
Incremental A
�

S. Koenig and M. Likhachev
Georgia Institute of Technology

College of Computing
Atlanta, GA 30312-0280�

skoenig, mlikhach � @cc.gatech.edu

Abstract

Incremental search techniques find optimal solutions to series of similar
search tasks much faster than is possible by solving each search task
from scratch. While researchers have developed incremental versions of
uninformed search methods, we develop an incremental version of A*.
The first search of Lifelong Planning A* is the same as that of A* but
all subsequent searches are much faster because it reuses those parts of
the previous search tree that are identical to the new search tree. We then
present experimental results that demonstrate the advantages of Lifelong
Planning A* for simple route planning tasks.

1 Overview
Artificial intelligence has investigated knowledge-based search techniques that allow one
to solve search tasks in large domains. Most of the research on these methods has studied
how to solve one-shot search problems. However, search is often a repetitive process,
where one needs to solve a series of similar search tasks, for example, because the actual
situation turns out to be slightly different from the one initially assumed or because the
situation changes over time. An example for route planning tasks are changing traffic
conditions. Thus, one needs to replan for the new situation, for example if one always
wants to display the least time-consuming route from the airport to the conference center
on a web page. In these situations, most search methods replan from scratch, that is, solve
the search problems independently. Incremental search techniques share with case-based
planning, plan adaptation, repair-based planning, and learning search-control knowledge
the property that they find solutions to series of similar search tasks much faster than is
possible by solving each search task from scratch. Incremental search techniques, however,
differ from the other techniques in that the quality of their solutions is guaranteed to be as
good as the quality of the solutions obtained by replanning from scratch.

Although incremental search methods are not widely known in artificial intelligence and
control, different researchers have developed incremental search versions of uninformed
search methods in the algorithms literature. An overview can be found in [FMSN00].
We, on the other hand, develop an incremental version of A*, thus combining ideas from
the algorithms literature and the artificial intelligence literature. We call the algorithm
Lifelong Planning A* (LPA*), in analogy to “lifelong learning” [Thr98], because it reuses

�
We thank Anthony Stentz for his support. The Intelligent Decision-Making Group is partly supported by NSF awards under contracts IIS-

9984827, IIS-0098807, and ITR/AP-0113881. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations and agencies or the U.S. government.

information from previous searches. LPA* uses heuristics to focus the search and always
finds a shortest path for the current edge costs. The first search of LPA* is the same as that
of A* but all subsequent searches are much faster. LPA* produces at least the search tree
that A* builds. However, it achieves a substantial speedup over A* because it reuses those
parts of the previous search tree that are identical to the new search tree.

2 The Route Planning Task
Lifelong Planning A* (LPA*) solves the following search task: It applies to finite graph
search problems on known graphs whose edge costs can increase or decrease over time. �
denotes the finite set of vertices of the graph. ���������	��
��� denotes the set of successors
of vertex ����� . Similarly, �����������
���� denotes the set of predecessors of vertex ����� .��� ����� �!��"#
%$'& denotes the cost of moving from vertex � to vertex ��"(�)�*�+���,�	��
 . LPA*
always determines a shortest path from a given start vertex �,-/.10324.5�6� to a given goal
vertex �87�9 0;: ��� , knowing both the topology of the graph and the current edge costs. We
use <>=,�	��
 to denote the start distance of vertex �?�@� , that is, the length of a shortest path
from ��-/.10�2A. to � .
To motivate and test LPA*, we use a special case of these search tasks that is easy to
visualize. We apply LPA* to navigation problems in known eight-connected gridworlds
with cells whose traversability can change over time. They are either traversable (with cost
one) or untraversable. LPA* always determines a shortest path between two given cells of
the gridworld, knowing both the topology of the gridworld and which cells are currently
blocked. This is a special case of the graph search problems on eight-connected grids whose
edge costs are either one or infinity. As an approximation of the distance between two cells,
we use the maximum of the absolute differences of their x and y coordinates. This results
in consistent heuristics that are for eight-connected grids what Manhattan distances are for
four-connected grids.

3 Reusing Information from Previous Searches
The graph search problems can be solved with traditional graph-search methods, such as
breadth-first search, if they update the shortest path every time some edge costs change.
They typically do not take advantage of information from previous searches. The following
example, however, shows that this can be advantageous.

Consider the gridworlds of size B �5CED�F
shown in Figure 1. The original gridworld is

shown on top and the changed gridworld is shown at the bottom. The traversability of only
a few cells has changed. In particular, three blocked cells became traversable (namely, B3,
C5, and D2) and three traversable cells became blocked (namely, A1, A4, D3). Thus, two
percent of the cells changed their status but the obstacle density remained the same. The
figure shows the shortest paths in both cases, breaking ties towards the north. Note that we
assume that one can squeeze through diagonal obstacles. (This is just an artifact of how we
generated the underlying graphs from the mazes.) The shortest path changed since one cell
on the original shortest path became blocked.

Once the start distances of all cells are known, one can easily trace back a shortest path
from the start cell to the goal cell by always greedily decreasing the start distance, starting
at the goal cell. This is similar to how A* traces the shortest path back from ��7�9 03: to
� -/.10324. using the search tree it has constructed. Thus, we only need to determine the start
distances. The start distances are shown in each traversable cell of the original and changed
gridworlds. Those cells whose start distances in the changed gridworld have changed from
the corresponding ones in the original gridworld are shaded gray.

There are two different ways of decreasing the search effort for determining the start dis-
tances for the changed gridworld. First, some start distances have not changed and thus
need not get recomputed. This is what DynamicSWSF-FP [RR96] does. (DynamicSWSF-

Original Eight-Connected Gridworld

1
12

2

2
33

3

3
3

4

4

44

3

5

4
5

4

5
5 5

3

5

6

4
6

6 6 6

6

6 6 6

7 7

7 7 7
7 7 7 7

55
66

777
7

77

7

7

8 8

8 8 8 8

8

8 888
8
8888

9 9 9
9

9 9
9
9

99999
10101010

10
10

10
10
10
10

1211111111

11
11
11

11
12

12

12
12
12

13
14

11 11

13
13

14 14

14
14

14

14

12
12

15
15
15
15
15
15
15
15

13
13

16

16

16
16
16
16

14
14
1414

15 16
15
15
1515

16 16
16

16

1 2
3 4

5 6 7
8

9
10
10 11

2

8

1 3
2

4
5

6
7 119

10

sstart sgoal12
8A

B

C
D

1 2 3 4 5

Changed Eight-Connected Gridworld

1
12

2

2
33

3

3

3
32

4

4

4

44

4

5

5
5

5

5
5 5

3

5
5
6 6

4
6

6 6 6

6

6 6 6 6

7 7

7 7 7
7 7 7 7

7

55
66

777
7

77

7

8 8 8

8 8 8 8

8 888
8
8888

9 9 9
9

9 9
9
9

99999
10101010

10
10 10

10
10
10
10

1211111111

11
11
11

11
11

1212

12

12
12
12

13

13
14

14 14

13
13

14 14

14
14

14

14

15
15

15
15
15
15
15
15
15
15

16
16

16

16

16
16
16
17

17
17
1717

18 18
18
18
1818

19 19
19

19

1

7
8

11
1

7 8
sstart sgoal2

3 4
5 6 9

10
11 12

Figure 1: Simple Gridworld

FP, as originally stated, searches from the goal vertex to the start vertex and thus maintains
estimates of the goal distances rather than the start distances. It is a simple matter of
restating it to search from the start vertex to the goal vertex. Furthermore, DynamicSWSF-
FP, as originally stated, recomputes all goal distances that have changed. To avoid bias-
ing our experimental results in favor of LPA*, we changed the termination condition of
DynamicSWSF-FP so that it stops immediately after it is sure that it has found a shortest
path.) Second, heuristic knowledge, in form of approximations of the goal distances, can
be used to focus the search and determine that some start distances need not get computed
at all. This is what A* [Pea85] does. We demonstrate that the two ways of decreasing the
search effort are orthogonal by developing LPA* that combines both of them and thus is
able to replan faster than either DynamicSWSF-FP or A*.

Figure 2 shows in gray those cells whose start distances each of the four algorithms recom-
putes. (To be precise: it shows in gray the cells that each of the four algorithms expands.)
During the search in the original gridworld, DynamicSWSF-FP computes the same start
distances as breadth-first search during the first search and LPA* computes the same start
distances as A*. During the search in the changed gridworld, however, both incremental
search (DynamicSWSF-FP) and heuristic search (A*) individually decrease the number of
start distances that need to get recomputed compared to breadth-first search, and together
(LPA*) decrease the number even more.

4 Lifelong Planning A*

Lifelong Planning A* (LPA*) is an incremental version of A* that uses heuristics � �	��
 to
control its search. As for A*, the heuristics approximate the goal distances of the vertices
� . They need to be consistent, that is, satisfy � �	� 7�9 03:	
�� �

and � ����
 $E�����,�;� "
���� �	� "
 for
all vertices � �5� and ��" �5���+� ���	��
 with ������ 7�9 0;: .
LPA* maintains an estimate < �	��
 of the start distance <+=��	��
 of each vertex � . These values
directly correspond to the g-values of an A* search. They are carried forward from search to
search. LPA* also maintains a second kind of estimate of the start distances. The rhs-values
are one-step lookahead values based on the g-values and thus potentially better informed

Original Eight-Connected Gridworld

sstart sstart

sstart sstart

uninformed search heuristic search

breadth-first search A*

DynamicSWSF-FP (with early termination) Lifelong Planning A*

in
cr

em
en

ta
l s

ea
rc

h
co

m
pl

et
e

se
ar

ch

sgoalsgoal

sgoal sgoal

Changed Eight-Connected Gridworld
uninformed search heuristic search

breadth-first search A*

DynamicSWSF-FP (with early termination) Lifelong Planning A*

in
cr

em
en

ta
l s

ea
rc

h
co

m
pl

et
e

se
ar

ch

sstart sstart

sstart sgoal sstart sgoal

sgoalsgoal

Figure 2: Performance of Search Methods in the Simple Gridworld

than the g-values. They always satisfy the following relationship:

���������	��
��� if ��
����������������� �� "!$#%�'&)(*��,+ �.-%����/0�21435����/�6��	�,� otherwise. (1)

A vertex is called locally consistent iff its g-value equals its rhs-value. This is similar to
satisfying the Bellman equation for undiscounted deterministic sequential decision prob-
lems. Thus, this concept is important because the g-values of all vertices equal their start
distances iff all vertices are locally consistent. However, LPA* does not make every vertex
locally consistent. Instead, it uses the heuristics � �	��
 to focus the search and update only
the g-values that are relevant for computing a shortest path from �,-/.10324. to � 739 0;: .
LPA* maintains a priority queue 7 that always contains exactly the locally inconsistent
vertices. These are the vertices whose g-values LPA* potentially needs to update to make
them locally consistent. The keys of the vertices in the priority queue correspond to the
f-values used by A*, and LPA* always expands the vertex in the priority queue with the
smallest key, similar to A* that always expands the vertex in the priority queue with the
smallest f-value. By expanding a vertex, we mean executing

�
10-16 � (numbers in brackets

refer to line numbers in Figure 3). The key 8 ����
 of vertex � is a vector with two components:

The pseudocode uses the following functions to manage the priority queue: U.TopKey
* +

returns the smallest priority of all vertices in priority queue�
. (If
�

is empty, then U.TopKey
* +

returns � ������� .) U.Pop
* +

deletes the vertex with the smallest priority in priority queue
�

and returns the
vertex. U.Insert

*��
	���+
inserts vertex

�
into priority queue

�
with priority

�
. Finally, U.Remove

*��,+
removes vertex

�
from priority queue

�
.

procedure CalculateKey
* �,+

01 � return � ��� � *��	*��,+�	������ *���+.+�����*��,+ ����� � *�� * �,+�	"����� *��,+�+ � ;
procedure Initialize

* +
02 � ��� ��� ;
03 � for all

� ! �����	��*��,+ � � * �,+ � � ;
04 � ����� *��"!$#&%�'(#�+ ��) ;
05 � U.Insert

�� !$#&%�'# 	 � ��*�� !�#�%+'*# + �) � + ;
procedure UpdateVertex

*-,5+
06 � if

*�,/.� � !$#&%�'(# +��
��� *�,�+ � ��� � ! 1032 '"4$5�6-798 *��	*�� +��;: *�� 	�,5+.+ ;
07 � if

*�,�! � +
U.Remove

*-,5+
;

08 � if
* � *-,5+<.� ����� *-,5+.+

U.Insert
*�,=	

CalculateKey
*-,5+.+

;

procedure ComputeShortestPath
*�+

09 � while
*
U.TopKey

* +?>@
CalculateKey

*��"A"B %
C +
OR
���	��*��"A"B %�C +<.� � *��*A"B %
C +�+

10 � , �
U.Pop

* +
;

11 � if
*��	*-,5+ED ����� *-,5+.+

12 � � *-,5+ � ����� *-,5+
;

13 � for all
� ! �F,3:$: *-,5+

UpdateVertex
*��,+

;
14 � else
15 � � *-,5+ � � ;
16 � for all

� ! �F,3:$: *-,5+3G , � UpdateVertex
*��,+

;

procedure Main
* +

17 � Initialize
* +

;
18 � forever
19 � ComputeShortestPath

*�+
;

20 � Wait for changes in edge costs;
21 � for all directed edges

*-,F	�H�+
with changed edge costs

22 � Update the edge cost
: *-,F	�H�+

;
23 � UpdateVertex

*�H�+
;

Figure 3: Lifelong Planning A*.

I ���	��
KJ IEL ���	�
M I=N ���	�$O"6 (2)

where 8QP��	��
 �SRUT&V � < �	��
��A� ��� ����
4
 � � �	��
 and 8?W �	��
 �XRUT&V � < �	��
��A� ��� ����
4
 �
1 � . Keys are

compared according to a lexicographic ordering. For example, a key 8(�	��
 is smaller than
or equal to a key 8 "/�	��
 , denoted by 8(�	��
ZY$ 8 "��	��
 , iff either 8 P ����
 � 8 "P �	��
 or (8 P ����
 � 8 "P ����

and 8[W �	��
�$ 8 "W �	��
). 8QP,�	��
 corresponds directly to the f-values \��	��
 ��<+=�����
 � � ����
 used
by A* because both the g-values and rhs-values of LPA* correspond to the g-values of
A* and the h-values of LPA* correspond to the h-values of A*. 8 W ����
 corresponds to the
g-values of A*. LPA* expands vertices in the order of increasing k P -values and vertices
with equal k P -values in order of increasing k W -values. This is similar to A* that expands
vertices in the order of increasing f-values (since the heuristics are consistent) and vertices
with equal f-values that are on the same branch of the search tree in order of increasing
g-values (since it grows the search tree).

A locally inconsistent vertex � is called overconsistent iff < �	��
^] � ��� �	��
 . When LPA*
expands a locally overconsistent vertex

�
12-13 � , then � �+� �	��
 � <+=,�	��
 because vertex �

has the smallest key among all locally inconsistent vertices. � ��� ����
 � <+=,�	��
 implies that8 ����
 �`_ \��	��
baA< =��	��
c and thus LPA expands overconsistent vertices in the same order
as A*. During the expansion of vertex � , LPA* sets the g-value of vertex � to its rhs-
value and thus its start distance

�
12 � , which is the desired value and also makes the vertex

locally consistent. Its g-value then no longer changes until LPA* terminates. A locally
inconsistent vertex � is called underconsistent iff <�����
 � � ��� ����
 . When LPA* expands
a locally underconsistent vertex

�
15-16 � , then it simply sets the g-value of the vertex to

infinity
�
15 � . This makes the vertex either locally consistent or locally overconsistent. If

the expanded vertex was locally overconsistent, then the change of its g-value can affect
the local consistency of its successors

�
13 � . Similarly, if the expanded vertex was locally

underconsistent, then it and its successors can be affected
�
16 � . LPA* therefore updates

rhs-values of these vertices, checks their local consistency, and adds them to or removes
them from the priority queue accordingly.

LPA* expands vertices until � 739 0;: is locally consistent and the key of the vertex to expand
next is no smaller than the key of � 7�9 0;: . This is similar to A* that expands vertices until it
expands �87�9 03: at which point in time the g-value of ��739 0;: equals its start distance and the
f-value of the vertex to expand next is no smaller than the f-value of ��7�9 0;: . It turns out
that LPA* expands a vertex at most twice, namely at most once when it is underconsistent
and at most once when it is overconsistent. Thus, ComputeShortestPath ��
 returns after a
number of vertex expansions that is at most twice the number of vertices.

If < �	�87�9 0;:
 � & after the search, then there is no finite-cost path from � - .1032A. to �87�9 0;: .
Otherwise, one can trace back a shortest path from ��-/.10324. to � 7�9 0;: by always moving from
the current vertex � , starting at � 7�9 03: , to any predecessor ��" that minimizes < �	��"#
 � ������"	�;��

until � -/.10324. is reached (ties can be broken arbitrarily), similar to what A* can do if it does
not use backpointers.

The resulting version of LPA* is shown in Figure 3. The main function Main() first calls
Initialize() to initialize the search problem

�
17 � . Initialize() sets the initial g-values of

all vertices to infinity and sets their rhs-values according to Equation 1
�
03-04 � . Thus,

initially ��-/.10324. is the only locally inconsistent vertex and is inserted into the otherwise
empty priority queue with a key calculated according to Equation 2

�
05 � . This initialization

guarantees that the first call to ComputeShortestPath() performs exactly an A* search, that
is, expands exactly the same vertices as A* in exactly the same order, provided that A*
breaks ties between vertices with the same f-values suitably. Notice that, in an actual
implementation, Initialize() only needs to initialize a vertex when it encounters it during
the search and thus does not need to initialize all vertices up front. This is important because
the number of vertices can be large and only a few of them might be reached during the
search. LPA* then waits for changes in edge costs

�
20 � . If some edge costs have changed,

it calls UpdateVertex()
�
23 � to update the rhs-values and keys of the vertices potentially

affected by the changed edge costs as well as their membership in the priority queue if they
become locally consistent or inconsistent, and finally recalculates a shortest path

�
19 � .

5 Optimizations of Lifelong Planning A*
There are several simple ways of optimizing LPA* without changing its overall operation.
The resulting version of LPA* is shown in Figure 4. First, a vertex sometimes gets removed
from the priority queue and then immediately reinserted with a different key. For example,
a vertex can get removed on line

�
07 � and then be reentered on line

�
08 � . In this case,

it is often more efficient to leave the vertex in the priority queue, update its key, and only
change its position in the priority queue. Second, when UpdateVertex �	
 on line

�
13 � com-

putes the rhs-value for a successor of an overconsistent vertex it is unnecessary to take the
minimum over all of its respective predecessors. It is sufficient to compute the rhs-value
as the minimum of its old rhs-value and the sum of the new g-value of the overconsistent
vertex and the cost of moving from the overconsistent vertex to the successor. The reason
is that only the g-value of the overconsistent vertex has changed. Since it decreased, it can
only decrease the rhs-values of the successor. Third, when UpdateVertex ��
 on line

�
16 �

computes the rhs-value for a successor of an underconsistent vertex, the only g-value that
has changed is the g-value of the underconsistent vertex. Since it increased, the rhs-value
of the successor can only get affected if its old rhs-value was based on the old g-value of
the underconsistent vertex. This can be used to decide whether the successor needs to get
updated and its rhs-value needs to get recomputed

�
21’ � . Fourth, the second and third op-

timization concerned the computations of the rhs-values of the successors after the g-value
of a vertex has changed. Similar optimizations can be made for the computation of the
rhs-value of a vertex after the cost of one of its incoming edges has changed.

6 Analytical and Experimental Results
We can prove the correctness of ComputeShortestPath().

The pseudocode uses the following functions to manage the priority queue: U.Top
*�+

returns a vertex with the smallest priority of all vertices in
priority queue

�
. U.TopKey

* +
returns the smallest priority of all vertices in priority queue

�
. (If
�

is empty, then U.TopKey
* +

returns � � �1��� .)
U.Insert

*��
	�� +
inserts vertex

�
into priority queue

�
with priority

�
. U.Update

* �
	$��+
changes the priority of vertex

�
in priority queue

�
to
�

. (It
does nothing if the current priority of vertex

�
already equals

�
.) Finally, U.Remove

*��,+
removes vertex

�
from priority queue

�
.

procedure CalculateKey
* �,+

01’ � return � ��� � *��	*��,+�	������ *���+.+ ����*��,+ ����� � *�� * �,+�	������ *��,+.+ � ;
procedure Initialize

* +
02’ � � � � � ;
03’ � for all

� ! � ����� *���+ � �	*��,+ � � ;
04’ � �
��� * � !$#�%+'*# + �) ;
05’ � U.Insert

�� !$#�%+'# 	 � ��*�� !�#�%+'*# + �) � + ;
procedure UpdateVertex

*-,5+
06’ � if (

� *�,�+<.� ����� *-,5+
AND

, ! � +
U.Update

*-,F	
CalculateKey

*�,�+.+
;

07’ � else if
*��	*-,5+ .� �
��� *�,�+

AND
, �! � +

U.Insert
*-,=	

CalculateKey
*-,5+.+

;
08’ � else if

*��	*-,5+ � �
��� *�,�+
AND

, ! � +
U.Remove

*-,�+
;

procedure ComputeShortestPath
*�+

09’ � while
*
U.TopKey

* + >@
CalculateKey

* � A"B %
C +
OR
����� *�� A"B %
C + .� �	*�� A"B %
C +.+

10’ � , �
U.Top

* +
;

11’ � if
*��	*-,5+ D ����� *-,5+.+

12’ � �	*-,5+ � �
��� *�,�+
;

13’ � U.Remove
*-,5+

;
14’ � for all

��!Z�=,9:(:�*-,5+
15’ � if

�� .� � !$#�%+'# + ����� *��,+ � ��� � *������ *��,+�	1� *�,�+��/:�*-,F	"�,+.+ ;
16’ � UpdateVertex

*��,+
;

17’ � else
18’ � ��B C�5 � �	*-,�+

;
19’ � �	*-,5+ � � ;
20’ � for all

��!Z�=,9:(:�*-,5+�G , �
21’ � if

����	����,+ � ��B C�5 ��: *-,F	"�,+
OR
� � ,�+

22’ � if
* � .� � !�#�%+'*# +	����� *��,+ � ��� � ! �032 '*4(5�6 !$8 *��	*�� + ��:�*�� 	��,+.+ ;

23’ � UpdateVertex
*��,+

;

procedure Main
* +

24’ � Initialize
*�+

;
25’ � forever
26’ � ComputeShortestPath

*�+
;

27’ � Wait for changes in edge costs;
28’ � for all directed edges

*-,F	�H�+
with changed edge costs

29’ � : B C�5 � :�*-,F	�H�+
;

30’ � Update the edge cost
:�*-,=	1H�+

;
31’ � if (

:*B C�5 D :�*-,=	1H�+
)

32’ � if
-H .� � !$#&%�'# + ����� *-H + � ��� � *����	��*-H�+�	�� *-,5+ ��:�*-,=	1H�+.+ ;

33’ � else if
*������ *-H�+ � �	*-,5+ �;:"B C�5 +

34’ � if
-H .� � !$#&%�'# + ����� *-H + � ��� � ! 1032 '"4$5
6���8 *��	*�� + �;:�*�� 	1H�+.+ ;

35’ � UpdateVertex
*-H +

;

Figure 4: Lifelong Planning A* (optimized version)

Theorem 1 ComputeShortestPath() terminates and one can then trace back a shortest path from���������'� to � ���'��� by always moving from the current vertex � , starting at � ���'��� , to any predecessor � /
that minimizes -%��� / �21435��� / 6��	� until � ��������� is reached (ties can be broken arbitrarily).

(The proofs can be found in [LK01].) We now compare breadth-first search, A*,
DynamicSWSF-FP, and the optimized version of LPA* experimentally. (We use
DynamicSWSF-FP with the same optimizations that we developed for LPA*, to avoid bi-
asing our experimental results in favor of LPA*.) The priority queues of all four algorithms
were implemented as binary heaps. Since all algorithms determine the same paths (if they
break ties suitably), we need to compare their total search time until a shortest path has
been found. Since the actual runtimes are implementation-dependent, we instead use three
measures that all correspond to common operations performed by the algorithms and thus
heavily influence their runtimes: the total number of vertex expansions � � (that is, updates
of the g-values, similar to backup operations of dynamic programming for sequential de-
cision problems), the total number of vertex accesses �
	 (for example, to read or change
their values), and the total number of heap percolates ��� (exchanges of a parent and child
in the heap). Note that we count two vertex expansions, not just one vertex expansion, if
LPA* expands the same vertex twice, to avoid biasing our experimental results in favor of
LPA*.

All of our experiments use fifty eight-connected gridworlds that have size ��C � and an

obstacle density of 40 percent. The start cell is at coordinates (34, 20) and the goal cell
is at coordinates (5, 20), where the upper leftmost cell is at coordinates (0, 0). For each
gridworld, the initial obstacle configuration was generated randomly. Then, it was changed
500 times in a row, each time by making eight randomly chosen blocked cells traversable
and eight randomly chosen traversable cells blocked. Thus, each time one percent of the
cells changed their status but the obstacle density remained the same. After each of the
500 changes, the algorithms recomputed a shortest path from the start cell to the goal cell.
For each of the four algorithms and each of the three performance measures, the following
table reports the mean of the performance measure for the 500 changes: both its average
over the fifty mazes and its 95-percent confidence interval over the fifty mazes (assuming a
normal distribution with unknown variance). The table confirms the observations made in
Section 3: LPA* outperforms the other three search methods according to all three perfor-
mance measures.

uninformed search heuristic search
complete search breadth-first search A*

ve = 1331.7 � 4.4 ve = 284.0 � 5.9
va = 26207.2 � 84.0 va = 6177.3 � 129.3
hp = 5985.3 � 19.7 hp = 1697.3 � 39.9

incremental search DynamicSWSF-FP Lifelong Planning A*
ve = 173.0 � 4.9 ve = 25.6 � 2.0
va = 5697.4 � 167.0 va = 1235.9 � 75.0
hp = 956.2 � 26.6 hp = 240.1 � 16.9

We have also applied LPA* successfully to more complex planning tasks, including the
kind of route planning tasks that Focussed Dynamic A* [Ste95] applies to. The results will
be reported separately.

References

[FMSN00] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algo-
rithms for maintaining shortest paths trees. Journal of Algorithms, 34(2):251–
281, 2000.

[LK01] M. Likhachev and S. Koenig. Lifelong Planning A* and Dynamic A* Lite: The
proofs. Technical report, College of Computing, Georgia Institute of Technol-
ogy, Atlanta (Georgia), 2001.

[Pea85] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison-Wesley, 1985.

[RR96] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of
the shortest-path problem. Journal of Algorithms, 21:267–305, 1996.

[Ste95] A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 1652–
1659, 1995.

[Thr98] Sebastian Thrun. Lifelong learning algorithms. In S. Thrun and L. Pratt, edi-
tors, Learning To Learn. Kluwer Academic Publishers, 1998.

