
Improved Limited Discrepancy Search

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, Ca. 90024

korf@cs.ucla.edu

Abstract

We present an improvement to Harvey and Gins-
berg’s limited discrepancy search algorithm, which
eliminates much of the redundancy in the original, by
generating each path from the root to the maximum
search depth only once. For a complete binary tree of
depth d, this reduces the asymptotic complexity from
O(y2”) to O(2”). Th e savings is much less in a par-
tial tree search, or in a heavily pruned tree. The over-
head of the improved algorithm on a complete b-ary
tree is only a factor of b/(b - 1) compared to depth-
first search. While this constant factor is greater on a
heavily pruned tree, this improvement makes limited
discrepancy search a viable alternative to depth-first
search, whenever the entire tree may not be searched.
Finally, we present both positive and negative empiri-
cal results on the utility of limited discrepancy search,
for the problem of number partitioning.

Limited Discrepancy Search
The best-known search algorithms are breadth-first
and depth-first search. Breadth-first search is rarely
used in practice, since it requires space that is expo-
nential in the search depth. Depth-first search uses
only linear space, and thus is often used for exhaustive
searches. For a very large tree, however, exhaustive
search is not feasible. In that case, we would like to
search as much of the tree as possible in the time avail-
able, and return the best solution found. Depth-first
search is not necessarily the best choice in this case.

For example, consider a binary tree with costs asso-
ciated with the edges, where the cost of a node is the
sum of the edge costs from the root to that node. We
want to find a leaf node of lowest cost. The best known
algorithm to solve this problem exactly is depth-first
branch-and-bound, searching the lower-cost child of
each node first. If the tree is too large to search com-
pletely, we would like to search those leaves that are
most likely to be of lowest cost first.

Assume that the edge costs are independent random
variables uniformly distributed from zero to one. The
expected value of the minimum of two such variables
is l/3, and the expected value of the maximum is 2/3.
Thus, if we order the children of a node, the expected

value of the left branch is l/3, and the expected value
of the right branch is 2/3. The leaf node with the
lowest expected total cost is the leftmost. If d is the
depth of the tree, its expected cost is d/3. The leaf
nodes with the second-lowest expected cost are those
with all left branches except for one right branch in
their path from the root. The expected cost of these
leaves is (d - 1)/3 + 2/3. The second and third leaf
nodes from the left are in this set, but so is the leaf
reached by going right from the root, and then left
thereafter. The nodes with the next lowest expected
cost are those with exactly two right branches in their
path from the root, with an expected cost of (d-2)/3+
4/3. Thus, depth-first search does not search the leaf
nodes in non-decreasing order of expected cost.

Limited discrepancy search (LDS) (Harvey and Gins-
berg 1995), does however. A discrepancy is a right
branch in a heuristically ordered tree. The first path
generated by LDS is the leftmost. Next, it generates
those paths with at most one right branch from the
root to the leaf. The next set of paths generated by
LDS are those with at most two right branches, etc.
This continues until every path has been generated,
with the rightmost path being generated last. Figure
1 shows the sets of paths with 0, 1, 2, and 3 discrep-
ancies in a binary tree of depth three.

The first algorithm that searched a tree in this
fashion, was called left-first search (Basin and Walsh
1993). Their formulation of the algorithm used ex-
ponential space, however, and hence is not practical
for large searches. (Harvey and Ginsberg 1995) inde-
pendently discovered a linear-space version of the al-
gorithm, which they called limited discrepancy search,
and recognized its more general applicability.

Figure 2 gives a pseudo-code description of a single
iteration of Harvey and Ginsberg’s original LDS algo-
rithm (OLDS) on a binary tree. Its arguments are a
node, and the number of discrepancies (k: for that iter-
ation. This function is called once for each iteration,
with I% ranging from zero to the maximum tree depth.

LDS can be applied to any search problem where
one branch from each node is preferred to its siblings.
The simplest extension to a non-binary tree is to treat

286 Constraint Satisfaction

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

ILDS (NODE, K, DEPTH)
If NODE is a leaf, return
If (DEPTH > K)

ILDS (left-child(NODE), K, DEPTH-I)
If (K) 0)

ILDS (right-child(NODE), K-l, DEPTH-I)
Figure 1: Paths with 0, 1, 2, and 3 discrepancies

Figure 3: Code for one iteration of improved LDS
ems (NODE, K)

If NODE is a leaf, return
OLDS (left-child(NODE), K)
If (K > 0) OLDS (right-child(NODE), K-l)

Figure 2: Pseudo-code for one iteration of original LDS

any branch except the leftmost as a discrepancy. Har-
vey and Ginsberg showed that if the left branch has a
higher probability of containing a solution in its sub-
tree than the right branch, then limited discrepancy
search has a higher probability of finding a solution
than depth-first search, for a given number of node gen-
erations. They also showed that it outperforms depth-
first search on a set of job-shop scheduling problems.

Improved Limited Discrepancy Search
The main drawback of the original formulation of LDS,
OLDS, is that it generates some leaf nodes more than
once. In particular, the iteration for Ic discrepancies
generates all paths with Ic nf less right branches. Thus,
each iteration regenerates all the paths of all previous
iterations. For example, OLDS generates a total of 19
paths on a depth-three binary tree, only 8 of which
are unique, as shown in Figure 2 of (Harvey and Gins-
berg 1995). A s an extreme case, while the rightmost
path is the only new path in the last iteration, OLDS
regenerates the entire tree on this iteration.

Given a maximum search depth, the algorithm can
be modified so that each iteration generates only those
paths with exact/y k discrepancies. This is done by
keeping track of the remaining depth to be searched,
and if it is less than or equal to the number of discrep-
ancies, exploring only right branches below that node.
The modified pseudo code is shown in Figure 3. The
depth parameter is the depth to be searched below the
current node. It is set to the maximum depth of the
tree in each call on the root node. Every leaf node at
the maximum depth is generated exactly once by this
improved version of LDS, ILDS. Leaf nodes above the
maximum depth, however, as well as interior nodes, are
generated more than once. This interior node overhead
is analyzed below.

Analytic Comparison of the Algorithms
Here we compare the performance of these two ver-
sions of LDS analytically, to see how much is saved

by the improvement. To do this, we count the num-
ber of leaf nodes generated by the two algorithms on
a complete binary tree of depth d. Since each itera-
tion of ILDS generates those paths with exactly k dis-
crepancies, each leaf node is generated exactly once,
by the iteration corresponding to the number of right
branches in its path from the root. Since a binary tree
of depth d has 2d leaf nodes, ILDS generates 2d leaves.
This is also the asymptotic time complexity of the algo-
rithm, since the interior node generations don’t affect
the asymptotic complexity, as we’ll see later.

The number of leaves generated by OLDS is more
complex. First, we need to count the number of paths
with k discrepancies. There is one path with no dis-
crepancies, the leftmost one. There are d paths with
one discrepancy, since the single right branch could oc-
cur at any level in the tree. In general, there are (3
branches with k discrepancies, the number of ways of
choosing k right branches out of d branches.

To search a tree of depth d, d+ 1 iterations of OLDS
are needed, since the number of discrepancies can range
from 0 to d. The single path in the zeroth iteration is
generated d + 1 times, once in every iteration. The d
paths in the first iteration are each generated d times,
once in each iteration except the first, etc. In general,
let 1~: be the number of paths generated by OLDS in a
complete search to depth d.

Writing the same equation in reverse order,

Since (I) = (ddk), adding the two equations gives

22 = (d + 2) (;) +@+2)(;) +-a+(d+$)

Since the sum of the binomial coefficients is 2d,

22 = (d+2)2d or d+22d z = -
2

This is the asymptotic time complexity of OLDS,
since the interior node generations don’t affect the

Search Control 287

asymptotic complexity. Since the asymptotic complex-
ity of ILDS is 0(2d), the performance of OLDS could
be as much as a‘ factor of (d + 2)/2 worse than that
of ILDS. For example, on a binary tree of depth 30,
which contains about a billion leaves, OLDS generates
16 times as many leaf nodes as ILDS.

This is a worst-case scenario, for two reasons. First,
OLDS was designed for very large trees, where only
the first few iterations can be performed, dramati-
cally reducing the relative inefficiency of the origi-
nal algorithm. Second, in most applications, such as
constraint-satisfaction problems or branch-and-bound,
there is a great deal of pruning, and most branches
terminate before the maximum depth is reached. Ter-
minal nodes above the maximum depth are generated
multiple times by both algorithms, and hence the rel-
ative inefficiency of OLDS compared to ILDS is also
reduced. This will be seen in our empirical results.

Interior Node Overhead of ILDS
While ILDS generates each leaf at the maximum depth
exactly once, it is still less efficient than depth-first
search, because it generates interior nodes multiple
times.. Here we analyze this overhead. Assume a uni-
form tree of branching factor b and depth d.

First, the number of nodes generated by depth-first
search, DFS(b, d), is just the total number of nodes in
the tree. Since there are bd nodes at depth d,

DFS(b, d) = 1 + b + b2 + . . . + bd

bd+l - 1 bd+l

= b-l Mb-l = bd& -
where the approximation is valid for large d.

For LDS in a b-ary tree, any branch other than the
leftmost is a discrepancy. The leaf nodes at depth d are
each generated exactly once by ILDS, in the iteration

their corresponding
path from the

to the number of right
root, and there are bd

branches in
such nodes.

Now consider a node at depth d - 1, one level above
the leaves, whose path from the root has k discrepan-
cies in it. Its left child also has k discrepancies,- but
its right child has k + 1 discrepancies. Therefore, its
children are generated on different iterations of ILDS,
and the parent must be generated twice. There are
bdvl such nodes.

Next consider a node at depth d- 2, two levels above
the leaves, with k discrepancies in its path from the
root. Its leftmost grandchild has k discrepancies as
well, its rightmost grandchild has k +2 discrepancies,
and i ts two remaining grandchildren each have k+l dis-
crepancies. Thus, the parent must be generated three
times, and there are bds2 such nodes.

In general, a node at depth d - n is generated n + 1
times, and there are bd-” such nodes. Thus, the total
number of nodes generated by ILDS in a complete b-
ary tree of depth d, ILDS(b, d), is

ILDS(b, d) = bd + 2bd-l + 3bd-2 +a. + + (d - l)b2 + db

This is the same as the number of nodes generated
by a depth-first iterative-deepening search, which is a
series of depth-first searches starting at depth one and
increasing to depth d (Korf 1985). In other words,

ILDS(b, d) = DFS(b, l)+ DFS(b, 2)+* . .+ DFS(b, d)

sb&+b2$+.+bd& - - -

= +m(b + b2 + - - - + bd) = j-&F
- -

= & 2(bd- 1)~ bd (A)’
(>

The ratio of the total nodes generated by ILDS to
the total nodes generated by depth-first search is

ILDS(b, 4 NN bd(i&)2 = b
DFS@, d) b”& b-l _

On a binary tree, this is a only factor of two, and
the ratio decreases with increasing branching factor.

Our analysis is for a tree of uniform depth d, and is
optimistic. With any pruning, the overhead of ILDS
increases. For example, if all the nodes are pruned one
level above the maximum depth, then in a binary tree
ILDS generates 4 . 2d - 2d = 3 . 2d nodes, while DFS
generates only 2 f 2d - 2d = 2d nodes, for an overhead of
three instead of two. We’ll see this effect in our exper-
iments. In any case, our improvement to LDS makes it
a viable alternative to depth-first search, whenever the
entire tree may not be searched. In contrast, OLDS is
practical only if a tiny fraction of the tree is searched.

A Small Additional Improvement
Another view of limited discrepancy search is that it
is a best-first search, where the cost of a node is the
number of discrepancies in its path from the root. If
we implement such a search using recursive best-first
search (RBFS) (Korf 1993), each iteration starts with
the last path of the previous iteration. This saves the
overhead of generating the first path of each iteration
from the root node, and is significant when a solution is
found very early in the second iteration. We observed
this effect in very large number partitioning problems.

xperiments on Number Partitioning
To compare the relative performance of OLDS, ILDS,
and depth-first search, we implemented these algo-
rithms on the NP-complete problem of number par-
titioning. Given a set of integers, the two-way parti-
tioning problem is to divide them into two mutually
exclusive and collectively exhaustive subsets, so that
the sums of the numbers in each subset are as nearly
equal as possible. For example, given the numbers

288 Constraint Satisfaction

(4,5,6,7, S), if we divide them into the subsets (4,5,6)
and (7,s)) the sum of the numbers in each subset is
15, and the difference between the subset sums is zero.
In addition to being optimal, this is also a perfect par-
tition. If the sum of all the numbers is odd, a perfect
partition will have a difference of one, since the total
sum can’t be evenly divided. Below we present exper-
iments with two different partitioning algorithms.

Complete Karmarkar-Karp Algorithm

The best method known for finding optimal parti-
tions of large problem instances’ is the Complete
Karmarkar-Karp (CKK) algorithm (Korf 1995), based
on a heuristic of (Karmarkar and Karp 1982). First the
numbers are sorted in decreasing order. Then, a binary
tree is searched, with each node representing a set of
numbers to be partitioned, and the root corresponding
to the original numbers. Figure 4 shows the tree that
results from partitioning the numbers (4,5,6,7,8).

(WAJ) (lW454)

A 0

(4,W (1X4,1)
2 6

Figure 4: CKK tree to partition (4,5,6,7,8)

The right branch of each node keeps the two largest
numbers together in the same subset. This is done by
replacing them with their sum. For example, the right
branch from the root in Figure 4 replaces 8 and
15, which is then treated like any other number.

7 bY

The left branch of each node keeps the two largest
numbers apart in different subsets. This is done by
replacing them by their difference. For example, as-
signing the 8 and 7 to different subsets is equivalent to
assigning their difference of 1 to the subset that con-
tains the 8, since we can subtract 7 from both subsets
without effecting the final subset difference. Thus, we
replace the 7 and 8 with 1, which is inserted in the
sorted order, and then treated like any other number.
In general, replacing the largest numbers by their dif-
ference is better than replacing them with their sum,
since differencing reduces the size of the remaining
numbers, making it easier to minimize the final sub-
set difference. The Karmarkar-Karp heuristic always
replaces the two largest numbers with their difference,
corresponding to the left-most path in Figure 4.

When we reach a node where the largest number is
greater than or equal to the sum of all the others, the

1 See also (Bright, Kasif, and Stiller 1994) however.

best we can do is to place the largest number in a sep-
arate subset from the others. Thus, we prune the tree
below any such node. The leaves of Figure 4 show ex-
amples of such pruning, and the numbers below them
represent the final subset differences. Finally, if a per-
fect partition is found, the entire search is terminated
at that point, as illustrated by the right child of the
root in Figure 4. The actual subsets themselves are
easily constructed by some additional bookkeeping.

For our experiments, we chose random ten-digit inte-
gers uniformly distributed from zero to 10 billion. We
varied the number of values partitioned from 5 to 100
in increments of 5, and for each data point we averaged
100 trials. Figure 5 shows our results. The horizon-
tal axis represents the number of values partitioned, or
the problem size, and the vertical axis represents the
average number of nodes generated to optimally solve
problems of the given size, on a logarithmic scale. The
three lines correspond to the original limited discrep-
ancy search (OLDS) , our improved version (ILDS) , and
depth-first search (DFS).

Nodes Generated

1 e+Os

1 e+07

I e+OS

1 e+03

le+Ol

I-

,

I-

-mm--

ILDS

60

Problem Size

Figure 5: CKK performance on lo-digit integers

Notice that for all three algorithms, the problem dif-
ficulty initially increases with increasing problem size,
reaches a peak at 35, and then decreases. For small
problems, perfect partitions don’t exist, and to find
an optimal partition the entire tree must be searched.
The larger the problem, the larger the tree, and the
more nodes that are generated.

For large problems, however, perfect partitions do
exist, and as soon as one is found, the search is ter-
minated. As the problem size increases, the density of
perfect partitions also increases, making them easier to

Search Control 289

find, and reducing the number of nodes generated. The
peak in problem difficulty occurs where the probability
of a perfect partition is about one-half. See (Gent and
Walsh 1996) f or more detail on this phenomenon.

The relative performance of the algorithms is differ-
ent in different parts of the graph. To the left of the
peak, the entire tree must be searched, and DFS is the
best choice, since it generates each node only once.

Our improved ILDS algorithm is the next best choice
in this region. The measured node generation ratio be-
tween ILDS and DFS is roughly a constant factor of
3.5. While our previous analysis predicts a factor of
two overhead, it assumes that all leaf nodes are at the
maximum search depth. Pruning increases the over-
head of ILDS relative to DFS, since leaf nodes of the
pruned tree occur at shallower depths, and hence are
generated multiple times by ILDS.

The performance of the original OLDS algorithm is
even worse in this region, The node generation ratio be-
tween OLDS and ILDS increases with increasing prob-
lem size, and peaks at about six, for problems of size
35. Our analysis predicts a ratio of (d + 2)/2, or 18.5
in this case, but that assumes that all leaf nodes occur
at the maximum search depth. Pruning, however, de-
creases the performance gap between ILDS and OLDS.

To the right of the peak, where perfect partitions
exist, the situation is very different. As expected, both
OLDS and ILDS outperform DFS. By searching the
leaf nodes in non-decreasing order of the number of
differencing steps in their paths from the root, perfect
partitions are found sooner on average, and this more
than compensates for the additional node generation
overhead. The overhead itself is also reduced, since
only a few iterations are needed. As the problem size
increases, the number of iterations decreases, and the
gap between ILDS and OLDS becomes insignificant.

ILDS is never less efficient than OLDS, and is much
more efficient when a significant fraction of the tree
must be searched. For the hardest problems, occurring
near the peak in Figure 5, DFS is the algorithm of
choice. For all three algorithms, the time per node
generation is roughly the same, so that the ratio of
node generations is also the ratio of running times.

A Simpler Algorithm and Negative Result
Here we present a search space for which LDS per-
forms worse than DFS. A simpler complete algorithm
for number partitioning is to sort the numbers in de-
creasing order, and then search a binary tree, where at
each node the left branch assigns the next number to
the subset with the smaller sum, and the right branch
assigns it to the subset with the larger sum. A branch
is pruned when the sum of the remaining unassigned
numbers is less than or equal to the difference of the
current subset sums. Figure 6 shows the tree that re-
sults from partitioning the set (4,5,6,7,8) using this
algorithm, where the numbers outside the parentheses
are the current subset sums, and the numbers inside

the parentheses remain to be assigned. The reason this
tree- is larger than that in figure 4 is that pruning is
less effective for this algorithm.

WW,4) 1 W6,W

A O
8,13(5,4) 14,7(5,4)

A A
13,13(4) 8,18(4) 14,12(4) 19,7(4)

4 6 2 8

Figure 6: Simpler tree to partition (4,5,6,7,8)

As in the case of CKK, we can apply LDS to search
these trees as well. Since this simple algorithm is con-
siderably less efficient than CKK, in order to gather
sufficient data we chose uniformly distributed random
eight-digit integers, from 0 to 100 million. For the same
reason, we only considered the improved ILDS version
in these experiments, Figure 7 shows the results, in a
form identical to that of Figure 5. Each data point
the average of 100 random problem instances.

Nodes Generated

is

20 40 60 80 100

Problem Size

Figure 7: Simple algorithm on 8-digit integers

Again we see that for small problems without perfect
partitions, DFS outperforms ILDS, as expected. How-
ever, for large problems with perfect partitions, DFS
continues to outperform ILDS. This is the opposite of

290 Constraint Satisfaction

what we found on the CKK trees. Furthermore, the
performance gap is larger than the overhead of ILDS,
and increases with increasing problem size.

One explanation for this anomaly is as follows. The
heuristic of placing each number in the subset with
the smaller sum is much weaker than the differencing
heuristic of Karmarkar and Karp. This is shown by
the fact that CKK dramatically outperforms our sim-
ple complete algorithm, particularly when perfect par-
titions exist (Korf 1995). Since LDS is heavily guided
by the heuristic that recommends the left branches over
the right, its performance relative to DFS should de-
grade with a weaker heuristic. This doesn’t explain
why it would perform worse than DFS however.

We believe that the main weakness of LDS is that it
is a dilettante. On a big tree, it explores a large num-
ber of paths to the frontier that are widely spaced.
On any path, once all the discrepancies have been ex-
hausted, it makes only a single probe below that point,
always staying to the left. Since each node represents
a subproblem, it makes only one attempt at these sub-
problems, then goes on to another subproblem, rather
than working further on the given one. With the sim-
ple partitioning algorithm, the decisions made at the
top of the tree probably don’t matter much, but dili-
gence in trying a large number of alternatives near the
bottom of the tree may be important. As a result, LDS
performs worse than DFS on these trees. The same ar-
gument could also be applied to the CKK trees, but we
believe that the extra power of the differencing heuris-
tic, at all levels of the tree, overcomes this weakness.

In contrast to LDS, however, the weakness of DFS
is its excessive diligence. Once it sets its mind on a
subproblem represented by a node, it doggedly pur-
sues that subproblem until it either finds a solution
or proves that no solution exists, before considering
any other subproblems. This drawback of DFS was
the original motivation behind the development of al-
ternatives such as LDS. Clearly, neither algorithm is
ideal for all problems, but what is required is a balance
between diligence and dilettantism, a balance that is
difficult to identify and most likely problem specific.

Conclusions
Limited discrepancy search (LDS) is often an effective
algorithm for problems where only part of a tree must
be searched to find a solution. We presented an im-
proved version of the algorithm (ILDS) that reduces
its time complexity from 0(y2d) to O(zd) for a com-
plete search a uniform binary tree of depth d. In prac-
tice, the improvement is much less due to pruning of
the tree, and we measured a factor of six improvement
on trees of depth 35. While ILDS always generates
fewer nodes than OLDS, when only a very small frac-
tion of the tree is searched, it is not significantly better
than the original. We also showed that the overhead of
ILDS compared to depth-first search (DFS) is only a
factor of b/(b- l), f or a complete search of a b-ary tree.

In practice, again due to pruning, this overhead is sig-
nificantly greater, and we measured a value of 3 $5 on
binary trees in our experiments. Thus, ILDS is a viable
alternative to DFS, whenever the entire tree may not
be searched. In contrast, OLDS is only practical when
an insignificant fraction of the tree will be searched.

We evaluated the performance of LDS on two differ-
ent problem spaces for number partitioning. In both
cases, DFS outperforms LDS on the hardest problem
instances. For problems with many perfect solutions,
DFS outperforms LDS in the simple space, while LDS
outperforms DFS in the more efficient search space.
The stronger the ordering heuristic, the better LDS
should perform relative to DFS. The weakness of LDS
is dilettantism, whereas the weakness of DFS is exces-
sive diligence. An ideal algorithm should strike the
right balance between these two properties.

Acknowledgements
Thanks to Matt Ginsberg and Will Harvey for help-
ful discussions concerning this research, and to Max
Chickering and Weixiong Zhang for comments on an
earlier draft. This work was supported by NSF Grant
IRI-9119825, and a grant from Rockwell International.

References
Basin, D.A., and T. Walsh, Difference unification,
Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-93), Chamberry,
France, Aug. 1993, pp. 116-122.
Bright, J., S. Kasif, and L. Stiller, Exploiting alge-
braic structure in parallel state space search, Proceed-
ings of the National Conference on Artificial Intelli-
gence (AAAI-94), Seattle, WA, 1994, pp. 1341-1346.
Gent, I., and T. Walsh, Phase transitions and an-
nealed theories: number partitioning as a case study,
Proceedings of the 12th European Conference on Ar-
tificial Intelligence (ECAI-96), Budapest, Aug. 1996.
Harvey, W.D., and M.L. Ginsberg, Limited dis-
crepancy search, Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-
95), Montreal, Aug. 1995, pp. 607-613.
Karmarkar, N ., and R.M. Karp, The differenc-
ing method of set partitioning, Technical Report
UCB/CSD 82/113, Computer Science Division, Uni-
versity of California, Berkeley, Ca., 1982.
Korf, R.E., Depth-first iterative-deepening: An opti-
mal admissible tree search, Artificial Intelligence, Vol.
27, No. 1, 1985, pp. 97-109.
Korf, R.E., Linear-space best-first search, Artificial
Intelligence, Vol. 62, No. 1, July 1993, pp. 41-78.
Korf, R.E., From approximate to optimal solutions:
A case study of number partitioning, Proceedings of
the International Joint Conference on Artificial Intel-
ligence (IJCAI-95), Montreal, 1995, pp. 266-272.

Search Control 291

