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1. Introduction

Systematic graph-search algorithms can be classified into two general categories,
best-first and depth-first searches. Best-first searches include breadth-first search
(BFS), Dijkstra’s single-source shortest-path algorithm (Dijkstra) [Dijkstra 1959],
and A* [Hart et al. 1968]. Depth-first searches include depth-first search (DFS),
depth-first iterative-deepening (DFID) [Korf 1985], iterative-deepening-A* (IDA*)
[Korf 1985], and depth-first branch-and-bound (DFBnB).

1.1. BEST-FIRST SEARCH. A best-first search algorithm maintains two lists of
nodes, an Open list and a Closed list. The Closed list contains those nodes that
have been expanded, by generating all their children, and the Open list contains
those nodes that have been generated, but not yet expanded. At each cycle of the
algorithm, an Open node of lowest cost is expanded, moved to the Closed list, and
its children are added to the Open list.

Individual best-first search algorithms differ primarily in the cost function f (n).
If f (n) is the depth of node n, best-first search becomes breadth-first search. If
f (n) = g(n), where g(n) is the cost of the current path from the start state to node
n, then best-first search becomes Dijkstra’s single-source shortest-path algorithm
[Dijkstra 1959]. If f (n) = g(n) + h(n), where h(n) is a heuristic estimate of
the cost of reaching a goal from node n, then best-first search becomes the A*
algorithm [Hart et al. 1968]. Breadth-first search can terminate as soon as a goal
node is generated, while Dijkstra’s algorithm and A* must wait until a goal node
is chosen for expansion to guarantee optimality.

Every node generated by a best-first search is stored in either the Open or Closed
lists, for two reasons. The first is to detect when the same state has previously been
generated, to prevent expanding it more than once. The second reason is to generate
the solution path once a goal is reached. This is done by saving with each node a
pointer to its parent node along an optimal path to the node, and then tracing these
pointers back from the goal state to the initial state.

The primary drawback of best-first search is its memory requirements. By storing
all nodes generated, best-first search typically exhausts the available memory in a
matter of minutes on most machines. For example, consider a current workstation
with a two gigahertz processor, and two gigabytes of memory. Assume conserva-
tively that a node can be stored in a four-byte word, and that it takes a thousand
instructions to generate a node. Under these assumptions, memory would be ex-
hausted in 250 seconds, or just over four minutes. Over time, memories become
larger, but processors become faster as well. Disk storage cannot replace memory
in the same algorithm, since in order to efficiently detect duplicate nodes, the nodes
are normally stored in a hash table, and randomly accessed. Storing the hash table
on disk is completely impractical due to disk latencies of about 10 milliseconds.
However, see Korf [2004] for another way to use disk storage in best-first search.

1.2. DEPTH-FIRST SEARCH. One solution to the memory limitation of best-first
search is to use a depth-first search instead. Depth-first search stores only the cur-
rent search path being explored, rather than Open and Closed lists. In a recursive
implementation, this path is stored on the call stack. Once a goal is reached, the so-
lution path is constructed by tracing back up the call stack. For example, depth-first
iterative-deepening (DFID) [Korf 1985] simulates breadth-first search using mem-
ory that is only linear in the maximum search depth, while iterative-deepening-A*
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[Korf 1985] simulates A* in linear space. Since their memory requirements are
minimal, depth-first searches eliminate the space constraint of best-first search.
In a tree, or a graph with very few cycles, a depth-first search is usually the
best choice.

The primary drawback of depth-first searches is their time complexity in problem
spaces with multiple paths to the same state. For example, consider a rectangular
grid, where each node has four neighbors. If we eliminate the parent of a node as
one of its children, we have a branching factor of three, and a depth-first search to a
radius r would generate O(3r ) nodes. A breadth-first search however, by detecting
and eliminating duplicate nodes, would generate only O(r2) nodes.

While techniques have been developed to eliminate some duplicate nodes in a
depth-first search [Taylor and Korf 1993], they are not completely general and only
apply to problem spaces with certain properties.

2. Overview of Article

The main idea of this article is to reduce the memory requirement of best-first search
by storing only the Open list, and deleting Closed nodes once they are expanded.
We call this technique frontier search since the Open list represents the frontier of
the explored region of the problem space. By storing with each Open node which of
its neighbors have already been generated, and maintaining a solid search boundary,
Closed nodes are never regenerated.

For some applications of breadth-first search, such as formal verification [Rudin
1987], only whether a given state is reachable or not is of interest. For other ap-
plications, such as generating pattern database heuristics [Culberson and Schaeffer
1998], the number of moves needed to reach a goal state is required. For many
problems, a pattern database stores only the number of moves for each pattern,
and not the pattern itself, relying instead on a function that maps each pattern to a
unique index in the database. To generate the database, however, requires storing
the state representation for each node. Furthermore, it is often effective to gener-
ate a much larger pattern database than can fit in memory, and then compress it
into memory [Felner et al. 2004]. Thus, reducing the memory required to generate
pattern databases is important.

For most applications of best-first search, however, the solution path is needed.
Since frontier search doesn’t store the interior nodes of the search, generating the
solution path requires additional work. This can be done by finding an intermediate
state in a solution path, and then recursively solving the problems of finding a path
from the initial state to the intermediate state, and from the intermediate state to a
goal state, using either unidirectional or bidirectional search.

At first, we ignore constructing the solution path, and describe frontier search on
undirected graphs (Section 3.1). We then consider directed graphs (Section 3.2).
Next we consider constructing the solution path, first using bidirectional search
(Section 4.1), then using unidirectional search (Section 4.2), and finally using disk
storage (Section 4.3). In Section 5 we consider the theoretical properties of frontier
search, including its correctness (Section 5.2), memory savings (Section 5.3), and
time cost (Section 5.4). We then consider several applications of the method. The
first is breadth-first search of sliding-tile puzzles and the four-peg Towers of Hanoi
(Section 6). The second is Dijkstra’s algorithm on large grids with random edge
costs (Section 7). Next we consider A* on the Fifteen Puzzle and the four-peg
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Towers of Hanoi (Section 8). Finally, we consider optimal sequence alignment
(Section 9), where we compare frontier-A* search to dynamic programming ap-
proaches. Section 10 presents other related work, followed by our conclusions in
Section 11.

Generating a node means creating a data structure to represent the node, while
expanding a node means generating all of its children. When a node n′ is generated
by expanding a node n, we say that node n is the parent, and node n′ is the child.
A problem state represents a particular configuration of a problem, while a node
represents a problem state arrived at via a particular path. In general, there may
be multiple nodes representing the same state, arrived at via different paths, which
we refer to as duplicate nodes. In a directed graph, if there is a operator from node
n to node n′, we say that n′ is a successor of n, and that n is a predecessor of n′.
The neighbors of a node in a directed graph are the union of its predecessors and
successors, and all adjacent nodes in an undirected graph.

Frontier search is a variation of best-first search, which includes breadth-first
search, Dijkstra’s algorithm, and A*. Thus, there are frontier search versions of each
of these algorithms, referred to as breadth-first frontier search, frontier-Dijkstra’s
algorithm, and frontier-A*, respectively.

In all of our experiments, we find optimal solutions to our problems. However,
frontier search is not restricted to optimal searches, but applies to any best-first
search algorithm. For example, weighted-A* is a best-first search with cost f (n) =
g(n) + w ∗ h(n) [Pohl 1970]. With w > 1, weighted-A* is not guaranteed to return
optimal solutions, but frontier search can be applied to weighted-A* to reduce the
number of nodes stored. In order to guarantee optimality, however, frontier search
requires that the heuristic function be both admissible and consistent.

Our focus throughout this article is on searching implicit graphs that are too large
to fit in memory or on disk. Implicit graphs are defined by an initial state and a
successor function, rather than an explicit adjacency matrix.

Much of this work initially appeared in Korf [1999], Korf and Zhang [2000], and
Hohwald et al. [2003]. Since this work first appeared, other work has built upon it,
described in Section 10.

3. Frontier Search

Here we consider searching from the initial state to a goal state, ignoring the re-
construction of the solution path. We could view the task as finding the cost of an
optimal solution, or determining if a goal state is reachable. We first work through
an example in the simpler case of undirected graphs, and then consider directed
graphs. Finally, we present the general algorithm.

3.1. UNDIRECTED GRAPHS. As mentioned above, frontier search maintains
only an Open list, and not a Closed list. With each node n we associate a state
representation, and a cost value. In addition, we store with each node a vector of
used-operator bits, one bit for each legal operator. This bit indicates whether the
neighboring state reached via that operator has already been generated or not. For
example, for a rectangular-grid problem space, where each node has four neighbors,
we would store four bits with each node, one for each direction. When we expand
a parent node, generating its children, in each child node we mark the operator that
would regenerate the parent from that child as used.
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FIG. 1. Frontier search example on undirected graph.

For example, consider the graph fragment shown in Figure 1. The algorithm
begins with just the start node on the Open list, say node A in this case, with
no operators marked as used. Expanding node A will generate nodes B and C ,
and node A will be deleted from memory. The west operator from node B will
be marked as used, as will the north operator from node C , since those operators
would regenerate node A. Nodes B and C will be evaluated by the cost function,
and placed on the Open list.

Assume that node B has lower cost and is expanded next. Expanding node B
will generate nodes D and E , but not node A, since node B’s west operator is used.
Node B is then deleted. Node E’s north operator, and node D’s west operator will
be marked as used. Nodes D and E will be evaluated, and placed on the Open list.
Assume that node C is expanded next, and then deleted. Expanding node C will
generate node F , with its north operator marked as used, and also generate another
node corresponding to state E , with its west operator marked as used. Node A will
not be generated, since node C’s north operator was marked as used.

When the second copy of state E is generated, the first copy will be found on
the Open list. Only the copy reached via the lower-cost path will be saved, with
both the north and west operators marked as used. In general, when duplicate nodes
representing the same state are generated, the operators marked as used in the saved
copy are the union of the used operators of the individual nodes.

Figure 1 represents the state of memory at this point in the search, where solid
nodes are stored, solid edges represent used operators, and dotted elements are no
longer stored. The algorithm terminates when a goal node is chosen for expansion.

3.2. DIRECTED GRAPHS. To prevent the search from “leaking” back into the
area already searched, the frontier of Open nodes must remain solid and unbroken.
The simple algorithm described above works fine on undirected graphs, but not on
a directed graph.

Consider the graph fragment in Figure 2. In this case, the edges are directed, and
the only legal operators are to go east or south from a given node. Assume that
node A is the start node, and that the nodes are expanded in the order A, B, E . At
that point, memory will contain Open nodes C, D, F and G. The inverses of the
solid arrows represent the used operators, even though in this case they are not legal
operators. If node C is expanded next, it will regenerate node E . Thus, node E will
reenter the Open list, even though it has already been expanded. This wouldn’t have
happened in an undirected graph, since when node E was first expanded, another
copy of node C would have been generated, with it’s south operator marked as used.
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FIG. 2. Frontier search example on directed graph.

A solution to this problem is as follows: When expanding node E , we check to
see if any of its predecessor states, nodes B or C , are on the Open list. Since node
C is on Open, we mark its south operator as used, and thus when it is expanded
later, it won’t regenerate node E .

Assume that node G is expanded immediately after node E , and label its neighbor
to the north as node H . In that case, when expanding node G, we generate a
“dummy” node H , and mark the south operator from this node as used. The purpose
of this dummy node is to prevent node G from being regenerated from node H after
node G is deleted. The cost of the dummy node H is set to infinity, because it has
not yet been reached via a legal path. When node C is subsequently expanded,
another copy of node H will be generated, via a legal path with a finite cost. These
copies will be merged to a single real copy with the finite cost, with its south and
west operators marked as used.

This method requires that we be able to identify all predecessors of a node,
including those that cannot be reached from the node via a legal path. The key idea
is to guarantee that the frontier does not contain any gaps that can allow the search
to leak back into the interior region.

3.3. GENERAL DESCRIPTION OF BEST-FIRST FRONTIER SEARCH. Here we pro-
vide a general description for a single-pass of frontier search from the initial state
to a goal state, ignoring reconstruction of the solution path.

(1) Place the initial node on Open, with all its operators marked unused.
(2) If there are no nodes on Open with finite cost, terminate with failure.
(3) Else, choose an Open node n of lowest cost for expansion.
(4) If node n is a goal node, terminate with success.
(5) Else, expand node n, generating all successors n′ reachable via unused legal

operators, compute their costs, and delete node n.
(6) In a directed graph, also generate each predecessor node n′ connected via an

unused operator, and create dummy nodes for each with costs of infinity.
(7) For each neighboring node n′, mark the operator from node n′ to node n′ as

used.
(8) For each node n′, if there is no copy of n′ representing the same state already

on Open, add it to Open.
(9) Else, save on Open only the copy of n′ of lowest cost. Mark as used all

operators marked as used in any of the copies.
(10) Go to (2)
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4. Reconstructing the Solution Path

In a typical implementation of best-first search, each node on the Open and Closed
lists keeps a pointer to its parent node. Once the search is completed, the pointers
are traced back from the goal state to the initial state to construct the solution
path. Since frontier search doesn’t save the Closed list, an alternative method of
recovering the solution path is needed.

The key idea is to identify an intermediate state on the solution path, and then
recursively call frontier search to find a path from the initial state to the intermediate
state, and from the intermediate state to the goal state.

If we want optimal solutions, the intermediate state must be on an optimal path.
Assume that the cost of a solution is the sum of the edge costs on the path. In that
case, we have the following principle of optimality: Given any intermediate state
on an optimal solution path from an initial state to a goal state, we can construct
an optimal solution path from the initial state to the goal state by concatenating
any optimal solution path from the initial state to the intermediate state, with any
optimal solution path from the intermediate state to the goal state.

We describe below two different methods to reconstruct the solution, one based
on bidirectional search, and the other based on unidirectional search.

4.1. DIVIDE-AND-CONQUER BIDIRECTIONAL FRONTIER SEARCH. The main
idea of bidirectional search is to simultaneously search forward from the initial
state and backward from the goal state, until the two search frontiers meet [Pohl
1971]. The solution path is the forward search path concatenated with the inverse
of the backward search path. Bidirectional search requires an explicit goal state,
and that we be able to determine the predecessors of any given state. See Kaindl
and Kainz [1997] for several enhancements to the original algorithm.

When a bidirectional frontier search reaches the same state from both directions,
we have an intermediate node on a solution path from the initial state to the goal
state. We can then recursively solve the subproblems of finding a path from the
initial state to the intermediate state, and from the intermediate state to the goal
state. The resulting algorithm is called divide-and-conquer bidirectional frontier
search, or DCBFS for short [Korf 1999].

Given a non-overestimating cost function, we can terminate a unidirectional best-
first search with an optimal solution whenever a goal node is chosen for expansion.
For a bidirectional search, terminating with an optimal solution is more complex.
Every time we reach a common state from from both directions, we have found a
solution path. Let c be the cost of the lowest-cost solution path found so far.

For bidirectional Dijkstra’s algorithm, the cost of node n is g(n), the cost of the
current path from the root to node n. Let g1 be the cost of the lowest-cost current
Open node generated from the initial state, and g2 the cost of the lowest-cost current
Open node generated from the goal state. We can terminate with an optimal solution
when c ≤ g1 + g2. The intuitive reason is that any additional solution must pass
through an Open node in each direction, and hence its cost must be at least the sum
of the minimum-cost Open nodes in each direction.

For bidirectional A*, the cost of a node is f (n) = g(n) + h(n). If h is a non-
overestimating heuristic estimate, we can terminate the search with an optimal
solution when c is less than or equal to the minimum f cost of any current Open
node in either direction [Pohl 1971]. The reason is that with a non-overestimating
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heuristic function, the lowest f cost of any Open node is a lower bound on any
solutions remaining to be found. Alternatively, we can terminate when c ≤ g1+g2.

There are several drawbacks of bidirectional search. First, it is more complex than
unidirectional search. In addition to performing forward and backward searches,
nodes on both searches must be compared. A consequence is that bidirectional
search usually requires more time per node generation. A second drawback is that if
the two searches are relatively balanced, and there is relatively little overlap between
them, then each of the two searches may do as much work as a unidirectional
heuristic search, causing bidirectional search to generate up to twice as many nodes
as unidirectional search. Finally, by maintaining two search frontiers, bidirectional
frontier search could use up to twice as much memory as unidirectional search. For
all these reasons, we present a unidirectional version of frontier search next.

4.2. DIVIDE-AND-CONQUER UNIDIRECTIONAL FRONTIER SEARCH. Consider a
problem space with a geometric structure, such as a rectangular grid, and assume
we are searching from one corner to the opposite corner. If we draw a line dividing
the rectangle into two equal rectangles, any solution path must cross this midline
at some point. Furthermore, the point at which it crosses the midline is likely to be
near the midpoint of the solution path.

Given such a midline, we perform a unidirectional frontier search until we reach
the midline. With each node that is beyond the midline, we store the coordinates
of its ancestor on the midline. When we merge duplicate nodes that represent the
same state, we save the midpoint on the lowest-cost path to the given state. Once
the search chooses a goal node for expansion, the midpoint associated with the goal
node will be approximately halfway along an optimal solution path from the initial
state to the goal state. The algorithm then recursively computes an optimal path
from the initial state to the midpoint, and from the midpoint to the goal state.

Even in nongeometric problems, the midpoint of a solution may be apparent. In
the Towers of Hanoi, for example, the middle of an optimal solution for moving all
disks from one peg to another is when the largest disk moves to the goal peg.

In a problem space without well-defined midpoints, but with unit edge costs,
such as the sliding-tile puzzles, a node n for which g(n) = h(n) is likely to be
approximately halfway from the initial state to the goal state, assuming an accurate
heuristic function. These nodes could serve as midpoints for a unidirectional search.

In the most general case, we could complete the initial search, keeping track of
the number of edges in the path to each node. This will give us the exact length of
an optimal solution. We can then redo the initial search, using as midpoints those
nodes reached by a path whose length is half the optimal solution length. These
techniques for determining midpoints allow us to replace the more complex and
expensive bidirectional search with a unidirectional frontier search.

Note that there is no need to continue recursive calls until the initial and goal
states are adjacent. Rather, we can count the total number of nodes generated in any
recursive call, identified by an initial and goal state. If this number is small enough
so that we can store all these nodes in memory, we can use a standard best-first
search to construct the path between this pair of initial and goal states.

4.3. USING DISK STORAGE TO RECOVER THE SOLUTION PATH. An alternative
algorithm for reconstructing the solution makes use of secondary storage, which has
much larger capacity than main memory. We implement a single pass of frontier
search, and store with each child node the identity of its parent node along the
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solution path to the child. When a node is expanded and closed, it is deleted from
memory, but written to a secondary storage device such as a disk, along with the
identity of its parent node. Then, once the search is completed, we scan the disk
file backwards, looking for the parent of the goal node on an optimal solution path.
Once it is found, we continue scanning backwards from that point, looking for
the grandparent of the goal node, etc. Since a parent node will always be closed
before any of its child nodes, a single backward scan of the disk file will yield the
complete solution path.

Unfortunately, most disk files can’t be read backwards. To approximate this
behavior, we can break up the single file into separate files whose size is slightly
less than the capacity of main memory. We can then read the files in the opposite
order in which they were written, and scan their contents backward in main memory.

In any case, our analyses and experimental results below indicate that the time
and space complexity of frontier search is dominated by the top-level call, and the
cost of recovering the solution path is less significant.

5. Theoretical Properties

Here we show that a consistent cost function is required to guarantee optimal
solutions, that frontier search never regenerates an expanded node in the same pass,
and then consider its memory savings and time overhead.

5.1. REQUIREMENT FOR CONSISTENT HEURISTICS. Frontier search deletes a
node once it is expanded, and never expands a node more than once. To guarantee
the admissibility of frontier-A*, the heuristic function must be consistent, meaning
that for any two nodes n and m, h(n) ≤ c(n, m) + h(m), where h is the heuristic
function, and c(n, m) is the cost of a lowest-cost path from node n to node m [Pearl
1984]. This is similar to the triangle inequality of metrics, and is stronger than
the admissibility requirement that the heuristic not overestimate the actual cost.
If the heuristic function is not consistent, then the first time a node is expanded
we are not guaranteed to have a lowest-cost path to the node, and frontier-A* is
not guaranteed to return an optimal solution. Fortunately, most naturally occurring
admissible heuristics are consistent as well. A cost function f (n) = g(n) with no
heuristic is also consistent, since it is equivalent to a heuristic function that returns
zero everywhere.

5.2. CORRECTNESS. Here we show that frontier search never regenerates a node
that has already been expanded, and that it faithfully simulates a standard best-
first search with a consistent cost function. We focus here on a single pass of
the algorithm, which is a call associated with a specific pair of initial and goal
states, ignoring the recursive calls to reconstruct the solution path, since that is
straightforward.

THEOREM 5.1. In a single pass, frontier search never regenerates a node that
has already been expanded.

PROOF. Assume the converse, that there is a node that is expanded, and then
later regenerated by the same pass of frontier search. Let n be the first such node,
and let node n′ be the neighbor of node n from which node n is later regenerated. If
node n′ was ever expanded before node n was expanded, then node n′ would have
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been deleted before node n was expanded, and must have been regenerated in order
to exist after node n was expanded, in order to regenerate node n. But this couldn’t
have happened, since by assumption, node n is the first node to be regenerated after
it is expanded. Thus, when node n was first expanded, its operator to node n′ was
not marked as used, and node n either created the first copy of node n′, with the
operator back to node n marked as used, or marked the operator from node n′ to
node n as used in the existing copy of node n′. Since node n′ was not expanded and
regenerated, when it is finally expanded, the operator from node n′ to node n would
still be marked as used, and node n′ wouldn’t generate another copy of node n.
But this violates our assumption that node n′ regenerates node n after node n was
expanded. Thus, within a single pass, no expanded nodes are ever regenerated by
frontier search.

Next, we show that even without a Closed list, if the heuristic function is consis-
tent, frontier search simulates standard best-first search.

THEOREM 5.2. With a consistent heuristic function, or none, and the same
tie-breaking rule, the first pass of frontier search expands the same nodes in the
same order as standard best-first search.

PROOF. To prove this, we will actually demonstrate a somewhat stronger result.
In particular, after each node expansion, the set of nodes of finite cost on the Open
list for frontier search, and their costs, is the same as for best-first search. We will
prove this by induction on the number of node expansions. Both algorithms start
with just the initial node on Open, which provides our base case. Assume that up
through the kth node expansion, the Open list of each algorithm contains the same
nodes with the same costs, except for dummy nodes of infinite cost on the Open list
of frontier search, and that both algorithms have expanded the same nodes. Consider
the next node expansion of each algorithm. Since they break ties identically, both
algorithms will expand the same node next.

Standard best-first search will expand node n, generating and computing the
cost of each of its child nodes. These nodes will then be compared to those on the
Open and Closed lists. There are four different types of child nodes that could be
generated, which we will represent by nodes, n′

1 through n′
4. n′

1 is not found on
either the Open or Closed list. This node will be added to the Open list. A copy of
n′

2 is on the Open list, with an equal or lower cost than that of the newly-generated
copy. Thus, the new copy of n′

2 will be discarded. A copy of n′
3 is already on the

Open list, but with a greater cost than the newly-generated copy. In that case, the
lower-cost newly generated node n′

3 will replace the existing copy on Open. A copy
of n′

4 is on the Closed list. With a consistent or no heuristic function, when a node
is expanded, it has been reached via a lowest-cost path [Pearl 1984], and hence the
newly generated copy of node n′

4 can only have equal or greater cost. Thus, it will
be discarded. Thus, the net effect on the Open list of these four types of children is
to move the parent node n from Open to Closed, add to Open node n′

1, replace the
existing copy of node n′

3 with the newly generated copy of lower cost, and discard
the newly generated nodes n′

2 and n′
4.

Frontier search will also expand the same node n, and delete it from Open. Since
node n′

4 would be on the Closed list of best-first search, it was previously expanded
by best-first search, and by our inductive hypothesis has also been expanded by fron-
tier search as well. Since frontier search never regenerates a node that has already
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been expanded in the same pass, we know that node n′
4 will not be regenerated. All

other neighbors of node n will be generated. Node n′
1 will either not be found on

Open, or it will be found with a cost of infinity. In the former case, it will simply
be added to Open, and in the latter case it will replace the infinite-cost copy, after
unioning their used-operator bits. Node n′

2 will be found on Open with a lower cost
than that of the newly generated copy. Thus, the new copy will be discarded, after
merging their used-operator bits. Node n3 will also be found on Open, but with a
greater cost than the newly generated copy. Thus, the new copy will replace the
old copy, after merging their used-operator bits. In addition, in a directed graph,
additional dummy nodes may be generated and stored on Open, but with infinite
costs. If we ignore these nodes, the net effect is to remove the parent node n from
Open and delete it, and add nodes n′

1 and n′
3 to Open, which is the same change to

the Open list made by best-first search. Thus, after the next node generation, the
Open lists of the two search algorithms are still identical, if we ignore the nodes of
infinite cost on the Open list of frontier search.

Since the Open lists remain the same, with the exception of dummy nodes of
infinite cost, and both algorithms always choose an Open node of lowest-cost to
expand next, and frontier search terminates when all Open nodes have infinite cost
or when a goal node of finite cost is chosen for expansion, both algorithms expand
the same nodes in the same order.

5.3. MEMORY SAVINGS. How much memory does frontier search save com-
pared to standard best-first search? Since frontier search doesn’t save the Closed
list, the savings it produces is the size of the Closed list divided by the sum of the
sizes of the Open and Closed lists, assuming that a node in each algorithm occupies
the same amount of memory, an issue we address below. The magnitude of these
savings depends on the structure of the graph searched. For example, in a directed
acyclic graph, or an undirected graph with cycles, the more paths there are between
a pair of nodes, the greater the size of the Closed list relative to the Open list. The
worst case occurs in a tree-structured graph, where there is a unique path between
every pair of nodes. In a tree with branching factor b, frontier search saves a fraction
of 1/b of the total nodes stored, relative to standard best-first search.

To show this, we begin with the following very simple fact:

THEOREM 5.3. In a tree with i interior nodes, in which every interior node has
b children, the total number of interior and leaf nodes is bi + 1.

PROOF. The proof is by induction on the number of interior nodes. In the base
case, there are no interior nodes, the tree is just a single leaf node, and 1 = b ·0+1.

For the induction step, assume that in any tree with i ≤ k interior nodes and N
total nodes, N = bi + 1. Now consider a tree T with k + 1 interior nodes. Given
any such tree, there must be at least one interior node n, all of whose children are
leaf nodes. To see this, imagine that the tree is generated by expanding leaf nodes
one at a time. The children of the last node expanded must all be leaf nodes. Thus,
we can generate a tree T ′ with k interior nodes by deleting all b children of node n.
By the induction hypothesis, T ′ will have N ′ = b · k + 1 total nodes. To generate
tree T from tree T ′, we simply expand node n, generating b children. Thus, tree
T will have exactly b more total nodes than tree T ′, and one more interior node.
Thus, N ′ = bk + 1 ⇒ N = N ′ + b = bk + 1 + b = b(k + 1) + 1.
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An immediate corollary of this theorem is that the ratio of interior nodes to total
nodes, i/N , equals i/(bi + 1) ≈ i/bi = 1/b. Thus, as N goes to infinity, the ratio
of interior nodes i to total nodes N approaches 1/b. In a tree, the interior nodes are
the Closed nodes. Thus, on a tree, frontier search will save a fraction of 1/b of the
nodes needed for standard best-first search.

In a tree with fixed branching factor, this result is independent of the shape
and size of the tree explored. Thus, a breadth-first frontier search with no heuristic
saves the same fraction of memory as a frontier-A* search with an accurate heuristic
function. The absolute savings will be greater for the breadth-first frontier search,
but the relative savings will be the same.

In an undirected graph with cycles, such as a grid, or a directed graph with
multiple paths to the same node, the memory savings of frontier search will be
greater than on a tree. For example, in a brute-force search of a grid to a radius r , a
standard breadth-first search would store O(r2) nodes, while breadth-first frontier
search would store only O(r ) nodes. For a general graph, the ratio of the size of the
interior to the total size of a bounded region depends on the structure of the graph
and on the shape of the boundary. We will see examples of these savings in our
experimental results.

We can summarize these results in the following general theorem:

THEOREM 5.4. In a tree, frontier search will save a fraction of 1/b of the nodes
stored by best-first search, where b is the branching factor of the tree. This is also
the worst-case savings for frontier search in any undirected graph.

In a general directed graph, however, frontier search could store more nodes
than breadth-first search, because of dummy nodes. It is difficult to give a worst-
case bound on this excess, since the number of dummy nodes can always be in-
creased by adding additional nodes n, such that there is a directed edge from
n to a node of the original graph, and there is either no path to node n, or the
only path has a very large cost, guaranteeing that node n will never be gener-
ated via a legal path, and hence the associated dummy node will persist once it is
generated.

In a search where the in-degree of the nodes expanded equals their out-degree,
the number of dummy nodes will not exceed the number of real nodes. In practice,
it will be many fewer, since most dummy nodes will eventually be arrived at via a
legal path, and hence be replaced by real nodes.

The best-case is a simple linear chain of nodes, in which frontier search only has
to store a single node. While this may seem unrealistic, the problem-space graph
for the famous Chinese Rings Puzzle has exactly this structure. What makes the
problem difficult for people is figuring out what the operators are.

What about the size of a node? In addition to the information that must be stored
with each node in a standard best-first search, frontier search must also store a
single bit for each operator. For problems with a small number of operators, this is
not significant. For example, in the sliding-tile puzzles, there are at most four legal
operators, requiring four bits. For the Towers of Hanoi problem, only one bit is
needed for each peg, to indicate whether the disk on top of that peg has moved from
that state. For problems with a large number of legal operators, however, such as the
multiple sequence alignment problem described in Section 9, this additional space
can be significant. When aligning d sequences, there are 2d − 1 legal operators,
each requiring a used-operator bit.
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5.4. TIME COST. How fast is frontier search compared to standard best-first
search? If we don’t reconstruct the solution path, the first pass of frontier search
will expand the same nodes as standard best-first search. On an undirected graph,
the time per node expansion will generally be less for frontier search than for
standard best-first search. The reason is that standard best-first search generates
all successors of a given node, and checks each against the Open and Closed lists
for duplicates. Frontier search, however, does not generate neighboring nodes that
are reached via used operators. In fact, this used-operator mechanism could be
used to optimize standard best-first search as well. In a directed graph, however,
frontier search may generate dummy nodes, which will increase the time per node
expansion.

To reconstruct the solution path, frontier search must expand additional nodes in
the recursive calls. The number of such expansions depends on how fast the search
space grows with depth, but is usually limited to a small multiplicative factor.

For example, consider a breadth-first search of a space that grows quadratically
with depth. In other words, the number of nodes expanded at depth d is proportional
to d2. This is in fact the case for the pairwise sequence-alignment problem described
in Section 9. In that case, the number of nodes expanded by standard breadth-first
search, as well as the first pass of frontier search, will be proportional to d2. After the
first pass, two recursive searches will be made, one from the initial state to a middle
state, and the other from the middle state to the goal state, each of approximately
half the original search depth. Thus, the number of nodes expanded in these two
searches will be approximately 2(d/2)2 = 2(d2/4) = d2/2. At the next level of
recursion, four searches will be made, each to approximately 1/4 of the depth of the
original search, or 4(d/4)2 = 4(d2/16) = d2/4. Continuing in this fashion results
in the summation d2 + d2/2 + d2/4 + · · · . This sum is bounded by the sum of
the corresponding infinite series, which is 2d2. Thus, in this case, the total number
of node expansions by frontier search is no more than twice the number of node
expansions for standard breadth-first search.

The above analysis assumes that the search space grows quadratically with depth.
A higher rate of growth results in even lower overhead for frontier search. For
example, if the search space grows as the cube of the search depth, as with three-way
sequence alignment, then frontier search expands only 1.333 times as many nodes
as standard best-first search. These analyses are supported by empirical results on
sequence alignment in Section 9.5.4.

If the search space grows exponentially with depth, with a branching factor
greater than one, then the overhead as a fraction of the total time goes to zero as
the depth increases.

We next consider several versions of frontier search, including breadth-first fron-
tier search, frontier-Dijkstra’s algorithm, and frontier-A*, applied to the domains of
sliding-tile puzzles, the four-peg Towers of Hanoi problem, finding shortest paths
in very large grids, and multiple sequence alignment.

6. Breadth-First Frontier Search

6.1. APPLICATIONS OF BREADTH-FIRST SEARCH. Breadth-first search is an im-
portant algorithm for several applications. In a problem where any given pair of
nodes may have many paths between them, and there is no useful heuristic evalua-
tion function, breadth-first search is the best method for finding optimal solutions.
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A second application is the construction of a pattern database heuristic, which stores
the number of moves from the goal for each state in a subspace or abstraction of
the original problem space [Culberson and Schaeffer 1998]. For example, a pattern
database for the sliding-tile puzzles stores the number of moves required to get
a subset of tiles to their goal positions. This requires an exhaustive search of the
space of different possible permutations of the subset of tiles. A third application
is hardware or protocol verification, where we want to fully explore a finite set
of states to determine if any error states are reachable from an initial state, or if a
particular goal state is reachable [Rudin 1987]. Another application is finding the
longest shortest path between any pair of states in a problem space, also known
as the diameter of the search space. If all states are equivalent, this can be done
by a breadth-first search from any state. For example, finding the diameter of the
Rubik’s Cube problem space graph is the most famous open problem concern-
ing the Cube, and beyond the ability of breadth-first search on current machines.
Finally, breadth-first heuristic search, described in Section 10.3.2 is probably the
most memory-efficient heuristic search algorithm for graphs with unit edge costs,
and is based on frontier search.

To compute pattern databases, determine whether particular states are reachable,
or compute the diameter of a problem space, we only have to perform the first
pass of frontier search. To reconstruct the solution path to a given state, we have to
execute the recursive calls as well.

Frontier search is not very useful on a tree with a large branching factor, since
the memory savings is the reciprocal of the branching factor. Most problem spaces
are actually graphs rather than trees, however. In a grid, for example, the number of
nodes grows polynomially with depth, and hence the search frontier is asymptoti-
cally smaller than the interior. Furthermore, when performing a complete breadth-
first search of a finite problem space, as in computing a pattern database or the
diameter of a space, frontier search is often very effective. While the size of the
space may grow exponentially initially, eventually the number of nodes at a given
depth reaches a maximum value, known as the width of the problem space, and then
decreases until all nodes have been generated. The space complexity of a complete
breadth-first frontier search is proportional to the width of the problem space, while
the space complexity of standard breadth-first search is proportional to the number
of nodes in the space, which is often much larger, as we will see.

6.2. PROBLEM DOMAINS. We describe here three sets of experiments: complete
searches of sliding-tile puzzles and four-peg Towers of Hanoi problems, and half-
depth searches of the Towers of Hanoi, for moving all disks from one peg to another.

The well-known sliding-tile puzzles, such as the 4×4 Fifteen Puzzle, consist of a
rectangular frame filled with numbered square tiles, except for one empty position,
called the “blank”. Any tile horizontally or vertically adjacent to the blank can
be slid into the blank position. The task is to rearrange the tiles from some initial
configuration to a particular goal configuration.

In the original three-peg Towers of Hanoi problem, there are three pegs and a set
of disks all of different size, initially all located on one peg. The task is to move
all the disks to a different goal peg, with the constraints that only one disk can be
moved at a time, and a larger disk may never be placed on top of a smaller disk.
For the three-peg version, there is a well-known strategy that moves all the disks
in a minimum number of moves.
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The four-peg Towers of Hanoi, or Reve’s Puzzle, adds one more peg. While there
exists a strategy that is conjectured to require a minimum number of moves [Frame
1941; Stewart 1941], this conjecture remains unproven [Dunkel 1941], even though
the problem was posed in 1908 [Dudeney 1908]. For n disks, the “presumed optimal
solution” requires S(n) moves, where S(n) is defined recursively as S(1) = 1 and
S(n) = min{2S(k) + 2n−k |k ∈ {1, . . . , n − 1}} [Klavzar and Milutinovic 2002].
Best-first search is useful for testing this conjecture for various numbers of disks.

6.3. WHY NOT USE DEPTH-FIRST SEARCH INSTEAD? Since breadth-first search
is memory limited, why not use depth-first search (DFS), or depth-first iterative-
deepening (DFID) [Korf 1985] instead, which requires memory that is only linear in
the search depth? The reason, as explained in Section 1.2, is that a depth-first search
can generate many more nodes than breadth-first search, because most duplicate
nodes cannot be detected.

For example, the branching factor of the 4×4 Fifteen Puzzle is about 2.13 [Korf
et al. 2001], assuming we never generate the parent of a node as one of its children,
and its maximum search depth is 80 moves [Brungger et al. 1999]. A depth-first
search to that depth would generate 2.1380 ≈ 1.864 × 1026 nodes, compared to
only 1013 states in the problem space. As another example, the branching factor
of the four-peg Towers of Hanoi problem is about 3.766 if the same disk is never
moved twice in a row, and the solution depth of the 6-disk problem is 17 moves. A
depth-first search to this depth would generate over 3.76617 ≈ 6 × 109 nodes, even
though there are only 46 = 4096 unique states in the space.

6.4. STANDARD IMPLEMENTATIONS OF BREADTH-FIRST SEARCH. The resource
that limits the size of a breadth-first search is memory to store the states. Normally,
states are stored in a hash table to detect duplicate nodes efficiently. A hash table
must be stored in memory, since randomly accessing data stored on disks is pro-
hibitively expensive due to long latencies. Recent work [Korf 2003; Korf 2004]
presents a method to use disk storage for the states, and also applies to frontier
search, but is beyond the scope of this article.

The Open list can be represented by a linked list threaded through the hash table
entries. This requires an additional word in each entry to store the link. Alternatively,
we could store with each state in the hash table the depth at which it first appears.
Then, for each level of the search, we scan the table linearly to find and expand
the nodes at the current depth. This normally only requires one more byte to store
the depth of the state. In this scheme, each level of the search will require time
proportional to the size of the hash table, and the first and last few levels will
spend most of their time scanning the table, but most of the work is done in the
intermediate levels, when the table is relatively full.

6.4.1. One Bit per State. For problems where the number of states in the prob-
lem is no greater than the number of bits of memory available, we may be able to
represent each state with a single bit. For problems such as the sliding-tile puzzles
and the Towers of Hanoi, for example, there exist indexing functions that map each
state to a unique integer from zero to the number of states minus one. For example,
to specify a state of the Towers of Hanoi, we only need to specify the location
of each disk, since all the disks on any peg must be stacked in decreasing order
of size. Since we can specify one of four disks in two bits, every legal state in a
four-peg n-disk problem can be uniquely specified with 2n bits. Furthermore, every
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2n-bit word represents a unique state of the problem. A similar, but more complex
indexing function can be constructed to map each solvable sliding-tile puzzle state
to a unique integer in the range zero to (n + 1)!/2 − 1, where n is the number of
tiles [Korf 2005]. The factor of two is due to the fact that only half the possible
permutations are solvable [Johnson and Storey 1879].

Given such an indexing function, and sufficient memory, we can allocate an
array with one bit per state, where the index in the array uniquely identifies a state.
Initially, all bits except the one corresponding to the initial state are set to zero, and
as each new state is generated, its corresponding bit is set to one. In addition, we
need to maintain an Open queue. Since a queue is accessed first-in first-out, it can
be stored on disk. In particular, at each level of the search we maintain two files.
One contains the states at the current depth, which we read from, and the other
contains the states at the next depth, which we write to. As each state is expanded,
generating its children, the index of each child in the bit array is computed, and the
corresponding bit is read. If the state has already been generated, it is discarded,
but if it hasn’t, its corresponding bit is set to one, and the state is written to the
output file. Once the input file is exhausted, a level of the search is complete, and
the output file becomes the input file for the next level. The algorithm continues
until no new states are generated.

This method requires an indexing function, and one bit of memory for each state
in the problem space, whether it is generated or not, plus disk files for the FIFO
queue. It cannot be used for even partial breadth-first searches in a problem as large
as the Fifteen Puzzle, since at one bit per state, the Fifteen Puzzle would require
over a terabyte of memory.

6.5. IMPLEMENTATIONS OF BREADTH-FIRST FRONTIER SEARCH. In a breadth-
first frontier search, we only store the Open nodes, which are at the current depth
or the next greater depth, in a hash table. For each state, this requires enough
memory for the state representation, plus a constant number of used-operator bits.
The maximum number of states that must be stored is the width of the problem
space, rather than the size of the space.

As described above, the nodes at the current depth can be distinguished by
threading them on a linked list, or by storing with each node its depth, and linearly
scanning the hash table for the nodes at the current depth.

In frontier search, after a node is expanded, it is deleted. Depending on the hash
table implementation, this may involve additional work. Collisions in a hash-table
are typically handled in one of two ways. Entries that hash to the same location can
be chained together on a linked list, in which case deleting entries is straightforward.
The drawback of this scheme is the memory required for the links.

Alternatively, with open addressing, an entry that hashes to an occupied loca-
tion is stored in the next available empty location. When searching for an entry,
we start with the target location, and search subsequent locations until either the
entry is found, or an empty location is reached. The drawback of this scheme is
that a significant fraction of the table must remain empty to keep these searches
fast.

To delete an entry in an open-addressed hash table at a given location x , we must
examine each occupied location from x forward to the next empty location. If the
target index of an entry at location y is less than or equal to x , it must be moved
back to location x . This process is then repeated starting with location y, until an
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TABLE I. COMPLETE SEARCHES OF SLIDING-TILE PUZZLES

Size Tiles Total States Radius Width Depth Ratio
2 × 2 3 12 6 2 3 6.000
2 × 3 5 360 21 44 14 8.182
2 × 4 7 20,160 36 1,999 24 10.085
3 × 3 8 181,440 31 24,047 24 7.545
2 × 5 9 1,814,400 55 133,107 36 13.631
2 × 6 11 239,500,800 80 13,002,649 49 18.419
3 × 4 11 239,500,800 53 21,841,159 36 10.966
2 × 7 13 43,589,145,600 108 1,862,320,864 66 23.406
3 × 5 14 653,837,184,000 84 45,473,143,333 52 14.379
2 × 8 15 10,461,394,944,000 140 367,084,684,402 85 28.499
4 × 4 15 10,461,394,944,000 80 784,195,801,886 53 13.340

empty location is reached. Calculating the relative positions in the hash table is
complicated by a circular hash table.

Below, we report the results of complete breadth-first searches on sliding-tile
puzzles and four-peg Towers of Hanoi problems.

6.6. SLIDING-TILE PUZZLES. Schofield [1967] performed a complete breadth-
first search of a subspace of 20,160 states of the Eight Puzzle, in which the blank is in
the center. Reinefeld [1993] computed the optimal solutions for all 9/2 = 181,440
Eight Puzzle states, using IDA* [Korf 1985]. Using breadth-first frontier search,
we performed complete breadth-first searches of all sliding-tile puzzles up to the
4 × 4 and 2 × 8 Fifteen Puzzles. Table I shows the results.

The first column gives the dimensions of the puzzle, and the second column
the number of tiles, which is the product of the dimensions minus one. The third
column is the number of states in the complete problem space, which is (n + 1)!/2,
where n is the number of tiles. The column labeled “Radius” is the maximum
distance of any state from the initial state, via a shortest path. In all cases, the blank
started in a corner position. The fifth column shows the width of the problem space,
which is the maximum number of states at any depth, and the next column gives
the corresponding depth. The last column gives the ratio of the number of states
divided by the width of the space. The horizontal line below the Eleven Puzzles
indicates the largest problem that could be completely searched with previously
existing techniques. The Thirteen, Fourteen, and Fifteen Puzzles were searched
using the disk-based technique described in Korf [2005].

While the memory required by standard breadth-first search is proportional to the
size of the problem space, the memory requirement of breadth-first frontier search
is proportional to the width of the space. The ratio of these two values determines
the memory savings of frontier search. For the 2 × 8 Fifteen Puzzle, for example,
breadth-first frontier search saves a factor of about 28.5 in memory relative to
standard breadth-first search.

For the sliding-tile puzzles, frontier search saves more memory on those problems
with a larger aspect ratio. For example, there are two Eleven Puzzles and two Fifteen
Puzzles. As expected, the narrower puzzles have a lower branching factor and larger
maximum search depth. Thus, the same number of states are spread over a greater
depth, resulting in a smaller maximum width.

6.7. FOUR-PEG TOWERS OF HANOI PROBLEM. We also implemented breadth-
first frontier search on the four-peg Towers of Hanoi problem. We performed



732 R. E. KORF ET AL.

TABLE II. COMPLETE SEARCHES OF FOUR-PEG TOWERS OF HANOI PROBLEMS

Disks Total States Radius Width Depth Ratio
1 4 1 3 1 1.333
2 16 3 6 2 2.666
3 64 5 30 4 2.133
4 256 9 72 7 3.555
5 1,024 13 282 10 3.631
6 4,096 17 918 14 4.462
7 16,384 25 2,568 19 6.341
8 65,536 33 9,060 25 7.234
9 262,144 41 31,638 32 8.286

10 1,048,576 49 109,890 41 9.542
11 4,194,304 65 335,292 52 12.509
12 16,777,216 81 1,174,230 64 14.288
13 67,108,864 97 4,145,196 78 16.190
14 268,435,456 113 14,368,482 94 18.682
15 1,073,741,824 130 48,286,104 111 22.237
16 4,294,967,296 161 162,989,898 134 26.349
17 17,179,869,184 193 572,584,122 160 30.004
18 68,719,476,736 225 1,994,549,634 188 34.454
19 274,877,906,944 257 6,948,258,804 218 39.561
20 1,099,511,627,776 294 23,513,260,170 251 46.761

complete searches of the problem space, and also took advantage of symmetry
between the standard initial and goal states to find optimal solutions to those in-
stances while searching to only half the solution depth.

6.7.1. Complete Searches. We performed complete breadth-first searches on
problems with up to twenty disks. The results are shown in Table II. The first
column shows the number of disks. The second column gives the total number of
states in the space, which is 4n , where n is the number of disks. The third column
gives the radius of the problem space, from an initial state with all disks on the
same peg. The fourth column shows the maximum width of the search space, and
the next column gives the depth at which that occurs. The last column is the total
number of states divided by the maximum width, which is the memory savings
of breadth-first frontier search over standard breadth-first search. For example, for
20 disks, standard breadth-first search would require 46 times more memory than
frontier search. The horizontal line below the 16-disk problem indicates the largest
problem that could have been solved with previously existing techniques. The
remaining problems required the disk-based technique described in Korf [2004].

6.7.2. Half-Depth Searches. The standard initial and goal states of the Towers
of Hanoi have all disks stacked on one peg. The symmetry between these two states
allows us to solve these problem instances much more efficiently [Bode and Hinz
1999]. To move the largest disk from the initial peg to the goal peg, at some point
all disks but the largest must be distributed among the two intermediate pegs. We
refer to such a state as a middle state. Once we have reached a middle state, we
can move the largest disk to the goal peg, and then apply the sequence of moves
used to reach the middle state in reverse order, interchanging the initial peg with
the goal peg. This will have the effect of moving all but the largest disk from the
intermediate pegs to the goal peg, solving the problem. If k moves are required to
reach a middle state, then the entire problem can be solved in 2k + 1 moves. Thus,



Frontier Search 733

TABLE III. HALF-DEPTH SEARCHES OF FOUR-PEG TOWERS OF HANOI PROBLEMS

Disks Optimal Depth States Generated States Stored Ratio
1 1 0 0 1 0.000
2 3 1 1 1 1.000
3 5 2 4 3 1.333
4 9 4 10 6 1.667
5 13 6 52 30 1.733
6 17 8 148 66 2.242
7 25 12 370 126 2.937
8 33 16 1,690 462 3.658
9 41 20 5,518 1,044 5.285

10 49 24 16,444 3,528 4.661
11 65 32 39,754 9,108 4.365
12 81 40 197,182 36,984 5.332
13 97 48 709,090 116,052 6.110
14 113 56 1,918,594 246,468 7.784
15 129 64 5,073,850 451,236 11.244
16 161 80 12,901,264 1,464,336 8.810
17 193 96 64,287,334 5,778,096 11.126
18 225 112 255,103,138 19,862,262 12.844
19 257 128 813,860,860 59,394,084 13.703
20 289 144 2,133,548,752 135,479,616 15.748
21 321 160 5,468,859,016 262,009,302 20.873
22 385 192 13,561,169,770 781,533,102 17.352
23 449 224 68,858,251,762 3,234,292,848 21.290
24 513 256 291,931,945,152 11,845,070,940 24.646

for the standard initial and goal states, we can solve the problem by searching to
only half the solution depth.

Using this technique, we performed breadth-first frontier search from an initial
state with all disks on one peg, to the first middle state encountered. Table III shows
the results. The first column gives the number of disks. The second column gives the
optimal solution length. The third column shows the depth at which a middle state
first appears. Multiplying these values by two and adding one gives the optimal
solution length. In each case, the optimal solution length matches the presumed
optimal solution length, verifying the conjecture for up to 24 disks.

The fourth column gives the total number of states generated by the search, and
the fifth column shows the maximum number of states stored. In each case, the
maximum number of states stored occurred at the maximum search depth shown
in the third column. Finally, the last column shows the number of states gener-
ated divided by the states stored, indicating the memory savings of breadth-first
frontier search compared to standard breadth-first search. For example, with 24
disks, standard breadth-first search would use more than 24 times the memory used
by breadth-first frontier search. For 19 through 22 disks, the disk-based technique
described in Korf [2004] was used.

For the three-peg Towers of Hanoi Problem, the number of states with n disks
is 3n . The maximum width of the search space is only 2n , however. Thus, fron-
tier search would yield an exponential savings in memory for this problem. Of
course, search is unnecessary for the three-peg problem, since a simple deterministic
algorithm is known to yield an optimal solution.

6.7.3. Symmetry Among Noninitial Pegs. Each of these experiments started
with all disks on the initial peg. The problems of moving the disks to any of the other
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pegs are equivalent, since the three remaining pegs are symmetric. This allows us to
reduce the number of nodes generated and stored by a factor of six, by representing
each state by a canonical state in which the three noninitial pegs are sorted by
the largest disk occupying them [Bode and Hinz 1999]. For ease of comparison,
however, the node numbers reported above do not reflect this optimization.

6.7.4. Previous Work. Previously, Bode and Hinz [1999] verified the presumed
optimal solution length for up to 17 disks. Their algorithm stores only the nodes at
the current depth and the previous depth. Each newly generated node is compared
against both these node lists to detect duplicates. In contrast, used-operator bits
allow frontier search to only store the nodes at the current search depth. They also
didn’t address the reconstruction of the solution path.

6.7.5. A Very Surprising Anomaly. The third column in Table II represents the
radius of the problem space, or the maximum depth one must search to generate all
states, starting with all disks on one peg. The second column of Table III represents
the optimal solution length for transferring all disks from one peg to another. An
astute reader might notice that in all cases except 15 and 20 disks, these values are
the same. For 15 disks, the goal state is reached from the initial state in 129 moves,
but there are still 588 states that are not generated until depth 130. For 20 disks, the
goal state is reached in 289 moves, but five more moves are required to generate
11,243,652 additional states.

This result is completely unexpected. For the three-peg Towers of Hanoi problem,
it is easy to show that the diameter of the problem space is always the same as the
optimal solution length for the standard initial and goal states, and this was believed
to be true for the four-peg problem as well. We have no explanation for this anomaly
at present.

7. Frontier–Dijkstra’s Algorithm

If different edges have different costs, then breadth-first search can be generalized
to Dijkstra’s single-source shortest path algorithm [Dijkstra 1959]. Dijkstra’s algo-
rithm is a best-first search where the cost of a node n is g(n), the cost of the current
path from the start to node n. While it normally finds a shortest path in a graph
from an initial state to all other states, we terminate the algorithm when it finds a
shortest path to a particular goal state.

Normally, Dijkstra’s algorithm is run on a graph that is explicitly stored in
memory. Indeed, if there is sufficient memory available to store the entire graph,
Dijkstra’s algorithm is perfectly adequate. The problem occurs with an implicitly
specified graph that is too big to fit in memory.

To generate such graphs, we chose a square grid, which looks like a square sheet
of graph paper. The task is to find a lowest-cost path from the upper left corner to
the lower-right corner, where the legal moves from any position are up, down, left,
and right. We assign a random cost to each edge of the graph, and compute the cost
of a path as the sum of its edge costs. As a result, the lowest-cost paths are almost
never shortest paths, in terms of number of edges, but rather include some up and
left edges which move away from the goal state.

For grids that fit in memory, we generate and store with each edge a random cost.
For grids that are too large to fit in memory, we can’t generate a new random value
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every time we access an edge, because we have to associate the same cost with a
given edge every time we access it. To do this, each edge of the grid is assigned
a unique index in the sequence of values produced by a pseudo-random number
generator. The cost of an edge is the random number in the sequence at the position
that corresponds to its index. Given the index of an edge, we need to determine its
cost efficiently, without regenerating the entire pseudo-random sequence. This is
done using a technique for efficiently jumping around in a pseudo-random sequence,
described in Korf and Chickering [1996].

The space complexity of Dijkstra’s algorithm is O(n2), where n is the length of
the side of the square grid. On a machine with a gigabyte of memory, Dijkstra’s
algorithm is able to solve this shortest path problem on grids up to about 7500 by
7500, which contain over 56 million nodes.

The application of frontier search to Dijkstra’s algorithm, called frontier-Dijkstra,
is straightforward. Its space complexity is only O(n). On this problem, it stores less
than 4n nodes. On a one-gigabyte machine, frontier-Dijkstra wouldn’t run out of
memory on problems with over 12 million nodes on a side. However, since such
grids contain 144 trillion nodes, they are not practical due to time considerations.
Thus, frontier-Dijkstra completely removes the space constraint on this problem,
allowing us to solve problems as large as we have time for.

The bidirectional version of frontier-Dijkstra generates about three times as many
nodes as Dijkstra’s algorithm on this problem, but its running time is less than twice
as long [Korf 1999]. The reason is that frontier search doesn’t regenerate nodes that
have already been expanded, nor look them up in the hash table, making it faster
per node expansion than Dijkstra’s algorithm.

8. Frontier-A* Algorithm

In addition to breadth-first search and Dijkstra’s algorithm, frontier search can
also be applied to A* [Hart et al. 1968]. We applied frontier-A* to three different
domains, the 4 × 4 Fifteen Puzzle, the four-peg Towers of Hanoi problem, and
optimal sequence alignment, which is described in Section 9.

8.1. 4 × 4 FIFTEEN PUZZLE. For the Fifteen Puzzle, approximate midpoints on
a solution path can be identified by choosing nodes n for which g(n) is equal to
h(n), the heuristic estimate of the distance from node n to the goal. A* is limited by
the amount of memory available. For example, with a gigabyte of memory, we can
store about 30 million nodes. A* with the Manhattan distance heuristic function is
only able to solve 79 of the 100 random problems in Korf [1985] before running
out of memory. Using frontier-A* with the same amount of memory allows us to
solve 94 of the 100 problems.

The fraction of memory saved, which is the number of nodes expanded divided by
the number of nodes generated, is about 57% for all 100 problems. Thus, frontier
search more than doubles the effective memory on this problem. The branching
factor of the 4×4 Fifteen Puzzle is about b = 2.13. Thus, if this problem space were
a tree instead of a graph, the memory savings would be only 1/b = 1/2.13 ≈ 47%,
as described in Section 5.3.

8.2. FOUR-PEG TOWERS OF HANOI. The best method for finding an optimal
solution for transferring all disks from one peg to another in the four-peg Towers
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of Hanoi problem is a breadth-first frontier search from the initial state to a mid-
dle state where all but the largest disk are distributed over the two intermediate
pegs, as described in Section 6.7.2. A* is not directly applicable to this problem
instance, because we don’t know the goal state, or exactly how the disks should be
distributed over the intermediate pegs. The technique described in Section 6.7.2 is
not applicable to finding a shortest solution path between arbitrary initial and goal
states, however, but A* is.

We applied Frontier-A* to this problem using various heuristic functions, ranging
from one based on a relaxation of the problem with an infinite number of pegs,
to different pattern database heuristics. Using these heuristics, we were able to
solve up to the 17-disk, four-peg problem. The memory savings due to frontier-A*
compared to standard A* ranged from a factor of six to a factor of over 13. On
the 17-disk problem, with the most accurate heuristic function, frontier-A* saved
an order of magnitude in memory. See Felner et al. [2004] for a full discussion of
these experiments.

9. Optimal Sequence Alignment

Sequence alignment is the most important practical problem to which frontier search
has been applied so far. Given a set of character strings, which may represent
sequences of DNA base pairs or amino acid sequences in a protein, the alignment
task is to insert gaps in the strings, in order to maximize the number of matches
between corresponding positions of the resulting strings. One application of this
problem, for example, might be to determine regions of the human and mouse
genomes that most closely resemble each other. The simplest case is pairwise
alignment, in which two strings are aligned.

9.1. PAIRWISE ALIGNMENT. For example, consider two DNA sequences
ACGTACGTACGT and ATGTCGTCACGT. If we insert a gap in the first string after the
eighth character, and insert a gap in the second string after the fourth character, then
all the letters in corresponding positions are the same, except for the substitution
of T for C in the second position, as shown below.

ACGTACGT-ACGT
ATGT-CGTCACGT

The quality of an alignment is defined by a cost function. For example, we might
charge a penalty of one unit for a mismatch or substitution between characters,
and two units for a gap in either string. The cost of an alignment is the sum of
the individual substitution and gap costs for each pair of characters. With this cost
function, the alignment above has a cost of five, since there is one substitution and
two gaps. An optimal alignment of a pair of strings is an alignment with the lowest
cost, and the above alignment is optimal. Real cost functions are more complex,
involving different substitution penalties for different pairs of characters, and more
complex gap functions, such as a fixed cost for each gap plus an additional cost
related to its length.

This problem can be mapped to the problem of finding a lowest-cost corner-
to-corner path in a two-dimensional grid [Needleman and Wunsch 1970]. One
sequence is placed on the horizontal axis from left to right, and the other sequence
on the vertical axis from top to bottom. An alignment is represented by a path
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FIG. 3. Sequence alignment as path-finding in a grid.

from the upper-left corner of the grid to the lower-right corner. Figure 3 shows the
path that represents our example alignment. If there is no gap in either string at a
given position, the path moves diagonally down and right, since this consumes both
characters. The cost of such a move is zero if the corresponding characters match,
or the substitution penalty if they differ. A gap in the vertical string is represented
by a horizontal move right, since the gap consumes a character in the horizontal
string, but leaves the position in the vertical string unchanged. Similarly, a gap in
the horizontal string is represented by a vertical move down. Horizontal and vertical
moves are charged the gap penalty. Given this mapping, the problem of finding an
optimal sequence alignment corresponds to finding a lowest-cost corner-to-corner
path in the grid, where the legal moves at each point are down, right, and diagonally
down and right.

9.2. MULTIPLE SEQUENCE ALIGNMENT. This problem readily generalizes to
aligning multiple strings simultaneously. To align three strings, we find a lowest-
cost path in a cube from one corner to the opposite corner. The cost of a multiple
alignment is usually computed as the sum-of-pairs cost, or the sum of each of
the different pairwise alignments induced by the multiple alignment [Setubal and
Meidanis 1997]. For example, if we exhibit a three-way alignment by writing
each string directly above the next so that corresponding characters are aligned
vertically, then this also exhibits an alignment between each pair of strings as well.
Equivalently, we can score each character position by summing the cost associated
with each pair of characters. For example, if we have a C, a G, and a gap at one
position, the cost at that position is two gap penalties (C- and G-) plus a substitution
penalty (CG). If we have two gaps and a character at one position, the cost is two
gap penalties, since no cost is charged for two gaps opposite each other.

9.3. RELATED WORK ON SEQUENCE ALIGNMENT. Before applying frontier
search to this problem, we review previous work on sequence alignment. For
simplicity, we describe this work in the context of pairwise alignment, but all
the algorithms generalize to multiple alignments as well. We only consider here
algorithms that return optimal alignments.
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9.3.1. Dynamic Programming. Sequence alignment is a special case of the
general shortest-path problem in a grid. The only legal operators are to move right,
down, or diagonally down and right. Thus, we can a priori divide the neighbors of a
node into its predecessors and successors. For any node in the grid, its predecessors
must be to the left of it, or above it, or both, and its successors must be to right of it,
or below it, or both. As a result, this problem is simpler than the general shortest-
path problem described in Section 7, and we can apply dynamic programming to
it, rather than Dijkstra’s more general algorithm.

Dynamic programming scans the grid from left to right and from top to bottom,
storing with each node the cost of a lowest-cost path from the start node to that
node. For each node, we add the gap cost to the cost of the node immediately to
its left, and to the cost of the node immediately above it. To the cost of the node
diagonally above and to the left, we add either the substitution cost, in the case of
a mismatch, or no cost, in the case of a match. We then store the smallest of these
three sums as the cost of the current node, and also store an indication of which
parent node gave rise to the lowest cost. Once we reach the bottom right corner, we
trace back through these indicators to recover a lowest-cost solution path, which
corresponds to an optimal alignment of the two strings.

This algorithm generalizes to multiple alignments. To align d strings, we search
for a lowest-cost corner to corner path in a d-dimensional hypercube.

The time complexity of this algorithm is O(nd), where n is the length of the
strings, and d is the number of strings being aligned. The space complexity is also
O(nd), because we store every node of the grid in memory. Thus, in practice, this
algorithm is severely space bound. In a gigabyte of memory, dynamic programming
can only align pairs of strings of about thirty thousand characters each, triples of
strings of about a thousand characters each, and quadruples of strings of about
175 characters each. These are larger problems than can be solved with Dijkstra’s
algorithm, because dynamic programming requires less memory per node.

9.3.2. Hirschberg’s Algorithm. Hirschberg [1975] presented an algorithm for
the related problem of computing a maximal common subsequence of two character
strings in linear space. His algorithm is based on a two-dimensional grid, with each
of the strings placed along one axis. A node of the grid corresponds to a pair of initial
substrings of the original strings, and contains the length of a maximal common
subsequence of the substrings.

The standard dynamic programming algorithm for this problem requires O(n2)
time and O(n2) space, for two strings of length n. To compute an element of the
grid, however, we only need the values to its immediate left and immediately above
it. Thus, we only need to store two rows at a time, deleting each row as soon as
the next row is completed. In fact, only one row is needed, since we can replace
elements of the row as soon as they are used. Unfortunately, this only yields the
length of a maximal common subsequence, and not the subsequence itself.

Hirschberg’s algorithm computes the first half of this grid from the top down, and
the second half from the bottom up, storing only one row at a time. Then, given the
two middle rows, one from each direction, it finds a column for which the sum of the
two corresponding elements is a maximum, since this is a maximization problem.
This point splits the original strings in two parts, and the algorithm is then called
recursively on the initial substrings, and on the final substrings. Hirschberg’s algo-
rithm is easily generalized to solve the sequence-alignment problem, in two or more
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dimensions. This reduces the asymptotic space complexity of the d-dimensional
alignment problem from O(nd) to O(nd−1). The additional cost in time is only a
constant factor of two in two dimensions, and even less in higher dimensions.

In fact, bidirectional frontier search can be viewed as a generalization of
Hirschberg’s algorithm from the special case of dynamic programming to the
more general case of best-first search. In addition, Hirschberg [1997] credits David
Eppstein with suggesting a unidirectional version of his dynamic programming al-
gorithm, which can be viewed as a special case of unidirectional frontier search. The
key difference between dynamic programming and best-first search is that dynamic
programming processes the nodes of the graph in a fixed order, and hence has to
distinguish a priori the parents of a node from its children. Best-first search does
not require this. For example, dynamic programming can be used to find lowest-
cost paths in the directed grids generated by sequence alignment problems, but a
best-first search such as Dijkstra’a algorithm or A* must be used to find lowest-cost
paths in the more general undirected grids described in Section 7 above.

9.3.3. Bounded Dynamic Programming (BDP). Hirschberg’s algorithm can be
improved by using upper and lower bounds on the solution cost [Spouge 1989]. For
pairwise alignments, a lower bound is the number of vertical or horizontal moves
that must be made to reach the lower right corner of the grid, times the gap penalty.

For multiple sequence alignment, the usual cost function is the sum of the costs
of the induced pairwise alignments. In general, an optimal alignment of multiple
strings may not induce an optimal alignment of any of the pairs of strings. However,
since the cost of an optimal alignment must be less than or equal to the cost of any
alignment, the sum of the costs of the optimal pairwise alignments must be a lower
bound on the cost of an optimal simultaneous alignment of the group of strings.

A simple upper bound on the cost of an optimal alignment is the cost of aligning
the strings with no gaps, but this is not very accurate. Instead, for the top-level call,
we perform a series of iterations with gradually increasing upper bounds, starting
with a lower bound on the alignment cost, until a solution is found [Ukkonen 1985].
We refer to this algorithm as iterative-deepening bounded dynamic programming
(IDBDP). For each recursive call to construct the actual alignment, we use the
known exact optimal solution cost from the parent call as the upper bound.

Given an upper bound on the optimal alignment cost, and a lower bound on the
cost of aligning any pair of substrings, we can limit the dynamic programming
algorithm to those nodes for which the cost to reach them, plus the estimated cost
to reach the goal, is less than the upper bound.

9.3.4. A* Algorithm. A* has also been applied to optimal sequence alignment
by several authors, including Araki et al. [1999], Ikeda and Imai [1999], and Lermen
and Reinert [2000]. All these implementations are constrained by the memory
requirements of A*, which are much greater than that of Hirschberg’s algorithm. It
is only feasible for highly correlated strings.

9.4. DIVIDE-AND-CONQUER FRONTIER SEARCH. As an alternative to dynamic
programming, we can use best-first frontier search for optimal sequence alignment.
We implemented both bidirectional and unidirectional divide-and-conquer frontier
search for this problem. Since the problem is modelled by searching for a lowest-
cost path in a directed graph, we used the directed-graph version, requiring dummy
nodes as described in Section 3.2.
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The particular best-first search we used is based on A*. We refer to the
unidirectional frontier-search version of A* that reconstructs the solution path
as divide-and-conquer frontier A*, or DCFA*, and the bi-directional version as
divide-and-conquer bidirectional A* or DCBDA*. Each node n of the search rep-
resents an alignment of a set of initial substrings of the given strings. For example,
in a two-way alignment, the node n whose coordinates are (x, y) represents an
alignment of the first x characters of the string on the horizontal axis, and the first
y characters of the string on the vertical axis. The g(n) value of that node is the
cost of the best alignment of those two initial substrings found so far. For two-way
alignments, the heuristic function h(n) is the number of vertical or horizontal moves
that must be made to reach the lower-right corner of the grid, times the gap penalty.

When aligning more than two sequences, the heuristic used is the sum of the costs
of the optimal pairwise alignments. At a given node n, representing an alignment
of the corresponding string prefixes, we want h(n) to estimate the lowest-cost
alignment of the remaining string suffixes. To do this, for each pair of strings,
we run the dynamic programming algorithm backwards from the goal state in a
preprocessing phase, storing in a separate matrix for each pair of strings the cost of
the optimal pairwise alignment of each pair of suffix strings. Then, during the actual
search, we lookup the corresponding h(n) value for each pair of remaining suffix
strings, and sum them to get a lower-bound heuristic on the cost of the remaining
alignment.

The particular cost function we used charges no penalty for a match, one unit
for a mismatch, and a two units for a gap in either string. In the case of pairwise
alignments induced from multiple alignments, if there is a gap in both strings at
the same position, no penalty is charged. There is nothing special about this cost
function, and other cost functions could be substituted instead.

9.5. EXPERIMENTAL RESULTS. We performed numerous experiments with both
randomly generated strings and real protein sequences, aligning between two and
five sequences at a time. We compared Hirschberg’s algorithm, the best dynamic
programming approach (IDBDP), DCBDA*, and DCFA*. We describe these ex-
periments here. Full details can be found in Hohwald et al. [2003], Korf and Zhang
[2000], and Thayer [2003].

For pairwise alignment, Hirschberg’s algorithm runs faster than DCFA*. Its speed
is a consequence of the fact that almost all of its memory access is sequential,
resulting in excellent cache performance. Best-first search algorithms, on the other
hand, access their memory in a much more random pattern, resulting in many
cache misses. For pairwise alignment with either Hirschberg’s algorithm or frontier
search, the space complexity is O(n) compared to a time complexity of O(n2), and
hence memory is not a practical constraint, but rather time is the limiting resource.

9.5.1. Three-Dimensional Alignments. For aligning three strings simultane-
ously, the sum of the optimal pairwise alignments is an effective heuristic function,
and Hirschberg’s brute-force algorithm is not competitive. Rather, we use bounded
dynamic programming (BDP) or iterative-deepening BDP (IDBDP). The heuristic
function is precomputed and stored in lookup tables, and the space complexity for
these tables and the search nodes is O(n2), making memory the limiting factor.

Table IV [Korf and Zhang 2000] shows the results for aligning triples of strings.
For each problem instance, we optimally aligned three random strings, from an
alphabet of 20 characters to simulate amino acid sequences. The cost function
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TABLE IV. 3-WAY ALIGNMENT OF RANDOM 20-CHARACTER STRINGS

DCBDA* DCFA* IDBDP
N Nodes Mb Sec Nodes Mb Sec Nodes Mb Sec
1 4,385,088 48 5 2,428,388 15 2 1,478,166 20 2
2 45,956,680 119 50 24,147,383 56 17 12,419,072 78 16
3 184,459,312 248 212 94,778,522 117 78 46,080,688 173 56
4 464,723,712 472 666 236,315,529 221 192 111,106,632 306 137
5 979,234,880 575 1398 496,715,891 272 499 237,084,672 478 275
6 883,732,606 463 897 466,050,656 689 556

charges nothing for a match, one unit for a substitution, and two units for a gap.
Each data point is the average of 100 problem instances. We ran three different
algorithms, all of which return optimal alignments. For each algorithm we give
the average number of nodes generated, the amount of memory used in megabytes
(MB), and the average running time per problem instance in seconds, on a 440
Megahertz Sun Ultra 10 workstation with 640 MB of memory. The first column
gives the length of each string, in thousands of characters.

Hirschberg’s algorithm is not competitive for more than two strings, since it
doesn’t use a lower bound, and generates every node at least once. For example, for
three strings of length 1000, it generates 1.3 billion nodes, and takes 405 seconds
to run, compared to a few seconds for the other algorithms.

The first algorithm listed in Table IV is divide-and-conquer bidirectional A*
(DCBDA*), and the second is divide-and-conquer frontier A* (DCFA*). DCFA*
generates about half the nodes of DCBDA*, and runs more than twice as fast, due
to lower overhead per node. 640 megabytes of memory was exhausted by DCBDA*
on strings of length 6000.

The last algorithm in the table is iterative-deepening bounded dynamic pro-
gramming (IDBDP). IDBDP generates fewer nodes than DCFA*, because DCFA*
generates dummy nodes to keep the search from leaking into the closed region.
IDBDP also runs faster than DCFA* on the longer strings, but our implementation
used more memory than DCFA*. Thus, for small problems where sufficient mem-
ory is available to run both algorithms, IDBDP is preferred, but DCFA* can solve
larger problems with the same memory.

The absolute performance of these algorithms is sensitive to the cost function,
the size of the alphabet, and the correlation of the strings. Thus, these results can
only be used for relative comparison of the different algorithms.

9.5.2. Optimal Alignment of Four and Five Random Strings. We also exper-
imented with simultaneous optimal alignment of four and five random strings,
chosen from an alphabet of four characters, simulating DNA sequences. These ex-
periments were run on a 1.8-gigahertz Pentium 4 machine with a gigabyte of RAM.
Full details can be found in Korf [2003]. To simulate more realistic problems, we
generated sequences with varying degrees of similarity, as follows: We first gener-
ated a reference string randomly and uniformly from the alphabet. Each character in
each of the strings to be aligned was the same as the corresponding character in the
reference string with probability λ, and randomly chosen among all the characters,
including the reference character, with probability 1 − λ. Thus, strings generated
with λ = 1 are all identical, and those generated with λ = 0 are uncorrelated.

Since DCFA* dominated DCBDA* in our previous experiments, we did not
consider it further. To be conservative, we compared DCFA* to bounded dynamic
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TABLE V. 4-WAY ALIGNMENT OF RANDOM 4-CHARACTER

STRINGS OF LENGTH 400

BDP-PB DCFA*
λ Nodes Time Nodes Time

1.00 77,653 59.82 5,601 0.06
.75 77,690 59.83 5,601 0.07
.50 220,262 60.06 32,971 0.27
.25 21,109,562 78.12 762,740 38.20

0.00 34,838,768 89.79 1,286,730 57.90

TABLE VI. 5-WAY ALIGNMENT OF RANDOM

4-CHARACTER STRINGS OF LENGTH 90

BDP-PB DCFA*
λ Nodes Time Nodes Time

1.00 33,896 15.41 2,701 0.016
.75 33,896 15.39 2,701 0.015
.50 39,199 15.33 5,246 0.022
.25 351,878 16.08 97,408 0.780

0.00 1,009,293 17.61 110,742 1.460

programming with perfect bounds (BDP-PB), which is BDP with the optimal
solution cost as an upper bound on its first iteration. This algorithm is not fea-
sible in practice, since the optimal solution cost isn’t known a priori, but it provides
the best possible performance for BDP.

Table V shows the results for four strings of length 400, and Table VI shows the
results for five strings of length 90. Each data point is an average of 50 problem
instances. For each algorithm and each value of λ, we show the average number of
nodes generated, and the average running time in seconds.

The easiest strings to align are identical strings (λ = 1), and the hardest are those
that are completely uncorrelated (λ = 0). This difference is particularly pronounced
for DCFA*, where the difference is almost three orders of magnitude for aligning
four strings. This explains why performance results on random uncorrelated strings
often look much worse than on real strings, which are often highly correlated.

DCFA* runs faster than BDP-PB, and generates fewer nodes, requiring less
memory. The memory difference is about an order of magnitude. The time difference
ranges from about 50% for four uncorrelated strings, to three orders of magnitude
for identical strings. The time difference is more pronounced for five strings than
four, suggesting that DCFA* may outperform BDP-PB for more strings as well.

9.5.3. Optimal Alignment of Real Proteins. Finally, we ran a similar set of
experiments on amino acid sequences of real proteins from the BAliBASE database
of benchmark alignments [Thomson et al. 1999]. We used groups of five or fewer
sequences from the first and third sets of BAliBASE (ref1 and ref3), since neither
algorithm could solve problems from the other sets, which involved very large
numbers of sequences. The results of these experiments are presented in Table VII,
where the last two columns give the running times of their respective algorithms
in seconds. As in the case of random sequences, DCFA* is faster than BDP-PB
for four and five dimensional problems. A number of the real sequence sets were
solvable by DCFA* but not by BDP-PB because of memory constraints.

In four and five dimensions, DCFA* outperforms BDP-PB in both time and space.
The main reason is that in higher dimensions, bounded dynamic programming
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TABLE VII. 4-WAY AND 5-WAY ALIGNMENT OF REAL PROTEINS

Sequence Set Number Length BDP-PB DCFA
1uky 4 186 3.35 2.14
3grs 4 201 4.35 2.65
1zin 4 206 4.55 2.35
2hsdA 4 223 6.66 3.55
451c 5 70 4.84 0.18
1plc 5 88 13.55 0.40
9rnt 5 96 — 0.41
2mhr 5 110 — 0.75
5ptp 5 222 — 9.57
1ton 5 224 — 40.12
2cba 5 237 — 17.91
kinase 5 263 — 24.23
gal4 5 335 — 76.42
arp 5 380 — 655.47
glg 5 438 — 280.80
1ajs (ref3) 4 365 44.38 15.78
1pamA (ref3) 4 404 65.92 23.31
1pamA (ref3) 5 63 3.20 0.13

becomes very difficult to implement, and this complexity results in significant time
and space overheads. The complexity comes from bounding the region of the cube
or hypercube that must be examined, based on the lower and upper bounds on
solution cost. This bounding is essential, since otherwise the entire solution space
would have to be searched, which is prohibitive for the larger problems.

9.5.4. Overhead to Reconstruct the Solution Path. In Section 5.4, we argued
that the time overhead of frontier search to reconstruct the solution path was only
a small multiplicative constant. Our sequence-alignment experiments confirm this.
For three random uncorrelated strings of length 8000, the node expansion overhead
of the recursive calls to compute the actual alignment in DCFA* is about 25%,
compared to just running the first pass of the algorithm. As predicted, this decreases
with increasing numbers of strings. For four strings of length 2000, the overhead
is about 7%; for five strings of length 1000, it is about 2%; and for six, seven, or
eight strings, it is less than 1%.

For real protein sequences, the overhead is higher, ranging from 8% to 48%. The
reason is that many of these sequences are highly correlated, producing a search
volume that is highly elongated along the diagonal axis of the hypercube. As a
result, the volumes searched by the recursive calls are a higher percentage of the
volume searched on the first pass.

To be conservative, in these experiments we continued the recursion all the way to
adjacent nodes, rather than running A* at the point where there was sufficient mem-
ory to do so. Note that bounded dynamic programming incurs a similar overhead
to reconstruct the actual alignment.

In summary, unidirectional frontier-A* search outperforms both bidirectional
frontier search, and the best existing competitor, bounded dynamic programming,
for optimally aligning four or five strings. In three dimensions, DCFA* runs a
little slower, but uses less memory than BDP, and hence can solve larger problems
in practice. We believe DCFA* will also perform well for even more strings, but
at some point the memory required for storing the used-operator bits becomes
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significant. Thus, optimal sequence alignment remains an important real-world
application of frontier search.

10. Other Related Work

Since the purpose of frontier search is to reduce the memory required by best-first
search, we consider here other approaches to this problem, in roughly chronological
order. We divide these into earlier approaches, recent approaches motivated by
sequence alignment, and subsequent work that builds upon frontier search.

10.1. EARLIER APPROACHES. Depth-first algorithms, such as depth-first
iterative-deepening (DFID) and Iterative-Deepening-A* (IDA*) [Korf 1985], and
Recursive Best-First Search (RBFS) [Korf 1993], only require memory that is lin-
ear in the maximum search depth. As a result, they cannot detect most duplicate
nodes, and can be extremely inefficient on graphs with multiple paths to the same
node, as explained in Sections 1.2 and 6.2.

MREC [Sen and Bagchi 1989] is a hybrid combination of best-first and depth-
first search. It executes a best-first search until memory is almost exhausted. Then,
it executes a series of iterations of IDA* on each of the Open nodes, until the goal
is reached. Unfortunately, these depth-first iterations suffer the same duplicate-
explosion problem of other depth-first searches.

MA* [Chakrabarti et al. 1989] is an elegant algorithm designed to use any amount
of memory available for a best-first search. Initially, it behaves as a standard best-
first search until the available memory is almost exhausted. Then, in order to reclaim
memory to expand the best Open node, it identifies a set of sibling nodes on the
Open list of highest cost, backs up their minimum cost to their parent node, deletes
the child nodes from memory, and moves their parent node back to the Open list.
The algorithm continues retracting the worst nodes, and expanding the best nodes,
until a goal is chosen for expansion.

Unfortunately, there are several serious drawbacks to this algorithm. One is that
many nodes are retracted and expanded multiple times. Another is that when a node
is generated, there is no guarantee that duplicate nodes that have previously been
generated will still be in memory, subjecting it to the duplicate-explosion prob-
lem of depth-first search. Finally, the constant-factor overhead of this algorithm
is significantly greater than for standard best-first search. At least two subsequent
algorithms have been proposed to address this constant overhead, including sim-
plified MA* (SMA*) [Russell 1992] and ITS [Ghosh et al. 1994]. Despite these
attempts, however, these algorithms are not competitive on real problems.

10.2. APPROACHES MOTIVATED BY SEQUENCE ALIGNMENT. A simple idea that
reduces the space required by best-first search is given an upper bound on the cost
of an optimal solution, there is no need to store nodes whose cost exceeds that
upper bound, since they can’t be on an optimal solution path. This was proposed
by Spouge [1989] in the context of dynamic programming for sequence alignment,
and applied to A* for sequence alignment by Ikeda and Imai [1999]. Zhou and
Hansen [2002] use this idea in conjunction with weighted-A* to get better upper
bounds. This idea can be applied to frontier search as well to reduce the size of the
Open list.

A* with partial expansion (PEA*) [Yoshizumi et al. 2000] significantly extends
this idea. Full expansion of a node means generating and storing all its children.



Frontier Search 745

In PEA*, only those children whose cost is below some threshold are stored, in
the hope that the remaining children will never be needed. The parent node is also
saved, allowing subsequent children to be generated later, if the cost threshold
increases. This is particularly useful in multiple sequence alignment, since the
branching factor of a node is 2d − 1, where d is the number of sequences being
simultaneously aligned. PEA* also stores an expansion priority with each node,
requiring additional memory per node.

This idea can also be combined with frontier search, although it reduces the
effectiveness of frontier search, since a node cannot be deleted from memory until
it has been fully expanded. In our experiments [Thayer 2003] on sequences of length
4, 5, and 6, the combination of frontier search with partial expansion generally stored
the fewest nodes, but simple PEA* or frontier-A* often consumed less memory.

10.3. APPROACHES THAT BUILD UPON FRONTIER SEARCH. Since this work
initially appeared [Korf 1999], and was extended to sequence alignment [Korf and
Zhang 2000], Zhou and Hansen have developed several algorithms that build on
frontier search, including sparse-memory graph search, sweep-A*, and breadth-first
heuristic search.

10.3.1. Sparse-Memory Graph Search. Instead of storing just the Open nodes,
sparse-memory graph search [Zhou and Hansen 2003a] stores some of the Closed
nodes as well. In particular, a node is not deleted from memory until all its neighbors
have been expanded. This replaces the need for dummy nodes in directed graphs, but
at the cost of approximately doubling the number of nodes that must be stored. This
also allows frontier search to be more easily combined with other enhancements,
such as pruning Open nodes whose cost exceeds an upper bound.

By storing nodes until all their neighbors have been expanded, sparse-memory
graph search eliminates the need to store a used bit for each operator, since a
neighbor generated via a used operator will still be in memory. Rather, one can
simply store the number of operators that have already been used. When merging
duplicate nodes, we simply add their numbers of used operators. When all the
operators of a node have been used, it can be deleted from memory, even if it
hasn’t been expanded yet. This is particularly useful when aligning large numbers
of sequences, since the number of possible operators is as 2d − 1, where d is the
number of sequences being aligned.

10.3.2. Sweep-A*, Bounded Diagonal Search, Breadth-First Heuristic Search,
and Breadth-First Iterative-Deepening-A*. Zhou and Hansen also developed two
similar algorithms, called Sweep-A* for the special-case of lattice graphs [Zhou and
Hansen 2003b], and Breadth-First Heuristic Search for the special-case of graphs
with unit edge costs [Zhou and Hansen 2004]. Thayer [2003] independently de-
veloped an algorithm similar to Sweep-A*, called Bounded Diagonal Search, for
sequence alignment. We describe breadth-first heuristic search here, since it is the
simplest of these algorithms. Frontier search stores in memory the entire Open list
at any given time. Since the Open list will often have an irregular shape and include
nodes at different depths, Zhou and Hansen observed that the maximum size of the
Open list is often much greater than the maximum width of the graph, which is
the maximum number of nodes at any single depth. Given an upper bound on total
cost, Breadth-First Heuristic Search performs a Sparse-Memory Graph Search,
pruning nodes whose cost exceeds the upper bound. This guarantees that the
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maximum memory requirement will be no more than twice the width of the graph.
To turn this into a best-first search, they perform a series of iterations with in-
creasing upper bounds, resulting in an algorithm they call Breadth-First Iterative-
Deepening-A*.

11. Conclusions

We have presented a new, general-purpose best-first search algorithm. Frontier
search saves only the Open list, and not the Closed list, thus reducing the memory
required by standard best-first search. Frontier search can be applied to any best-first
search, including breadth-first search, Dijkstra’s algorithm, or the A* algorithm. If
the cost function is consistent, including most heuristic functions in practice, then
frontier search faithfully simulates best-first search, and guarantees finding optimal
solutions if they exist. The solution path can be reconstructed by a divide-and-
conquer technique, using either bidirectional or unidirectional search.

The amount of memory saved depends on the problem space. In the worst case, a
tree, frontier search saves a fraction of 1/b of the memory required by standard best-
first search, where b is the branching factor of the tree. In directed acyclic graphs, or
undirected graphs with cycles, the savings are greater. For example, when searching
a complete d-dimensional hypercube with sides of length n, frontier search reduces
the asymptotic memory requirement of best-first search from O(nd) to O(nd−1).
The time overhead to reconstruct the solution path is a small multiplicative constant,
never more than two in any of our analyses or experiments.

We experimented in four different domains. One was finding lowest-cost paths in
a grid with random edge costs, using frontier-Dijkstra’s algorithm. In this domain,
frontier search eliminates the space constraint, increasing the size of problems that
could be solved before memory is exhausted from grids of length 7500 on a side,
to over 12 million nodes on a side in principle, making time the limiting resource.

The next domain was the well-known sliding-tile puzzles. We completed ex-
haustive breadth-first frontier searches of all sliding-tile puzzles up to the Fifteen
puzzles, which contain over 1013 nodes. On the 2 × 8 Fifteen Puzzle, frontier
search saves a factor of over 28 in space, compared to standard breadth-first search.
We also applied frontier-A* with the Manhattan distance heuristic to the 4 × 4
Fifteen Puzzle, reducing the memory required by 57% compared to A*, and in-
creasing the number of problems from a standard set that could be solved from
79% to 94%.

Next we considered the four-peg Towers of Hanoi problem. We performed com-
plete breadth-first frontier searches on problems with up to 20 disks, saving a factor
of over 46 in storage on the 20-disk problem compared to standard breadth-first
search. We also discovered a surprising anomaly concerning the radius of the 15 and
20 disk problems. Taking advantage of the symmetry between the initial and goal
states, we were able to verify conjectured but unproven optimal solution lengths
for up to 24 disks, saving a factor of over 24 in space. Previously, this had only
been done for up to 17 disks. We also applied frontier-A* to the 17-disk problem,
saving an order of magnitude in memory over standard A*.

Finally, we considered multiple sequence alignment, where the problem of find-
ing an optimal alignment of d sequences can be mapped to finding a lowest-cost
corner-to-corner path in a d dimensional hypercube. In this case, frontier search
reduces the asymptotic space complexity from O(nd) to O(nd−1), where n is the
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length of the sequences. We showed that frontier-A* outperforms dynamic pro-
gramming, the standard algorithm for this problem, in memory for three or more
sequences, and in time and memory for four or five sequences.

We conclude that frontier search is a general and effective method for significantly
reducing the memory required by best-first search.
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