
Batch Random Walk for
GPU-Based Classical Planning

Ryo Kuroiwa, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract

Graphical processing units (GPUs) have become ubiquitous
because they offer the ability to perform cost and energy ef-
ficient massively parallel computation. We investigate for-
ward search classical planning on GPUs based on Monte
Carlo Random Walk (MRW). We first show experimentally
that straightforward parallelizations of MRW perform poorly.
Next, we propose Batch MRW (BMRW), a generalization
of MRW which performs random walks starting with many
seed states, in contrast to traditional MRW which used a sin-
gle seed state. We evaluate a sequential implementation of
BMRW on a single CPU core, and show that a sequential, sat-
isficing planner based on BMRW performs comparably with
previous state-of-the-art MRW-based planners. Then, we pro-
pose BMRWG, which uses a GPU to perform random walks.
We show that BMRWG achieves significant speedup com-
pared to BMRW and achieves competitive performance on a
number of IPC benchmark domains.

Introduction
The use of Graphics Processing Units (GPUs) for general-
purpose computing has become ubiquitous in many areas
including AI, but their use in domain-independent planning
has been quite limited. This seems largely due to the fact
that there is a significant mismatch between the architec-
ture of GPUs and forward heuristic search based algorithms
commonly used for planning. For satisficing, classical plan-
ning, the most widely studied forward search strategy in re-
cent years have been approaches such as Greedy Best First
Search (GBFS), as well as many improvements which seek
to avoid/escape local minima and plateaus.

In standard GBFS, Enhanced Hill-Climbing, and
weighted A* approaches, each node expansion in-
volves accessing global open/closed sets, which poses
a challenge for efficient parallelization. Methods for ef-
ficiently distributing work in parallel best-first search
(BFS) based planners on multi-core machines as
well as clusters have been studied (Burns et al. 2010;
Kishimoto, Fukunaga, and Botea 2013), but these previous
approaches for parallel BFS cannot be straightforwardly
applied to GPUs. One major issue is that GPUs provide
thousands of cores/threads, but the amount of GPU RAM

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

available per thread is quite limited. For example, a state-
of-the-art Nvidia GTX1080 has 8GB global RAM, which
must be shared by 2560 physical CUDA cores. This will be
exhausted within a few seconds by a parallel BFS algorithm
if the open/closed lists are stored on the GPU, as in GA*,
a delayed duplicate detection based A* for the GPU (Zhou
and Zeng 2015). There is also a tiny amount of fast RAM
per core (∼375 bytes/core on a GTX1080), and although
previous work has investigated performing domain-specific
IDA* search using only this local memory (Horie and
Fukunaga 2017), this is too small to hold even a single state
for most domain-independent planning domains. Sulewski
et al. (2011) used a GPU to parallelize the successor gener-
ation step for breadth-first search in cost-optimal planning,
with duplicate detection and open/closed list management
performed on the CPU. A forward heuristic search method
for satisficing planning which effectively uses the GPU has
remained an open problem.

One approach to heuristic-driven forward search which
encourages explorative search behavior and is suited for
GPU parallelization is Monte Carlo Random Walk Planning
(MRW) (Nakhost and Müller 2009). At each step, MRW
starts at some state s (initially the initial state), performs a
set of random walks from s, and then sets s to the best end-
point (according to a heuristic function) found by the ran-
dom walks. State-of-the-art MRW-based planners have been
shown to be competitive with GBFS-based approaches on
some domains (Nakhost and Müller 2013). MRW appears
to be suited for GPU parallelization because each random
walk can be executed independently by a GPU thread.

In this paper, we first evaluate several implementations of
a straightforward approach to parallelizing MRW on a GPU,
and show that it is nontrivial to improve upon single-CPU
performance with this straightforward approach.

Next, we propose BMRW, a simple generalization of
MRW-based search which combines an open list based
search strategy with MRW. In BMRW, the search is driven
by an open list, as in GBFS. In each iteration, a batch of
nodes is selected from the open list, and random walks are
performed starting with these nodes. Promising states found
by the random walks are then inserted into the open list,
and this cycle repeats until a goal is found or time runs out.
We experimentally show that BMRW is a promising search
strategy, and show that a planner using BMRW search on

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

155



a single CPU core is competitive with Arvand13, the previ-
ous, state-of-the-art MRW based sequential planner. Then,
we propose BMRWG, an efficient, parallel implementation
of BMRW for GPUs. BMRWG maintains the open list in
CPU memory, but uses the GPU for the random walks. We
show that BMRWG achieves significant speedup compared
to BMRW, and that BMRWG achieves competitive perfor-
mance on a number of standard IPC benchmark domains.

Monte-Carlo Random Walk Planning
Monte-Carlo Random Walk Planning (MRW) was first
proposed in the Arvand planner (Nakhost and Müller
2009). The state-of-the-art Arvand13 MRW-based planner
(Nakhost and Müller 2013), which performs significantly
better than the original Arvand planner, works as follows:
Given a state s, a basic random walk repeatedly generates
successors of s, chooses one of the successors s′ of s and
transitions to s′ (s → s′). From the current node s (initially
set to the start state), the Arvand13 MRW algorithm perform
a set of random walks. Each state on the walk is evaluated
according to a heuristic evaluation function h (the FF heuris-
tic (Hoffmann and Nebel 2001) was used), and the walk re-
turns either when (a) it encounters a state with a better h-
value than the random walk start state, in which case that
state becomes the start point for the next random walk, or
(b) with some probability (i.e., local restart). A global restart
is triggered when h does not improve after some number of
random walks. Arvand13 used an enhanced random walk
which, instead of uniformly randomly choosing a successor,
biased successor choice according to helpful actions iden-
tified by the FF heuristic. This trick is called Monte-Carlo
Helpful Actions(MHA). In addition, local and global start
thresholds are set adaptively.

Parallel Monte-Carlo Random Walk
We first investigate a straightforward approach to paralleliz-
ing MRW on the GPU. A natural approach executes an in-
dependent random walk on each GPU thread. However, the
architectural features of a GPU impose several constraints.
The main bottleneck is the relatively small amount of GPU
RAM available per thread. For example, the GTX1080
we used has 8GB, but this global RAM must be shared
among all threads – the GTX1080 has 2560 CUDA cores
(20 Streaming Multiprocessors, 128 cores/SM), so roughly
3125KB/thread.

A random walk does not require much memory for
state information, as there is no open/closed list during the
walk. However, biasing the random walks using helpful ac-
tions is nontrivial, because helpful-action based biasing re-
quires storing/updating the Q(a)-value for each ground ac-
tion. Storing Q(a) per thread is infeasible due to the lim-
ited amount of GPU global RAM per thread, while shar-
ing/maintaining a global Q(a) table among threads requires
atomic updates (mutex accesses) which incur a large cost.

Also, warp divergence (threads within a warp perform-
ing different instructions) is quite costly, so although each
random walk in Arvand13 has a local restart probability se-
lected from {0.1, 0.01, 0.001} according to the ε-greedy

strategy, our parallel MRW implementation uses a fixed
walk length selected from {10, 100, 1000} for all threads.

Without helpful actions and local restarts, all of our at-
tempts to implement the FF heuristic on the GPU have re-
sulted in very poor performance (results not shown due to
space, but worse than all results in Table 1. Thus, we used
the Landmark Count (LMC) heuristic (Hoffmann, Porteous,
and Sebastia 2004), which can be computed quickly on the
GPU and requires relatively little memory. At the begin-
ning of the search, the landmark graph is constructed on the
CPU, transferred to the GPU global RAM, and shared by all
GPU threads. Computing the LMC value on each parallel
MRW thread only requires incrementally updating the num-
ber of unreached landmarks for the current walk state. This
requires O(#facts) memory.

Experimental Evaluation of Parallel MRW
We evaluated our parallel MRW implementations and com-
pared them to sequential MRW implementations as follows.
We used a workstation with a Xeon E5-2650 v2 @ 2.60
GHz CPU and a GTX1080 GPU running Ubuntu 16.04.4
LTS, C++ (g++ 5.4.0, C++11, and CUDA 8.0). All GPU
experiments used a Nvidia GTX1080 (2560 CUDA cores,
20 streaming multiprocessors, 8GB GPU RAM). We used
benchmark instances from IPC11 and IPC14, excluding do-
mains with conditional effects. All GPU algorithms used
5120 threads, which is a convenient multiple of the 2560
CUDA cores on the GTX1080. For each CPU algorithm,
the average of 3 runs is shown. For domains duplicated in
IPC11 and IPC14, we used the 2014 versions. All search
algorithms were implemented from scratch, except for Ar-
vand13, which we obtained from (Nakhost 2013). We used
the PDDL to SAS+ translator from Fast Downward.

We evaluated the following algorithms:
Arvand13: original Arvand13 code from (Nakhost 2013).
MRW13C /FF/MHA: our reimplementation of Arvand13
(uses the FF heuristic and biases actions using helpful ac-
tions, same as the original Arvand13).
MRW13C /FF: same as MRW13C /FF/MHA, but does not
use helpful actions and chooses a successor uniformly.
MRW13C /FF/FIX: same as MRW13C /FF, but the random
walk length is fixed and selected from {10, 100, 1000} ac-
cording to the ε-greedy strategy used in Arvand13.
MRW13C /LMC: same as MRW13C /FF, but uses the LMC
heuristic.
MRW13C /LMC/FIX: same as MRW13C /FF/FIX, but uses
the LMC heuristic.
MRW13C /LMC/FIX/SH: same as MRW13C /LMC/FIX,
but selects the best state from a set of random walks (5120
walks in this experiment). The random walk length is se-
lected in the same way as MRW13C /LMC/FIX and shared
by all random walks in the set.
MRW13G/LMC/FIX: GPU adaptation of
MRW13C /LMC/FIX, where each GPU thread al-
most independently executes the search strategy of
MRW13C /LMC/FIX. However, all threads perform random
walks of the same length at the same time.
MRW13G/LMC/FIX/SH: GPU parallelization of
MRW13C /LMC/FIX/SH. All random walks in a set

156



are performed in parallel.
The coverage results are shown in Table 1.

MRW13C /FF/MHA, our reimplementation of Arvand13, is
competitive with the original Arvand13 implementation, so
it is an appropriate baseline for evaluating both sequential
and parallel variants.

MRW13C /FF, which does not use helpful actions to bias
random walks, has significantly lower (189) coverage than
MRW13C /FF/MHA (229), and MRW13C /FF/FIX, which
performs fixed length random walks, performs worse (163)
than MRW13C /FF. Furthermore, in the sequential MRW
implementations without helpful actions, the heuristic used
(FF vs. LMC) does not have a large effect (MRW13C /FF:
189 vs. MRW13C /LMC: 188, MRW13C /FF/FIX:163 vs.
MRW13C /LMC/FIX 180).

Next, we consider the performance of the GPU-parallel
versions of MRW. MRW13G/LMC/FIX, which simply ex-
ecutes MRW13C /LMC/FIX independently on each thread,
has the worst coverage (100) among all configurations, and
is significantly worse than the single-thread CPU version,
MRW13G/LMC/FIX (180). This shows that trivially exe-
cuting many independent instances of MRW is insufficient
– merely running (in effect) many restarts in parallel is not
enough to overcome the slow speed of each GPU core.

In contrast, MRW13G/LMC/FIX/SH, which runs
a set of random walks in parallel and selects the
best result as the next start state, has significantly
better coverage (179) than MRW13G/LMC/FIX.
Furthermore, MRW13G/LMC/FIX/SH signifi-
cantly outperforms its equivalent, sequential imple-
mentation MRW13C /LMC/FIX/SH, showing that
MRW13G/LMC/FIX/SH utilizes the GPU resources
effectively enough so that it is at least faster than a 1-core
CPU implementation of the exact same search strategy.
Nevertheless, MRW13G/LMC/FIX/SH does not outperform
the best sequential MRW implementations.

Therefore, these results show that straightforwardly par-
allelizing MRW to the GPU is insufficient, and can result in
worse than sequential performance. A search strategy which
can better exploit the GPU is necessary.

Batch Monte-Carlo Random Walk (BMRW)
We now propose BMRW, a generalization of MRW. BMRW
(Alg. 1), maintains a h-value based priority queue openList,
initially containing the successors of the initial state s0. Each
iteration of the main loop (lines 22–38) first checks if open-
List is empty, and if so, initializes it with the successors of
the start state s0, i.e., it performs a global restart. Then, a
batch of batchSize nodes is selected from openList (lines
11-18).1 A random walk (Alg. 1, Walk function) of up to l
steps is performed from each start point in batch, and the
results are stored in walkres.

The main differences between BMRW and MRW are:
(1) MRW performs a set of random walks from the same
start state s, while BMRW performs a set of random walks

1If openList contains < batchSize nodes some nodes are repeat-
edly put in the batch, so that in the GPU version of BMRW, there
are no idle GPU cores .

based on a batch of start states selected from openList, i.e.,
single walk start state vs. multiple walk start states. (2) In
MRW, every random walk is followed by a possible update
of the current state s (jump to the state returned by the walk),
whereas BMRW performs an entire batch of walks at a time,
i.e., walk start state updated after each walk vs. a commit-
ment to perform an entire batch of walks at each iteration.
(3) MRW only keeps and updates a single “current state”
(start point for random walks), while BMRW maintains an
openList, similar to GBFS. Thus, BMRW can be viewed as
a hybrid of MRW and GBFS.

In addition, BMRW uses an elite insertion policy
(lines 34-38), where for the best n results (according to h-
value) of the random walk return, the successors of those
nodes are inserted into openList instead of the nodes them-
selves. This is intended to strongly encourage further explo-
ration of these “elite” nodes by pushing its many successors
into openList (because these successors also have good h-
values, they are likely to be expanded soon).

Furthermore, a closedList is used in order to prevent du-
plicate states from being pushed into the open list (lines 32-
33). This ensures that each random walk starts from a differ-
ent start state, promoting exploration of the search space.

MRW can be viewed as a special case of BMRW with
batchSize = 1 and a special openList limited to size 1.

BMRWG: BMRW on a GPU
In principle, BMRW can be efficiently implemented on a
GPU, due to the independence of each random walk. In
Alg. 1 lines 26-27, the for loop is executed in parallel on
the GPU. After each node in the batch selected in line 25 is
copied to the GPU, each node in the batch is assigned to a
GPU thread, and each random walk is performed by a single
GPU thread, after which the result of the walk is copied back
to the CPU. Everything else is performed on the CPU.

As with the best parallel MRW variant we found above
(MRW13G/LMC/FIX/SH), BMRW uses the LMC heuristic,
and runs random walks with uniform lengths on all cores.

Experimental Evaluation of BMRW
We evaluated BMRW (same settings as the sequential and
parallel MRW experiments above). For reference, we also
include LAMA(Richter and Westphal 2010), the LAMA11
configuration of Fast Downward.

Evaluation of BMRW on a single CPU core
We evaluated the following algorithms:
BMRWC /LMC/1/NC: BMRWC /LMC/1 without closed
list (i.e., duplicate random walk start states are not detected),
batchSize = 1.
BMRWC /LMC/1: BMRW with batchSize = 1, LMC
heuristic.
BMRWC /LMC/NE: BMRW with batchSize = 5120 with-
out elite insertion – all successors of random walk results
inserted into openList instead of only the elite n successors.
BMRWC /LMC: CPU implementation of BMRW, as de-
scribed in Alg. 1, LMC heuristic, batchSize = 5120.

157



A
rv

an
d1

3

M
R

W
13

C
/F

F/
M

H
A

M
R

W
13

C
/F

F

M
R

W
13

C
/F

F/
FI

X

M
R

W
13

C
/L

M
C

M
R

W
13

C
/L

M
C

/F
IX

M
R

W
13

C
/L

M
C

/F
IX

/S
H

B
M

R
W

C
/L

M
C

/1
/N

C

B
M

R
W

C
/L

M
C

/1

B
M

R
W

C
/L

M
C

/N
E

B
M

R
W

C
/L

M
C

B
M

R
W

C
/F

F

M
R

W
13

G
/L

M
C

/F
IX

M
R

W
13

G
/L

M
C

/F
IX

/S
H

B
M

R
W

G
/L

M
C

L
A

M
A

R
W

s
p
d
u
p

total 204.3 229.7 189.3 163.0 188.7 180.3 111.7 129.3 203.7 202.3 223.3 130.7 100 179 266 292
elevators 20.0 17.3 0.0 0.0 2.0 1.0 2.7 6.3 9.3 9.7 10.0 0.0 1 9 10 20 27.83
nomystery 8.7 8.7 10.7 9.3 10.3 8.7 7.3 0.0 5.0 11.0 15.3 13.7 6 15 19 11 3.43
parcprinter 16.0 16.0 8.3 0.0 4.7 4.0 3.7 0.0 0.0 15.3 18.0 18.0 0 11 20 19 4.34
pegsol 19.3 19.0 19.0 19.0 17.3 17.3 16.7 18.0 18.7 19.0 18.7 20.0 3 16 19 20 15.31
scanalyzer 17.3 17.0 17.0 16.3 20.0 19.7 16.7 16.3 20.0 20.0 20.0 13.0 20 20 20 20 43.96
sokoban 2.7 2.0 1.0 1.0 0.7 0.3 0.0 0.0 4.0 4.7 0.7 3.7 0 0 3 16 N/A
tidybot 12.7 13.3 13.3 13.7 18.7 18.0 2.7 6.7 16.7 11.3 13.3 0.0 7 11 18 16 3.26
woodworking 14.0 4.0 18.7 19.3 12.0 11.3 4.3 19.0 18.0 16.0 18.3 12.0 1 10 20 20 8.53
barman 15.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 4.7 8.3 0.0 0 0 12 19 1.52
childsnack 2.3 3.7 1.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.7 0 2 3 5 5.94
floortile 5.7 5.0 5.0 4.7 0.0 0.0 0.0 0.0 0.0 0.3 0.0 6.0 0 0 1 2 N/A
ged 0.0 0.0 0.0 0.0 20.0 19.3 17.7 20.0 20.0 20.0 20.0 0.0 16 20 20 20 17.78
hiking 17.7 18.0 19.7 20.0 18.0 16.0 14.0 3.3 20.0 20.0 20.0 20.0 19 18 20 15 19.02
maintenance 6.0 16.3 6.0 3.3 0.0 0.0 5.0 0.0 0.0 4.7 12.0 15.3 0 12 11 0 31.04
openstacks 14.0 20.0 20.0 14.0 20.0 20.0 0.0 19.7 20.0 0.0 0.0 0.0 6 9 10 20 N/A
parking 0.7 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 20 N/A
tetris 5.0 5.7 17.7 17.0 20.0 19.7 15.7 16.3 20.0 20.0 20.0 2.3 12 15 20 4 2.68
thoughtful 16.7 19.7 12.3 7.3 5.0 5.0 5.3 1.0 1.7 18.0 16.7 5.0 5 7 19 16 6.49
transport 10.7 17.0 0.0 0.0 0.0 0.0 0.0 2.0 10.0 7.7 11.3 0.0 0 0 17 10 27.58
visitall 0.0 9.0 19.0 17.0 20.0 20.0 0.0 0.7 20.0 0.0 0.0 0.0 4 4 4 19 N/A

Table 1: Results on IPC11/14 benchmarks (5min, 8GB CPU RAM). Coverage (# solved) is shown. RWspdup is the speedup of
the batch random walk (Alg. 1, lines 26-27) of BMRWG compared to BMRWC (walktime(BMRWC)/walktime(BMRWG)).

BMRWC /FF: same as BMRWC /LMC, but uses the FF
heuristic(batchSize = 5120).

The results are shown in Table 1 for runs with a 5min,
8GB CPU RAM limit. The average of 3 runs is shown. The
elite parameter n (Alg. 1, line 33) was 100, and the length of
random walks l (Alg. 1, line 3) was 10. The batchSize was
set to 5120 in order to allow easy comparison with the GPU
implementation below. Tuning these control parameters for
a CPU implementation of BMRW is future work.

Overall, BMRWC /LMC performs comparably to both Ar-
vand13 as well as our reimplementation, MRW13C . We now
consider the impact of several key features of BMRW, the
closedList, the use of a batch, and elite insertion.

On the effect of detecting duplicate random walk start
states using closedList BMRWC /LMC/1/NC (batch-
Size = 1, no closedList, no elite insertion) performs sig-
nificantly worse than BMRWC /LMC/1 (batchSize = 1, no
elite insertion). This shows that preventing duplicate random
walk start states has a significant impact on performance.

On the effect of increasing batchSize (1 vs. 5120) Com-
paring BMRWC /LMC/1 (batchSize = 1, no elite inser-
tion) with BMRWC /LMC/NE (batchSize = 5120, no elite
insertion), we see that although increasing the batch size
by itself does not significantly change total coverage, there
is a significant change in the performance on individual
domains. BMRWC /LMC/1 (as well as MRW13C /LMC,
which behave somewhat similarly and use the same heuris-

tic) perform well on openstacks and visitall. On
the other hand, BMRWC /LMC/NE, which differs from
BMRWC /LMC/1 only in increased batch size, fails to solve
any instances in openstacks and visitall, but has significantly
improved coverage on several domains (parcprinter,
thoughtful, nomystery, maintenance). Thus, process-
ing large batches of random walks results in significantly
different search behavior compared to performing 1 random
walk at a time in the BMRW framework.

On the effect of elite insertion Comparing
BMRWC /LMC/NE (batchSize = 5120, no elite insertion)
and BMRWC /LMC (batchSize = 5120, elite insertion),
overall coverage improves, showing that inserting succes-
sors of top n nodes with lowest h-value into openList (elite
insertion) vs. just inserting all the successors, helps focus
the search on more promising areas of the search space.

On the effect of the heuristic BMRWC /FF, which uses
the FF heuristic, has a significantly lower coverage than
BMRWC /LMC. This is because evaluating the FF heuristic
at every step of each random walk in the batch is quite ex-
pensive, and does not allow the search to explore the space
as rapidly as with the faster LMC heuristic. Thus, the LMC
heuristic is more suitable for BMRWC than the FF heuristic.

Evaluation of BMRWG (BMRW on the GPU)
First, we evaluated the speedup of BMRWG (5120 threads)
compared to BMRWC on the CPU (batch size 5120, as

158



Algorithm 1 Batch MRW
1: function WALK(s, goals, l)
2: sbest ← s
3: for i ← 1 to l do
4: if s ∈ goals then return s

5: if s is a dead end then s ← sbest
6: else s ← RANDOMSELECT(successors(s))
7: if h(s) < h(sbest) then sbest = s

8: return sbest
9:

10: function FILLBATCH(openList, batchSize, batch)
11: offset ← 0
12: for i ← 1 to batchSize do
13: if openList is Empty then
14: if offset = 0 then
15: offset = i
16: batch[i] ← batch[i - offset]
17: else
18: batch[i] ← POP(openList)
19:
20: function BATCHMRW(s0, goals, l, batchSize, n)
21: openList, closedList, batch, walkres ← φ
22: loop
23: if openList is Empty then
24: openList ← successors(s0)
25: FILLBATCH(openList, batchSize, batch)
26: for i ← 1 to batchSize do
27: walkres[i] ← WALK(batch[i], goals, l)
28: SORT(walkres) � ascending order of h-value
29: i ← 1
30: for all s ∈ walkres do
31: if s ∈ goals then return s

32: if s ∈ closedList then continue
33: INSERT(closedList, s)
34: if i ≤ n then � top n best h-value nodes
35: PUSH(openList, successors(s), h(s))
36: i ← i+ 1
37: else
38: PUSH(openList, s, h(s))

in the previous experiment). Figure 1 compares the wall-
clock runtimes for BMRWG and BMRWC . As shown in
the scatterplot, BMRWG achieves significant speedup com-
pared to the CPU implementation, particularly on harder in-
stances. To isolate the speedup on the random walks (ex-
cluding the sequential overhead of the rest of the algorithm),
Table 1 shows RWspdup per domain, the speedups of the
random walk computations only (i.e., all CPU computations
excluded), indicating that the random walks (including all
heuristic computations) are sped up significantly by the GPU
implementation.

Next, we evaluated the coverage of BMRWG/LMC,
the GPU implementation of BMRW as described above.
BMRWG almost dominates BMRWC , showing that BMRW
clearly benefits from GPU parallelization.

Although LAMA has higher overall coverage than
BMRWG, BMRWG has a higher coverage on 9/20 do-
mains (nomystery, parcprinter, tidybot, hiking,
openstacks, tetris, thoughtful, transport), so

0 50 100 150 200 250 300

BMRWC

0

50

100

150

200

250

300

B
M
R
W

G

1×
3×
10×
30×

Figure 1: Comparison of search time: (seconds) between
BMRWC vs. BMRWG (from same data as Table 1). Un-
solved instances are shown as time=300.

BMRW performance is complementary to that of state-of-
the-art GBFS-based search.

Conclusion
In order to exploit GPUs in domain-independent planning,
we proposed BMRW, a generalization of MRW which com-
bines GBFS and random walk by performing a GBFS-
like, openList-driven search, which at each iteration per-
forms batches of random walks in order to explore the
search space. We showed that BMRW is competitive with
previous random walk strategies, including Arvand13. We
then showed that BMRWG, a heterogeneous CPU/GPU im-
plementation of BMRW, achieves significant speedup com-
pared to BMRWC and a straightforward parallelization of
MRW13.

We have shown that random walk using the relatively
lightweight Landmark Count heuristic can be efficiently im-
plemented entirely on the GPU. In fact, MRW13G, the base-
line parallelization of Arvand13, runs almost entirely on the
GPU, except for the top level loop, and in BMRWG, only the
global openList and closedList management are performed
by the CPU. Our primary objective was to demonstrate the
feasibility of GPU-based forward heuristic search, so we fo-
cused on efficient implementation on the GPU side, and the
current implementation only uses a single CPU core. Effec-
tive, simultaneous usage of multiple CPU cores along with
the GPU in a more heterogeneous algorithm is an avenue
for future work. For example, openList and closedList man-
agement can be parallelized, as in (Sulewski, Edelkamp, and
Kissmann 2011).

While we focused on a relatively simple search strategy
which is basically GBFS with (batched) random walk looka-
head, random walk has been embedded as an exploration
mechanism in other forward heuristic search variants such
as RW-LS (ArvandLS) (Xie, Nakhost, and Müller 2012) and
GBFS-LE (Xie, Müller, and Holte 2014). It should be pos-
sible to combine these more complex algorithms with the
basic idea of applying batches of random walks on the GPU
with a diverse set of start points and a lightweight heuristic.

Acknowledgments
This research was supported by Kakenhi 17K00296.

159



References
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
first heuristic search for multicore machines. Journal of Ar-
tificial Intelligence Research 39:689–743.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation through Heuristic Search. J. Artif.
Intell. Res.(JAIR) 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. 22:215–278.
Horie, S., and Fukunaga, A. 2017. Block-parallel IDA* for
GPUs. In Proceedings of the Tenth International Symposium
on Combinatorial Search, 134–138.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artificial Intelligence 195:222–248.
Nakhost, H., and Müller, M. 2009. Monte-Carlo explo-
ration for deterministic planning. In Proceedings of the 21st
International Jont Conference on Artifical Intelligence, IJ-
CAI’09, 1766–1771. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Nakhost, H., and Müller, M. 2013. Towards a second gen-
eration random walk planner: An experimental exploration.
In Proceedings of the Twenty-Third International Joint Con-
ference on Artificial Intelligence, IJCAI ’13, 2336–2342.
AAAI Press.
Nakhost, H. 2013. Arvand source code.
https://github.com/nhootan/Arvand2011.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. J. Artif.
Int. Res. 39(1):127–177.
Sulewski, D.; Edelkamp, S.; and Kissmann, P. 2011. Ex-
ploiting the computational power of the graphics card: Op-
timal state space planning on the GPU. In Proceedings of
the International Conference of Automated Planning and
Scheduling(ICAPS).
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local explo-
ration to greedy best-first search in satisficing planning. In
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 2388–2394.
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning via
random walk-driven local search. In Proceedings of the In-
ternational Conference of Automated Planning and Schedul-
ing(ICAPS).
Zhou, Y., and Zeng, J. 2015. Massively parallel A* search
on a GPU. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., 1248–1255.

160


