
Online Learning of Action Models for PDDL Planning

Leonardo Lamanna1,2 , Alessandro Saetti1 , Luciano Serafini2 ,
Alfonso E. Gerevini1 and Paolo Traverso2

1Department of Information Engineering, University of Brescia, Italy
2Fondazione Bruno Kessler (FBK), Trento, Italy

{l.lamanna, alessandro.saetti, alfonso.gerevini}@unibs.it, {llamanna, serafini, traverso}@fbk.eu

Abstract

The automated learning of action models is widely
recognised as a key and compelling challenge to
address the difficulties of the manual specification
of planning domains. Most state-of-the-art meth-
ods perform this learning offline from an input set
of plan traces generated by the execution of (suc-
cessful) plans. However, how to generate informa-
tive plan traces for learning action models is still
an open issue. Moreover, plan traces might not
be available for a new environment. In this paper,
we propose an algorithm for learning action models
online, incrementally during the execution of plans.
Such plans are generated to achieve goals that the
algorithm decides online in order to obtain informa-
tive plan traces and reach states from which useful
information can be learned. We show some funda-
mental theoretical properties of the algorithm, and
we experimentally evaluate the online learning of
the actions models over a large set of IPC domains.

1 Introduction
Automated planning techniques require the specification of
planning domains through action models (a set of precon-
ditions and a set of effects for each domain action). How-
ever, the manual specification of the action models is often
an inaccurate, time consuming, and error-prone task. The
automated learning of action models is widely recognised
as a key and compelling challenge to overcome these dif-
ficulties. Several works have addressed the task of learn-
ing action models, and have provided important results from
different perspectives and according to different assump-
tions, see, e.g., [Yang et al., 2007; Amir and Chang, 2008;
Xu and Laird, 2010; Rodrigues et al., 2011; Mourão et al.,
2012; Zhuo and Kambhampati, 2013; Cresswell et al., 2013;
Certicky, 2014; Aineto et al., 2018; Aineto et al., 2019].

However, most of the recent and state-of-the-art methods
perform learning offline, and require as input a set of plan
traces generated by previously executed actions. This has
two major drawbacks. First, often agents need to learn the
model of the domain online, because they need to explore
an unknown environment, acquire information, and learn a

model by experimenting the execution of their actions in-
crementally, step by step. This is the case of many appli-
cations in robotics, e.g., in SLAM [Stachniss et al., 2016],
where the robot tries to build a map of the environment by
exploration, or in the Robocup Rescue [Kitano and Tadokoro,
2001], where the robot needs to explore the environment to
perform a rescue task. Second, previous work on learning ac-
tion models does not deal with the problem of generating in-
formative plan traces. As stated in the conclusions of [Aineto
et al., 2019], generating informative plan traces for learning
planning action models is still an open issue. Indeed, if the
available set of plan traces does not contain informative ex-
amples, there is little chance to learn all action preconditions,
since some preconditions can be only discovered by specific
plans that can unlikely be generated randomly [Fern et al.,
2004].

In this paper, we propose a new approach that does not
suffer from these drawbacks, focusing on the case of learn-
ing STRIPS action schema expressed in PDDL, and under the
assumption of full observability of the states reached by the
agent. We propose an algorithm, called OLAM algorithm (On-
line Learning of Action Models), for learning action models
online, incrementally during the execution of plans. A key as-
pect of OLAM is that it combines and interleaves the activity
of learning action preconditions and effects with an explo-
ration phase that selects which plan to execute. In this way,
OLAM generates plan traces to reach certain goal states, de-
cided online, which are useful for the learning task.

Beyond proving termination, we analyse our algorithm to
show some important theoretical properties that are defined
according to the state transitions of the models learned by the
algorithm. In particular we prove that OLAM is correct, i.e., it
learns action models which generate only the state transitions
generated by the planning domain modelling the true envi-
ronment where the agent acts. Moreover OLAM is “integral”,
i.e., it learns action models that generate all the transitions
of the true environment with respect to the states that can be
reached by the algorithm.

We also provide substantial empirical evidence of the good
learning performance of OLAM using a large set of bench-
marks from the International Planning Competitions (IPCs).
Finally we experimentally compare OLAM with a recent and
state-of-the-art method for learning action models offline,
showing that the online learning can be much more effective.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4112

2 Related Work

Recent offline approaches address the problem of model
learning with different assumptions on the observability of
states and actions, see, e.g., [Amir and Chang, 2008; Bonet
and Geffner, 2020; Cresswell et al., 2013; Mourão et al.,
2012; Newton et al., 2007; Yang et al., 2007; Zhuo et al.,
2010; Zhuo and Kambhampati, 2013]. A prominent system
among these is Fama [Aineto et al., 2019], which learns ac-
tion models offline from examples by transforming the learn-
ing task into a classical planning task. It works with different
kinds of inputs, from a set of plans to just a pair of initial and
final states, without intermediate actions or states. Moreover,
it accepts in input partially specified action models.

On the one hand, the aforementioned approaches to offline
learning can deal with partial observability of states and ac-
tions, and some of them even with noisy states and noisy ac-
tions. OLAM requires instead full observability of states, it
does not deal with noisy sensors, and actions are decided by
OLAM itself. On the other hand, differently from OLAM, all
these approaches are offline, require in input plan traces that
in some cases might be not available, and hence do not deal
with the issue of selecting informative plan traces.

Since the seminal work on online learning of operators
[Gil, 1994b; Gil, 1994a; Wang, 1996], and the first ap-
proaches to learning action models by integrating learn-
ing, planning, and execution [Garcı́a-Martı́nez and Borrajo,
2000], some recent approaches have addressed the problem
of online and incremental learning of action models. Walsh
and Littman (2008) propose an approach to online learn ac-
tion models which can be used in web-service planning prob-
lems. Their approach requires the use of an external “teacher”
providing plan traces on demand. 3SG [Certicky, 2014] is
an online algorithm that learns probabilistic action models
with conditional effects and deals with action failures, sen-
sory noise, and incomplete information. Xu and Laird (2010)
describes an instance-based online method for learning ac-
tion models in relational domains. The work is extended to
deal with both discrete and continuous action models [Xu
and Laird, 2011; Xu and Laird, 2013]. Rodrigues et al.
(2010a; 2010b) propose a technique based on relational rein-
forcement learning to learn deterministic action models, and
Rodrigues et al. (2011) extend the approach to deal with non-
deterministic actions. These approaches are based on impor-
tant technical differences with respect to our work. Most im-
portant, the main conceptual and practical difference is that
all these approaches assume that the action to be executed is
randomly selected or given in input, and therefore do not deal
with the problem of guiding the exploration phase towards in-
formative states, a key and promising feature of OLAM. The
work by Lamanna et al. (2021) proposes an online method to
learn planning domains by mapping continuous observations
to deterministic state transition systems. It uses a given PDDL
planning domain and a classical planner to heuristically ex-
plore the state space towards the problem goal. However, it
focuses on learning the final state machine of the planning
domain rather than PDDL action models like OLAM.

Our approach shares some similarities with the work on
planning by reinforcement learning (RL) [Sutton and Barto,

1998]. However, RL focuses on learning policies rather than
PDDL action models. Moreover, most often, in RL, actions
are represented as (probabilistic) state transitions, rather than
with symbolic action models.

3 Problem
Let P be a set of predicates with associated arity, of a first
order language, and O be a finite set of operator names with
associated arity. Predicates and operators of arity n are called
n-ary predicates and n-ary operators. Given an n-tuple x =
〈x1, . . . , xn〉 of distinct symbols (constants or variables), let
P(x) be the set of atomic formulas p(xi1 , . . . , xim) obtained
by applying the m-ary predicate p ∈ P to any m-tuple of
symbols 〈xi1 , . . . , xim〉 in x (with 1 ≤ i1, . . . , im ≤ n). For
instance, if P contains the single binary predicate on, and
x = 〈x1, x2, x3〉. Then, P(x) = {on(xi, xj) | 1 ≤ i, j ≤ 3}.
Definition 1 (Action schema). An action schema for an n-
ary operator name op ∈ O on the set of predicates P is a
tuple

〈
par(op), pre(op), eff+(op), eff−(op)

〉
, where par(op)

is a tuple of variables, pre(op), eff+(op), and eff−(op) are
three sets of atoms on P(par(op)).

Essentially, pre(op), eff+(op), and eff−(op) represent the
preconditions, positive, and negative effects of operator op.
Without loss of generality, we assume that operators have no
negative precondition. We also assume that the description of
the effects is consistent, i.e., eff+(op) ∩ eff−(op) = ∅.
Definition 2 (Ground action). The ground action a =
op(c1, . . . , cn) of an n-ary operator name op ∈ O w.r.t. the
constants c1, . . . , cn is the triple 〈pre(a), eff+(a), eff−(a)〉,
where pre(a) (resp. eff+(a), eff−(a)) is obtained by replac-
ing the i-th parameter of par(op) in pre(op) (resp. eff+(op),
eff−(op)) with ci.

We use the term lifted, as the opposite of grounded, to refer to
expressions and actions where constants have been replaced
with parameters.

Definition 3 (Planning domain). A planning domainM is a
triple 〈P ,O,H〉 where P is a set of predicates, O is a set
of operator names with their arity and, for every op ∈ O,
H is a function mapping an operator name op into an action
schema.

Definition 4 (Finite-State Machine of a planning domain).
The Finite-State Machine (FSM) of a planning domainM =
〈P,O,H〉 for the set C of constants is the triple M(C) =
〈S,A, δ〉 where S = 2P(C) is the set of all possible subsets
of facts; A is the set of all possible ground actions of each
n-ary operator name in O on any n-tuple of constants in C;
δ ⊆ S ×A×S is a transition relation such that (s, a, s′) ∈ δ
if pre(a) ⊆ s and s′ = s ∪ eff+(a) \ eff−(a).

A plan π inM(C) is a finite sequence of actions. A state
sn ∈ S is reachable from a state s0 ∈ S in M(C) if there
is a plan π = 〈a1, . . . , an〉 such that (si−1, ai, si) ∈ δ for
i = 1 . . . n.

Assuming that the sets P , O and C are known by the
agent, its task is to learn a planning domain by executing
the actions available in O over constants in C, observing,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4113

and determining what are their preconditions and effects on
the environment described in terms of the properties in P .
In formal terms, the agent has to build an action model
M = 〈P ,O,H〉, i.e., the preconditions and effects of ev-
ery action schema in the domain of H. We assume that the
dynamics of the environment where the agent acts, which is
unknown by the agent, is fully described by the finite state
machineM′(C), whereM′ = 〈P ,O,H′〉 is an action model
called Ground-Truth Model (GTM).

The following definitions state the notions of correct-
ness and integrity for the learned planning domain M =
〈P,O,H〉 w.r.t. the GTM.
Definition 5 (Correctness). Let M and M′ be two action
models andM(C) = 〈S,A, δ〉 andM′(C) = 〈S,A, δ′〉 be
their FSMs with respect to a set of constants C. We say that

1. M(C) correctly approximatesM′(C) from a state s0 ∈
S if, for every state sn reachable from s0 in M(C),
〈sn, a, s〉 ∈ δ implies 〈sn, a, s′〉 ∈ δ′ for some s′ ⊇ s.

2. M(C) correctly approximatesM′(C) ifM(C) correctly
approximatesM′(C) from every state in S;

3. M correctly approximates M′ if M(C) correctly ap-
proximatesM′(C) for every set of constants C.

A plan is valid when the actions in the plan are “executable”
and the plan achieves a given set of (positive) goals. There-
fore, when the learned model correctly approximates the
GTM, any valid plan computed by using the learned model
is also valid for the GTM.
Definition 6 (Integrity). LetM andM′ be two action models
and M(C) = 〈S,A, δ〉 and M′(C) = 〈S,A, δ′〉 be their
FSMs with respect to a set of constants C. We say that

1. M(C) integrally approximatesM′(C) from a state s0 ∈
S if, for every state sn reachable from s0 in M(C),
〈sn, a, s′〉 ∈ δ′ implies 〈sn, a, s〉 ∈ δ for some s ⊇ s′;

2. M(C) integrally approximates M′(C) if M(C) inte-
grally approximatesM′(C) from every state in S;

3. M integrally approximates M′ if M(C) integrally ap-
proximatesM′(C) for every set of constants C.

Therefore, when the learned model integrally approximates
the GTM, any valid plan for the GTM is also a valid plan for
the learned model.

4 Learning Algorithm
In the proposed approach, the agent constructs and executes
informative plan traces for learning the planning domain. Al-
gorithm 1 shows the pseudocode of the OLAM (Online Learn-
ing of Action Models). The input of the algorithm are the
same sets of predicates and operator names (with their asso-
ciated arity) of the GTM, and a set C of constants representing
the objects of the environment explored by the agent. OLAM
produces in the output two planning domains M and M−? .
The former is such that M(C) correctly and integrally ap-
proximates M′(C) from the state of the environment when
OLAM terminates. The latter correctly approximatesM′.

We adopt the following notations. Let x = 〈x1, . . . , xn〉
and c = 〈c1, . . . , cn〉 two n-tuple of distinct parameters

and constants. If p is an m-ary predicate, p(x) denotes
an atom p(xi1 , . . . , xim) for some m-tuple of indexes 1 ≤
i1, . . . , im ≤ n; and p(c) the atom obtained by replacing xi
with ci in p(x). In the following the indexing will be left
implicit. OLAM incrementally builds the following sets:

1. pre(op), which contains the preconditions of the opera-
tor op; it is initialized to the whole set of lifted atoms
(line 2); an atom p(x) is removed from pre(op) when-
ever an instance op(c) of op is executed successfully in
a state s and p(c) 6∈ s (line 19).

2. eff+
! (op) and eff−! (op), which contains the set of lifted

positive and negative effects of op learned by the agent;
they are initially empty (line 3); a lifted atom p(x) is
added to eff+

! (op) (resp. eff−! (op)) if the execution of an
instance op(c) of op in state s makes p(c) become true
(resp. false) in the resulting state (lines 20-21).

3. eff+
? (op) and eff−? (op), which are sets of lifted atoms

that could become part of the positive or negative effects
of op; they are initialized to the entire set of lifted atoms
(line 2); a lifted atom p(x) is removed from eff+

? (op)

(resp. eff−? (op)) if p(x) is discovered to be a positive or
negative effect or if the atom p(c) is false (resp. true)
in a state s and remains false (resp. true) after executing
successfully an instance op(c) of op in s (lines 22-23).

4. pre⊥(op), which is a set of sets of lifted preconditions
for op such that in every non empty set in pre⊥(op) there
is at least one precondition of op; pre⊥(op) is initialized
to a set including only the empty set (line 4); pre⊥(op)
is augmented by the set formed by any lifted fact p(x)
such that p(c) is false in a state s, if the execution of an
instance op(c) of op fails in s (line 26).

5. eff+
!?(op) and eff−!?(op), which are derived sets denoting

eff+
! (op) ∪ eff+

? (op) and eff−! (op) ∪ eff−? (op).

Let denote the sets of preconditions and positive/negative
effects of any operator op ofM′ by pre′(op) and eff ′

+/−
(op),

respectively. The update of the sets built by OLAM guarantees
that pre(op) is a superset of pre′(op), eff

+/−
! (op) are subsets

of eff ′
+/−

(op), and eff
+/−
!? (op) are superset of eff ′

+/−
!? (op).

At each iteration of the external loop (lines 7–31), the agent
selects a state s′ and a ground action op′(c′). s′ is reachable
from the current state with the modelM learned so far; the
ground action op′(c′) is such that its execution in s′ could
provide to the agent some additional information about the
preconditions, the positive, or the negative effects of op′. This
condition is formalised by (2)–(4). In particular, if condition
(2) holds, the preconditions of op′ could be refined by exe-
cuting op′(c′) in s′, because s′ does not contain all the pre-
conditions of op′(c′). Indeed if op′(c′) will succeed, then the
preconditions which are false in s′ can be eliminated. If con-
dition (3) (resp. (4)) holds, some positive (resp. negative)
effects of op′ could be learned, because op′(c′) is executable
in s′ and s′ does not contain all the facts in eff+

? (op
′(c′))

(resp. contains at least a fact in eff−? (op
′(c′))). Indeed, the

facts in eff+
? (op

′(c′)) but not in s′ which become true can be
added to the positive effects. Similarly, the facts that are in

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4114

eff−? (op
′(c′))) and in s′ which become false can be added to

the negative effects. The selection of such a state s′ and ac-
tion op′(c′) is done by constructing a plan from the current
state s to a state s′ which satisfies conditions (2)–(4) for an
op′(c′) (line 8). If there is more than one action op′(c′) that
satisfies conditions (2)–(4) in s′, one of them is randomly se-
lected. The choice of s′, op′(c′) and the associated plan is
obtained by invoking PLAN with the following goal:

G =
∨

op(c)∈A
P+P−E+E−satisfy (i–vi)

 ∧
p(c)∈P+∪E−

p(c) ∧
∧

p(c)∈P−∪E+

¬p(c)

 (1)

(i) P− ∪ E+ ∪ E− 6= ∅, (ii) P+ ∩ P− = ∅,
(iii) P+ ∪ P− = pre(op(c)), (iv) P− 6∈ pre⊥(op(c)) \ {∅},
(v) E+ ⊆ eff+

? (op(c)), (vi) E− ⊆ eff−? (op(c)).

Each disjunct in (1) describes a set of states from which
the agent can potentially learn something by executing op(c).
P+ and P− partition the preconditions of op(c) so that the
atoms in P+ are true in s′, the atoms in P− are false in s′,
and set P− has not already been checked to be necessary for
successfully executing op(c). E+ is a subset of possible pos-
itive effects of op(c) which are false in s′ and can become
true by executing op(c); similarly for E−. Notice that for
every state s′ that contains P+ and E− and does not con-
tain P− and E+, and every action op′(c′) such that (iv) and
(v) and (vi) hold, when condition (2) is satisfied by s′ and
op′(c′), P− is not empty; when condition (3) is satisfied by
s′ and op′(c′), E+ is not empty; finally, when condition (4)
is satisfied by s′ and op′(c′), E− is not empty.

In the internal loop (lines 9–30), OLAM executes π and if
it manages to successfully complete the execution of π (i.e.,
π = 〈〉, line 10) the ground action op′(c′) will be executed in
the environment where the agent acts (line 17). The dynamics
of such an environment is unknown by the agent, and it de-
termines the result returned by call EXECUTE(op(c)). When
a ground action op(c) is successfully executed, OLAM ob-
serves the state of the environment snext resulting from the
execution (line 18), and updates sets pre(op), eff

+/−
! (op) and

eff
+/−
? (op) according to the criteria defined above (lines 19–

23). If the op(c) execution fails in the environment, pre⊥(op)
is extended as described above, and π is reset to nil since
its execution deviates from the expected trajectory computed
according to the domainM learned so far (lines 26-27).
Theorem 1 (Termination). Algorithm OLAM terminates.
Proof sketch. The algorithm terminates because at every it-
eration of the external loop (7–31) one of the following facts
holds for some operator op: the size of pre(op), eff+

? (op),
or eff−? (op) is reduced; the size of pre⊥(op), eff+

! (op), or
eff−! (op) is increased. Moreover, pre⊥(op) cannot be larger
than 2P(par(op)), all the other sets cannot be larger than
P(par(op)), and the number of operators is equal to |O|.

In the rest of the section, we study the properties of cor-
rectness and integrity for the learned modelsM andM−? .

Theorem 2 (Correctness of M−?). M−? correctly approxi-
matesM′.

Algorithm 1 OLAM

Require: M = 〈P,O, {par(op), ∅, ∅}op∈O〉, C
1: s← OBSERVE()
2: ∀op ∈ O, eff−? (op)← eff+

? (op)← pre(op)← P(par(op))
3: ∀op ∈ O, eff−! (op)← eff+

! (op)← ∅
4: ∀op ∈ O, pre⊥(op)← {∅}
5: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−! }op∈O
〉

6: π ← nil
7: while ∃s′, op′(c′) such that s′ is reachable from s byM(C) and

(2) ∨ (3) ∨ (4) holds do
8: π ← PLAN(M(C), s, s′)
9: while π 6= nil do

10: if π 6= 〈〉 then
11: op(c)← POP(π)
12: else
13: op(c)← op′(c′)
14: π ← nil
15: end if
16: x← par(op)
17: if EXECUTE(op(c)) does not fail then
18: snext ← OBSERVE()
19: pre(op)← {p(x) ∈ pre(op) | p(c) ∈ s}
20: eff+

! (op)← eff+
! (op) ∪ {p(x) | p(c) ∈ snext \ s}

21: eff−! (op)← eff−! (op) ∪ {p(x) | p(c) ∈ s \ snext}
22: eff+

? (op)← eff+
? (op) \ {p(x) | p(c) /∈ s ∩ snext}

23: eff−? (op)← eff−? (op) \ {p(x) | p(c) ∈ s ∪ snext}
24: s← snext

25: else
26: pre⊥(op)←pre⊥(op)∪ {{p(x)∈pre(op)|p(c) 6∈s}}
27: π ← nil
28: end if
29: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−! }op∈O
〉

30: end while
31: end while
32: M−? ←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−!?}op∈O
〉

33: returnM,M−?
Conditions in line 7:

pre(op′(c′)) \ s′ 6∈ pre⊥(op
′(c′)) (2)

pre(op′(c′)) ⊆ s′ and eff+
? (op

′(c′)) 6⊆ s′ (3)
pre(op′(c′)) ⊆ s′ and eff−? (op

′(c′)) ∩ s′ 6= ∅ (4)

Proof sketch. The correctness of M−? derives from the fact
that at every execution step of OLAM, the set of preconditions
of every operator op inM−? is a superset of pre′(op), the set
of positive effects of op is a subset of eff ′

+
(op), and finally

the set of negative effects of op is a superset of eff ′
−
(op).

Theorem 3 (Correctness of M). M(C) correctly approxi-
matesM′(C) from the final state of OLAM.

Proof sketch. The learned model M is the same as M−?
but the set of negative effects of every operator op of M is
eff−! (op). The statement of the theorem derives from the fact
that op cannot have any missing negative effect that is true in
some state s reachable from the final state of OLAM. Indeed,
by construction, eff−! (op) ⊆ eff ′

−
(op) ⊆ eff−!?(op), and since

condition (4) is false, eff−? (op(c)) ∩ s = ∅ is true.

Theorem 4 (Integrity ofM). M(C) integrally approximates

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4115

M′(C) from the final state of OLAM.

Proof sketch. The statement of the theorem derives from the
fact that (i) every operator op cannot have any missing pos-
itive effect that is false in some state s reachable from the
final state of OLAM, and (ii) if an instance op(c) of op is ex-
ecutable from s via M′(C) then it is also executable from
s via M(C). Statement (i) derives from the facts that, by
construction, eff+

! (op) ⊆ eff ′
+
(op) ⊆ eff+

!?(op), and since
condition (3) is false, eff+

? (op(c)) ⊆ s is true. Statement
(ii) derives from the fact that, since condition (2) is false,
pre(op(c)) \ s ∈ pre⊥(op(c)), and at any execution step, if
φ ∈ pre⊥(op) and φ 6= ∅ then φ ∩ pre′(op) 6= ∅.

The learned model M approximates the GTM from the
final state sf of OLAM both correctly and integrally. This
implies that all and only the valid plans computed from sf
viaM are valid plans from sf via the GTM. Therefore, if a
complete algorithm fails to reach a given set of goals from sf
viaM, then the goals cannot be reached also via the GTM.

5 Experiments
We evaluate the effectiveness of OLAM for online learning
planning domains on 23 planning domains, including the do-
mains from the learning tracks of the past IPCs and the do-
mains used by Aineto et al. (2019). For each domain, using
an available problem generator, we randomly generated 10
small or middle-size instances with a number of objects rang-
ing from 3 to 241 and consequently a number of potential
grounded actions ranging from 12 to about 3.16 · 106. For
every domain OLAM is run on all the generated problem in-
stances, from the smallest to the largest. On the first instance,
OLAM takes as input the empty set of preconditions, positive
and negative effects; for the successive runs, OLAM takes as
input the planning domainM learned at the previous run. In
OLAM, the calls EXECUTE and OBSERVE (lines 17-18) are
implemented by a simulator of the IPC domain. The transi-
tion function of such a model is not known by the agent, who
can only ask to execute actions and observe the current state.
For function PLAN of Algorithm 1 (line 8), we adopt FAST-
DOWNWARD [Helmert, 2006] with a 60 seconds timeout. All
experiments were run on an Intel Xeon Skylake 2.3 GHz with
8 cores and 64 GB of RAM.

The learned planning domain is compared with the GTM,
as done by Aineto et al. (2019), by precision and recall mea-
sures. Given a learned model M and GTM M′, we define
precision and recall for preconditions (Ppre, Rpre), positive
and negative effects (Peff− , Peff+ , Reff− , Reff+). Specifically,
Ppre and Rpre are defined as follows:

Ppre =
∑

op|pre(op)∩ pre′(op)|∑
op|pre(op)| Rpre =

∑
op|pre(op)∩ pre′(op)|∑

op|pre′(op)| .

Intuitively, they measure the (relative) amount of extra
learned preconditions w.r.t. the GTM, and the (relative)
amount of missing preconditions w.r.t. the GTM, respectively.
The lower these amounts, the greater the measures. Similarly
we define precision and recall for eff− and eff+. If the preci-
sion and recall measures for pre, eff− and eff+ is 1, then the
learned model is exactly the same as in the GTM for pre, eff−

Domain #I Ppre Rpre Peff+ Reff+ Peff− Reff− P R

barman 4 0.95 1 1 1 1 1 0.97 1
blocksworld 1 1 1 1 1 1 1 1 1
depots 1 0.94 1 1 1 1 1 0.97 1
driverlog 2 0.88 1 1 1 1 1 0.93 1
elevators 3 0.81 1 1 1 1 1 0.88 1
ferry 1 0.88 1 1 1 1 1 0.94 1
floortile 1 0.71 1 1 1 1 1 0.83 1
gold-miner 2 0.68 1 1 1 1 1 0.80 1
grid 2 0.71 1 1 1 1 1 0.82 1
gripper 1 1 1 1 1 1 1 1 1
hanoi 1 0.80 1 1 1 1 1 0.88 1
matching-bw 3 0.97 1 1 1 1 1 0.99 1
miconic 1 1 1 1 1 1 1 1 1
n-puzzle 1 0.75 1 1 1 1 1 0.88 1
nomystery 1 0.75 1 1 1 1 1 0.85 1
parking 2 0.78 1 1 1 1 1 0.89 1
rover 5 0.78 1 1 0.65 1 0.54 0.83 0.84
satellite 1 1 1 1 1 1 1 1 1
sokoban 1 0.80 1 1 1 1 1 0.89 1
spanner 1 0.90 1 1 1 1 1 0.94 1
tpp 3 0.94 1 1 1 1 1 0.97 1
transport 1 0.91 1 1 1 1 1 0.95 1
zenotravel 1 1 1 1 1 1 1 1 1

Table 1: Number of instances used to learnM (column 2), precision
and recall over the preconditions, positive and negative effects ofM
(columns 3–8), overall precision and recall ofM (columns 9-10).

and eff+, respectively. The overall precision P and recall R
are defined considering pre, eff−, eff+ together. I.e.,

P =
∑

op|pre(op)∩ pre(op)′|+|eff+(op)∩ eff′+(op)′|+|eff−(op)∩ eff′−(op)′|∑
op|pre(op)|+|eff+(op)|+|eff−(op)| ,

and similarly for R.
Table 1 summarizes the efficacy of M w.r.t. the GTM in

terms of precision and recall. By construction of sets pre(op)

and eff
+/−
! (op) of every operator op, Rpre, Peff+ , and Peff−

ofM must be equal to 1, i.e., there is no missing precondi-
tion and extra effect in the learned modelM w.r.t. the GTM.
This is confirmed by the results in Table 1. Moreover, Ppre is
always quite high, although usually lower than 1, i.e., there
are few extra preconditions in the learned model w.r.t. the
GTM. The extra learned preconditions are static predicates
such that, when the action is grounded, the corresponding
grounded preconditions are true in all the states reachable
from the initial state. This prevents the remotion of these ex-
tra preconditions from a correct learned model, likeM. The
recall over the positive/negative effects is always equal to 1
for every domain but ROVER, i.e., there are no missing effects
(except for ROVER) in the learned model w.r.t. the GTM.

The results in Table 1 also show that domain M can be
learned using very few problems, often using only a single
problem. Note that such a domain is learned by few small
problems, and it does not mention their constants, i.e., it is
general and hence suitable even for much larger problems.
This shows that overall OLAM is able to effectively generalize
between the experience derived from small environments and
the future experience in large environments.

We also study the efficacy ofM−? w.r.t. the GTM. The dif-
ference between the learned modelsM andM−? consists in
the fact that M−? also includes set eff−? (op) as negative ef-
fects of an operator op. Therefore, the precision and the re-
call over the preconditions and the positive effects ofM−? are

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4116

with assumption without assumption
Domain Peff− Reff− P R Peff− Reff− P R
barman 1 1 0.97 1 0.24 1 0.56 1
blocksworld 1 1 1 1 0.43 1 0.69 1
depots 1 1 0.97 1 0.56 1 0.80 1
driverlog 1 1 0.93 1 0.23 1 0.53 1
elevators 1 1 0.88 1 0.15 1 0.42 1
ferry 1 1 0.94 1 0.50 1 0.75 1
floortile 1 1 0.83 1 0.10 1 0.29 1
gold-miner 1 0.82 0.80 0.95 0.18 1 0.41 1
grid 1 1 0.82 1 0.28 1 0.55 1
gripper 1 1 1 1 1 1 1 1
hanoi 1 1 0.88 1 1 1 0.88 1
matching-bw 1 1 0.99 1 0.32 1 0.65 1
miconic 1 1 1 1 0.23 1 0.62 1
n-puzzle 1 1 0.88 1 0.50 1 0.70 1
nomystery 1 1 0.85 1 0.10 1 0.30 1
parking 1 1 0.89 1 0.35 1 0.60 1
rover 1 0.54 0.83 0.84 0.16 0.54 0.55 0.84
satellite 1 1 1 1 0.67 1 0.92 1
sokoban 1 1 0.89 1 0.25 1 0.53 1
spanner 1 1 0.94 1 0.40 1 0.70 1
tpp 1 1 0.97 1 0.15 1 0.42 1
transport 1 1 0.95 1 0.33 1 0.65 1
zenotravel 1 1 1 1 0.33 1 0.67 1

Table 2: Precision and recall over the negative effects ofM−? and
overall model M−? with the assumption eff′

−
(op) ⊆ pre′(op)

(columns 2–5), and without this assumption (columns 6–9).

the same as in Table 1. Table 2 gives the precision and recall
over the negative effects of M−? and over all domain M−? .
For this study we consider M−? with and without assuming
eff ′
−
(op) ⊆ pre′(op), i.e., when this assumption is made, the

atoms in eff−? (op) that are not in the preconditions of an op-
erator are removed. By construction of set eff−!?, Reff− must
be equal to 1. Surprisingly, this is false for domains GOLD-
MINER and ROVER. The reason why this happens is that for
these domains an assumption of ours does not hold: ROVER
is a special domain including operators with inconsistent ef-
fects, i.e., eff ′

+
(op)∩ eff ′

−
(op) 6= ∅, for some operators. For

GOLD-MINER, the assumption eff ′
−
(op) ⊆ pre′(op) does not

hold. This assumption is violated also in domains PARKING,
SATELLITE and MATCHING-BW, but for these domains there
is no missing negative effect inM−? , since OLAM on line 21
learns eff−! regardless of this assumption. Interestingly, P−eff
with this assumption is always equal to 1, while without the
assumption it is almost always quite low. This gap gives evi-
dence that such an assumption can be very useful for remov-
ing extra negative effects from the learned domain.

We compare OLAM with a version of the algorithm that
explores the world randomly. The random strategy reaches
an average precision and recall of 0.45 and 0.63, against the
average precision and recall of 0.99 and 0.92 obtained by
OLAM, which shows that the generation of informative plan
traces is extremely helpful.

In the last experiment we compare the online learning of
OLAM with the offline learning method proposed by Fama
[Aineto et al., 2019]. Fama takes as input a set of plans with
their state trajectories. Since OLAM does not support par-
tial observability, we set Fama for working in a fully observ-
able environment, and considered the same sets of plan traces
and planning domains (but VISITALL and ZENOTRAVEL) as

OLAM Fama
Domain Time P R Time P R ∆ acts
blocksworld 5.03 1 1 510 1 1 -80
driverlog 20.42 0.93 1 349 0.79 0.85 -43
ferry 7.54 0.94 1 267 0.80 0.93 -85
floortile 47.34 0.83 1 517 0.82 0.78 -15
grid 36.92 0.82 1 306 0.81 0.74 -1
gripper 3.50 1 1 165 0.86 0.93 -89
hanoi 2.38 0.88 1 818 0.88 0.86 -96
miconic 4.24 1 1 200 0.81 1 -78
n-puzzle 1.97 0.88 1 23 0.86 1 -91
parking 183.94 0.89 1 895 0.84 0.84 -47
rover 154.10 0.83 0.84 629 0.51 0.53 175
satellite 11.26 1 1 65 0.70 0.89 -54
transport 74.98 0.95 1 280 0.80 0.89 -32

Table 3: CPU-seconds, precision and recall of OLAM (columns 2–
4) and Fama (columns 5–7); difference between number of actions
executed by Fama and OLAM (column 8): negative values mean
that OLAM executes fewer actions. Bold values indicate best results.

in [Aineto et al., 2019]. The set of plan traces consists of
10 traces with 10 states; the set of planning domains does
not contain ZENOTRAVEL and VISITALL, because the dis-
tributed version of Fama finds no solution for ZENOTRAVEL,
and there is no problem generator available for VISITALL.
Since Fama adopts the assumption eff ′

−
(op) ⊆ pre′(op) for

any operator op, we compared the planning domain derived
from Fama with M−? using the same assumption. We ob-
tained similar results from the comparison between Fama and
the other learned domainM.

Table 3 compares OLAM and Fama. OLAM obtains better
or equal precision and recall, and generally it is also much
faster. In all the domains but ROVER, OLAM executes less
actions than Fama. We think that the difference for ROVER
is related to the consistent-effects assumption made in OLAM
that in ROVER does not hold. Overall, learning the planning
domain online is much more effective than learning it offline.
In our online approach, indeed, the agent selects the goals to
reach and actions to execute to optimize learning, while in
offline approaches actions are provided in the input traces.

6 Conclusions
The paper proposes an online algorithm, OLAM, for learning
PDDL planning domain under the assumption of full observ-
ability. OLAM incrementally learns an action model by select-
ing goals to reach and actions to execute that allow to acquire
useful information about the operators. The paper shows
some important theoretical properties of OLAM concerning
the completeness and integrity of the learned models. An im-
plementation of OLAM shows good learning performance on
a large set of benchmarks from the IPCs, and outperforms
a state-of-the-art method for learning action models offline.
OLAM works with full observability; extension to partial ob-
servability is part of the future work.

Acknowledgements
This work is partially supported by the EU ICT-48 2020
project TAILOR (No. 952215).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4117

References
[Aineto et al., 2018] D. Aineto, S. Jiménez, and E. Onaindia.

Learning strips action models with classical planning. In
ICAPS, 2018.

[Aineto et al., 2019] Diego Aineto, Sergio Jiménez Celorrio,
and Eva Onaindia. Learning action models with minimal
observability. Artif. Intell., 275:104 – 137, 2019.

[Amir and Chang, 2008] Eyal Amir and Allen Chang.
Learning partially observable deterministic action models.
J. Artif. Intell. Res., 33:349–402, 2008.

[Bonet and Geffner, 2020] Blai Bonet and Hector Geffner.
Learning first-order symbolic representations for planning
from the structure of the state space. In ECAI, 2020.

[Certicky, 2014] Michal Certicky. Real-time action model
learning with online algorithm 3SG. Applied Artificial In-
telligence, 28(7):690–711, 2014.

[Cresswell et al., 2013] Stephen Cresswell, Thomas Leo
McCluskey, and Margaret Mary West. Acquiring planning
domain models using LOCM. Knowledge Eng. Review,
28(2):195–213, 2013.

[Fern et al., 2004] Alan Fern, Sung Wook Yoon, and Robert
Givan. Learning domain-specific control knowledge from
random walks. In ICAPS, 2004.

[Garcı́a-Martı́nez and Borrajo, 2000] Ramón Garcı́a-
Martı́nez and Daniel Borrajo. An integrated approach of
learning, planning, and execution. J. Intell. Robotic Syst.,
29(1):47–78, 2000.

[Gil, 1994a] Yolanda Gil. Learning by experimentation: In-
cremental refinement of incomplete planning domains. In
ICML, 1994.

[Gil, 1994b] Yolanda Gil. Learning new planning operators
by exploration and experimentation. In AAAI, 1994.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. J. Artif. Intell. Res., 26:191–246, 2006.

[Kitano and Tadokoro, 2001] Hiroaki Kitano and Satoshi Ta-
dokoro. Robocup rescue: A grand challenge for multia-
gent and intelligent systems. AI Mag., 22(1):39–52, 2001.

[Lamanna et al., 2021] Leonardo Lamanna, Alfonso
Gerevini, Alessandro Saetti, Luciano Serafini, and Paolo
Traverso. On-line learning of planning domains from
sensor data in pal: Scaling up to large state spaces.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11862–11869, 2021.

[Mourão et al., 2012] Kira Mourão, Luke S. Zettlemoyer,
Ronald P. A. Petrick, and Mark Steedman. Learning
STRIPS operators from noisy and incomplete observa-
tions. In UAI, 2012.

[Newton et al., 2007] Muhammad Abdul Hakim Newton,
John Levine, Maria Fox, and Derek Long. Learning
macro-actions for arbitrary planners and domains. In
ICAPS, 2007.

[Rodrigues et al., 2010a] Christophe Rodrigues, Pierre
Gérard, and Céline Rouveirol. Incremental learning of

relational action models in noisy environments. In ILP,
2010.

[Rodrigues et al., 2010b] Christophe Rodrigues, Pierre
Gérard, Céline Rouveirol, and Henry Soldano. Incre-
mental learning of relational action rules. In ICMLA,
2010.

[Rodrigues et al., 2011] Christophe Rodrigues, Pierre
Gérard, Céline Rouveirol, and Henry Soldano. Active
learning of relational action models. In ILP, 2011.

[Stachniss et al., 2016] Cyrill Stachniss, John J. Leonard,
and Sebastian Thrun. Simultaneous localization and map-
ping. In Springer Handbook of Robotics, Springer Hand-
books, pages 1153–1176. Springer, 2016.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement learning - an introduction. Adaptive compu-
tation and machine learning. MIT Press, 1998.

[Walsh and Littman, 2008] Thomas J Walsh and Michael L
Littman. Efficient learning of action schemas and web-
service descriptions. In AAAI, 2008.

[Wang, 1996] Xuemei Wang. Planning while learning oper-
ators. In AAAI, 1996.

[Xu and Laird, 2010] Joseph Z. Xu and John E. Laird.
Instance-based online learning of deterministic relational
action models. In AAAI, 2010.

[Xu and Laird, 2011] Joseph Z. Xu and John E. Laird. Com-
bining learned discrete and continuous action models. In
AAAI, 2011.

[Xu and Laird, 2013] Joseph Zhen Ying Xu and John E.
Laird. Learning integrated symbolic and continuous ac-
tion models for continuous domains. In AAAI, 2013.

[Yang et al., 2007] Q Yang, K Wu, and Y Jang. Learning
action models from plan examples using weighted max-
sat. Artif. Intell., 171:107–143, 2007.

[Zhuo and Kambhampati, 2013] Hankz Hankui Zhuo and
Subbarao Kambhampati. Action-model acquisition from
noisy plan traces. In IJCAI, 2013.

[Zhuo et al., 2010] Hankz Hankui Zhuo, Qiang Yang,
Derek Hao Hu, and Lei Li. Learning complex action mod-
els with quantifiers and logical implications. Artif. Intell.,
174(18):1540–1569, 2010.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4118

	Introduction
	Related Work
	Problem
	Learning Algorithm
	Experiments
	Conclusions

