
Front-to-Front Heuristic Search for Satisficing Classical Planning

Ryo Kuroiwa and Alex Fukunaga
Graduate School of Arts and Sciences, The University of Tokyo

mhgeoe@gmail.com, fukunaga@idea.c.u-tokyo.ac.jp

Abstract

Although symbolic bidirectional search is success-
ful in optimal classical planning, state-of-the-art
satisficing planners do not use bidirectional search.
Previous bidirectional search planners for satisfic-
ing planning behaved similarly to a trivial port-
folio, which independently executes forward and
backward search without the desired “meet-in-the-
middle” behavior of bidirectional search where
the forward and backward search frontiers inter-
sect at some point relatively far from the for-
ward and backward start states. In this paper, we
propose Top-to-Top Bidirectional Search (TTBS),
a new bidirectional search strategy with front-to-
front heuristic evaluation. We show that TTBS
strongly exhibits “meet-in-the-middle” behavior
and can solve instances solved by neither forward
nor backward search on a number of domains.

1 Introduction
Heuristic search algorithms such as A* [Hart et al., 1968]
and Greedy Best-First Search (GBFS) [Doran and Michie,
1966] are widely used in state-of-the-art solvers for classical
planning. Many current planners use forward search algo-
rithms which start at the initial state and seek a path to a goal
state. However, it is possible to search backward from a goal
state to a start state by regression, the process of computing
the possible predecessor states for a state (or a set of states).
Furthermore, it is possible to perform bidirectional search,
which simultaneously searches in both forward and backward
directions. Bidirectional heuristic search, particularly focus-
ing on admissible algorithms which guarantee optimal-cost
solutions, has recently been a very active area of research in
the search community [Sturtevant and Felner, 2018]. In ad-
missible (optimal) planning, symbolic bidirectional heuristic
search, which applies actions to sets of states, is one of the
state-of-the-art methods [Torralba et al., 2016].

However, the majority of recent work in satisficing plan-
ning has focused on forward, state-space search. Recently,
Alcázar et al. (2013) bridged the gap between forward and
backward search for satisficing classical planning, enabling
some techniques originally developed for forward search to

be used in backward search. They also extended their tech-
niques to bidirectional planning, but found that although
their bidirectional search could improve upon a unidirectional
search, the improvements could be attributed to a portfolio ef-
fect – domains which are suited for forward search are solved
by the forward search component, while domains which are
suited for backward search are solved by the backward search
component. They found little evidence of the forward and
backward search frontiers “meeting in the middle”, and con-
cluded that it was unlikely that bidirectional satisficing plan-
ning would outperform a simpler portfolio consisting of a for-
ward search component and a backward search component
[Alcázar et al., 2014].

We revisit bidirectional search for satisficing classical plan-
ning. We propose Top-to-Top Bidirectional Search (TTBS), a
new front-to-front search strategy which expands nodes that
have the smallest estimated distance to the opposite frontier.
We show that on a number of standard IPC benchmark do-
mains, TTBS outperforms both forward and backward search
by successfully “meeting in the middle”, as opposed to a
trivial portfolio effect. We show that a portfolio combining
TTBS, forward search, and backward search outperforms for-
ward search, backward search, as well as a forward/backward
portfolio.

2 Background and Related Work
2.1 Bidirectional Search
In bidirectional search, search starts at both the start state
and the goal state (or, in the case of regression planning, a
set of goal states derived from the goal condition). Standard
bidirectional searches have Openf and Closedf for forward
direction, and Openb and Closedb for the backward search.
The search succeeds and terminates when the forward and
backward search frontiers intersect – for optimal search, it is
further necessary to guarantee that the intersection results in
the shortest path.

In principle, if the search frontiers tend to grow wider as
they get further from their start points, bidirectional search
can save exponential time and space over unidirectional
search if the search frontiers “meet in the middle”, i.e., the
intersection occurs somewhere between the start and goal
[Sturtevant and Felner, 2018]. In brute-force bidirectional
search without a heuristic evaluation function, this behavior

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4098

is relatively easy to achieve because both forward and back-
ward search never expand states deeper than the solution mid-
point [Barker and Korf, 2015]. On the other hand, for heuris-
tic search, the forward and backward frontiers often pass by
each other without intersecting, and the bidirectional search
merely behaves like a portfolio consisting of independent for-
ward and backward search components, terminating when ei-
ther the forward search reaches a goal or the backward search
reaches the start state. The recent development of MM, an
algorithm which guarantees meet-in-the-middle behavior and
obtains state-of-the-art performance on a number of domains,
has sparked a significant amount of activity on admissible,
bidirectional search algorithms [Holte et al., 2017].

The most widely studied class of bidirectional search al-
gorithms, including MM, uses a front-to-end strategy with
two heuristic functions, where nodes in Openf are evalu-
ated according to hgoal, which estimates their distance to a
goal, while nodes in Openb are evaluated according to hstart,
which estimates their distance to the start state.

In contrast, front-to-front algorithms evaluate states ac-
cording to how close they are to the opposite search frontier.
For example, in principle, by computing the heuristic h(u, v)
between all pairs of states u and v in the frontiers, it would
be possible to expand nodes in order of how close they seem
to the opposite search frontier, which possibly leads to meet-
in-the-middle behavior.

2.2 Backward Search for Classical Planning
In a classical planning task, the initial state, the set of ac-
tions, and the goal condition are given. The solution of a
classical planning task is a sequence of actions which makes
the initial state transitions to a state satisfying the goal con-
dition. The standard SAS+ formalization [Bäckström and
Nebel, 1995] of a classical planning task represents states us-
ing multi-valued variables. Each action a in the planning task
has a precondition pre(a) and effects eff(a), as partial value
assignments to the state variables. The goal condition is also
given as a partial value assignment. An action a is applicable
in a state s iff pre(a) ⊆ s, and if a is applied to the state, s
transitions to a state s′ which is the same as s except for that
eff(a) ⊆ s′. Considering each state as a node and each state
transition by applying an action as an edge, forward search
can solve a classical planning task.

For some search problems such as the 15-puzzle, imple-
menting backward search is as straightforward as forward
search, because a goal state is explicitly given and state tran-
sitions are trivially invertible. However, for planning tasks
where a goal condition is given instead of an explicit goal
state, backward search is more complex than forward search.
First, multiple goal states can satisfy the goal condition. Sec-
ond, given an action a and a state s, there can be multiple
predecessors of s for which applying a results in s. Thus, in
contrast to forward search which focuses on individual states,
backward search (and therefore bidirectional as well) may
need to perform search among sets of states in the backward
direction.

Regression planning for satisficing planning has a long
history going back to the original work on theorem-proving
based approaches by Green (1969), as well as the seminal

work on HSPr by Bonet and Geffner (2001). In regression
planning, starting from the goal condition, backward search
generates sets of possible predecessor states until a set includ-
ing the initial state is found. Recent work on heuristic search
approaches has focused primarily on forward search. Alcázar
et al. (2013) bridged the gap between forward and backward
approaches by proposing several techniques for handling sets
of states in regression search similarly to explicit forward
search spaces. For regression, they introduced an additional,
undefined value for each variable, allowing regression plan-
ning to treat sets of states as search nodes, e.g., the goal node
is represented as a value assignment where values are unde-
fined if they are not specified in the goal condition. An action
a is applicable in a state (or a set of states represented by a
value assignment including undefined values) S in regression,
if eff(a) ⊆ S and pre(a) ⊆ S for variables not specified in
eff(a). When a is applied to S, the variables are changed so
that they satisfy pre(a). These techniques were implemented
in FDr [Alcázar et al., 2013], a regression planner built on top
of the forward search-based Fast Downward planning system
(FD) [Helmert, 2006], and it was shown that FDr can directly
use several heuristic functions used in FD, obtaining compet-
itive performance on some domains.

2.3 biFD: A Bidirectional Classical Planner
Alcázar et al. (2014) developed biFD, a bidirectional search
for satisficing classical planning and evaluated several bidi-
rectional search strategies and methods for detecting forward-
backward frontier intersection. biFD interleaves front-to-end
forward search and regression, allocating search effort in the
direction which has used less time so far. A variation of biFD
using a Binary Decision Diagram (BDD) [Bryant, 1986] for
frontier detection was investigated. They also investigated
front-to-front variants which maintain Backward Generated
Goals (BGGs), a set of states in the opposite frontier (one
variant used all the expanded states as BGGs, another used
1000-2000 states among the expanded states). In the BGG-
based front-to-front search, the h-value of a state s is the es-
timated cost from s to the state with the lowest hmax [Bonet
and Geffner, 2001] among BGGs. To detect the intersection
of frontiers, biFD with BGGs compares a state vs. all states
in the opposite BGGs. This intersection detection incur sig-
nificant overhead. In addition, the state with the lowest hmax
among BGGs is not necessarily a good target (it may not be
close to the opposite frontier), and may not be sufficient to
induce “meet-in-the-middle” behavior.

Although biFD achieved better overall coverage than re-
gression planning, they observed that the intersection of fron-
tiers almost always occurred very close to the opposite goal,
i.e., meet-in-the-middle behavior was not observed, and the
improvement of biFD over FDr was ascribed to a trivial port-
folio effect.

2.4 Single-Frontier Bidirectional Search
Single-Frontier Bidirectional Search (SFBS) is a front-to-
front heuristic search method proposed by Felner et al.
(2010). Instead of separate Open and Closed for forward and
backward search, SFBS uses a single queue ordered accord-
ing to h(u, v), shifting focus between forward and backward

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4099

expansions according to a jump policy.
While the idea of using a single Open prioritized according

to h(u, v) is elegant, it poses a problem. In standard unidirec-
tional search, as well as other bidirectional searches such as
MM, for a state s, its heuristic value h(s) only needs to be
evaluated at most once (in algorithms where s can be regen-
erated, h(s) can be cached and reused). In contrast, in SFBS,
a search node corresponds to a pair of states (x, y), and there
are multiple search nodes which contain states x and y. Thus,
SFBS requires the evaluation of h(s, w) for multiple w (in
the worst-case, all nodes in the opposite frontier), which can
be a major overhead especially when h is expensive to com-
pute. Similarly, SFBS also can expand multiple search nodes
(s, w) for many states w.

2.5 D-Node Retargeting
D-node retargeting (DNR) is a front-to-front heuristic search
method proposed by Politowski and Pohl (1984). DNR alter-
nately performs forward and backward search using Openf
and Openb. After expanding n states in one direction, DNR
reverses direction. In DNR, the h-value of a state s is the es-
timated distance between s and a d-node d, a state in Openb.
In forward search, d is a state s with the highest gb(s) in
Openb, where gb(s) is the cost of the found path from s to
the goal state, and in backward search, d is a state s with the
highest gf (s) in Openf , where gf (s) is the cost of the found
path from the initial state to s. DNR reevaluates all states in
Openf and Openb whenever the d-node changes, which can
incur a major overhead.

3 Top-to-Top Bidirectional Search
We propose Top-to-Top Bidirectional Search (TTBS), a sim-
ple front-to-front bidirectional search strategy. TTBS can be
considered as a variant of DNR but in order to avoid the large
overhead of evaluating states multiple times which SFBS and
DNR incurs (see above), TTBS uses the following scheme to
approximate this behavior.

Intuitively, in front-to-front heuristic search, if the heuris-
tic function successfully guides the search toward the oppo-
site frontier, the top of Openf should be close to the top of
Openb. When evaluating a state s, TTBS computes heuristic
estimate of the distance between s and d, where d is the top
(lowest h-value) state in the opposite Open , at the time when
s is being evaluated. In other words, TTBS uses the top of
opposite Open at that time as a d-node for s.

While DNR reevaluates all states in Open when the d-
node is changed, TTBS adopts a more moderate reevaluation
mechanism. At the start of a state expansion phase, TTBS
first removes s, the highest priority state from the open list.
Let D(s) be the state which was the d-node when s was eval-
uated. TTBS checks if the current d-node d is “similar” to
D(s). If d is similar to D(s), TTBS expands s. Otherwise,
TTBS reevaluates s against d (i.e., h(s, d)), inserts s to Open ,
and repeats the process. In our current implementation, d is
defined as similar to D(s) if d is D(s) or a successor of D(s).
To try to prevent unnecessarily frequent reevaluations, TTBS
prioritizes the reevaluated state over the other states with the
same h-value, i.e., the TTBS Open is prioritized first accord-

ing to h, then ties broken according to whether it was reevalu-
ated (higher priority) or not (lower priority), and then further
ties are broken according to standard tie-breaking strategies
(e.g., FIFO/LIFO). Thus, if the h-value of the top priority
state s remains the lowest in Open after the reevaluation, s
is immediately expanded. During the reevaluation process,
TTBS does not need to reevaluate the same state against d
more than once since d is fixed. However, in the worst case,
TTBS reevaluates all the states in the open list.

In summary, TTBS differs from DNR in that (1) TTBS uses
the top of the opposite Open as the d-node while DNR uses
the state with highest g-value, and (2) while DNR reevaluates
all states in Open whenever the d-node is changed, TTBS
uses a more limited reevaluation strategy.

The procedure TTBS in Algorithm 1 shows the pseudocode
of TTBS for classical planning. TTBS alternates between for-
ward and backward search. For backward search, TTBS uses
regression as biFD does in [Alcázar et al., 2014]. s0 is the
initial state and Sg is the set of goal states. While s0, s, and
s′ are states represented as value assignments to state vari-
ables, Sg , S, and S′ are sets of states where some variables
are possibly assigned ‘undefined’ values. Openf and Openb
are priority queues for the forward and backward search, re-
spectively, where push(Open, s, h) inserts a state s to Open
with the priority value h, top(Open) returns a state in Open
with the lowest priority value according to the tie-breaking
strategy, and pop(Open) returns top(Open) and removes it
from Open . genf and genb are hash sets containing states
and sets of states represented as value assignments to state
variables. The forward search steps correspond to standard
best-first forward search, except for the use of the top-to-top
heuristic h(s, d) and the reevaluation mechanism.

To detect forward/backward frontier intersection, TTBS
checks if a generated state was already generated in the oppo-
site direction. In addition, TTBS compares an expanded state
s with the opposite top state in line 16 and line 30. The inter-
section detections in line 18 and line 32 are implemented as
looking up of hash sets. Thus, even if an entry S in genb sub-
sumes a forward generated state s, it is possible that s /∈ genb
when S has undefined values, i.e., TTBS may overlook in-
tersections. Previous approaches which used BGGs for for-
ward/backward frontier intersection and incurred significant
overheads for intersection/subsumption checking [Alcázar et
al., 2014], so TTBS trades off the possibility of missed inter-
sections for fast intersection checks.

In this paper, we assume that t is unreachable from s if
h(s, t) = ∞. Even when the front-to-front h-value of s is
infinity, TTBS inserts s into Open in line 3 if the front-to-
end h-value is not infinity. TTBS always checks if s is a goal
state when expanding s in line 13 and 16, and if S includes the
initial state when expanding S in line 27 and 30. Therefore,
a path from the initial state s0 to a goal will eventually be
found, if one exists, and TTBS is complete. On the other
hand, if Openf or Openb becomes empty, there is no possible
path from the initial state to a goal. In such a case, TTBS
concludes that there is no solution (line 22 and 36.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4100

Algorithm 1 Top-to-Top Bidirectional Search (TTBS)
1: procedure PUSH(Open , s, d, h, he)
2: if h =∞ then h← he

3: if h 6=∞ then D(s)← d; push(Open, s, h)

4: procedure TTBS
5: D(s0)← Sg; D(Sg)← s0
6: push(Openf , s0, h(s0, Sg)); genf ← {s0}
7: push(Openb, Sg, h(s0, Sg)); genb ← {Sg}
8: loop
9: d← top(Openb)

10: for i = 1, ..., n do
11: s← pop(Openf)
12: while D(s) is not similar to d do
13: if Sg ⊆ s ∨ d ⊆ s then return a solution
14: PUSH(Openf , s, d, h(s, d), h(s, Sg))
15: s← pop(Openf)

16: if Sg ⊆ s ∨ d ⊆ s then return a solution
17: for s′ ∈ successors of s do
18: if s′ ∈ genb then return a solution
19: if s′ ∈ genf then continue
20: genf ← genf ∪ {s′}
21: PUSH(Openf , s′, d, h(s′, d), h(s′, Sg))
22: if Openf = ∅ then return no solution
23: d← top(Openf)
24: for i = 1, ..., n do
25: S ← pop(Openb);
26: while D(S) is not similar to d do
27: if S ⊆ s0 ∨ S ⊆ d then return a solution
28: PUSH(Openb, S, d, h(d, S), h(s0, S))
29: S ← pop(Openb)

30: if S ⊆ s0 ∨ S ⊆ d then return a solution
31: for S′ ∈ predecessors of S do
32: if S′ ∈ genf then return a solution
33: if S′ ∈ genb then contine
34: genb ← genb ∪ {S′}
35: PUSH(Openb, S′, d, h(d, S′), h(s0, S′))
36: if Openb = ∅ then return no solution

4 Experimental Evaluation
We experimentally evaluated the following search algorithms,
all of which were implemented by modifying the Fast Down-
ward planning system. (1) FD: forward GBFS, (2) FDr:
backward GBFS using regression, (3) biFD: interleaves FD
and FDr, (4) BDD: biFD + BDD. BDDs are used for duplicate
detection of backward search and intersection detection, (5)
BGG: biFD + BGGs. We used all states generated by back-
ward search as BGGs. States generated by forward search
are evaluated against the state s with the lowest hmax(s0, s).
If multiple states have the lowest hmax value, we use the state
that was generated first. (6) DNR(PP84): the original version
of D-node retargeting [Politowski and Pohl, 1984] (n = 75),
(7) SFBS: SFBS using front-to-front h-values as priority val-
ues where the jump policy is direction alternation: choose

the opposite direction to the direction chosen at the parent
node, (8) TTBS : TTBS with n = 1 where d is assumed to
be similar to D(s) if d is D(s) or D(s) is the parent of d in
the reevaluation mechanism. Differently from Alcázar et al.
(2014), we used eager GBFS instead of lazy GBFS and did
not use preferred operators.

All methods used the unit-cost version of hff [Hoffmann
and Nebel, 2001], which is straightforwardly applicable in
regression and bidirectional search [Alcázar et al., 2013;
Alcázar et al., 2014], using eager evaluation, and the FIFO
tie-breaking strategy. All code will be made available on a
public repository.

We used 1229 solvable instances in 47 planning domains
from classical satisficing tracks in International Planning
Competition (IPC) 98-2018, whose SAS+ representations do
not contain axioms and conditional effects. In the case of do-
mains with overlaps in multiple years, we used the newest
set. All runs were given a 5 min. time limit and a 4GB mem-
ory limit on Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
processors.

Table 1 shows the results per domain. In addition to cov-
erage (cov, the number of problems solved), for the bidirec-
tional searches, we also show the number of instances solved
by the bidirectional algorithm on which both FD and FDr
failed (i.e., cases where bidirectional search succeeded but
both forward and backward unidirectional searches failed).
Furthermore, for the bidirectional searches, we show the
meet metric, which indicates to which extent the search fron-
tiers are meeting in the middle, and is defined as the aver-
age (over instances in the domain) of min(#forward/#plan, 1
- #forward/#plan) where #plan is the length of the resulting
plan and #forward is the number of states generated by for-
ward search in the plan.

Table 2 summarizes the number of domains where one
method solved more instances than another.

Our results of FDr and biFD seem different from that in
Alcázar et al. (2014). This is possibly because we used newer
versions in some domains and eager GBFS without preferred
operators instead of lazy GBFS with preferred operators.

While biFD performed comparably to forward search
(FD), the meet metric shows that biFD almost never “meets
in the middle” (almost all domains have a meet score close to
0, and no domains with meet ≥ 0.2), and behaves essentially
like a portfolio consisting of independently executing forward
(FD) and backward (FDr) search components. Furthermore,
the variants of biFD using BGGs and BDD also exhibit weak
“meet in the middle” behavior. This confirms the previous ob-
servations in that these algorithms ”commit strongly to sub-
trees in the search state and often do not collide with the op-
posite frontier until they are close to the goal” (Alcázar et al.
2014, p.353, col.1, par.2). biFD did not solve any instances
which were not solved by either FD or FDr. BDD solved 1
such instance, and BGG solved 3 such instances. Thus, none
of these biFD variants exhibit performance complementary to
both FD and FDr.

TTBS exhibited meet-in-the-middle behavior (meet >
0.2) on a majority (26/47) of the tested IPC domains and
strong meet-in-the-middle behavior (meet > 0.4) on 18 do-
mains. While TTBS was not competitive with FD with re-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4101

FD FDr biFD BDD BGG SFBS DNR(PP84) TTBS

cov cov cov + meet cov + meet cov + meet cov + meet cov + meet cov + meet

agricola18 (20) 9 0 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 -
airport (50) 33 29 37 0 0.00 26 0 0.22 27 0 0.02 17 0 0.49 33 2 0.03 30 1 0.21
blocks (35) 35 35 35 0 0.19 35 0 0.19 35 0 0.28 35 0 0.49 35 0 0.33 35 0 0.45
data18 (20) 4 0 4 0 0.00 3 0 0.05 1 0 0.00 0 0 - 1 0 0.24 0 0 -
depot (22) 15 7 13 0 0.03 12 0 0.05 9 0 0.05 9 0 0.41 11 0 0.09 9 0 0.43
driverlog (20) 17 18 19 0 0.00 18 0 0.03 17 0 0.00 17 0 0.46 17 0 0.08 20 1 0.47
elevators11 (20) 17 18 17 0 0.00 15 0 0.00 12 0 0.03 9 0 0.45 1 0 0.40 14 1 0.49
floortile14 (20) 2 20 20 0 0.02 20 0 0.02 19 0 0.03 1 0 0.40 10 0 0.30 20 0 0.02
freecell (80) 78 6 73 0 0.00 65 0 0.00 15 0 0.01 1 0 0.36 63 0 0.00 41 0 0.00
ged14 (20) 20 0 16 0 0.00 15 0 0.00 12 0 0.00 0 0 - 2 0 0.15 0 0 -
grid (5) 4 4 4 0 0.00 4 0 0.17 4 0 0.00 5 1 0.39 4 0 0.09 5 1 0.41
gripper (20) 20 20 20 0 0.03 20 0 0.03 20 0 0.03 20 0 0.48 20 0 0.13 20 0 0.49
hiking14 (20) 20 6 17 0 0.02 16 0 0.04 13 0 0.03 7 0 0.29 18 0 0.10 19 0 0.40
logistics00 (28) 28 28 28 0 0.04 28 0 0.05 28 0 0.11 28 0 0.48 28 0 0.07 28 0 0.49
mainte14 (20) 11 7 11 0 0.00 9 0 0.00 5 0 0.00 2 0 0.50 6 0 0.01 2 0 0.49
movie (30) 30 30 30 0 0.00 30 0 0.00 30 0 0.00 30 0 0.43 30 0 0.00 30 0 0.43
mprime (35) 30 11 29 0 0.00 29 0 0.12 21 1 0.00 17 0 0.45 30 1 0.02 24 0 0.30
mystery (19) 17 11 17 0 0.00 17 0 0.11 13 0 0.00 12 0 0.43 17 0 0.00 18 1 0.28
nomystery11 (20) 9 4 9 0 0.02 9 0 0.02 4 0 0.01 2 0 0.47 6 0 0.07 6 0 0.11
org-split18 (20) 10 0 5 0 0.00 4 0 0.00 1 0 0.00 0 0 - 5 0 0.00 2 0 0.00
org18 (20) 2 2 2 0 0.00 2 0 0.00 2 0 0.00 1 0 0.50 2 0 0.00 1 0 0.50
parcprinter11 (20) 20 0 20 0 0.00 20 0 0.02 9 0 0.00 0 0 - 20 0 0.06 11 0 0.00
parking14 (20) 2 0 2 0 0.00 2 0 0.00 0 0 - 0 0 - 0 0 - 0 0 -
pathways (30) 9 5 9 0 0.00 9 0 0.13 5 0 0.08 6 1 0.50 9 0 0.01 12 3 0.39
pegsol11 (20) 20 16 20 0 0.08 20 0 0.08 15 0 0.12 9 0 0.33 18 0 0.11 19 0 0.16
pipes-notank (50) 27 1 22 0 0.00 14 0 0.01 7 0 0.00 3 0 0.13 15 1 0.01 10 0 0.08
pipes-tank (50) 19 8 16 0 0.00 13 0 0.06 10 1 0.00 8 0 0.41 12 0 0.05 10 0 0.31
psr-small (50) 50 49 50 0 0.00 50 0 0.32 50 0 0.04 47 0 0.35 49 0 0.08 48 0 0.20
rovers (40) 23 33 31 0 0.00 32 1 0.03 23 0 0.01 31 1 0.48 19 0 0.18 38 5 0.48
satellite (36) 26 12 26 0 0.00 26 0 0.02 8 0 0.04 24 0 0.41 21 0 0.16 25 0 0.49
scanalyzer11 (20) 15 20 20 0 0.02 20 0 0.16 19 0 0.08 18 0 0.47 17 0 0.24 20 0 0.47
sokoban11 (20) 19 2 17 0 0.00 4 0 0.08 3 0 0.00 2 0 0.25 12 0 0.00 14 0 0.00
spider18 (20) 7 0 1 0 0.00 0 0 - 0 0 - 0 0 - 0 0 - 0 0 -
storage (30) 18 16 19 0 0.00 19 0 0.13 17 0 0.00 16 0 0.18 17 0 0.08 16 0 0.19
termes18 (20) 11 15 13 0 0.12 12 0 0.13 8 0 0.14 11 0 0.10 9 0 0.18 16 2 0.41
tetris14 (20) 2 0 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 -
thoughtful14 (20) 8 0 8 0 0.00 5 0 0.00 1 0 0.00 0 0 - 8 1 0.00 5 0 0.00
tidybot11 (20) 16 0 10 0 0.00 4 0 0.00 0 0 - 0 0 - 3 0 0.11 0 0 -
tpp (30) 16 8 15 0 0.03 15 0 0.13 8 0 0.00 13 0 0.42 14 0 0.11 15 0 0.37
transport14 (20) 0 3 2 0 0.00 2 0 0.00 0 0 - 1 1 0.18 0 0 - 2 2 0.42
trucks (20) 14 6 14 0 0.00 13 0 0.00 5 0 0.17 2 0 0.44 15 1 0.00 15 1 0.00
visitall14 (20) 0 0 0 0 - 0 0 - 0 0 - 9 9 0.13 0 0 - 9 9 0.37
woodwork11 (20) 2 1 2 0 0.00 2 0 0.00 3 1 0.00 10 9 0.49 10 8 0.12 12 11 0.48
zenotravel (20) 20 20 20 0 0.05 20 0 0.08 20 0 0.09 20 0 0.45 20 0 0.14 20 0 0.44

total (1229) 755 471 743 0 679 1 499 3 443 22 627 14 641 38

Table 1: Results per domain (5 min, 4GB limit per instance). ‘cov’ is coverage (the number of solved instances), and ‘+’ is the number of
solved instances unsolved by FD or FDr. ‘meet’ is the average of min(#forward/#plan, 1 - #forward/#plan) where #plan is the length of
the resulting plan and #forward is the number of states generated by forward search in the plan, and indicates meet-in-the-middle behavior.
Domains where no instance is solved are omitted.

spect to total coverage across all domains, TTBS solved 38
instances which were solved by neither FD nor FDr (Table 1)
and solved more instances than FD in 12 domains and FDr
in 28 domains (Table 2). For a more detailed view, Figure 1
shows the node expansions and search time per instance for
TTBS vs. FD and FDr. Thus, TTBS, unlike the previous
biFD-based bidirectional searches, yields performance which
is complementary to both FD and FDr.

Comparing TTBS and SFBS, we observe that although
SFBS displayed meet-in-the-middle behavior (meet > 0.4)
on 21 domains, TTBS significantly outperformed SFBS. As
shown in Figure 2, SFBS tends to perform many more heuris-
tic evaluations expand more search nodes, resulting in longer
search times than TTBS. This is because in SFBS, each state
is involved in multiple evaluations and expansions, as ex-
plained in Section 2.1.

4.1 Comparison of TTBS vs. DNR

We evaluate how the differences between TTBS and DNR af-
fect their search behaviors. We compared TTBS with the fol-
lowing DNR variatns. (1) DNR(PP84), (2) DNR(OT): DNR
uses the top of the opposite Open as the d-node, (3) DNR(re):
DNR uses the same reevaluation mechanism as TTBS. Since
n = 75 was used in the original version of DNR [Politowski
and Pohl, 1984], we evaluated each variant with n = 1 and
n = 75.

In Table 3, comparing DNR(re) vs. DNR(PP84) and TTBS
vs. DNR(OT) shows that the TTBS reevaluation mechanism
significantly increases the number of ‘+’ instances (solved by
bidirectional search but unsolved by FD and FDr) and the
number of domains containing ‘+’ instances, as well as the
total coverage. Comparing DNR(OT) vs. DNR(PP84) shows
using the top of the opposite Open as the d-node by itself

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4102

FD FD
r

bi
FD

B
D

D

B
G

G

SF
B

S

D
N

R
(P

P8
4)

T
T

B
S

FD - 29 14 20 29 31 24 27
FDr 7 - 4 5 12 15 8 5
biFD 8 28 - 18 32 33 25 23
BDD 7 25 1 - 30 33 21 19
BGG 3 16 1 2 - 23 6 6
SFBS 6 11 3 3 9 - 8 0
DNR(PP84) 4 23 4 9 22 25 - 16
TTBS 12 24 10 12 26 26 17 -

Table 2: Summary: the number of domains where a method in a row
solved more instances than a method in a column.

100 102 104 unsolved
#expansions in FD

100

102

104

106

unsolved

#
ex

pa
ns

io
ns

in
T

T
B

S

10−1 100 101 unsolved
search time in FD

10−1

100

101

102
unsolved

se
ar

ch
ti

m
e

in
T

T
B

S

100 102 104 unsolved
#expansions in FDr

100

102

104

106

unsolved

#
ex

pa
ns

io
ns

in
T

T
B

S

10−1 100 101 unsolved
search time in FDr

10−1

100

101

102
unsolved

se
ar

ch
ti

m
e

in
T

T
B

S

Figure 1: The number of expansions and search time, TTBS vs. FD
and FDr. In search time plots, instances solved within 0.1 seconds
are shown at 10−1.

n = 1 n = 75
cov + dom cov + dom

DNR(PP84) 538 12 6 627 14 6
DNR(OT) 516 12 6 581 18 6
DNR(re) 630 27 12 673 28 11
TTBS 641 38 12 655 34 11

Table 3: Comparison of TTBS and DNR variants. ‘cov’ is the num-
ber of solved instances, ‘+’ is the number of solved instances un-
solved by FD and FDr, and ‘dom’ is the number of domains where
‘+’ is more than 0.

does not appear to be beneficial to performance. However,
comparing TTBS vs. the DNR variants shows that combined
with the reevaluation mechanism, using the top of the oppo-
site Open as the d-node increases ‘+’ instances.

We also compare the number of expansions, evaluations,
and the meet metric for TTBS and the DNR variants with

100 102 104 unsolved
#expansions in SFBS

100

102

104

106
unsolved

#
ex

pa
ns

io
ns

in
T

T
B

S

100 102 104 106unsolved
#evaluations in SFBS

100

102

104

106

unsolved

#
ev

al
ua

ti
on

s
in

T
T

B
S

10−1 100 101 unsolved
search time in SFBS

10−1

100

101

102
unsolved

se
ar

ch
ti

m
e

in
T

T
B

S

0.0 0.1 0.2 0.3 0.4 0.5
meet in SFBS

0.0

0.1

0.2

0.3

0.4

0.5

m
ee

t
in

T
T

B
S

Figure 2: TTBS vs. SFBS: number of expansions, search time, and
the meet metric. In the search time plot, instances solved within 0.1
seconds are shown at 10−1.

100 102 104 106unsolved
#expansions in DNR(OT)

100

102

104

106

unsolved

#
ex

pa
ns

io
ns

in
T

T
B

S

100 102 104 106 unsolved
#evaluations in DNR(OT)

100

102

104

106

unsolved

#
ev

al
ua

ti
on

s
in

T
T

B
S

0.0 0.1 0.2 0.3 0.4 0.5
meet in DNR(OT)

0.0

0.1

0.2

0.3

0.4

0.5

m
ee

t
in

T
T

B
S

100 102 104 106unsolved
#expansions in DNR(re)

100

102

104

106

unsolved

#
ex

pa
ns

io
ns

in
T

T
B

S

100 102 104 106 unsolved
#evaluations in DNR(re)

100

102

104

106

unsolved

#
ev

al
ua

ti
on

s
in

T
T

B
S

0.0 0.1 0.2 0.3 0.4 0.5
meet in DNR(re)

0.0

0.1

0.2

0.3

0.4

0.5

m
ee

t
in

T
T

B
S

Figure 3: The number of expansions, evaluations and the meet met-
ric in TTBS and DNR variants. We use n = 1 here.

n = 1 in Figure 3. The TTBS reevaluation mechanism re-
duces the number of evaluations. In addition, both the use
of the top of the opposite Open as the d-node and the TTBS
reevaluation mechanism promote meet-in-the-middle behav-
ior in many instances.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4103

meet = 0.0 (0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]

+ 2 0 0 1 9 26

Table 4: The number of ‘+’ instances, which is solved by TTBS but
unsolved by FD and FDr along with ranges of the meet metric.

0.1 0.3 0.5
meet in TTBS

10−4
10−2

100
102

+

vs
.

F
D

0.1 0.3 0.5
meet in TTBS

10−4
10−2

100
102

+

vs
.

F
D

r

0.1 0.3 0.5
meet in TTBS

10−4
10−2

100
102

+

vs
.

bi
F

D

Figure 4: Relation of the meet metric and the number of expansions.
Each plot compares TTBS and another method A, and x-axis is the
meet metric and y-axis is expansions(A) / expansions(TTBS) where
expansions(A) is the number of expansions by A. Instances solved
by TTBS but not solved by A are shown at ‘+’.

expansions
+ fewer same more

meet > 0.4 vs. FD 45 222 39 56
meet ≤ 0.4 vs. FD 31 42 11 195

meet > 0.4 vs. FDr 69 193 52 48
meet ≤ 0.4 vs. FDr 132 84 10 53

meet > 0.4 vs. biFD 33 308 1 20
meet ≤ 0.4 vs. biFD 13 83 12 171

Table 5: Comparison of TTBS vs. other methods, for meet > 0.4
and meet ≤ 0.4. ‘+’ is the number of instances which is solved
by TTBS but unsolved by the other method. ‘fewer’, ‘same’, and
‘more’ is the number of instances where TTBS expands fewer, the
same number of, and more states than the other method.

4.2 Meet-in-the-Middle Behavior
Next, we consider the relationship between the degree of
“meet-in-the-middle” behavior (as measured by the meet
metric) and search performance. Of the 38 instances solved
by TTBS but unsolved by both FD and FDr, TTBS has
meet > 0.4 in 26 instances and 0.3 < meet ≤ 0.4 in 9
instances, as shown in Table 4. We also compared the num-
ber of expansions by TTBS vs. FD, FDr, and biFD, (which
does not show meet-in-the-middle behavior) in Figure 4 and
Table 5. When meet > 0.4, TTBS tends to expand fewer
states than other methods, while TTBS tends to expand more
states than FD and FDr when meet ≤ 0.4. Thus, the meet
metric is highly correlated to the performance of TTBS.

4.3 Portfolios That Include Bidirectional Search:
Exploiting the Complementary Behavior of
Bidirectional Search

The preceding experiment showed that unlike previous bidi-
rectional approaches, TTBS exhibited much stronger comple-
mentary search behavior relative to both forward (FD) and
backward (FDr) search. To show how this complementary
behavior can be exploited, we evaluate portfolios composed
of unidirectional and bidirectional searches.

FD+FDr +biFD +BDD +BGG +SFBS +DNR(PP84) +TTBS

786 771 771 773 788 781 801

Table 6: Coverage of portfolios.

We evaluated the following portfolios. (1) FD+FDr, (2)
+biFD, (3) +BGG, (4) +BGG, (5) +SFBS, (6) +DNR(PP84),
(7) +TTBS. All portfolios use FD and FDr as components,
and the +X indicates the third planner, e.g., “+TTBS” =
FD+FDr+TTBS. A total 5 min. time limit per portfolio is
distributed evenly among the components. Coverage results
are shown in Table 6. Since BGG and BDD exhibited weak
complementarity relative to FD and FDr, portfolios that in-
clude BGG and BDD do not improve coverage vs. FD+FDr.
In contrast, the portfolio combining forward, backward, and
front-to-front bidirectional search (FD+FDr+TTBS) outper-
forms all other configurations, including a portfolio consist-
ing of forward and backward search, as well as portfolios us-
ing previous bidirectional searches.

5 Conclusions

We proposed and evaluated TTBS, a new front-to-front bidi-
rectional search strategy for satisficing heuristic search where
states are prioritized according to their distance to the top
state in the opposite frontier at the time of their evaluation.
This new prioritization scheme can be considered as a variant
of D-node retargeting [Politowski and Pohl, 1984]. TTBS as-
sumes that if the bidirectional search is successfully moving
the frontiers toward each other, the current top of the opposite
Open is a good approximation for the opposite frontier state
closest to s.

Our experimental evaluation showed that unlike biFD, a
front-to-end approach which does not exhibit meet-in-the-
middle behavior, TTBS exhibits meet-in-the-middle behavior
in a majority of the tested IPC domains, and strong meet-in-
the-middle behavior in some domains.

While TTBS by itself is not competitive with forward
search, or a portfolio consisting of forward and back-
ward search, we showed that unlike previous bidirectional
searches, TTBS can solve many instances which neither for-
ward nor backward search could solve, and a portfolio com-
bining forward search, backward search, and TTBS outper-
formed all other configurations. Thus, we have shown that
front-to-front bidirectional search can be successfully used
as a complementary approach to forward search, backward
search, and forward/backward portfolios.

Although TTBS performs better overall than SFBS be-
cause SFBS incurs very large overhead due to the need to
evaluate heuristics for pairs of states, SFBS demonstrates
stronger meet-in-the-middle behavior than TTBS on many
domains. This is to be expected, as TTBS in some sense tries
to approximate the stricter front-to-front behavior of SFBS
without incurring as much overhead. Improved reevaluation
strategies to more closely approximate the front-to-front be-
havior of SFBS is a direction for future work.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4104

References
[Alcázar et al., 2013] Vidal Alcázar, Daniel Borrajo, Susana

Fernández, and Raquel Fuentetaja. Revisiting regression
in planning. In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence IJCAI, Beijing,
China, August 3-9, 2013, pages 2254–2260, 2013.

[Alcázar et al., 2014] Vidal Alcázar, Susana Fernández, and
Daniel Borrajo. Analyzing the impact of partial states
on duplicate detection and collision of frontiers. In Pro-
ceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014,
2014.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
put. Intell., 11:625–656, 1995.

[Barker and Korf, 2015] Joseph Kelly Barker and Richard E.
Korf. Limitations of front-to-end bidirectional heuristic
search. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA, pages 1086–1092, 2015.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Trans. Comput-
ers, 35(8):677–691, 1986.

[Doran and Michie, 1966] James Doran and D Michie. Ex-
periments with the graph traverser program. In Proceed-
ings of The Royal Society A: Mathematical, Physical and
Engineering Sciences, volume 294, pages 235–259, 09
1966.

[Felner et al., 2010] Ariel Felner, Carsten Moldenhauer,
Nathan R. Sturtevant, and Jonathan Schaeffer. Single-
frontier bidirectional search. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[Green, 1969] C. Cordell Green. Application of theorem
proving to problem solving. In Proceedings of the 1st
International Joint Conference on Artificial Intelligence,
Washington, DC, USA, May 7-9, 1969, pages 219–240,
1969.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, 1968.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. J. Artif. Intell. Res., 26:191–246, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF Planning System: Fast Plan Generation
through Heuristic Search. J. Artif. Intell. Res., 14:253–
302, 2001.

[Holte et al., 2017] Robert C. Holte, Ariel Felner, Guni
Sharon, Nathan R. Sturtevant, and Jingwei Chen. MM: A

bidirectional search algorithm that is guaranteed to meet
in the middle. Artif. Intell., 252:232–266, 2017.

[Politowski and Pohl, 1984] George Politowski and Ira Pohl.
D-node retargeting in bidirectional heuristic search. In
Ronald J. Brachman, editor, Proceedings of the National
Conference on Artificial Intelligence. Austin, TX, USA, Au-
gust 6-10, 1984, pages 274–277. AAAI Press, 1984.

[Sturtevant and Felner, 2018] Nathan R. Sturtevant and Ariel
Felner. A brief history and recent achievements in bidirec-
tional search. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 8000–8007,
2018.

[Torralba et al., 2016] Álvaro Torralba, Carlos Linares
López, and Daniel Borrajo. Abstraction heuristics for
symbolic bidirectional search. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 3272–3278, 2016.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4105

	Introduction
	Background and Related Work
	Bidirectional Search
	Backward Search for Classical Planning
	biFD: A Bidirectional Classical Planner
	Single-Frontier Bidirectional Search
	D-Node Retargeting

	Top-to-Top Bidirectional Search
	Experimental Evaluation
	Comparison of TTBS vs. DNR
	Meet-in-the-Middle Behavior
	Portfolios That Include Bidirectional Search: Exploiting the Complementary Behavior of Bidirectional Search

	Conclusions

