
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Analyzing and Avoiding Pathological Behavior in Parallel Best-First Search

Ryo Kuroiwa, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract

Recent work has experimentally shown that parallelization
of Greedy Best-First Search (GBFS), a satisficing best-first
search method, can behave very differently from sequential
GBFS. In this paper, we propose a theoretical framework to
compare parallel best-first search with sequential best-first
search, including both suboptimal (GBFS, Weighted A*) and
optimal (A*) best-first search methods. We analyze the ex-
tent to which the search behavior of existing parallel best-first
search methods differ from sequential best-first search, and
show that existing methods are vulnerable to pathological be-
havior, and that they can expand nodes which would not be
expanded by sequential search under any tie-breaking policy.
We also propose PUHF, a parallel best-first search which is
guaranteed to expand a node only if there is some tie-breaking
strategy for sequential search which expands the node.

1 Introduction
Best-First Search (BFS) algorithms, including A* (Hart,
Nilsson, and Raphael 1968) and Greedy Best-First Search
(GBFS) (Doran and Michie 1966) are widely used to solve
difficult graph search problems. Parallelization of BFS is im-
portant both in order to speed up search time, as well as
to solve harder problems using the aggregate RAM across
multiple machines. In the case of A*, it has been shown
experimentally that efficient parallelization is consistently
achievable on many domains (Burns et al. 2010; Kishi-
moto, Fukunaga, and Botea 2013). However, it was recently
shown experimentally that achieving parallel speedups com-
pared to sequential GBFS is not as straightforward as for
A* (Kuroiwa and Fukunaga 2019) – hash-based distribution,
which was highly effective, for A*, can sometimes incur
massive search overhead (large increase in nodes expanded
compared to sequential GBFS) on standard benchmark do-
mains when applied to GBFS. Previous work focused on ex-
perimental evaluation of parallel BFS performance, but to
our knowledge, there has been little work on a theoretical
characterization of the search overhead of parallel BFS.

This paper seeks to further our understanding of parallel
BFS by developing a theoretical framework for characteriz-
ing the behavior of parallel BFS. We first extend the recent

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use of KBFS (Felner, Kraus, and Korf 2003) as a model for
parallel BFS and prove the bounded optimality of KWA*,
the K-parallel analogue of Weighted A* (WA*). Next, we
consider bounding the search overhead of parallel BFS rel-
ative to its sequential counterpart. We define the notion of
t-bounded search overhead and pathological (unbounded)
behavior in parallel BFS, and show that parallel A*, WA*,
and GBFS are all susceptible to pathological behavior when
Open and/or Closed are shared among processes. We also
define the notion of TB -bounded behavior, which is satis-
fied if parallel BFS is guaranteed not to expand any node
which would not be expanded under any tie-breaking strat-
egy by their sequential counterpart, and show that previ-
ous parallel BFS algorithms are not TB -bounded. We then
investigate several approaches to ensuring t-bounded and
TB -bounded behaviors in satisficing parallel BFS, includ-
ing simple approaches which do not share Open or Closed ,
as well as a sufficient criterion for ensuring TB -bounded
behavior in GBFS, applying the recent notion of bench tran-
sition systems by Heusner, Keller, and Helmert (2017). We
evaluate the search behavior and performance of these ap-
proaches.

2 Preliminaries and Background

State Space Topology State space topologies are defined
following previous work (Heusner, Keller, and Helmert
2018), extended with state transition costs.

Definition 1. A state space is a 5-tuple S =
〈S, succ, cost , sinit, Sgoal〉, where S is a finite set of states,
succ : S → 2S is the successor function, cost : S×S → N0

is the cost function, sinit ∈ S is the initial state, and
Sgoal ⊆ S is the set of goal states. If s′ ∈ succ(s), we
say that s′ is a successor of s and that s → s′ is a (state)
transition. We assume ∀s ∈ Sgoal, succ(s) = ∅. A heuristic
for S is a function h : S → N0 and ∀s ∈ Sgoal, h(s) = 0.
A state space topology is a pair 〈S, h〉, where S is a state
space.

We call a sequence of state 〈s0, ..., sn〉 a path from s0
to sn, and denote the set of paths from s to s′ as P (s, s′).
We denote the i th state in a path p as pi and the length of
p as |p|. A state s′ is reachable from another state s when

175

|P (s, s′)| > 0. The cost of a path p is defined as cost(p) =∑|p|−2
i=0 cost(pi, pi+1). A solution of a state space topology

is a path p from sinit to a goal state. g∗(s) denotes the cost
of the shortest path from sinit to s, minp∈P (sinit,s) cost(p).
h∗(s) denotes the cost of the shortest path from s to a goal,
mins′∈Sgoal,p∈P (s,s′) cost(p). In particular, h∗(sinit) is de-
noted by f∗. A solution is optimal if its cost is equivalent to
f∗. In this paper, we assume that a state space topology is
solvable, i.e., at least one goal state is reachable from sinit,
and there is no self-loop, i.e., ∀s ∈ S, s /∈ succ(s).

Several properties of state space topologies are defined:

Definition 2. A state space 〈S, succ, cost , sinit, Sgoal〉 is
undirected iff ∀s ∈ S, ∀s′ ∈ succ(s), s ∈ succ(s′) ∧
cost(s, s′) = cost(s′, s). A state space topology 〈S, h〉 is
undirected iff S is undirected.

Definition 3. A state space 〈S, succ, cost , sinit, Sgoal〉 is
unit-cost iff ∀s ∈ S, ∀s′ ∈ succ(s), cost(s, s′) = 1. A state
space topology 〈S, h〉 is unit-cost iff S is unit-cost.

Definition 4. Given a state space S =
〈S, succ, cost , sinit, Sgoal〉, a heuristic h is admissible
iff ∀s ∈ S, h(s) ≤ h∗(s). A state space topology 〈S, h〉 is
admissible iff h is admissible.

Definition 5. Given a state space S =
〈S, succ, cost , sinit, Sgoal〉, a heuristic h is consistent
if ∀s ∈ S, ∀s′ ∈ succ(s), h(s) ≤ cost(s, s′) + h(s′). A
state space topology 〈S, h〉 is consistent iff h is consistent.

Consistency implies admissibility, but not vice versa
(Hart, Nilsson, and Raphael 1968).

Best-First Search A search algorithm takes a state space
topology as input and returns its solution. Best-First Search
(BFS) is a class of search algorithms. BFS algorithms uses
an evaluation function f : S → R and a tie-breaking strat-
egy τ . BFS searches states in the order of evaluation function
values (f -values). States with the same f -value are priori-
tized by τ .

Alg. 1 shows K Best-First Search (KBFS) (Felner, Kraus,
and Korf 2003), a generalization of BFS using a parameter
k ∈ N+. BFS is KBFS with k = 1. In each step, KBFS re-
moves k states from Open (line 6) and generates their suc-
cessors. We call successor generation of s (line 8-18) the
“expansion of s”. top(Open) is a state s ∈ Open \ Closed
with f(s) = mins′∈Open\Closed f(s

′). If there are multiple
states with the lowest f -value in Open , top(Open) is deter-
mined by τ . The solution path can be extracted recursively
following parent(s) to sinit from the goal state returned by
Alg. 1. Returning NULL means there is no solution.

In this paper, we focus on A* (Hart, Nilsson, and Raphael
1968), Weighted A* (WA*) (Pohl 1970), and Greedy Best-
First Search (GBFS) (Doran and Michie 1966), three classes
of BFS algorithms that use different evaluation functions. In
A*, f(s) = g(s) + h(s). If h is admissible, A* returns an
optimal solution. In addition, if h is consistent, A* never re-
opens states in Closed (line 12-15) because any expanded
state s satisfies g(s) = g∗(s). A* with a consistent heuristic
expands all states having lower f -value than f∗ and never
expands any state having higher f -value than f∗. In WA*,

Algorithm 1 K Best-first search
1: Open ← {sinit},Closed ← ∅
2: parent(sinit) = NULL, g(sinit)← 0
3: while Open \ Closed �= ∅ do
4: S′ = ∅
5: while |S′| < k ∧Open \ Closed �= ∅ do
6: S′ ← S′∪top(Open\Closed); Open ← Open\{s}

7: for s ∈ S′ do
8: if s ∈ Sgoal then return s

9: Closed ← Closed ∪ {si}
10: for s′ ∈ succ(si) do
11: if s′ ∈ Closed ∪Open then
12: if g(s) + cost(s, s′) < g(s′) then
13: parent(s′) ← s; g(s′) ← g(s) +

cost(s, s′)
14: if s ∈ Closed then
15: Closed ← Closed \ {s′}; Open ←

Open ∪ {s′}
16: else
17: parent(s′)← s; g(s′)← g(s) + cost(s, s′)
18: Open ← Open ∪ {s′}

return NULL

f(s) = g(s) + wh(s) where w ≥ 1. WA* is w-suboptimal,
i.e., returns a solution p which satisfies cost(p) ≤ wf∗. If
h is a consistent heuristic, WA* does not need to re-open
states to return a w-suboptimal solution (Likhachev, Gor-
don, and Thrun 2003). In GBFS, f(s) = h(s). GBFS has no
bound for solution costs. In this paper, we ignore lines 12-15
for GBFS because re-opening states does not guarantee any
bound.

Note that A*, WA*, and GBFS only specify evalua-
tion functions. To fully define a search algorithm, a tie-
breaking strategy τ is necessary. Previous research revealed
that the tie-breaking strategy significantly affects search per-
formance of A* and GBFS (Asai and Fukunaga 2017b;
2017a). Following the recent theoretical analysis of GBFS
tie-breaking strategy (Heusner, Keller, and Helmert 2018),
“the best-case tie-breaking strategy” and “the worst-case tie-
breaking strategy” refer to tie-breaking strategies with which
BFS expands the smallest/largest number of states in a given
state space topology, respectively.

3 Analysis of Parallel Best-First Search

3.1 Parallel BFS as K-Best-First Search

Theoretical analysis of parallel best-first search is nontrivial,
because parallel threads of execution often results in non-
deterministic behavior (e.g., in one execution, thread 1 fin-
ishes expanding node A before thread 2 finishes expanding
node B, and vice versa in another possible execution).

Following previous work (Kuroiwa and Fukunaga 2019),
we model parallel BFS algorithms as KBFS. If n′ =
min(n, |Open \ Closed |) threads/processes simultaneously
expand the n′ best states from Open in parallel BFS, the
method is equivalent to KBFS. With a few idealized assump-
tions, KBFS can be used as a model for parallel BFS. Note
that as long as a parallel BFS implementation allows some

176

execution which satisfies these assumptions, the pathologies
identified below can actually occur.

Previous work modeled Hash Distributed GBFS (HDG-
BFS), a distributed parallel GBFS method based on HDA*
(Kishimoto, Fukunaga, and Botea 2013), as KGBFS (KBFS
with f(s) = h(s)) (Kuroiwa and Fukunaga 2019). HDG-
BFS distributes states among n processes according to a
hash function H . In HDGBFS with n processes, each pro-
cess i has Openi and Closed i, and extracts the lowest f -
value state si from Openi. s

′
i ∈ succ(si) is sent to process

j = H(s′i) mod n and added to Openj if s′i /∈ Closed j .
At the beginning of search, Openi = {sinit} if i =
H(sinit) mod n and otherwise Openi = ∅. Closed i = ∅
in all the processes. HDGBFS terminates immediately after
finding a solution. If we assume that: (1) all processes are
synchronized so that they all perform each local expansion
simultaneously, (2) the hash function H used by HDGBFS
is ideal, such that at each expansion step, the node with the
(global) i-th smallest h-value is in Openi, and (3) commu-
nications are instantaneous. then HDGBFS with n processes
can be modeled as KGBFS with k = n.

K-Parallel BFS (KPBFS) (Vidal, Bordeaux, and Hamadi
2010) is a multicore parallel BFS. As with HDGBFS, we
model KPGBFS (KPBFS with f(s) = h(s)) as KGBFS.
In KPBFS, all threads share single Open and Closed data
structures using a mutex. Each thread locks Open to remove
a state s with the lowest f -value in Open , locks Closed to
check duplicates and add s to Closed , and locks Open to
add succ(s) to Open . If we assume that (1) all expansions
take the same amount of time, and (2) lock wait times are
negligible, then KPGBFS with n threads can be modeled
as KGBFS with k = n because n′ threads simultaneously
expand the n′ lowest f -value states at every time step.

As with HDGBFS, HDA* (Kishimoto, Fukunaga, and
Botea 2013) can also be modeled as KBFS. However, to
guarantee optimality, HDA* continues search after find-
ing a solution p until there is no unexpanded state with
f(s) < cost(p). In KA*/KWA* (KBFS with f(s) = g(s)+
h(s)/f(s) = g(s) + wh(s)), we can also guarantee opti-
mality/bounded suboptimality with a similar method. In the
following theorem, we prove w-suboptimality of KWA* be-
cause KA* is a special case of KWA* with w = 1. We use a
lemma originally used to prove the optimality of A* (Hart,
Nilsson, and Raphael 1968), which also holds for KBFS.

Lemma 1. For any states s /∈ Closed and for any optimal
path p from sinit to s, there exists a state s′ ∈ Open\Closed
on p with g(s′) = g∗(s′).

Theorem 1. In an admissible state space topology, KWA*
with w ≥ 1 is w-suboptimal if it continues search after find-
ing a solution p until there is no state s with f(s) < cost(p)
in Open .

Proof. Assume that cost(p) > wf∗ and there is no state
s with f(s) < cost(p) in Open . At least one state on an
optimal path from sinit to a goal is not expanded and not in
Closed . By Lemma 1, ∃s ∈ Open \ Closed with g(s) =
g∗(s) on the optimal path. Since f(s) = g∗(s) + wh(s),
f(s) ≤ w(g∗(s)+h(s)). By admissiblity, f(s) ≤ w(g∗(s)+

h(s)) ≤ w(g∗(s)+h∗(s)) ≤ wf∗ < cost(p), contradicting
the assumption that �s with f(s) < cost(p).

With this modification, we model HDA* and KPA*
(KPBFS with f(s) = g(s) + h(s)) as KA* and HDWA*
(HDA* with f(s) = g(s) + wh(s)) and KPWA* (KPBFS
with f(s) = g(s) + wh(s)) as KWA*. A similar theorem
has been proven for Parallel Best-Nblock-First (PBNF), a
multicore parallel BFS method (Burns et al. 2010).

3.2 Parallel vs. Sequential Best-First Search

We analyze how differently parallel and sequential BFS be-
have on the same state space topology. First, we define a
quantitative measure to compare different search algorithms.

Definition 6. Given a state space topology T , a search al-
gorithm A is t-bounded relative to search algorithm B on T
iff A performs no more than t-times as many expansions as
B. A is t-pathological to search algorithm B on T iff A is
not t-bounded relative to B on T .
A is t-bounded relative to B iff A is t-bounded relative

to B for all state space topologies. A is t-bounded relative
to B on state space topologies with the property P iff A is
t-bounded relative to B for all state space topologies with
P .
A is pathological relative to B iff for all t > 0 there ex-

ists a state space topology T , such that A is t-pathological
relative to B on T . A is pathological relative to B in state
space topologies with property P iff for all t > 0 there ex-
ists a state space topology T with property P such that A is
t-pathological relative to B on T .

Intuitively, if A is t-bounded relative to B, there is a
bound t on the dissimilarity between A and B. In contrast, if
A is pathological relative to B, A sometimes behaves com-
pletely differently from B.

Note that bounded behavior relative to a sequential BFS
does not necessarily imply lower search overhead (and
hence better search performance) than an algorithm without
bounded behavior. However, bounded behavior guarantees a
worst-case bound on the “regret” for using a parallel BFS in-
stead of the sequential BFS, whereas unbounded algorithms
offer no such guarantee.

We now investigate whether KBFS algorithms are
bounded or pathological relative to sequential BFS algo-
rithms.

First, we show that KA* with any tie-breaking strategy is
bounded relative to A* on consistent state space topologies.

Lemma 2. Given a consistent state space topology 〈S, h〉,
KA* with any tie-breaking strategy expands a state s with
the lowest f -value in Open \ Closed at each k expansions
and s satisfies g(s) = g∗(s).

Proof. The first expanded state s in each k expansions has
the lowest f -value in Open \ Closed . If g(s) > g∗(s),
there is a state s′ in Open \ Closed which is on an opti-
mal path from sinit to s and satisfies g(s′) = g∗(s′) by
Lemma 1. By consistency, h(s′) ≤ h(s) + c where c is
the optimal path cost from s′ to s. Adding g∗(s′) to both
sides, we get f(s′) ≤ g∗(s) + h(s). Because g∗(s) < g(s),

177

f(s′) ≤ g∗(s) + h(s) < f(s) and this contradicts the fact
that f(s) is the lowest in Open \ Closed .

Lemma 3. Given a consistent state space topology 〈S, h〉
with a set of states S, let Sl = {s ∈ S | g∗(s) + h(s) <
f∗}. mins∈Open\Closed f(s) ≥ f∗ holds after at most k|Sl|
expansions by KA* with any tie-breaking strategy.

Proof. By Lemma 2, KA* expands a state s with f(s) =
mins′∈Open\Closed f(s

′) and g(s) = g∗(s) at each k
expansions. If mins′∈Open\Closed f(s

′) < f∗, s ∈ Sl

since f(s) = g∗(s) + h(s) < f∗. Thus, KA* ex-
pands at least one state s ∈ Sl at each k expan-
sions as long as mins′∈Open\Closed f(s

′) < f∗, and
s will never be re-expanded since g(s) = g∗(s). To
guarantee w-suboptimality (Theorem 1) KA* does not
terminate immediately after finding a goal. By con-
sistency, once mins′∈Open\Closed f(s

′) ≥ f∗ holds,
mins′∈Open\Closed f(s

′) < f∗ will never hold. Since s will
never be re-expanded, mins∈Open\Closed f(s) ≥ f∗ holds
after at most k|Sl| expansions.

Lemma 4. Given a consistent state space topology 〈S, h〉
with a set of states S, let Se = {s ∈ S \ Sgoal | g∗(s) +
h(s) = f∗}. When mins∈Open\Closed f(s) ≥ f∗, KA* with
any tie-breaking strategy finds an optimal solution after at
most k|Se|+ 1 expansions.

Proof. If there is no state s ∈ Open \ Closed with f(s) =
f∗, by consistency KA* must have expanded a goal state s′
with f(s′) = f∗, and search terminates immediately. If KA*
expands a goal sg with f(sg) = f∗, KA* returns the optimal
solution because mins∈Open\Closed f(s) ≥ f∗. Otherwise,
since mins′∈Open\Closed f(s

′) = f∗, KA* expands at least
one state s ∈ Se at each k expansions, and s will never be
re-expanded by Lemma 2. This requires at most k|Se| + 1
expansions.

Theorem 2. KA* with any tie-breaking strategy is k-
bounded relative to A* with the worst-case tie-breaking
strategy on consistent state space topologies.

Proof. A* expands each state in Sl in Lemma 3 exactly
once. By consistency, states in Se are reachable from sinit
by paths which only contain states in Sl and Se. After ex-
panding all states in Sl, mins∈Open\Closed f(s) ≥ f∗ holds.
In the worst case, A* expands each state in Se exactly once
before expanding a goal. In total, A* with the worst-case tie-
breaking strategy expands |Sl|+ |Se|+ 1 states. Since KA*
performs at most k(|Sl| + |Se|) + 1 expansions, KA* with
any tie-breaking strategy is k-bounded relative to A* with
the worst-case tie-breaking strategy.

On the other hand, other KBFS algorithms are not
bounded relative to their sequential BFS counterparts. To
prove pathology, we provide concrete state space topologies
as figures, where circles represent states, rectangles repre-
sent sets of states, and edges represent state transitions. A
vertical rectangle is a set of states with the same g-value. A
horizontal rectangle is a set of states on a path.

Theorem 3. KA* with k ≥ 2 and any tie-breaking strat-
egy is pathological relative to A* with any tie-breaking strat-
egy on unit-cost, undirected, and admissible but inconsistent
state space topologies.

Proof. Fig. 1 is a state space topology with param-
eter t > 0. This state space topology is unit-
cost, undirected, and admissible but inconsistent because
∀i, h(s2) > h(si4)+cost(s2, s

i
4). While A* expands 5 states

s0, s1, s3, s5, s7, KA* expands more than 5t states including
s0, s1, s2, s

0
4, ..., s

5t
4 . Therefore KA* is t-pathological rela-

tive to A* in this state space topology. For any t > 0, we can
create this kind of state space topology.

s0
h=3

s3
h=2

i=0, ..., 5t

s5
h=1

s6
h=2

s7
h=0

s4
i

h=1

s2
h=4

s1
h=2

f=3

f=5
f=3

f=5

f=3 f=4 f=4 f=4

Figure 1: A state space topology with parameter t > 0,
where sinit = s0, Sgoal = {s7}, and ∀0 ≤ i ≤
5t, succ(si4) = {s2, s6}. Each transition is undirected and
has cost 1.

Similarly, KWA* with w > 1 is pathological.
Theorem 4. With weight w > 1, KWA* with k ≥ 2 and any
tie-breaking strategy is pathological relative to WA* with
any tie-breaking strategy on unit-cost, undirected, admissi-
ble, and consistent state space topologies.

Proof. Fig. 2 is a unit-cost, undirected, admissible, and con-
sistent state space topology with parameters m ≥ 2 and
t > 0. Because f(s3) < f(s02) ∧ ∀i, f(si1) < f(s02), WA*
first expands s0, s

0
1, ..., s

m−2
1 , s3 regardless of m. Setting

m > w
w−1 , f(s9) < f(s7) < f(s5) < f(s02) holds, so WA*

expands s5, s7, s9 and terminates. In total, WA* expands
m+ 4 states. On the other hand, KWA* simultaneously ex-
pands si1 and si2. After expanding s3 and s4, KWA* must
expand s06, ..., s

(m+4)t
6 because ∀j, f(sj6) < f(s5) < f(s8).

Since KWA* expands more than (m + 4)t states, KWA* is
t-pathological relative to WA* in this state space topology.
For any t > 0, we can create this kind of state space topol-
ogy.

Setting m = 2 in Fig. 2, we can also show the pathology
of KGBFS. We omit the proof because it is almost the same
as Theorem 4.
Theorem 5. KGBFS with k ≥ 2 and any tie-breaking strat-
egy is pathological relative to GBFS with any tie-breaking
strategy on unit-cost, undirected, admissible, and consistent
state space topologies.

178

s0
h=m

s1
i

h=m−i

s2
i

h=m−i+1

s3
h=2

s4
h=2

s5
h=2

f=i+1+w(m−i+1)
i=0, ..., m−2

i=0, ..., m−2

f=i+1+w(m−i) f=m+2w f=m+1+2w

f=m+2w f=m+1+w
j=0, ..., (m+4)t

s7
h=1

f=m+2+w

s8
h=2

f=m+2+2w

f=m

s9
h=0

s6
j

h=1

f=m+3

Figure 2: A state space topology with parameter t >
0 and m ≥ 2, where sinit = s0, Sgoal = {s9},
succ(s0) = {s01, s02}, ∀0 < i < m − 2, succ(si1) =
{si−1

1 , si+1
1 } ∧ succ(si2) = {si−1

2 , si+1
2 }, succ(s3) =

{sm−2
1 , s5}, succ(s4) = {sm−2

2 }∪{sj6 | 0 ≤ j ≤ (m+4)t},
and ∀0 ≤ j ≤ (m + 4)t, succ(sj6) = {s4, s8}. Each transi-
tion is undirected and has cost 1.

3.3 Pathology Due to Shared Closed

On the state space topologies introduced above, KBFS ig-
nores a state expanded by sequential BFS (such as s5 in
Fig. 2) to expand states not expanded by sequential BFS
(such as sj6 in Fig. 2). Since KBFS shares a single prior-
ity queue as Open , once states with the lowest f -values
are found, KBFS must expand all of these states. A simple
modification to avoid this behavior is to use multiple Open
structures. We call this K Independent Open BFS (KIOBFS).
KIOBFS with k uses Open0 to Openk−1. At the beginning
of KIOBFS, Open0 = {sinit} and ∀i > 0,Openi = ∅. At
each step, KIOBFS expands min(k,

∑
i=0,...,k−1 |Openi|)

states. KIOBFS removes a state si from each Openi
if |Openi| > 0. Otherwise, KIOBFS removes a state
si with the lowest f -value among all Open . After re-
moving min(k,

∑
i=0,...,k−1 |Openi|) states, KIOBFS adds

succ(si) to Openi. In Figs. 1 and 2, KIOBFS is k-bounded
relative to sequential BFS because Open0 behaves in the
same way as Open in sequential BFS.

However, in general, parallel GBFS using KIOBFS
(KIOGBFS) is pathological relative to sequential GBFS be-
cause of the shared Closed .
Theorem 6. KIOGBFS with k ≥ 2 and any tie-breaking
strategy is pathological relative to GBFS with any tie-
breaking strategy.

Proof. Fig. 3 is a state space topology with a parameter t >
0. GBFS expands 6 states, s0, s1, s3, s5, s7, and s9. KIOG-
BFS expands s1 and s2 simultaneously after expanding s0
and adds s3 to Open0 and s5, ∀0 ≤ i ≤ k− 1, si4 to Open1.
KIOGBFS expands s3 for Open0 and s5 for Open1. If
k > 2, since ∀i > 1,Openi = ∅, we assume that KIOGBFS
expands si4 for Openi with i > 1. After these expansions,
Open0 = ∅ because s5, the successor of s3, is already ex-
panded and in Closed . At the next step, KIOGBFS expands
s04 for Open0, s14 for Open1, and si,j6 for ∀i > 1,Openi if
k > 2 because h(si4) < h(si,j6) < h(s7) < h(s8). After this
step, KIOGBFS must expand ∀0 ≤ i < k, 0 ≤ j ≤ 6t, si,j6
before expanding s7. Therefore KIOBFS is t-pathological

relative to GBFS on this state space topology. For any t > 0,
we can create this kind of state space topology.

s0
h=1

s3
h=1

s5
h=1

i=0, ..., k−1

s7
h=4

s8
h=5

s9
h=0

s4
i

h=2

s2
h=5

s1
h=1

s6
i,j

h=3

j=0, ..., 6t
i=0, ..., k−1

Figure 3: A state space topology with parameter t > 0 where
s0 = sinit, Sgoal = {s9}, succ(s2) = {si4 | 0 ≤ i < k} ∪
{s5}, ∀0 ≤ i < k, succ(si4) = {s2} ∪ {si,j6 | 0 ≤ j ≤ 6t},
and ∀0 ≤ i < k, ∀0 ≤ j ≤ 6t, succ(si,j6) = {si4, s8}.

Thus, using multiple Open structures is not sufficient to
avoid pathological behavior, and sharing either Open or
Closed opens the possibility of pathological behavior.

3.4 TB -Bounded Behavior

Using the notion of t-boundedness, we have analyzed ex-
isting parallel BFS algorithms with respect to whether the
number of expanded nodes can be bounded relative to
sequential BFS. Next, we consider a different notion of
bounded behavior, based on whether parallel BFS searches
the same region of the search topology as its sequential
counterpart.
Definition 7. Let T be a state space topology. A search algo-
rithm A is TB -bounded relative to a search algorithm B on
T iff A does not expand any states which are not expanded
by B with any tie-breaking strategy. A is TB -bounded rela-
tive to B iff A is TB -bounded on all state space topologies.
Theorem 7. KA*, KWA*, KGBFS, and KIOGBFS with
k ≥ 2 and any tie-breaking strategy are not TB -bounded
relative to their sequential counterparts on unit-cost, undi-
rected, admissible, and consistent state space topologies.

Proof. In Fig. 4, although A*, WA*, and GBFS never ex-
pand s2 under any tie-breaking strategy, KA*, KWA*, KG-
BFS, and KIOGBFS expand it.

4 Bounded Parallel Best-First Search

As we have shown above, KWA* or KGBFS can behave ar-
bitrarily differently from sequential WA* or GBFS. In this
section, we investigate parallel GBFS methods which pro-
vide some guaranteed similarity to the search behavior of
GBFS.

4.1 PGBFS: Using Independent Open and Closed

PGBFS is a parallel search portfolio whose components are
independently executed GBFS threads with different tie-
breaking strategies. All threads are completely independent
and do not share Open and Closed . To our knowledge,

179

s0
h=2

s3
h=0

s4
h=1

s2
h=2

s1
h=1

f=2

f=3 f=3

f=2 f=2

Figure 4: A state space topology where s0 = sinit and
Sgoal = {s3}. Each transition is undirected and has cost
1.

the first investigation of using completely independent best-
first search processes is due to Knight (1993). Recently,
PGBFS was evaluated for multi-core search on classical plan-
ning (Kuroiwa and Fukunaga 2019).

Using completely separate Open and Closed struc-
tures among the processes trivially eliminates pathology.
PGBFS with k threads is clearly both k-bounded and TB -
bounded relative to GBFS if one of the threads uses the same
tie-breaking strategy as sequential GBFS.

On the other hand, the threads lack the ability to explic-
itly exploit the work done by the other processes. Another
drawback of PGBFS is memory partitioning – the lack of shar-
ing among processes also means that each process only has
1/k the memory available to sequential GBFS running on
the same machine. This can cause PGBFS to fail for memory-
intensive problems which are solvable by GBFS.

4.2 Shared Evaluation Caches

While sharing Open or Closed among processes in parallel
BFS can lead to pathological behavior, a safe, more limited
alternative which allows some sharing of work is a shared
evaluation cache. In state-of-the-art planners using BFS, a
large portion of the runtime is consumed by the computa-
tion of heuristic h-values. The h-values of all states evalu-
ated by all processes can be stored and looked up in a shared
evaluation cache implemented as a lock-free hash table. If
the heuristic function is path-independent, the stored, shared
h-values will be valid for all processors, and the cache can
potentially significantly reduce runtime if many states are
evaluated by multiple processes. Furthermore, unlike shar-
ing Open and Closed , a shared evaluation cache does not
introduce the possibility of one search process influencing
the node expansion order in another process, so pathology
is trivially avoided. For example, we can extend PGBFS to
PGBFS/C, which uses an evaluation cache shared among all
PGBFS threads, and the node expansion order in each thread
will be exactly the same in PGBFS/C as in PGBFS.

4.3 A Sufficient Criterion for TB -Bounded
Behavior in Parallel GBFS

Next, we identify a sufficient criterion for guaranteeing TB -
bounded behavior in a parallel GBFS which can be modeled
in our KBFS-based framework.

Applying the notion of bench transitions, recently pro-
posed by Heusner, Keller, and Helmert in a theoretical anal-
ysis of GBFS (Heusner, Keller, and Helmert 2017; 2018),
we get a necessary and sufficient criterion for TB -bounded
behavior.
Definition 8. Let 〈S, h〉 be a state space topology with states
S and P (s) = {p ∈ P (s, s′) | s′ ∈ Sgoal}. The high-water
mark of s ∈ S is

hwm(s) :=

{
minp∈P (s)(maxs′∈p h(s

′)) if P (s) �= ∅
∞ otherwise

The high-water mark of a set of states S′ ⊆ S is defined as

hwm(S′) := min
s∈S′

hwm(s)

Definition 9. A state s of a state space topology 〈S, h〉 is a
progress state iff hwm(s) > hwm(succ(s)).
Definition 10. Let 〈S, h〉 be a state space topology with a
set of states S. Let s ∈ S be a progress state.

The bench level of s is level(s) = hwm(succ(s)).
The inner bench states inner(s) for s consist of all states

s′′ �= s that can be reached from s on paths on which all
states s′ �= s (including s′′ itself) are non-progress states
and satisfy h(s′) ≤ level(s).

The bench exit states exit(s) for s consist of all progress
states s′ with h(s′) = level(s) that are successors of s or of
some inner bench state of s.

The bench states states(s) for s are {s} ∪ inner(s) ∪
exit(s).

The bench induced by s, denoted by B(s), is the state
space with states states(s), initial state s, and goal states
exit(s). The successor function is the successor function of
S restricted to states(s) without transitions to s and from
bench exit states exit(s).
Definition 11. Let T = 〈S, h〉 be a state space topology
with initial state sinit. The bench transition system B(T) of
T is a directed graph 〈V,E〉 whose vertices are benches. The
vertex set V and directed edges E are inductively defined as
the smallest sets that satisfy the following properties:
1. B(sinit) ∈ V

2. if B(s) ∈ V , s′ ∈ exit(s), and s′ is a non-goal state, then
B(s′) ∈ V and 〈B(s),B(s′)〉 ∈ E

Theorem 8. Let T = 〈S, h〉 be a state space topology with
set of states S and bench transition system 〈V,E〉. For each
state s ∈ S, it holds that s ∈ B(s′) for some B(s′) ∈ V iff
there is a tie-breaking strategy with which GBFS expands s.

Definitions 8–11 are from Heusner, Keller, and Helmert
(2018), and Theorem 8 is from Heusner, Keller, and Helmert
(2017).

The bench transition system (BTS) defines the set of all
nodes which are candidates for expansion by BFS with some
tie-breaking strategy. If parallel BFS expands nodes which
are outside of the BTS , then it is not TB -bounded by The-
orem 8, and vice versa.

During search, we can identify states in Open which are
guaranteed to be in the BTS .

180

Theorem 9. When s is expanded by GBFS with some
tie-breaking strategy, if h(s′) ≤ h(s) where h(s′) =
mins′′∈succ(s) h(s

′′), s′ is also expanded by GBFS with
some tie-breaking strategy.

Proof. If s′ is inserted to Open by GBFS, since h(s) was the
lowest in Open when s was expanded by GBFS and h(s′)
is the lowest in {s} ∪ succ(s), h(s′) is the lowest in Open
after the expansion of s. There exists a tie-breaking strategy
with which GBFS expands s′. Otherwise, s′ ∈ Closed holds
and s′ was expanded.

Prioritizing these states helps parallel GBFS to behave
similarly to sequential GBFS. In LG, a previous distributed
parallel GBFS (Kuroiwa and Fukunaga 2019), each process
prioritizes a state s with the lowest h-value among states
generated so far in that process. This criterion can be viewed
as a stricter version of the criterion in Theorem 9. However,
LG is pathological and not TB -bounded relative to GBFS
on the state space in Fig. 2.

PUHF: A TB -Bounded Parallel GBFS To investigate
how the criterion above can be applied in practice, we pro-
pose Parallel Under High-water mark First (PUHF), a TB -
bounded parallel GBFS in Algorithm 2. Unlike PGBFS ,
PUHF shares Open and Closed so that it can use memory
space efficiently.

Algorithm 2 Parallel Under High-water mark First
1: parent(sinit)← NULL; certain(sinit)← true
2: Open ← {sinit},Closed ← {sinit}; ∀i, si ← NULL
3: for i← 0, ..., k − 1 in parallel do
4: loop
5: lock(Open)
6: if ∀j, sj = NULL then
7: if Open = ∅ then unlock(Open); return NULL

8: if certain(top(Open)) = false then
9: certain(top(Open))← true

10: if certain(top(Open)) = true then
11: si ← top(Open); Open ← Open \ {si}
12: unlock(Open)
13: if si = NULL then continue
14: if si ∈ Sgoal then return si
15: for s′i ∈ succ(si) do
16: lock(Closed)
17: if s′i /∈ Closed then
18: Closed ← Closed ∪ {s′i}
19: unlock(Closed)
20: parent(s′i)← si
21: if h(s′i) = mins∈{si}∪succ(si) h(s) then

22: certain(s′i)← true

23: lock(Open); Open ← Open ∪ {s′i};
unlock(Open)

24: else
25: unlock(Closed)
26: si ← NULL

PUHF is based on KGBFS, but marks states certainly in-
cluded in the BTS as certain and only expands certain
states. PUHF is TB -bounded relative to GBFS.

Theorem 10. PUHF is TB -bounded relative to GBFS.

Proof. Let T be a state space topology and its bench transi-
tion system B(T) = 〈V,E〉. Let S′ = {s ∈ B(s′) | B(s′) ∈
V }. By Theorem 8, PUHF is TB -bounded iff it never ex-
pands states not in S′.

Since PUHF only expands certain states from Open , we
show that all certain states in Open are in S′. The proof
is by induction over states marked as certain . Suppose that
PUHF has not expanded any state not in S′.

In line 22, since si ∈ S′, h(s′i) = mins∈succ(si) h(si),
and h(s′i) ≤ h(si), s′i ∈ S′ by Theorem 9.

Let smin = top(Open) in line 9. smin is marked as
certain here. Since ∀0 ≤ j ≤ k− 1, sj = NULL, no thread
is expanding a state and all states that are not expanded are
in Open . No state is removed from Open in lines 5–12 be-
cause Open is locked. If smin = sinit, smin ∈ S′. As-
sume that smin /∈ S′. p, the parent of smin, is marked as
certain since p is expanded in S′ by the induction hypoth-
esis. If p is a progress state, h(smin) > hwm(succ(p)).
Otherwise, h(smin) > hwm(succ(s′)) where B(s′) is the
bench p belongs to. Although it is possible that p is in mul-
tiple benches, we can determine B(s′) by the path PUHF
followed from sinit to p. In any case, since there is a path to
a goal whose high-water mark is lower than h(smin), Open
contains a state with lower h-value than h(smin). By con-
tradiction, smin ∈ S′.

SPUHF: Enhancing PUHF Using Speculation and
Shared Evaluation Cache PUHF wastes CPU resources
idling when no states are marked as certain . Instead of
idling, we can use any available threads to perform specu-
lative search of non-certain states. The speculative search is
performed using SOpen and SClosed structures, which are
distinct from the main Open and Closed structures. If the
speculative search finds a solution, it is returned, but other-
wise, the speculative search does not directly influence the
expansion order of the non-speculative search.

Nodes are not shared/communicated between the specula-
tive and non-speculative open/closed data structures, as that
would require careful coordination in order to assure that
the non-speculative Open and Closed structures are not cor-
rupted by nodes that are outside the BTS . Instead, a shared
evaluation cache (Sec. 4.2) is used, so that if the speculative
search successfully “pre-expands” a state that would be ex-
panded by the non-speculative search, the computation for
the ensuing node evaluation computations are reused.

There are many possible policies for the speculative
search. In Speculative PUHF (SPUHF), the current imple-
mentation, all states which are not certain are inserted into
SOpen and SClosed . When a thread has to wait, the thread
expands state s from SOpen , and its successors are inserted
in SOpen and SClosed . All evaluation results are stored in a
shared evaluation cache. To maximize the chances of cache
hits for states which are actually in the BTS , the expansion
priority policy for SOpen , in decreasing order of priority is:
(1) successors of states expanded from Open , if any (accord-
ing to h-value and then the tie-breaking strategy τ), (2) all
other states according to h-value, then τ .

181

method Open , Closed boundedness

HDA* (Kishimoto et al., 2013)/consistent distributed k
HDA*/inconsistent distributed pathological
KWA*/w ≥ 1 (Felner et al. (2003)) shared pathological

KPGBFS (Vidal et al. (2010)) shared pathological
HDGBFS (Kuroiwa and Fukunaga 2019) distributed pathological
LG (Kuroiwa and Fukunaga 2019) distributed pathological
KIOGBFS independent, shared pathological

PGBFS PGBFS/C independent k, TB

PUHF, SPUHF shared TB

Table 1: Summary of parallel BFS methods.

4.4 Summary of Parallel BFS Methods

Table 1 summarizes the theoretical contributions of this pa-
per. We show the previous parallel BFS methods analyzed in
this paper as well as the newly proposed methods.

5 Experimental Evaluation

We evaluated PGBFS, PGBFS with shared evaluation cache
(PGBFS/C), KPGBFS, PUHF, and SPUHF on 1390 instances
from 55 domains from the satisficing track of IPC-98 to IPC-
18. As a baseline, we used GBFS. For comparison, we also
include LG. GBFS, KGBFS, PUHF, SPUHF, and LG used
FIFO tie-breaking. All algorithms used the unit-cost version
of the FF heuristic (Hoffmann and Nebel 2001). We imple-
mented all algorithms in C++14 (GCC 7.4) from scratch,
and used the Fast Downward parser/preprocessor (Helmert
2006). Actions are ordered according to Fast Downward
translator ordering. For Closed and the shared evaluation
cache, we used lock-free hash sets (Michael 2002). Thus,
unlike pseudocode in Algorithm 2, locking Closed is un-
necessary. All experiments were run on Amazon EC2 cloud
r4.4xlarge instances (122 GiB RAM, 16 vcpus) with a mem-
ory limit of 122 GiB and a time limit of 5 minutes. Parallel
algorithms used 16 threads. We run LG, KPGBFS, PUHF,
and SPUHF 5 times and show the median.

Table 2 shows the number of solved instances (coverage).
The shared evaluation cache significantly increases cover-
age in PGBFS and PUHF (total coverage: PGBFS/C 928 vs.
PGBFS 913, SPUHF 864 vs. PUHF 820).

The algorithms which do not guarantee TB -boundedness
(LG, KPGBFS) performed better overall than SPUHF. How-
ever, there is no clear dominance relationship among LG,
KPGBFS, and SPUHF. SPUHF had higher coverage than
both LG and KPGBFS in 6 domains. Fig. 5 shows that
SPUHF had better search time than KPGBFS on 194/826
solved instances, and had fewer expansions than KPGBFS
on 84 instances. Also, SPUHF had better search time than
LG on 559/836 instances, and had fewer expansions than
LG on 314 instances (not in Fig. 5 due to space). Overall,
while TB -boundedness does not result in improved perfor-
mance compared to non-TB -bounded, shared Open/Closed
algorithms, there does not seem to be a large penalty for en-
suring TB -bounded behavior.

Comparing PGBFS/C and SPUHF, which are both TB -
bounded, although PGBFS/C has higher overall coverage,
they are somewhat complementary. SPUHF solved 28 in-
stances from 11 domains not solved by PGBFS/C, while

GBFS PGBFS PGBFS/C LG KPGBFS PUHF SPUHF

cov cov cov + - + - + - + -

agricola 3 6 8 5 0 7 0 7 0 6 0
airport 31 40 40 6 0 5 0 3 2 5 1
caldera 8 10 9 1 0 0 2 1 0 1 0
caldera-split 4 4 4 2 0 0 0 0 0 0 0
cavediving 6 7 7 1 0 1 0 1 0 1 0
data-network 1 7 7 2 0 2 0 2 0 1 0
depot 13 16 18 2 0 2 1 0 0 3 0
driverlog 19 20 19 0 0 0 0 0 0 1 1
elevators 13 17 16 6 1 5 1 6 0 5 2
freecell 76 80 80 4 0 4 0 3 0 4 0
ged 17 20 20 3 0 3 0 0 0 3 0
grid 4 5 5 0 0 1 0 1 0 1 0
hiking 19 19 20 0 1 1 1 1 1 0 0
maintenance 9 14 15 4 2 2 3 2 0 3 4
mprime 29 30 30 2 0 1 0 1 0 1 0
mystery 17 18 18 1 0 0 0 0 0 0 0
nomystery 8 11 12 2 1 3 1 2 1 2 1
nurikabe 9 14 13 1 2 2 1 0 1 1 1
openstacks 0 8 6 9 0 11 0 0 0 0 0
organic-split 10 9 11 2 1 2 1 0 0 2 0
parcprinter 12 17 17 8 0 8 0 1 0 2 1
parking 0 5 5 11 0 12 0 5 0 6 0
pathways 10 26 24 2 0 0 2 1 0 3 0
pipes-notank 28 34 35 5 0 4 1 2 0 5 0
pipes-tank 22 26 27 2 1 3 1 0 2 1 0
rovers 21 27 27 4 0 2 0 4 0 3 0
scanalyzer 16 15 16 2 0 2 0 1 0 2 1
settlers 2 5 6 2 2 2 1 1 2 2 1
snake 5 5 6 0 0 0 0 0 0 0 0
sokoban 15 17 19 4 0 4 0 0 0 4 0
spider 7 8 9 4 0 5 0 1 0 6 0
storage 20 20 21 0 0 0 1 0 1 0 1
termes 8 11 14 6 0 6 0 2 0 6 0
tetris 2 15 15 7 0 7 0 9 0 8 0
thoughtful 9 15 16 3 2 2 2 0 2 0 1
tidybot 13 15 15 1 0 2 0 1 0 1 0
tpp 16 25 25 6 0 8 0 6 0 7 0
trucks 12 18 17 5 0 1 0 3 0 3 0
visitall 7 10 11 10 0 13 0 1 0 13 0

total 764 913 928 137 13 135 19 68 12 115 15

Table 2: ‘cov’ is coverage. ‘+’/‘-’ is the number of
solved/unsloved instances unsolved/solved by GBFS.

PGBFS/C 92 instances from 27 domains not solved by
SPUHF. The large coverage gap in visitall between PGBFS/C
and SPUHF (11 vs. 20) shows that there is a significant ad-
vantage of using a focused, shared Open/Closed approach
over a portfolio approach in some domains. Fig. 5 shows that
the runtime for PGBFS/C was faster than SPUHF on 449/836
instances from 48 domains, while the runtime for SPUHF
was faster than PGBFS/C on 387 instances from 43 domains.
Also, PGBFS/C expanded fewer nodes than SPUHF in 341
instances from 47 domains, while SPUHF expanded fewer
nodes than PGBFS/C in 492 instances from 46 domains.

6 Conclusion

This paper presented a framework for analyzing search be-
havior and overheads in parallel BFS relative to sequen-
tial BFS, as well as methods for achieving behavior simi-
lar to sequential BFS. Our contributions are: (1) an extended
framework for analyzing the search behavior of parallel BFS
based on KBFS (Felner, Kraus, and Korf 2003), (2) analy-
sis of the search overhead of parallel A*, WA*, and GBFS
based on the notion of t-bounded and pathological behav-
ior, (3) the notion of TB -bounded parallel BFS, which only

182

10−1 100 101 unsolved

search time in PGBFS/C

10−1

100

101

102
unsolved

se
ar
ch

ti
m
e
in

S
P
U
H
F

1x

100 103 106 unsolved

#expansions in PGBFS/C

100

103

106

unsolved

#
ex
p
a
n
si
o
n
s
in

S
P
U
H
F

1x

10−1 100 101 unsolved

search time in KPGBFS

10−1

100

101

102
unsolved

se
ar
ch

ti
m
e
in

S
P
U
H
F

1x

100 103 106 unsolved

#expansions in KPGBS

100

103

106

unsolved

#
ex
p
a
n
si
o
n
s
in

S
P
U
H
F

1x

Figure 5: Comparison of different parallel GBFS methods.

searches the states expanded by sequential BFS with some
tie-breaking strategy and a sufficient criterion for ensuring
TB -bounded behavior of parallel GBFS, and (4) experi-
mental evaluation of several approaches which guarantee
bounded behavior, including PGBFS/C, which achieves new
state-of-the-art performance and significantly improves cov-
erage compared to PGBFS, LG, and KPGBFS.

Recent work on parallel BFS has focused on experi-
mental approaches to achieving good parallel performance.
Although previous work showed that the extremely large
search overhead sometimes incurred by parallel GBFS can
be addressed by ad hoc mechanisms such as LG (Kuroiwa
and Fukunaga 2019), we developed theoretical tools which
can be applied to develop parallel GBFS in a more princi-
pled manner with some theoretical guarantees. Our PGBFS/C
results show that safe methods which guarantee bounded be-
havior can be applied to a parallel GBFS portfolio, resulting
in state-of-the-art overall coverage on IPC benchmarks.

Our results suggest that it is currently difficult to out-
perform portfolio-based approaches such as PGBFS/C using
methods that share Open and Closed . However, it is pos-
sible to apply our criterion for TB -boundedness to develop
SPUHF, which has performance behavior somewhat com-
plementary to PGBFS/C. Future work will investigate inte-
grating shared Open/Closed methods such as PUHF into
portfolios to leverage this complementary behavior.

Although SPUHF currently does not achieve new state-
of-the-art performance, we have shown that it is possible to
guarantee TB -bounded behavior while still getting perfor-
mance comparable to non-TB -bounded KPGBFS. We be-
lieve this is an important first step in a principled approach
to improved shared Open/Closed algorithms. The SPUHF
framework cleanly separates TB -bounded and speculative
portions, so developing improved speculative policies is an-
other direction for future work.

References

Asai, M., and Fukunaga, A. 2017a. Exploration among and
within plateaus in greedy best-first search. In Proc. ICAPS,
11–19.

Asai, M., and Fukunaga, A. 2017b. Tie-breaking strategies
for cost-optimal best first search. J. Artif. Intell. Res. 58:67–
121.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
first heuristic search for multicore machines. J. Artif. Intell.
Res. 39:689–743.
Doran, J., and Michie, D. 1966. Experiments with the graph
traverser program. In Proc. Royal Society A: Mathematical,
Physical and Engineering Sciences, volume 294, 235–259.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: k-best-
first search. Ann. Math. Artif. Intell. 39(1-2):19–39.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. on Systems Science and Cybernetics
4(2):100–107.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Heusner, M.; Keller, T.; and Helmert, M. 2017. Understand-
ing the search behaviour of greedy best-first search. In Proc.
SOCS, 47–55.
Heusner, M.; Keller, T.; and Helmert, M. 2018. Best-case
and worst-case behavior of greedy best-first search. In Proc.
IJCAI, 1463–1470.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation through Heuristic Search. J. Artif.
Intell. Res. 14:253–302.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artif. Intell. 195:222–248.
Knight, K. 1993. Are many reactive agents better than a few
deliberative ones? In Proc. IJCAI, 432–437.
Kuroiwa, R., and Fukunaga, A. 2019. On the pathological
search behavior of distributed greedy best-first search. In
Proc. ICAPS, 255–263.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. Ara*:
Anytime a* with provable bounds on sub-optimality. In
Proc. Advances in Neural Inf. Processing Systems, 767–774.
Michael, M. M. 2002. High performance dynamic lock-free
hash tables and list-based sets. In Proc. SPAA, 73–82. ACM.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1:193–204.
Vidal, V.; Bordeaux, L.; and Hamadi, Y. 2010. Adaptive k-
parallel best-first search: A simple but efficient algorithm for
multi-core domain-independent planning. In Proc. SOCS,
100–107.

183

