11 14 14 14 14
visitall (40) 25 30 30| 25 28 28 27 30 30
woodworking (50) 19 27 27| 27 25 27 31 31 31
zenotravel (20) 8 11 11| 11 11 11 11 11 11
others (1053) | 558 566 565|569 566 570| 584 582 584

33 (1806) [926 1000 1003|988 967 9961061 1038 1069

Table 1: Number of solved tasks; “others”: sum over do-
mains where difference between P/P+/por was at most 1 for
all variants I/A/AI.

same for both P and P+. So the question is how much can
different LP/MIP solutions with the same objective value in-
fluence the performance of the planner and whether there is
a way to select the best one, which should be investigated in
future. (Note that P+ only widens the range of possibilities.)

In case of A and AI, using P+ is mostly detrimental. The
reason seems to be that the MIP solver struggles to optimize
for the objective function averaging over all syntactic states
(higher time limits did not lead to better results). In case of
A, out of 30 tasks solved by P but not by P+, solutions of P+
had lower objective value in 18 tasks. In case of AT, out of
33 tasks solved by P but not by P+, P+ ended up with lower
objective value in 19 tasks and it could not find any solution
in 6 tasks. However, the simple portfolio por tends to get the
best of both P and P+, increasing the overall coverage for all
variants of potential heuristics.

6 Conclusion and Future Work

Up until now, all methods for computing potential functions
P were based on enforcing consistency of the resulting po-
tential heuristics h*. Here, we introduce an alternative con-
straint ensuring consistency of heuristics maximizing over
hP and zero, which are the heuristics actually used in the
search instead of hF. This opens up the space of available
potential heuristics in practice and it often leads to more in-
formative heuristics. Nevertheless, these new constraints re-
quire solving MIP instead of LP, which is much more com-
putationally demanding in practice. This could be mitigated
by using the new constraints only for some operators. Find-
ing how to select these operators is left for future research.
Another question open for future is how to apply our method
to the so-called operator potential heuristics (FiSer, Torralba,
and Hoffmann 2024) in the context of symbolic search.

Acknowledgments

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) — Project
ID 232722074 — SFB 1102.

References

Alcazar, V.; and Torralba, A. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), 2-6.
Backstrom, C.; and Nebel, B. 1995. Complexity Results for
SAS™T Planning. Computational Intelligence, 11(4): 625—
655.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1-2): 5-33.

Fiser, D.; and Komenda, A. 2018. Fact-Alternating Mutex
Groups for Classical Planning. Journal of Artificial Intelli-
gence Research, 61: 475-521.

Fiser, D.; Torralba, A.; and Hoffmann, J. 2024. Boosting
Optimal Symbolic Planning: Operator-Potential Heuristics.
Artificial Intelligence, 104174.

Fiser, D. 2020. Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems. In Pro-
ceedings of the 34th AAAI Conference on Artificial Intelli-
gence (AAAI’20), 9835-9842.

Fiser, D. 2023. Operator Pruning Using Lifted Mutex
Groups via Compilation on Lifted Level. In Proceedings of

the 33rd International Conference on Automated Planning
and Scheduling (ICAPS’23), 118-127.

Fiser, D.; Hor¢ik, R.; and Komenda, A. 2020. Strengthening
Potential Heuristics with Mutexes and Disambiguations. In
Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS’20), 124—133.

Fiser, D.; and Steinmetz, M. 2024. Towards Feasible Higher-
Dimensional Potential Heuristics. In Proceedings of the
34th International Conference on Automated Planning and
Scheduling (ICAPS’24), 210-220.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100-107.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503—
535.

Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
Dimensional Potential Heuristics for Optimal Classical
Planning. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI’17), 3636-3643.

Pommerening, F.; Helmert, M.; Roger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI’15), 3335-3341.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Pro-
ceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), 193-201.

222

