
Automatically Generating Abstractions

for Planning

Craig A. Knoblock

Information Sciences Institute

& Computer Science Department

University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292

Email: knoblock@isi.edu

To appear in Arti�cial Intelligence

Abstract

This article presents a completely automated approach to generating abstractions

for planning. The abstractions are generated using a tractable, domain-independent

algorithm whose only input is the de�nition of a problem to be solved and whose

output is an abstraction hierarchy that is tailored to the particular problem. The algo-

rithm generates abstraction hierarchies by dropping literals from the original problem

de�nition. It forms abstractions that satisfy the ordered monotonicity property, which

guarantees that the structure of an abstract solution is not changed in the process

of re�ning it. The algorithm for generating abstractions is implemented in a system

called alpine, which generates abstractions for a hierarchical version of the prodigy

problem solver. The abstractions generated by alpine are tested in multiple domains

on large problem sets and are shown to produce shorter solutions with signi�cantly

less search than planning without using abstraction.

1

1 Introduction

General-purpose planning systems often solve problems by forging ahead, blindly addressing

central and peripheral issues alike, without any attempt to decompose a problem and deter-

mine which parts should be solved �rst. This can result in a signi�cant amount of wasted

e�ort since a planner will spend time solving some aspect of a problem only to have to

discard the solutions in the process of solving other aspects of the problem. Even for simple

tasks, such as building a stack of blocks or �nding a path for a robot through a con�guration

of rooms, brute-force search can be ine�ective since the search spaces can be quite large. As

planners are used in increasingly complex domains, the ability to decompose problems and

focus on the more di�cult aspects of a problem �rst becomes even more critical.

An e�ective approach to building more intelligent problem solvers is to use a set of

abstractions for hierarchy planning in order to focus the search. In this paper the term

\hierarchical planning" is used to refer to planners that use a distinct set of abstraction

spaces to �rst solve a problem in an abstract space and then re�ne the abstract solution at

successively more detailed levels in an abstraction hierarchy. This technique has been used

successfully to reduce search in a number of planning systems, including gps [48], abstrips

[53], abtweak [68], pablo [11], and prodigy [32, 35].

While hierarchical planning is a widely used planning technique, there are only a few

systems that automate the construction of abstraction hierarchies [3, 11, 53]. In most hier-

archical planners, the designer of a planning domain must manually engineer the appropriate

abstractions. This process is largely a black art since the properties of an e�ective abstraction

hierarchy are not well understood. In addition, most existing hierarchical planners employ a

single, �xed abstraction hierarchy for all problems in a given domain, but in many cases the

best abstraction for a problem is speci�c to the particular problem at hand. The advantage

of automatically generating abstraction hierarchies is that it frees the designer of a planning

domain from concerns about e�ciency and makes it practical to construct abstractions that

are tailored to individual problems or classes of problems.

This article presents a tractable algorithm for automatically generating abstractions for

hierarchical problem solving. The abstractions are based on the ordered monotonicity prop-

erty, which guarantees that the structure of the abstract plan will be preserved while the

plan is re�ned. This algorithm is implemented in the alpine system and the abstraction

hierarchies generated by alpine are used in a version of the prodigy problem solver [9, 46]

that was extended to plan hierarchically [35]. This article presents experimental results

that demonstrate that alpine's abstractions provide signi�cant reductions in search over

planning without the use of abstraction.

1.1 Hierarchical Planning

Planning involves �nding a sequence of operators that solves a problem within a problem

space. A problem space is de�ned by the set of legal operators, where each operator consists

of preconditions and e�ects. The preconditions must be satis�ed before an operator can be

applied, and the e�ects describe the changes to the state in which the operator is applied. A

problem consists of an initial state and a set of goal conditions. A solution to a problem is

2

a sequence of operators that transform the given initial state into a �nal state that satis�es

the goal conditions.

Hierarchical planners1 employ one or more abstractions of a problem space to reduce

search. Instead of attempting to solve problems in the original problem space, a hierarchical

planner �rst solves a problem in a simpler abstract space and then re�nes the abstract

solution at successive levels of detail by inserting operators to achieve the conditions that

were ignored in the more abstract spaces.

The potential search reduction of hierarchical planning is signi�cant. It can reduce the

size of the search space from exponential to linear in the size of the solution under certain

assumptions. For single-level planning the size of the search space is exponential in the

solution length. Hierarchical planning reduces this complexity by taking a large complex

problem and decomposing it into a number of smaller subproblems. See [33, 35] for a formal

de�nition of hierarchical planning and an analysis of the search reduction. In addition,

hierarchical planning can improve the performance of a learning system. For an example see

[36], which describes the integration of abstraction and explanation-based learning in the

context of the prodigy problem solver.

1.2 Abstraction Hierarchies

While hierarchical planning has been used in a variety of planners to reduce search, the

problem of how to �nd e�ective abstractions has not received as much attention. In most

of the existing hierarchical planners, the abstractions are constructed by the designer of

the problem space. While this is possible in some cases, it is often di�cult to �nd good

abstractions and impractical to tailor them to individual problems. Ideally one would like

a simple and tractable criterion for generating the abstractions of a problem space. This

article takes a major step in this direction by de�ning a heuristic criterion for identifying

useful abstraction hierarchies and providing a polynomial-time algorithm for automatically

generating abstractions that meet this criterion.

In this article, an abstraction space is formed by dropping certain terms from the language

of a problem space. In the resulting abstraction space, a single abstract state corresponds to

one or more states in the original problem space. An ordered sequence of abstraction spaces

de�nes an abstraction hierarchy, where each successive abstraction space is an abstraction

of the previous one.

The use of an abstraction hierarchy for hierarchical problem solving reduces search by

partitioning a problem into a number of simpler subproblems. This reduction in search

comes from the assumption that the subproblems are smaller and can be solved without

violating the conditions achieved at the higher levels in the abstraction hierarchy. Thus, an

abstraction hierarchy needs to partition a problem such that the parts of a problem that are

solved in an abstract space can be held invariant while the remaining parts of a problem are

solved. This property is captured by the ordered monotonicity property:

1The terms \hierarchy" and \abstraction" have been used in a number of di�erent ways in the planning

literature. For a discussion of this issue see [65, chapter 4], and for a discussion of systems using various

forms of \hierarchical abstraction" see [60].

3

Ordered Monotonicity Property: For all abstract plans, all re�nements of those plans

leave the literals established in the abstract space unchanged.

This property captures an important feature of abstraction spaces and can be used to gen-

erate abstraction hierarchies. However, it is heuristic since it does not guarantee that a

re�nement of an abstract plan exists.

This article formally de�nes the ordered monotonicity property. First, it formalizes the

process by which abstract plans are re�ned. Then the article identi�es a restriction on this

re�nement process called ordered re�nement, which requires that a re�nement leaves the

literals established in the abstract space unchanged. Finally, it de�nes an ordered mono-

tonic abstraction hierarchy as a hierarchy in which every possible re�nement is an ordered

re�nement.

An important feature of this property is that we can identify sets of constraints on the

possible abstraction hierarchies that are su�cient to guarantee the ordered monotonicity

property. The article �rst presents su�cient conditions to guarantee ordered monotonicity

for every problem in a domain. Then it presents su�cient conditions to guarantee this

property for a speci�c problem. The latter set of constraints is useful for generating problem-

speci�c abstraction hierarchies.

1.3 Automatically Generating Abstractions

The su�cient conditions for ordered monotonicity serve as the basis of an algorithm for

constructing hierarchies of abstraction spaces. This article presents a polynomial-time al-

gorithm for automatically generating abstraction hierarchies from only the initial problem

space de�nition and problem to be solved. Using the de�nition of a problem space, the

algorithm determines the possible interactions between literals, which de�ne a set of con-

straints on the �nal abstraction hierarchy. The algorithm partitions the literals of a problem

space into levels such that the literals in one level do not interact with literals in a more

abstract level. The resulting abstraction hierarchies are guaranteed to satisfy the ordered

monotonicity property.

In the previous work on hierarchical problem solving, the problem solver was provided

with a single, �xed abstraction hierarchy. However, what makes a good abstraction for one

problem may make a bad abstraction for another. The algorithm presented in this paper

generates abstraction hierarchies that are tailored to the individual problems. For example,

the strips robot planning domain [20] involves using a robot to move boxes among rooms

and opening and closing doors as necessary. For problems that simply involve moving boxes

between rooms, doors are a detail that can be ignored since the robot can simply open the

doors as needed. However, for problems that require opening or closing a door as a top-level

goal, whether a door is open or closed is no longer a detail since it may require planning a

path to get to the door.

The algorithm for generating abstractions is implemented in the alpine system. Given

a problem space and problem, alpine generates an abstraction hierarchy for a hierarchical

version of prodigy. Since alpine is generating abstractions for a particular planning

system, it employs several planner-speci�c extensions to the basic algorithm in order to

produce �ner-grained abstraction hierarchies. The article describes these extensions in detail.

4

1.4 Experimental Results

alpine has been successfully tested on a number of planning domains including the Tower

of Hanoi, the original strips domain [20], a more complex robot planning domain [44],

and a machine-shop process planning and scheduling domain [44]. In all these domains, the

system generates problem-speci�c abstraction hierarchies that provide signi�cant reductions

in search. The algorithm for generating the abstractions is quite e�cient and can generate

an abstraction hierarchy for a problem in any of these domains in 0.3 to 4.5 CPU seconds.

The abstraction hierarchies generated by alpine were tested on a hierarchical version of

the prodigy problem solver. prodigy was extended by adding a module to perform the hi-

erarchical control, while employing the basic prodigy system to solve the subproblems that

arise at each abstraction level. This approach preserves both the problem-space language

and control language of prodigy while providing the added functionality of hierarchical

problem solving.

This article compares the performance of alpine's abstractions to other forms of con-

trol knowledge. First, it compares alpine's abstractions to the basic prodigy system

and prodigy using hand-coded control knowledge. The results show that alpine reduces

both solution time and solution length when compared with the basic prodigy system and

performs comparably to hand-coded control knowledge. Second, it compares alpine's ab-

stractions to the use of control knowledge acquired by explanation-based learning techniques

[16, 44]. Again, the results show that alpine performs comparably to these techniques, but

more importantly the combination of abstraction and control knowledge leads to performance

that is better than any of the systems alone. Third, the article compares the abstractions

produced by alpine to those generated by abstrips and shows that alpine produces

signi�cantly better abstractions than abstrips.

1.5 Outline

This article de�nes the ordered monotonicity property, presents the algorithms for generat-

ing abstraction based on this property, and describes the implemented system and results.

The next section de�nes an abstraction space, presents the ordered monotonicity property,

and identi�es a set of su�cient conditions to guarantee this property. Section 3 presents

the algorithms for automatically generating abstraction hierarchies that have the ordered

monotonicity property. Section 4 describes the implementation of alpine, which produces

problem-speci�c abstraction hierarchies using an extended version of this algorithm. Sec-

tion 5 presents the empirical results for both generating and using the abstractions for

problem solving. Section 6 compares and contrasts the work described here with other work

related to generating and using abstractions for planning. Section 7 describes some of the

limitations of this work and some extensions that address these limitations. The �nal section

reviews the primary contributions of this work.

5

2 Abstraction Hierarchies

Abstraction hierarchies are used to guide the re�nement of plans in a hierarchical problem

solver. This section presents this re�nement process and identi�es a property of abstraction

hierarchies that can be used to constrain this process. First we de�ne problem spaces and

abstraction hierarchies. Then we provide a precise de�nition of how abstract plans are

re�ned. Next, we present the ordered monotonicity property. Finally, we identify a set of

su�cient conditions for ordered monotonicity.

2.1 Problem Spaces

A problem space � is a triple (L;S;O), where L is a �rst-order language, S is a set of states,

and O is a set of operators.2 Each state Si 2 S is a �nite and consistent set of atomic

sentences in L. Each operator � 2 O is de�ned by a triple (P�, D�, A�), where P�, the

preconditions, are a �nite set of literals (positive or negative atomic formulas) in L, and both

the deletes D� and adds A� are �nite sets of atomic formulas in L. The combination of the

adds and deletes comprise the e�ects of an operator E�, such that if p 2 A� then p 2 E�

and if p 2 D� then (:p) 2 E�.

A problem � consists of:

� an initial state S0 2 S, which describes the initial con�guration of the world, and

� a goal Sg is a partial description of a state and describes the desired con�guration of

the world.

The solution (or plan) � to a problem is a sequence of operators that transforms the

initial state S0 into some �nal state Sn that satis�es the goal Sg. A plan is composed

of the concatenation of operators or subplans. (The `k' symbol is used to represent the

concatenation of operators or sequences of operators.)

An application procedure A applies an operator � to a state Si to produce a new state

by �rst removing the deleted literals, and then inserting the added literals. For any state Si

(where `n' represents set di�erence),

Si+1 = A(�; Si) = (Si nD�) [A�

The application procedure can be extended to apply to plans in the obvious way, where each

operator applies to each of the resulting states in sequence. Thus, given the initial state S0,

a plan � � �1k . . . k�n de�nes a sequence of states S1; . . . ; Sn, where

Si = A(�1k . . . k�i; S0) = A(�i; Si�1) 1 � i � n

A plan � is correct whenever the preconditions of each operator are satis�ed in the state

in which the operator is applied:

P�i
� Si�1 1 � i � n

2The formalization of problem solving presented in this section is loosely based on Lifschitz's formalization

of strips [42].

6

� solves a problem � = (S0; Sg) whenever � is correct and the goal Sg is satis�ed in the �nal

state: Sg � A(�; S0).

2.2 Abstraction Spaces and Hierarchies

In this paper, an abstraction space or abstract problem space is formed by dropping certain

terms from the language of a problem space. In the resulting abstraction space, a single

abstract state corresponds to one or more states in the original problem space. This type of

abstraction space is called a reduced model [61]. A di�erent approach was taken in abstrips

[53], where the preconditions of the operators were assigned criticality values and all pre-

conditions with criticality values below a certain threshold were ignored. These abstraction

spaces are called relaxed models [50] since they are formed by weakening the applicability

conditions of the operators. Both reduced and relaxed models are what Giunchiglia and

Walsh [24] refer to as TI (theorem increasing) abstractions since any theorem that holds in

the ground space will hold in the abstract space, while the inverse does not hold. For the

purposes of this paper, an abstraction space will be used to refer to a reduced model unless

stated otherwise.

An ordered sequence of abstraction spaces de�nes an abstraction hierarchy, where each
successive abstraction space is an abstraction of the previous one. Since an abstraction space

is formed by removing terms from the language of the original problem space, an abstraction

hierarchy can be represented by assigning each literal in the domain a number to indicate

the abstraction level of the literal. The level i abstraction space is similar to the original

problem space, except operators and states will only refer to literals that have an abstraction

level of i and higher. Level 0 is the original problem space, also called the ground space or
base space. The hierarchy is ordered such that the most abstract space (i.e., problem space

with the fewest literals) is placed at the top of the hierarchy, and the ground space is placed

at the bottom of the hierarchy. For any su�ciently rich problem space, there can be many

di�erent abstraction hierarchies, some more useful than others.

A k-level abstraction hierarchy is de�ned by the initial problem space � = (L;S;O), and

a function Level which assigns one of the �rst k non-negative integers to each literal in L.

8l 2 L Level (l) = i; where i 2 f0; 1; . . . ; k � 1g

The function Level de�nes an abstract problem space for each level i, where all conditions

assigned to a level below i are removed from the language, states, and operators:

�i = (Li; Si; Oi):

Using the de�nition of an abstraction hierarchy, we can de�ne a set of functions that map

states, operators, plans, and problems from one problem space into an abstraction space.

Mi
s(s) is a state mapping function that maps a state s at level j to a state at level i, where

j < i. Mi
o(�) is an operator mapping function that maps an operator � at level j to an

operator at level i, where j < i. Both of these functions perform the mapping simply by

dropping the conditions that are not in abstraction level i. Similarly, we can de�ne a plan

mapping function Mi
p(�) that maps a plan � at level j to a plan at level i, where j < i, by

7

replacing each operator � in � by Mi
o(�). We can also de�ne a problem mapping function

Mi
�(�) that maps a problem � = (S0; Sg) at level j to a problemMi

�(�) = (Mi
s(S0);M

i
s(Sg))

at level i, where j < i. In the remainder of this section, the subscript will be dropped from

the mapping functions when it is clear from the context which mapping function is required.

2.3 Re�nement of Abstract Plans

A hierarchical planner �rst �nds an abstract plan in the most abstract version of a problem

space, and then it re�nes the plan in successively more detailed problem spaces. The abstract

plan is re�ned at each level by inserting any operators necessary to solve the problem at that

level. This section formalizes the re�nement of an abstract plan.3 To de�ne a re�nement,

this section �rst de�nes establishment and justi�cation.

An operator � establishes a precondition of another operator � in a plan, if it is the last

operator before � in the plan that achieves that precondition. More precisely, an operator

� establishes precondition p of operator � whenever � precedes �, p is an e�ect of � and

a precondition of �, and there are no operators between � and � that have p as an e�ect.

The notation ���� means that operator � precedes operator � in plan �, and the notation

Ops(�) refers to the set of instantiated operators in plan �.

De�nition 1 (Establishment) Let � be a correct plan, �; � 2 Ops(�), and p 2 E�;P� .

Then � establishes p for � in � (Establishes(�; �; p;�)) if and only if

1. ����,

2. 8�0 2 Ops(�), if ����
0���, then p 62 E�0.

The �rst condition states that � must precede � in the plan. The second condition states

that � must be the last operator preceding � that adds precondition p. Since � is a correct

plan, this implies that there is no operator between � and � that undoes p.

The de�nition of establishment is now used to de�ne justi�cation. An operator in a plan

is justi�ed with respect to a goal if it contributes, directly or indirectly, to the satisfaction

of that goal. This condition holds when an operator establishes a literal that is either a goal

or a precondition of a subsequent justi�ed operator.

De�nition 2 (Justi�cation) Let � be a correct plan, � 2 Ops(�), and Sg a goal. Operator
� is justi�ed with respect to Sg in � (Justi�ed(�; Sg;�)) if and only if there exists u 2 E�
such that either:

1. u 2 Sg, and 8�
0 2 Ops(�), if (����

0) then u 62 E�0, or

2. 9� 2 Ops(�) such that Justi�ed(�; Sg;�) and Establishes(�; �; u;�).

3The formalization of re�nement as well as the formalization of the ordered monotonicity property pre-

sented in the next section is based on joint work with Josh Tenenberg and Qiang Yang [37].

8

The justi�cation de�nition is extended to plans as follows: Justi�ed(�; Sg) if and only if for

every operator � 2 Ops(�), Justi�ed(�; Sg;�).

Any operator that is not justi�ed is not needed to achieve the goal and can be removed.

Thus, an unjusti�ed plan � (one for which Justi�ed is false) that achieves Sg can be justi-

�ed by removing all unjusti�ed operators. JustifyPlan(�; Sg) is used to denote the justi�ed

version of �. Under the above de�nitions, for any correct plan � that achieves goal Sg,

Justi�ed(JustifyPlan(�; Sg); Sg) holds. By the above de�nitions, JustifyPlan(M
i(�);Mi(Sg))

denotes the abstract plan that corresponds to the ground-level plan � justi�ed at level i with

respect to goal Sg.

With the de�nition of justi�cation, we can now de�ne plan re�nement. A plan �i�1 is a

re�nement of an abstract plan �i, if �i�1 solves the given problem, all operators and their

ordering relations in �i are preserved in �i�1, and the new operators have been inserted for

the purpose of satisfying the preconditions that are introduced at level i� 1.

De�nition 3 (Re�nement) Given a problem � and an abstract plan �i that solves Mi(�).
A plan �i�1 is a re�nement of �i if and only if

1. �i�1 solves Mi�1(�), and

2. there is a 1-1 function c (a correspondence function) mapping each operator of �i into

�i�1, such that

(a) 8� 2 Ops(�i);Mi(c(�)) = �,

(b) if � ��i �, then c(�) ��i�1 c(�),

(c) 8 2 Ops(�i�1), if :9� 2 Ops(�i) such that c(�) = ; then 9� 2 Ops(�i) such
that c(�) has precondition p where Justi�ed(; p;�i�1) and Level(p) = i� 1.

Notice that establishes a precondition at level i� 1, but can have preconditions at a level

greater than i � 1 or can have additional e�ects that undo conditions that were already

established at a level greater than i � 1. So re�ning an abstract plan at level i � 1 can

involve establishing literals at level i� 1 and above.

This formal de�nition captures the notion of plan re�nement used in a number of di�erent

planners, including abstrips [53], abtweak [68], and pablo [11].

2.4 Ordered Monotonicity Property

Hierarchical planning reduces search by partitioning a problem into a number of smaller

subproblems [33]. An e�ective partitioning of a problem requires that the subproblems can

be solved without violating the conditions that were already achieved in the more abstract

levels of the abstraction hierarchy. In other words, a hierarchical planner ideally �nds a

solution at one level and then maintains the structure of that solution while the remaining

parts of a solution are �lled in. If this is not possible, then there may be little gain from the

use of hierarchical planning since solving a subproblem could involve re-solving a large part

if not the entire problem.

For example, consider the planning for the design of a house. The problem is naturally

decomposed into di�erent abstraction levels where �rst one might plan the basic layout of the

9

house, then plan the details of the framing, then select the location of �xtures and outlets,

and so on. This abstraction is only useful if selecting the location of �xtures and outlets

does not require changing the plans for the layout or the details of the framing. If it did,

the decomposition of the problem would not be a good one since changing one of these more

abstract plans could potentially a�ect many other parts of the plan.

The example illustrates that a desirable property of an abstraction hierarchy is that it

minimize interactions across abstraction levels. A special case of minimizing the interactions

is to require that there are no possible interactions across levels of an abstraction hierarchy.

Note that this is stronger than simply preventing interactions across levels since it requires

that it is an inherent property of a problem space. While this constraint may be more re-

strictive than necessary, it provides a very e�ective heuristic for generating useful abstraction

hierarchies. This constraint is captured by the ordered monotonicity property [31].
The ordered monotonicity property requires that every re�nement of an abstract plan

leaves the literals that comprise the abstract space unchanged. This property has two im-

portant features. First, it is computationally tractable to �nd abstraction hierarchies with

this property from only the de�nition of the problem space. Section 3 presents the algo-

rithms for automatically generating ordered monotonic abstraction hierarchies. Second, the

property captures a large class of abstractions that provide signi�cant reductions in search

on a variety of planning domains. Section 5 presents empirical results that demonstrate the

e�ectiveness of these abstractions.

On the other hand, this property is a heuristic and does not guarantee that an ordered

monotonic abstraction hierarchy will reduce search. A limitation of the property is that

it may still be necessary to backtrack across abstraction levels when using an abstraction

hierarchy with this property. The cause for backtracking arises not because of an interac-

tion across abstraction levels, but because in some cases no re�nement exists. However,

abstraction hierarchies can easily be empirically tested to identify abstractions that require

extensive backtracking across levels.

In order to formally de�ne the ordered monotonicity property, we �rst de�ne an ordered

re�nement, which is a restriction on the re�nement de�nition presented in the last section.

An ordered re�nement of an abstract plan �i is a re�nement �i�1 in which no literals in the

abstract level are changed by the operators inserted to re�ne the abstract plan.

De�nition 4 (Ordered Re�nement) Let �i be an abstract plan that solvesMi(�) at level
i and is justi�ed relative to Mi(Sg). A level i� 1 plan �i�1 is an ordered re�nement of a
level i plan �i if and only if

1. �i�1 is a re�nement of �i, and

2. 8� 2 Ops(�i�1), if � adds or deletes a literal l with Level(l) � i, then 9�0 2 Ops(�i)

such that � = c(�0).

The �rst condition requires that �i is a re�nement of �i�1. The second condition above

states that in plan �i�1, the only operators that add or delete literals at level i or above

are re�nements of the operators in �i. An ordered re�nement of a level i abstract plan only

involves establishing literals at level i� 1.

10

De�nition 5 (Ordered Monotonic Abstraction Hierarchy) An abstraction hierarchy
is ordered monotonic if and only if, for all problems � and for all justi�ed plans �i that solve

Mi(�) at level i, for i > 0, every re�nement of �i at level i� 1 is an ordered re�nement.

This property guarantees that every possible re�nement of an abstract plan will leave the

conditions established in the abstract plan unchanged.

The ordered monotonicity property is quite restrictive since it requires that the property

hold for every problem in the domain. A natural extension, which allows �ner-grained

abstraction hierarchies, is to only require that an abstraction hierarchy have the ordered

monotonicity property relative to a given problem. This extension is straightforward and is

based on the de�nitions and results in the previous section.

De�nition 6 (Problem-Speci�c Ordered Monotonic Hierarchy)

An abstraction hierarchy is ordered monotonic relative to a speci�c problem �, if and only

if for all justi�ed plans �i that solve Mi(�) at level i, for i > 0, every re�nement of �i at
level i� 1 is an ordered re�nement.

2.5 Su�cient Conditions for Ordered Monotonicity

An important feature of the ordered monotonicity property is that ordered monotonic ab-

stractions can be generated from just the initial de�nition of a problem space. To construct

hierarchies of abstraction spaces that have this property, the literals of a problem space are

partitioned into levels such that any plan to achieve a literal at one level will not interact with

literals in a more abstract level. Which literals will potentially interact with other literals

can be determined from the operators that de�ne a problem space. A set of constraints can

be extracted from the operators that require those literals that could possibly be changed

in the process of achieving some other literal to be placed lower or at the same level in the

abstraction hierarchy. These constraints require that all of the e�ects of a given operator

are placed in the same level of the hierarchy, and all of the preconditions of an operator are

placed at the same or lower level in the hierarchy. This set of constraints is su�cient to

guarantee the ordered monotonicity property.

The following restriction de�nes a set of constraints that are su�cient but not necessary

to guarantee the ordered monotonicity property. The constraints specify a partial ordering

of the literals in an abstraction hierarchy.

Restriction 1 Let O be the set of operators in a domain. 8� 2 O;8p 2 P� and 8e; e0 2 E�,

1. Level(e) = Level(e0), and

2. Level(e) � Level(p).

The �rst condition constrains all the literals in the e�ects of an operator to be at the same

abstraction level. The second condition constrains the preconditions of an operator to either

be at the same or lower level as the e�ects. These two conditions are su�cient to guarantee

the ordered monotonicity property of an abstraction hierarchy.

11

Theorem 1 Every abstraction hierarchy satisfying Restriction 1 is an ordered monotonic
hierarchy.

The proof of this theorem is given in Appendix A. The theorem follows from the fact that

the restriction guarantees that any justi�ed plan for achieving a given literal will not add or

delete a literal in a higher abstraction level.

Since the interactions between literals depend on the problem, the usefulness of a given

abstraction hierarchy not only varies from one domain to another, but also from one problem

to another. Instead of attempting to �nd a single abstraction hierarchy that can be used

for all problems in a domain, a re�nement of this approach is to select each abstraction

hierarchy based on a problem or class of problems to be solved. Thus, a set of constraints

can be extracted from the operators that guarantee the ordered monotonicity property for a

given problem. These constraints require that the e�ects of each operator that are relevant

to the goal of the problem are placed at the same or higher level than the other e�ects of

the same operator, and they are placed at the same or higher level than the preconditions of

the operator. This set of constraints is su�cient to guarantee the problem-speci�c ordered

monotonicity property.

A problem-speci�c, ordered monotonic hierarchy can be formed by considering which

operators of a domain could be used to solve a given goal. In particular, only some of the

operators would actually be relevant to achieving a given goal. And, of those operators, only

some of their e�ects would be relevant to achieving the goal. These are called the \relevant

e�ects". The relevant e�ects of an operator � relative to a goal Sg (denoted Relevant (�; Sg))

are those e�ects of � that are either in Sg, or are preconditions of operators that have relevant

e�ects with respect to Sg.

De�nition 7 (Relevant E�ects) Let Sg be a goal state, and O be the set of operators

in a domain. Given � 2 O, e 2 E�, e is a relevant e�ect of � with respect to Sg (or

e 2 Relevant(�; Sg)) if and only if

1. e 2 Sg, or

2. 9� 2 O, Relevant(�; Sg) 6= ; and e 2 P� .

The following restriction de�nes a set of constraints on an abstraction hierarchy that are

su�cient to guarantee the ordered monotonicity property of an abstraction hierarchy for a

speci�c problem.

Restriction 2 Let � = (S0; Sg) be a problem instance and O be the set of operators. 8� 2 O,
8e; e0 2 E�, p 2 P�, if e 2 Relevant(�; Sg) then

1. Level(e) � Level(e0),

2. Level(e) � Level(p).

The restriction requires that all the relevant e�ects of an operator � to be at the same or

higher levels of abstraction than both the e�ects that are not relevant and the preconditions

of �.

12

Theorem 2 Every abstraction hierarchy satisfying Restriction 2 with respect to a problem
� is a problem-speci�c ordered monotonic hierarchy with respect to �.

The proof of this theorem is also provided in Appendix A. The idea is analogous to the

proof of Theorem 1, where the restriction guarantees that any plan for achieving a literal

will not add or delete any conditions in a more abstract problem space.

3 Automatically Generating Abstraction Hierarchies

The previous section presented restrictions on the possible abstraction hierarchies that are

su�cient to guarantee the ordered monotonicity property. These restrictions serve as the

basis for automatically generating ordered monotonic abstraction hierarchies. Hierarchies

that have this property are desirable because they partition the literals in a domain such that

a condition at one level in the hierarchy can be achieved without interacting with conditions

higher in the hierarchy. The construction of such a hierarchy requires �nding a su�cient set

of constraints on the placement of the literals in a hierarchy such that this property can be

guaranteed.

This section �rst presents algorithms for �nding both problem-independent and problem-

speci�c constraints that are su�cient to guarantee the ordered monotonicity property. It

also describes the top-level algorithm for constructing an abstraction hierarchy given a set

of constraints. To simplify the description of the algorithms, this section assumes that the

operators are fully-instantiated. Section 4.2 describes the extensions to the algorithms to

handle operator schemas.

3.1 Determining the Constraints on a Hierarchy

This section presents two algorithms for generating ordering constraints on an abstraction

hierarchy. The �rst algorithm produces a set of problem-independent constraints that guar-

antee the ordered monotonicity property. The second algorithm produces a set of problem-

speci�c constraints, where the constraints are su�cient to guarantee the ordered monotonic-

ity property for a given problem. The ordering constraints generated by the algorithms are

placed in a directed graph, where the literals form the nodes and the constraints form the

edges. Each literal at a node represents both that literal and the negation of the literal since

it is not possible to change one without changing the other.4 A directed edge between two

nodes in the graph indicates that the literals of the �rst node cannot occur lower in the

abstraction hierarchy than the literals of the second node.

3.1.1 Problem-Independent Constraints

A set of problem-independent constraints can be generated for a problem space based on

Restriction 1. This restriction requires that all the e�ects of each operator must be placed

4As noted in [56], distinguishing between positive and negative literals would provide slightly �ner-grained

hierarchies in some cases. This is a straightforward extension, which could be done without any changes to

the basic algorithms.

13

in the same abstraction level and the preconditions of each operator cannot be placed in a

higher level in the abstraction hierarchy than the e�ects of the same operator. The algorithm

in Table 1 �nds exactly this set of constraints and records them in a directed graph. For

each operator, the algorithm arbitrarily selects an e�ect and then adds directed edges in

both directions between that e�ect and all the other e�ects. It also adds directed edges

between the selected e�ect and all of the preconditions of the operator.

Table 1: Problem-Independent Algorithm for Determining Constraints

Input: The operators that de�ne the problem space.

Output: Su�cient constraints to guarantee ordered monotonicity.

function Find Constraints(graph,operators):

for each op in operators

select lit1 in Effects(op)

begin

for each lit2 in Effects(op)

begin

Add Directed Edge(lit1,lit2,graph);

Add Directed Edge(lit2,lit1,graph)

end;

for each lit2 in Preconditions(op)

Add Directed Edge(lit1,lit2,graph)

end;

return(graph);

The complexity of this algorithm isO(l), where l is the length of the encoding of a problem

space (i.e., the number of literals in the preconditions and e�ects of all the operators). To

�nd the constraints, the algorithm only scans through the preconditions and e�ects of each

operator once.5

While this algorithm generates a su�cient set of constraints for the ordered monotonicity

property, many of the constraints will not be necessary to guarantee the property. As such,

the algorithm will only �nd abstractions for a limited class of problem spaces. The next

section describes a problem-speci�c version of this algorithm, which will produce abstractions

for a wider class of problem spaces.

5Charles Elkan pointed out that my original O(l2) algorithm [30] could be transformed into a O(l)

algorithm.

14

3.1.2 Problem-Speci�c Constraints

Restriction 2 can be used to generate a set of problem-speci�c constraints that are su�cient

to guarantee the ordered monotonicity property. This restriction requires that for all of the

relevant e�ects of each operator, those e�ects must be placed at the same or higher level than

the other e�ects and preconditions of the same operator. An algorithm that implements this

restriction is shown in Table 2. The algorithm is similar to the problem-independent one,

but forms the constraints based on a particular goal to be solved.

Table 2: Problem-Speci�c Algorithm for Determining Constraints

Input: The operators of the problem space and the goal of a problem.

Output: Su�cient constraints to guarantee ordered monotonicity for the given problem.

function Find Constraints(graph,operators,goal):

1. for each literal in goal do

2. if not(Constraints Determined(literal,graph)) then

begin

3. Constraints Determined(literal,graph) true;

4. for each op in Operators do

5. if literal in Effects(op) do

begin

6. for each effect in Effects(op) do

7. Add Directed Edge(literal,effect,graph);

8. preconds Preconditions(op);

9. for each precond in preconds do

10. Add Directed Edge(literal,precond,graph);

11. Find Constraints(graph,operators,preconds)

end;

end;

12. return(graph)

The algorithm is given the operators and the goal of the problem, and it returns a

directed graph of the constraints on the abstraction hierarchy. It scans through each of the

goal literals and �rst checks to see if the constraints for the given literal have already been

added to the graph (lines 1-2). If not, it scans through each of the operators and �nds those

operators that could be used to achieve the given goal (line 4). The algorithm then adds

constraints between any e�ect that matches the goal and the other e�ects and preconditions

of the operator (lines 5-10). The algorithm is called recursively on the preconditions of the

operator since these could arise as subgoals during problem solving (line 11). The algorithm

records the goals that have been considered (line 3) and terminates once it has considered

all of the conditions that could arise as goals or subgoals during problem solving.

15

An important advantage of problem-speci�c abstractions is that the algorithm only pro-

duces the constraints that are relevant to the particular problem to be solved. Thus, it can

produce �ner-grained hierarchies than could be produced for the entire problem domain. In

many cases the abstraction hierarchy produced by the problem-independent algorithm col-

lapses into a single level, while the problem-speci�c algorithm produces a useful abstraction

hierarchy.

The complexity of determining the constraints, and thus the complexity of creating the

problem-speci�c abstraction hierarchies, is O(n � o � l), where n is the number of di�erent

literals in the graph, o is the maximum number of operators relevant to achieving any given

literal, and l is the maximum length (total number of preconditions and e�ects) of the

relevant operators. In the worst case, the algorithm must loop through each literal, and

for each relevant operator scan through the body of the operator and add the appropriate

constraints. This cost is insigni�cant compared to problem solving since its complexity is

polynomial in the size of the problem space, while the complexity of problem solving is

exponential in the solution length.

3.2 Constructing a Hierarchy

This section describes the algorithm for constructing an abstraction hierarchy. The algorithm

is given the operators that de�ne a problem space and, optionally, the goals of a problem

to be solved, and it produces an ordered monotonic abstraction hierarchy. The algorithm

partitions the literals of a domain into classes and orders them such that the literals at one

level will not interact with the literals in a more abstract level. The �nal hierarchy consists

of an ordered set of abstraction spaces, where the highest level in the hierarchy is the most

abstract and the lowest level is the most detailed.

Table 3 de�nes the create hierarchy procedure for building ordered monotonic ab-

straction hierarchies. The procedure is given the domain operators and, depending on the

de�nition of find constraints, may also be given the goals of the problem to be solved.

Without using the goals, create hierarchy produces a problem-independent abstraction

hierarchy, which can be used for solving any problem in a domain. Using the goals, the

algorithm produces an abstraction hierarchy that is tailored to the particular problem to be

solved.

� Step 1 of the algorithm produces a set of constraints on the order of the literals in an

abstraction hierarchy using the algorithms in either Table 1 or Table 2. By Theorems 1

and 2, the constraints are su�cient to guarantee that a hierarchy built from these

constraints will have the ordered monotonicity property.

� Step 2 �nds the strongly connected components of the graph using a depth-�rst search

[1]. Two nodes in a directed graph are in the same strongly connected component

if there is a path from one node to the other and back again. Thus, any node in a

strongly connected component can be reached from any other node within the same

component. As such, this step partitions the graph into classes of literals where all the

literals in a class must be placed in the same abstraction level.

16

Table 3: Algorithm for Creating an Abstraction Hierarchy

Input: Operators of a problem space and, optionally, the goals of a problem.

Output: An ordered monotonic abstraction hierarchy.

procedure Create Hierarchy(operators[,goals]):

1. graph Find Constraints(fg,operators[,goals]);

2. components Find Strongly Connected Components(graph);

3. partial order Construct Reduced Graph(graph,components);

4. abs hierarchy Topological Sort(partial order);

5. return(abs hierarchy)

� Step 3 constructs a reduced graph where the nodes that comprise a connected com-

ponent in the original graph correspond to a single node in the reduced graph. There

is a constraint between two nodes in the reduced graph if there was a constraint be-

tween the corresponding nodes in the original graph. The literals within a node in

the reduced graph must be placed in the same abstraction space and the constraints

between nodes de�ne a partial order of the possible abstraction hierarchies.

� Step 4 transforms the partial order into a total order using a topological sort [2]. The

total order de�nes a single ordered monotonic abstraction hierarchy. There may be a

number of possible total orders for a given partial order and one order may be better

than another. Section 4.3.3 describes the set of heuristics used to choose between the

possible total orders.

The complexity of steps 2-4 in the algorithm above is linear in the size of the graph.

The complexity of both �nding the strongly connected components of a directed graph

and performing the topological sort is O(max(e; v)) [1], where e is the number of edges

(constraints) and v is the number of vertices (literals). Creating the reduced graph is also

O(max(e; v)) since the new graph can be created by scanning through each of the vertices

and edges once. Thus, the complexity of steps 2-4 is O(max(e; v)).

Using the problem-independent algorithm for �nding the constraints, the complexity

of building an abstraction hierarchy is linear in the length of the encoding. Since �nding

the constraints is O(l), where l is the length of the encoding, and the number of possible

constraints, e, and the number of possible literals, v, is bounded by O(l), the complexity of

the entire algorithm is O(l).

As described above, the complexity of the problem-speci�c algorithm for �nding the

constraints is O(n�o�l), so the complexity of building a problem-speci�c abstraction hierarchy

is also O(n �o � l) (n is the number of di�erent literals, o is the number of operators relevant to

achieving each literal, and l is the length of each relevant operator). The complexity of the

graph algorithms is bounded by the complexity of �nding the constraints since the number

of vertices, v is the number of literals n, and the number of edges e must be bounded by

17

n � o � l since this is the complexity of the algorithm for �nding the constraints, which are the

edges in the graph.

3.3 Applying the Algorithms

This section presents a detailed description of how the algorithms are used to generate

abstractions in the Tower of Hanoi puzzle. The Tower of Hanoi is used as an example

because it clearly illustrates how the abstractions are constructed. This section describes

how the algorithm generates the abstractions for this domain and shows the intermediate

results at each step in the algorithm.

Given the three-disk Tower of Hanoi problem shown in Figure 1, both the problem-

independent and problem-speci�c versions of the algorithm generate a three-level abstraction

hierarchy. The two algorithms di�er in that for a problem involving only the two smallest

disks, the problem-speci�c algorithm would generate only a two-level hierarchy, while the

problem-independent version would still generate a three-level hierarchy since it does not

take the problem into account.

small

Initial State Goal State

peg1 peg2 peg3 peg1 peg2 peg3

large
medium medium

large

small

Figure 1: Initial and Goal States for the Tower of Hanoi

The �rst step of the algorithm for constructing an abstraction hierarchy is to �nd a set of

constraints that are su�cient to guarantee the ordered monotonicity property. Both versions

of the find-constraints algorithm would produce the directed graph of constraints shown

in Figure 2. The problem-independent algorithm would consider each operator and �rst add

constraints that force all the e�ects of each operator to be in the same abstraction level and

then add constraints that force the precondition of an operator to be lower (or at the same

level) than the e�ects.

For example, consider the constraints generated by the algorithm for a fully-instantiated

operator of the Tower of Hanoi, as shown in Table 4 (additional constraints would be gener-

ated from the other operators). First, it would add constraints based on the e�ects, which

would generate a constraint between (on large peg1) and (on large peg3), as well as a

constraint between the same literals in the opposite direction. Then the algorithm would

consider the preconditions, and add constraints between one of the e�ects and each of the

preconditions of that operator. For example, it would add a constraint that required (on

large peg3) to be higher or at the same level as (on medium peg1). (Note that a literal

and a negation of a literal are considered the same literal for purposes of abstraction and

thus placed at the same level.)

The second step in creating the abstraction hierarchy is to �nd the strongly connected

components. Two literals are in the same connected component if and only if there is a

cycle in the directed graph that contains both literals. Figure 3 shows the three connected

components in the graph, where the literals involving each disk form a component. Each

18

(on large peg2)

(on large peg1)
(on large peg3)

(on small peg1)

(on small peg2)

(on small peg3)(on medium peg1)

(on medium peg2)

(on medium peg3)

Figure 2: Constraints on the Literals for the Tower of Hanoi

Table 4: Instantiated Operator for the Tower of Hanoi

(Move Large From Peg1 to Peg3

(preconds (and (on large peg1)

(not (on medium peg1))

(not (on small peg1))

(not (on medium peg3))

(not (on small peg3))))

(effects ((del (on large peg1))

(add (on large peg3)))))

of these components contains a set of literals that must be placed in the same abstraction

level.

The third step in the algorithm is to combine the literals within each connected compo-

nent into a single node to form a reduced graph. The reduced graph for the Tower of Hanoi,

which is shown in Figure 4, reduces the original graph to a graph with three nodes and only

a few constraints between the nodes. The arrows between the nodes in a reduced graph

specify the constraints on the order in which the literal classes can be removed to form an

abstraction hierarchy.

Using a topological sort, the fourth step in the algorithm converts the partially-ordered

directed graph into a total order that represents the �nal abstraction hierarchy. In the case

of the Tower of Hanoi there is only one possible abstraction hierarchy, where the disks are

ordered by size. The resulting abstraction hierarchy is shown in Figure 5. For an n-disk

problem, the algorithm would produce a n-level abstraction hierarchy.

Using this abstraction hierarchy, a problem solver would �rst �nd a plan in the most

19

(on large peg2)

(on large peg1) (on large peg3)

(on medium peg3)

(on medium peg2)

(on medium peg1) (on small peg3)

(on small peg2)

(on small peg1)

Figure 3: Connected Components for the Tower of Hanoi

(on large peg2)

(on large peg1) (on large peg3)

(on medium peg3)

(on medium peg2)

(on medium peg1)

(on small peg1)

(on small peg2)

(on small peg3)

Figure 4: Reduced Graph for the Tower of Hanoi

abstract space for moving the largest disk to the goal peg. Since the abstraction hierarchy

has the ordered monotonicity property, at the next level only steps for moving the medium-

size disk would need to be inserted. At the �nal level, the steps for moving the smallest

disk would be inserted to complete the plan. As shown in [33], the use of this particular

abstraction hierarchy reduces the size of the search space from exponential to linear in the

length of the solution. Holte, Zimmer and MacDonald [27] also showed both analytically

and empirically that this decomposition of the problem will produce the shortest solution

with the least amount of work.

20

Level 0

Level 1

Level 2 (on large peg1)

(on large peg2)

(on large peg3)

(on medium peg1)

(on medium peg2) (on medium peg3)

(on small peg2) (on small peg3)

(on small peg1)

Figure 5: Abstraction Hierarchy for the Tower of Hanoi

4 Generating Abstractions in ALPINE

alpine is a fully implemented system that generates abstraction hierarchies for the prodigy

problem solver [46]. alpine is given a problem space speci�cation and a problem to be

solved and it produces a problem-speci�c abstraction hierarchy for the given problem. The

abstraction hierarchy is then used in a hierarchical version of the prodigy problem solver

[35].

To generate abstraction hierarchies, alpine uses an extended version of the problem-

speci�c algorithm described in Section 3. Since the abstractions are to be used by a speci�c

hierarchical problem solver, alpine employs several extensions that allow it to produce �ner-

grained abstraction hierarchies, but still preserve the ordered monotonicity property for the

given problem solver. Using this extended algorithm, alpine is able to produce abstraction

hierarchies for a variety of domains, including the Tower of Hanoi, the strips robot planning

domain [20], an extended version of the strips domain [44], and a machine-shop scheduling

domain [44]. These results are described in Section 5.

To illustrate these extensions, this section uses examples from the extended robot plan-

ning domain [44]. This domain is an augmented version of the original strips robot planning

domain [20]. In the original domain a robot can move among rooms, push boxes around,

and open and close doors. In the augmented version, the robot can both push and carry

objects and lock and unlock doors. The robot may have to fetch keys as well as move boxes,

and may have to contend with doors that cannot be opened.

The description of alpine is divided into three sections. The �rst section describes

the problem-space speci�cation that serves as the input to alpine. The second section

presents the representation of the abstraction hierarchies that is output by alpine. The

third section describes the extensions to the basic algorithm that alpine uses to generate

abstraction hierarchies.

4.1 Problem-Space Speci�cation

The input to alpine is a problem-space speci�cation that consists of three components: a

set of prodigy operators, a type hierarchy for the operator representation language, and a

21

set of axioms that state invariants about the states of a problem space.6

4.1.1 Operators

The �rst component of a problem space is a set of prodigy operators. Each operator is

composed of a set of preconditions and e�ects. The preconditions can include conjunctions,

disjunctions, negations, and both universal and existential quanti�ers. The e�ects can be

conditional, which means that whether or not an e�ect is realized depends on the state in

which the operator is applied. Table 5 shows an example operator for pushing a box between

rooms in the extended robot-planning domain (variables are shown in italics).

Table 5: Example Operator for the Extended Robot-Planning Domain

(Push Box Thru Dr

(preconds (and (connects door room.x room.y)

(dr-open door)

(next-to box door)

(next-to robot box)

(pushable box)

(inroom box room.y)))

(effects ((del (inroom robot room.y))

(del (inroom box room.y))

(add (inroom robot room.x))

(add (inroom box room.x)))))

The e�ects of an operator are divided into primary and secondary e�ects, where the

primary e�ects specify the purpose of an operator and the secondary e�ects are side e�ects

of the operator. A problem solver is only permitted to use an operator to achieve a goal if

the desired e�ect is listed as a primary e�ect. In the case of the Push Box Thru Dr operator

in Table 5, the e�ect (in-room box room.x) is designated as primary, which means that this

operator can only be used to move a box from one room to another. The problem solver

would not attempt to use the operator to move the robot to another room. Of course, when

a box is moved, the robot would be moved as a secondary e�ect. The primary e�ects are

implemented in prodigy by generating a set of control rules that select only the operators

whose primary e�ects match a goal. The information about which e�ects are primary must

be explicitly stated, however, recent work by Fink and Yang [22] describes an algorithm for

automatically determining this information.

6A problem space in prodigy can also include a set of control rules, but they only constrain the search

space so alpine does not need to consider them to create ordered monotonic abstraction hierarchies.

22

4.1.2 Type Hierarchy

The second component of the problem-space speci�cation is a type hierarchy, which speci�es

the types of all the constants and variables in a problem domain. The type hierarchy is used

to di�erentiate literals with the same predicate but di�erent argument types. If no type

hierarchy is given, then all constants and variables are considered to be of the same type. In

the example operator, the type hierarchy allows the system to di�erentiate between (inroom

robot room) from (inroom box room). The type hierarchy for the robot planning domain

is shown in Figure 6. The types, shown in boldface, are on the interior nodes of the tree and

the instances are on the leaves.

Type

Object

Box Key Door

Robot Room

robot

box1 box2 door12 door23

key12 key23

room1

room2

room3

Figure 6: Type Hierarchy for the Extended Robot-Planning Domain

4.1.3 Axioms

The third component of the problem-space speci�cation is a set of axioms that describe

invariants of the states of a problem space. The axioms are conditionals with a single

antecedent and one or more consequents. All variables in a conditional are universally

quanti�ed over the entire expression. A list of axioms for the robot-planning domain is

shown in Table 6. The �rst axiom in the table states that if a door is open then it must be

unlocked. These facts cannot be derived from the operators because they describe conditions

that hold in every state.

4.2 Representation of Abstraction Spaces

alpine generates an ordering of the literals in a domain. The algorithms and examples up

to this point have implicitly assumed that the literals in the domain are all represented at the

same level of granularity. For example, in the Tower of Hanoi all the literals were completely

instantiated ground literals. However, the operators of a domain are usually expressed as

operator schemas, where each instantiation of a schema corresponds to an operator. A

schema can contain both instantiated and uninstantiated literals. Since the algorithms

generate abstractions by analyzing potential interactions between the literals used in the

operators, the operator representation limits the representation of the abstractions.

23

Table 6: Example Axioms for the Robot-Planning Domain

(dr-open door) ! (unlocked door)

(locked door) ! (dr-closed door)

(not (dr-closed door)) ! (and (dr-open door)(unlocked door))

(not (dr-open door)) ! (dr-closed door)

(not (locked door)) ! (unlocked door)

(not (unlocked door)) ! (and (locked door)(dr-closed door))

(not (arm-empty)) ! (holding object)

(not (holding object)) ! (arm-empty)

(next-to box1 box2) ! (and (inroom box1 room)(inroom box2 room))

(next-to robot box) ! (and (inroom box room)(inroom robot room))

To deal with the problem that some literals may be instantiated while others are unin-

stantiated or partly instantiated, alpine associates a type with each literal. It could assume

that two literals with the same predicate are of the same type, but this would severely re-

strict the possible abstractions of a domain. In the Tower of Hanoi, all of the \on" conditions

would be forced into the same abstraction level and there would be no abstraction. Instead

the type of each literal is determined by both the predicate and the argument types. The

type of each literal is easily determined by the type hierarchy described in the last section.

Each constant and variable has an associated type, so from each literal, instantiated or

uninstantiated, it is possible to determine the argument types. Literals of di�erent types are

initially placed in distinct nodes in the constraint graph. For example, in the robot planning

domain, (inroom robot room) and (inroom box room) are of distinct types since they

di�er by the �rst argument.7

4.3 Abstraction Hierarchy Construction

The algorithm described in Section 3 presented a general approach to �nding ordered mono-

tonic abstraction hierarchies. alpine employs this basic algorithm for constructing abstrac-

tion hierarchies, but uses re�nements of several steps to produce better hierarchies. The

�rst part describes the extensions to the constraint generation algorithms. The second part

describes the automatic reformulation of the problem and domain to exploit the extensions

in the constraint generation. The third part presents the algorithms for selecting the �nal

ordered monotonic abstraction hierarchies.

7In the current implementation only literal types that are immediately above the leaves of the type

hierarchy can be used to represent a literal in an abstraction hierarchy. For example, in the robot planning

domain, \object" is a type at an interior node in the hierarchy, so it is not possible to have the literal

(inroom object room) in the �nal abstraction hierarchy.

24

4.3.1 Constraint Generation

The algorithm presented earlier for �nding a su�cient set of constraints to guarantee the

ordered monotonicity is conservative and will often produce constraints that are unnecessary

to guarantee the property. The unnecessary constraints can lead to cycles in the constraint

graph, which in turn can collapse the graph and reduce the granularity of the abstraction

hierarchies. To avoid these unnecessary constraints, alpine employs the algorithm shown

in Table 7, which extends the basic algorithm in two ways. First, it uses information about

the primary e�ects of operators to reduce the constraints on the e�ects. Second, it analyzes

the structure of a problem space to determine which preconditions can actually become

subgoals, and it uses this information to reduce the constraints on the preconditions. These

extensions preserve the ordered monotonicity property for the prodigy problem solver and

allow the system to form �ner-grained hierarchies than would otherwise be possible.

Table 7: Alpine's Algorithm for Determining Constraints

Input: Domain operators and a problem to be solved.

Output: Su�cient constraints to guarantee ordered monotonicity for the given problem.

function Find Constraints(graph,operators,goal):

for each literal in goal do

if not(Constraints Determined(graph,literal,goal))

begin

Constraints Determined(graph,literal,goal) true;

for each op in operators do

if literal in Primary Effects(op) do

begin

for each effect in Effects(op) do

Add Directed Edge(literal,effect,graph);

preconds Preconditions(op);

subgoals Subgoalable Preconds(preconds,op,literal,goal);

for each subgoal in subgoals do

Add Directed Edge(literal,subgoal,graph);

Find Constraints(graph,operators,preconds)

end;

end;

return(graph)

alpine avoids unnecessary constraints generated from the e�ects by using knowledge

about the primary e�ects of operators. The Find Constraints algorithm presented in Sec-

tion 3 considers every operator that has an e�ect that matches a goal. The algorithm shown

in Table 7 extends the algorithm by considering only those operators that have a primary ef-

25

fect that matches a goal. The primary e�ects specify which operators can be used to achieve

a given goal, so this extension eliminates unnecessary constraints by only considering the

relevant operators. Since the planning system also uses the primary e�ects to determine

which operators can be used to achieve a given goal, this extension preserves the ordered

monotonicity property.

alpine also avoids unnecessary constraints by determining which constraints on precon-

ditions are needed to preserve the ordered monotonicity property. If an operator is used

to achieve a given goal, it may be necessary to subgoal on any of the preconditions of the

operator. To avoid any threats to literals in higher abstraction levels, the basic algorithm

adds constraints on each of the preconditions. However, under some conditions the precon-

ditions of an operator will hold and would not be subgoaled on, making the constraints on

the precondition unnecessary. Instead of adding constraints on all of the preconditions, the
extended algorithm only adds constraints on the preconditions that could require subgoaling

on a literal that is higher in the abstraction hierarchy. This extension preserves the ordered

monotonicity property since the only constraints that are dropped are those that can be

shown to be unnecessary.

There are three ways in which the system can show that a given precondition will not

require subgoaling on a condition that has been placed higher in the abstraction hierarchy.

1. The precondition is static. A static precondition cannot be changed by any oper-

ators, so it could never be subgoaled on. In the example operator described earlier,

the condition connects is static since it describes the room connections, which are

invariant for a given problem.

2. The precondition occurs in the context of some other operator that also

requires the same precondition to hold. Consider the case where an operator

opa has an e�ect e that achieves a precondition of an operator opb, and both opa and

opb have a precondition p. There are two possible situations can arise if the constraint

from e to p is not generated. If p is placed in a higher abstraction level than e, then p

would be achieved to satisfy the preconditions of opb and would already hold when opa
is inserted into the plan. If p is not placed in a higher abstraction level then e, then it

would be no di�erent from the situation where the constraint was generated. Thus, it

is unnecessary to add the constraint from e to p.

For example, two preconditions of the Push Box Thru Dr operator are that the door

is open (open-dr door) and the robot is in the room next to the door (in-room

robot room), and a precondition of the Open Door operator is also (in-room robot

room). If the (in-room robot room) precondition is placed higher in the abstrac-

tion hierarchy than the (open-dr door) precondition, then the system can prove that

when the Open Door operator is used to satisfy the (open-dr door) precondition of

Push Box Thru Dr, it will not require achieving the (in-room robot room) precondi-

tion.

3. The precondition is the negation of the goal that the operator is used to

achieve. In this case the precondition would not be subgoaled on since the negation

must already hold or the operator would not have been selected. The axioms described

26

in Section 4.1.3 are used to determine whether a precondition is the negation of a goal.

For example, the Open Door operator has the precondition that the door is closed,

however, this condition would not be subgoaled since if this condition is false, (i.e, the

door is open) there is no point in considering the operator. If an operator also achieves

some other goal, a constraint would be added when the other goal is processed.

The analysis to determine whether a constraint must be added for a precondition in a

given context is performed in a preprocessing step that only needs to be done once for a do-

main. When a hierarchy is created the algorithm calls the function Subgoalable Preconds

to retrieve the potential subgoals given the preconditions, operator, goal and context. The

analysis simply requires checking the three cases described above, but it must be done for

each literal in the context of each operator.

alpine handles the full prodigy language, but does so by possibly overconstraining

the �nal abstraction hierarchy. In the algorithm, disjunctions are treated as conjunctions

and conditional e�ects are treated as unconditional e�ects. Similarly, universal quanti�ers

are handled in the same manner as existentials since the type hierarchy will automatically

group the instances of the universal. alpine essentially transforms prodigy`s more complex

language features into ones that it knows how to handle, so the algorithms, properties, and

theorems all apply directly. These particular transformations ensure that there are su�cient

constraints on all the preconditions and e�ects to guarantee ordered monotonicity.

4.3.2 Problem and Operator Reformulation

The abstraction process described so far involves dropping conditions from a problem space

to form a more abstract problem space. The abstractions that are formed by this process

will depend heavily on the initial formalization of both the problems and the problem spaces.

This section describes how the original problem space can be reformulated to increase the

granularity of the abstraction hierarchies.

alpine reformulates a problem space by augmenting both goals and preconditions with

additional conditions that necessarily hold. The reformulation is useful because it allows the

abstraction mechanism to form abstractions that would not have otherwise been possible.

Consider a problem that requires achieving a goal P . In the problem space that is to be

used for solving this goal, imagine there is an axiom which states that P implies Q. Using

the axiom, the original goal P can be replaced with the goal P ^Q, since Q will necessarily

hold if P holds. At �rst glance this might appear to make the problem harder. However, by

augmenting the goal, it may now be possible to drop P from the problem space using the

extensions described in the previous section. It does this by proving that if the operator that

achieves P has a precondition of Q, then Q will already hold when it attempts to achieve P ,

so it unnecessary to add a constraint from P to Q. If this constraint was added, then it would

not be possible to drop P . The augmentation and subsequent abstraction of the problem

has the e�ect of replacing the problem of achieving P with the more abstract problem of

achieving Q. P will still need to be achieved when the abstract solution is re�ned, but it

may be considerably easier to achieve it once Q has been achieved.

The algorithm for performing the reformulation is the same for both preconditions and

goals. Given a list of goal conditions (or preconditions), each axiom is considered in turn

27

to see if the antecedent of the axiom matches any of the conditions. Before adding the

consequents of the axioms to the list of conditions, the algorithm attempts to match each

consequent against the conditions. If it �nds a match, that consequent is redundant and

is not added to the list of conditions. In addition, any variable bindings are recorded and

propagated to the other consequents. The algorithm terminates when the axioms have been

processed once for each set of goal conditions or preconditions.

alpine performs the following reformulation in the robot-planning domain. The goal is

to get boxA and boxB next to each other and to place boxA in room2:

(and (next-to boxA boxB)(inroom boxA room2)).

This problem space has an axiom (shown in Table 6) which states that if two boxes are next

to each other then they must be in the same room:

(next-to box1 box2) ! (and (inroom box1 room)(inroom box2 room)).

Using this axiom, the original goal would be augmented with the condition that boxB must

also be in room2:

(and (next-to boxA boxB)(inroom boxA room2)(inroom boxB room2)).

The augmentation is important because it allows the system to transform the problem into

an abstract problem that would not be possible without the augmentation. In this case,

without reformulating the problem alpine would �nd that there is a potential interaction

between the next-to condition and the inroom condition and would place the conditions in

the same abstraction level. Augmenting the goal provides the context required to prove

that the boxes will already be in the appropriate room to achieve the next-to condition.

As a result, alpine avoids adding a constraint on the inroom condition. This process was

described in the previous section.

The reformulation replaces the original problem of getting the two boxes next to each

other with the more abstract problem of getting the two boxes into the same room. Once the

problem solver solves the abstract problem, it then re�nes the plan and adds the additional

steps for moving the two boxes next to each other.

alpine augments the preconditions of operators in exactly the same manner as goals.

For example, the operator Push Box Thru Dr would be augmented as shown in Table 8.

The boxed conditions in the table are the ones added by the axioms. These augmentations

allow alpine to form an abstraction of this problem space by dropping the (dr-open door)
conditions from the problem space. This reformulation makes the abstraction possible since

whether the door is open is a detail as long as the door is not locked and the robot is

in the appropriate room to open the door. If the operator had not been augmented with

these additional conditions, then achieving (dr-open door) could have resulted in a subgoal

involving either condition.

The reformulations of both the problems and the operators are important for two reasons.

First, they allow the system to form abstractions that could not otherwise be guaranteed

to have the ordered monotonicity property. Second, they can transform a problem into an

augmented problem that can be solved more easily.

28

Table 8: Reformulated Operator for the Robot Planning Domain

(Push Box Thru Dr

(preconds (and (connects door room.x room.y)

(dr-open door)

(dr-unlocked door)

(next-to box door)

(next-to robot box)

(pushable box)

(inroom box room.y)

(inroom robot room.y))))

(effects ((del (inroom robot room))

(del (inroom box room))

(add (inroom robot room.x))

(add (inroom box room.x)))))

4.3.3 Abstraction Hierarchy Selection

Once alpine builds the directed graph and combines the strongly connected components,

the next step is to convert the partial order of abstraction spaces into a total order. The

algorithm shown in Table 3 uses a topological sort to produce an abstraction hierarchy.

However, in general, the total order produced by the topological sort is not necessarily

unique, and two abstraction hierarchies that both have the ordered monotonicity property

for a given problem will di�er in their e�ectiveness at reducing search. This section describes

the approach alpine uses in selecting among the possible ordered monotonic abstraction

hierarchies for a problem.

Each potential abstraction space is comprised of a set of literals that have one or more

of the following properties:

Goal Literal A literal that matches one of the top-level goals.

Recursive Literal A literal that could arise as a goal where the plan for achieving that

goal could require achieving a subgoal of the same type.

Static Literal A literal that is not changed by the e�ects of any of the operators.

Binding Literal A literal that serves as a generator and does not occur in the primary

e�ects of any operators. A generator is any literal that generates bindings for variables

in the preconditions of an operator. While a binding literal cannot be subgoaled on,

it can generate a set of possible bindings for an operator.

Plain Literal A literal that does not have any of the properties above.

29

The types of the literals that comprise an abstraction space are used to determine the

ordering of the levels and which levels should be combined.

alpine employs the following set of heuristics to select the �nal abstraction hierarchy

for problem solving:

1. Place the static literals in the most abstract space. By de�nition there is no operator

that adds or deletes any static literal so they can be placed at any level in the hierarchy

without risk of an ordered monotonicity violation. If a static literal is false, then it is

better to �nd out as early as possible to avoid wasted work.

2. Place levels involving goal literals as high as possible in the abstraction hierarchy.

Thus, whenever there is a choice of placing one set of literals before another in the

hierarchy and one set matches a goal literal and the other one does not, then place the

one involving the goal literal above the other. Since goals are sometimes unachievable,

it is better to �nd out as early as possible.

3. Combine levels that involve only plain literals, when the levels could be adjacent in

the �nal hierarchy. Each additional abstraction level in the hierarchy incurs a cost

in the re�nement process and combining them will reduce this cost. In the domains

that have been studied, most of the search occurs in the levels involving the goal and

recursive literals.

4. Place levels involving binding literals as low as possible in the abstraction hierarchy

and combine these levels with the levels directly below that involve only plain literals.

Since the binding literals do not occur in the primary e�ects of any operators, they

cannot be directly achieved. However, they can be used to generate the bindings of

variables. The selection of an appropriate set of bindings may require some search, so it

is better to delay consideration of these literals as long as possible. In the machine-shop

domain, this type of literal is used to perform the actual scheduling.

Figure 7 shows how the heuristics would transform an example partial order into a total

order. This set of heuristics creates abstraction hierarchies where each separate abstraction

level serves some purpose. The goal literals are placed at separate levels because it both

orders the top-level goals and partitions the goals of a problem into separate levels. The

recursive literals, even if they are not top-level goals, can involve a fair amount of search,

and placing them in a separate level can reduce this search by removing some of the lower

level details.8 The levels that contain only plain literals separate the details from the more

important aspects of a problem. The levels involving binding literals delay the generation

of bindings as long as possible, which can reduce backtracking.

5 Empirical Results

This section describes the results of both generating and using abstractions for problem

solving. The abstractions are generated by alpine and then used in the hierarchical ver-

8The idea of separating out the recursive literals was inspired by the work of Etzioni [17], which identi�ed

the importance of nonrecursive explanations for explanation-based learning.

30

1

2 3

5

6 8

9

Goal

Goal Recursive

Binding 5

2 Goal

1 Goal

3 Recursive

8 Binding/Plain

6 PlainPlain

Plain

Plain

9

Figure 7: Selecting a Total Order from a Partial Order

sion of prodigy. The section is divided into three subsections. The �rst subsection shows

that alpine can generate e�ective abstraction hierarchies for a variety of problem domains.

The second subsection compares the performance of alpine's abstractions with both hand-

coded and automatically generated search control knowledge. The third subsection compares

alpine and abstrips in the original strips domain and shows that alpine produces

abstractions that have a considerable performance advantage over those generated by ab-

strips. The raw data from the experiments described in this section is available in [32].

5.1 Empirical Results for ALPINE

alpine generates abstraction hierarchies for a variety of problem-solving domains. This

section describes the abstractions generated by alpine on two domains, a robot planning

domain and a machine-shop planning and scheduling domain, and presents empirical results

on the e�ectiveness of these abstractions at reducing search in prodigy. These domains

were previously described in [44], where they were used to evaluate the e�ectiveness of the

explanation-based learning (ebl) module in prodigy.

5.1.1 Extended STRIPS Domain

This section describes the abstraction hierarchies generated by alpine for the extended

version of the robot planning domain [20], which includes locks, keys, and a robot that

can both push and carry objects. The extensions to this domain make it considerably more

complex since there are multiple ways to achieve the same goals and there are many potential

dead-end search paths because of locked doors and unavailable keys.

To construct the abstraction hierarchies for this domain, alpine uses 33.9 CPU seconds

to perform the one-time preprocessing of the domain. To construct the abstraction hierar-

chies for each of the test problems requires an average of 1.5 CPU seconds and ranges from

0.4 to 4.5 CPU seconds. The problem-solving times reported in this section include the time

31

required to construct an abstraction hierarchy, but not the time required to perform the

preprocessing since that only needs to be done once for the entire domain.

Consider a problem that was taken from the set of randomly generated test problems for

this domain. The problem consists of moving three boxes into a con�guration that satis�es

the following goal:

(and (next-to a d)(in-room b room3)(in-room a room4)).

The randomly generated initial con�guration is shown in Figure 8. Boxes and keys are

scattered among the set of rooms and the doors between the rooms can be either open (op),

closed (cl), or locked (lo). The names of the keys are based on the rooms they connect. For

example, K36 is the key to the door connecting room3 and room6. This particular problem

is di�cult for two reasons. First, box A has two constraints that must be satis�ed in the

goal statement: box a must be next to box d and it must also be in room4. Second, some of

the doors in the initial state are locked and the robot, which starts out in room5, will need

to go through at least two of the locked doors to solve the problem.

Room3Room2Room1

Room5 Room6 Room7

Room4

E

B

C
DLO

LO LO

LO
LO

CL

CL CL

 Robot

A

K23

K56

K34

K25

K12 K67

K36

Figure 8: Initial State for the Extended Robot-Planning Problem

To construct an abstraction hierarchy for this problem, alpine �rst augments the goal

using the axioms described in Section 4.1.3 and then �nds an ordered monotonic abstraction

hierarchy for the augmented problem. The example problem would be augmented as follows:

(and (next-to a d)(in-room b room3)(in-room a room4)(in-room d room4))

where there is an added condition that box d is in room4. This follows from the axiom that

states that if two boxes are next to each other then they must be in the same room. The

system constructs the abstraction hierarchy using the algorithm described in the previous

section. The resulting three-level abstraction hierarchy is shown in Figure 9. The �rst level

in the hierarchy deals with getting all of the boxes into the correct room. The second level

considers the location of both the robot and the keys, whether doors are locked or unlocked,

and getting the boxes next to each other. The third level contains only details involving

moving the robot next to things and opening and closing doors.

The abstraction hierarchy for this problem has several important features. First, the

problem of getting the boxes into the �nal rooms is solved before moving the boxes next

32

(inroom box room)

(next-to robot box) (next-to robot door)

(next-to robot key)

(dr-open door) (dr-closed door)

(inroom robot room) (inroom key room)

(holding box)(holding key) (arm-empty)

(locked door) (unlocked door)

(next-to box door)(next-to box box)

Level 2

Level 1

Level 0

Figure 9: Abstraction Hierarchy for the Extended Robot-Planning Problem

to each other. Thus, the planner will not waste time moving two boxes next to each other

only to �nd that one or both of the boxes needs to be placed in a di�erent room. Second,

the conditions at the second level can require a fair amount of search { doors may need to

be unlocked and thus keys must be found { but achieving these conditions will not interfere

with the more abstract space that deals with the location of the boxes. Note, however, that

it may not be possible to re�ne the abstract plan because some door cannot be unlocked.

This does not violate the ordered monotonicity property, but may require returning to the

abstract space to formulate a di�erent abstract plan. Third, the conditions at the �nal

level in the hierarchy are details that can be solved independently of the higher level steps

and inserted into the abstract plan. Once conditions such as whether doors are locked or

unlocked are considered, it will always be possible to open and close the doors.

The abstractions generated for the example problem produce a signi�cant performance

improvement in the hierarchical problem solver. On this example, the abstraction hierarchy

reduced the CPU time from 194.6 seconds to 19.2 seconds and reduced the total number of

nodes searched from 4069 to 194. In addition, it reduced the solution length from 76 to 45

steps. As described above, the CPU times reported for alpine include the time for both

generating and using the abstractions.

The use of alpine's abstractions does not always improve performance and, in some

cases, can actually degrade the performance compared to problem solving without using ab-

straction. There are three possible ways in which alpine can degrade the performance on a

particular problem. First, the added cost of constructing and using the abstraction hierarchy

can dominate the problem-solving time on problems that can be solved easily without using

abstraction. Second, since prodigy uses a depth-�rst search, the use of abstraction could

lead the problem solver down a di�erent path than the default path that would have been

explored �rst without using abstraction, which can result in more search to �nd a solution.

Third, the use of a particular abstraction could degrade performance by producing abstract

plans that cannot be re�ned and require backtracking across abstraction levels to �nd alter-

native abstract plans. Despite these potential problems, the use of abstraction still produces

signi�cant performance improvements overall.

33

To evaluate the abstraction hierarchies produced by alpine, this section compares

prodigy using alpine's abstractions (prodigy + alpine) to problem solving in prodigy

with no control knowledge (prodigy) and to problem solving in prodigywith a set of hand-

coded control rules (prodigy + hcr). These hand-coded control rules correspond to the

ones that were used in the EBL experiments. The comparison was made on a set of 250

randomly generated problems, where the di�erent con�gurations were each allowed to work

on a problem until it was solved or the 600 CPU second time limit was exceeded. Of these

problems, 100 were used in Minton's experiments [44] to test the EBL module. Because of

the additional information about primary e�ects used in this comparison, these problems

proved quite easy for the problem solver even without the use of abstraction. Thus, an

additional set of 150 signi�cantly more complex randomly generated problems was also used

in the comparison.

Comparing the results of the di�erent con�gurations on the set of test problems is compli-

cated by the fact that some of the problems cannot be solved within the time limit. Similar

comparisons in the past have been done using cumulative time graphs [45], but Segre et al.

[55] argue that such comparisons could be misleading because changing the time limit can

change the results. To avoid this problem, the total time expended solving all of the prob-

lems is graphed against the CPU time bound. The resulting graph illustrates three things.

First, each curve on the graph shows the total time expended on all of the problems as the

time bound is increased. Second, the slope at each point on a curve indicates the relative

portion of the problems that remain unsolved. A slope of zero means that all of the problems

have been solved (no more time is required to solve any of the problems). Third, the shape

of the curve can be extrapolated to estimate the relative performance of the systems being

compared as the time bound is increased.

Figure 10 provides the time-bound graphs for the test problems in the extended robot-

planning domain. The graphs separate the solvable problems from the unsolvable problems

(those problems that have no solution). Unsolvable problems can be considerably harder

since the problem solver may have to explore every possible alternative to prove that a

problem has no solution. The graph on the left contains the 206 solvable problems and the

one on the right contains the remaining 44 unsolvable problems. On the solvable problems,

prodigy + alpine can solve all the solvable problems in less than 200 CPU seconds. In

contrast, both prodigy and prodigy + hcr cannot solve some of the problems within

600 CPU seconds. In addition, the total time spent by prodigy is over three times that

of prodigy + alpine. On the unsolvable problems the di�erence between the use of

abstraction and no abstraction is less dramatic, although prodigy + alpine has solved

more of the problems in considerably less time than prodigy.

To evaluate the statistical signi�cance of the results in the experiment, we can apply the

signed-rank test as presented by Etzioni and Etzioni [18]. This test generates an upper bound

on what is called the p-value. The p-value is the probability that conclusions drawn from

the data are in error. The lower the p-value, the stronger the evidence that the hypotheses

are correct. In all of these comparisons the signi�cance level is taken to be 0.05. When the

p-value is below the signi�cance level the results are considered to be statistically signi�cant.

Applying the signed-rank test to all of the problems in the experiment indicates that

there is insu�cient evidence to conclude that one system is statistically better than another

34

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
T

o
ta

l C
P

U
 T

im
e

(s
ec

.)

0 100 200 300 400 500 600
Time Bound (sec.)

Solvable Problems

Prodigy + Alpine
Prodigy + HCR
Prodigy

0

2000

4000

6000

8000

10000

12000

T
o

ta
l C

P
U

 T
im

e
(s

ec
.)

0 100 200 300 400 500 600
Time Bound (sec.)

Unsolvable Problems

Prodigy + Alpine
Prodigy + HCR
Prodigy

Figure 10: Total CPU Times in the Robot Planning Domain

on either the solvable or unsolvable sets of problems. This can be explained by the fact that

prodigy performs better on the smaller problems due to the overhead of generating and

using the abstractions, while prodigy + alpine performs better on the larger problems.

This is illustrated in Figure 11, which graphs the solution time against the average problem

size for problems grouped by size. On the larger problems, those with a solution length of 40

or greater, there is su�cient evidence to conclude that the di�erence between prodigy +

alpine and prodigy is signi�cant with a p-value of 0.000. However, the di�erence between

prodigy + alpine and prodigy + hcr on the larger problems is not signi�cant since

the p-value is 0.224.

0

50

100

150

200

250

300

A
ve

ra
g

e
T

im
e

(s
ec

.)

0 10 20 30 40 50 60 70 80
Solution Size

Prodigy + Alpine
Prodigy + HCR
Prodigy

Figure 11: Average Solution Times in the Extended Robot-Planning Domain

35

Another important property not shown in the graphs is that prodigy + alpine pro-

duces shorter solution than both prodigy and prodigy + hcr. Using the signed rank

test and assuming the standard signi�cance level of 0.05, the di�erence between prodigy +

alpine and both prodigy and prodigy + hcr is statistically signi�cant with p-values

of 0.003 and 0.000, respectively.

5.1.2 Machine-Shop Scheduling Domain

This section describes the abstractions generated by alpine in a machine-shop process

planning and scheduling domain. This domain contains a variety of machines, such as a

lathe, mill, drill, punch, spray painter, etc, which are used to perform various operations to

produce the desired parts. Given a set of parts to be drilled, polished, reshaped, etc., and a

�xed amount of time, the task is to �nd a plan to both create and schedule the parts that

meets the given requirements.

alpine �nds two useful types of abstraction in this domain. First, in many cases it can

separate the top-level goals into separate abstraction levels, which reduces the search for a

valid ordering of the operations. Second, it separates the process planning (the selection and

ordering of the operations on the parts) from the actual scheduling of the operations (only

one part can be assigned to one machine at a given time). This allows the problem solver to

�nd a legal ordering of the operators before it even considers placing the operations in the

schedule.

In constructing the abstraction hierarchies for this domain, alpine uses 14.9 CPU sec-

onds to perform the one-time preprocessing of the domain. To construct the abstraction

hierarchies for each of the test problems requires an average of 1.4 CPU seconds and ranges

from 0.4 to 3.8 CPU seconds. The problem-solving times reported in this section include the

time required to construct an abstraction hierarchy, but not the time required to perform

the preprocessing.

Consider the following problem in the scheduling domain, which involves making two

parts, d and e:

(and (has-hole d (4 mm) orientation-4)

(shape d cylindrical)

(surface-condition e smooth)

(painted d (water-res white))).

The problem requires making a hole in part d, making it cylindrical, painting it white, and

also making part e smooth. The resulting abstraction hierarchy for this problem is shown

in Figure 12. The hierarchy separates the selection and ordering of the various operations

and performs the scheduling last. This abstraction produces a considerable improvement in

problem-solving performance. The total search time is reduced from 164.7 seconds to 7.0

seconds and the number of nodes searched is reduced from 5150 to 39. The solution length

remained the same.

This section provides a comparison analogous to the one for the extended robot planning

domain described in the last section. It compares the performance of prodigy + alpine

to prodigy with no control knowledge and prodigy with a set of hand-coded control rules

36

(scheduled object machine time) (last-scheduled object time)

(idle machine time)

(shape object shape)

(has-hole object width orient)

(surface-condition object condition)

(temperature object temp) (clampable object machine)

(painted object color)

Level 4

Level 3

Level 2

Level 1

Level 0

Figure 12: Abstraction Hierarchy for the Machine-Shop Problem

(prodigy + hcr). The hand-coded rules are the same rules that were used in the original

comparisons with the EBL system [44]. All the con�gurations were run on 250 randomly

generated problems including the 100 problems used for testing the EBL system.

The comparison, shown in Figure 13, graphs the total time against an increasing time

bound for solvable and unsolvable problems. On the 186 solvable problems, prodigy +

alpine performs better than both prodigy and prodigy + hcr. On the 64 unsolvable

problems, prodigy + alpine performs better than prodigy. With control knowledge

prodigy + hcr can quickly show for most of the problems that the problems have no

solution. After 600 CPU seconds prodigy + alpine and prodigy + hcr have used the

same total time, but the slopes of the lines at 600 seconds show that prodigy + alpine has

completed more of the problems. This can be explained by the fact that the problem solver

can often use control knowledge to immediately determine that a problem is unsolvable,

while the use of abstraction requires completely searching at least the most abstract space

to determine that a problem is unsolvable. If there is no control rule to identify an unsolvable

problem, then prodigy + hcr would have to search the entire space. Thus, using control

knowledge the problem solver can quickly determine that a problem is unsolvable, but the

use of abstraction produces better coverage.

As in the previous section, if we apply the signed rank test to the entire set of problems,

there is insu�cient evidence to conclude that alpine is better than the other two systems

on the solvable problems. However, Figure 14 shows that the important di�erence between

prodigy + alpine and the other two systems is on the harder sets of problems. If we

apply the signed rank test to the set of problems with an average solution length of 10 or

greater, then the di�erence between prodigy + alpine and both prodigy and prodigy

+ hcr is signi�cant with p-values of 0.006 and 0.027. The di�erence between prodigy

+ alpine and prodigy on the entire set of unsolvable problems is also signi�cant with a

p-value of 0.000. As in the extended-strips domain, prodigy + alpine produces shorter

solutions than both prodigy and prodigy + hcr, and the di�erences are signi�cant with

p-values of 0.000 and 0.040, respectively.

37

0

2000

4000

6000

8000

10000

12000

14000
T

o
ta

l C
P

U
 T

im
e

(s
ec

.)

0 100 200 300 400 500 600
Time Bound (sec.)

Solvable Problems

Prodigy + Alpine
Prodigy + HCR
Prodigy

0

5000

10000

15000

20000

25000

T
o

ta
l C

P
U

 T
im

e
(s

ec
.)

0 100 200 300 400 500 600
Time Bound (sec.)

Unsolvable Problems

Prodigy + HCR
Prodigy + Alpine
Prodigy

Figure 13: Total CPU Times in the Machine-Shop Domain

0

50

100

150

200

250

300

350

A
ve

ra
g

e
T

im
e

(s
ec

.)

0 2 4 6 8 10 12 14 16 18 20
Solution Size

Prodigy + Alpine
Prodigy + HCR
Prodigy

Figure 14: Average Solution Times in the Machine-Shop Domain

5.2 Comparison of ALPINE and EBL

A signi�cant amount of work in prodigy has focused on learning search control to reduce

search. Minton [44] developed a system called prodigy/ebl that learns search control

rules using explanation-based learning. More recently, Etzioni [16] developed a system called

static that generates control rules using partial evaluation. This section compares the use

of the abstractions generated by alpine to these two systems for learning search control

knowledge.

The learning systems are compared in the machine-shop scheduling domain that was

described in the previous section. The comparisons below mirror the ones described in the

38

last section. In addition to prodigy alone, with the hand-coded control rules (prodigy

+ hcr), and with alpine's abstractions (prodigy + alpine), the graphs also include

prodigy with the control rules produced by ebl (prodigy + ebl), with the control rules

produced by static (prodigy + static), and the combination of alpine's abstractions

and the hand-coded control rules (prodigy + alpine + hcr).

The comparison shown in Figure 15 graphs the total time against an increasing time

bound for the solvable and unsolvable problems. On the solvable problems, the di�erence

between prodigy + alpine and prodigy + static or prodigy + ebl is not sta-

tistically signi�cant. However, on the set of larger problems (those with an solution length

greater than 10), the di�erence between prodigy + alpine and prodigy + ebl is

signi�cant with a p-value of 0.000. On the unsolvable problems, prodigy + static and

prodigy + ebl perform the same as prodigy + hcr and use about the same total

amount of time on the unsolvable problems, but prodigy + alpine completes more of

the problems after 600 CPU seconds than the other con�gurations.

0

2000

4000

6000

8000

10000

12000

14000

T
o

ta
l C

P
U

 T
im

e
(s

ec
.)

0 100 200 300 400 500 600
Time Bound (sec.)

Solvable Problems

Prodigy + Alpine + HCR
Prodigy + Static
Prodigy + Alpine
Prodigy + HCR
Prodigy + EBL
Prodigy

0

5000

10000

15000

20000

25000
T

o
ta

l C
P

U
 T

im
e

(s
ec

.)

0 100 200 300 400 500 600
Time Bound (sec.)

Unsolvable Problems

Prodigy + Alpine + HCR
Prodigy + Alpine
Prodigy + Static
Prodigy + HCR
Prodigy + EBL
Prodigy

Figure 15: Total CPU Times for the Learning Systems in the Machine-Shop Domain

The use of abstraction and search-control knowledge can be combined since they provide

complementary sources of knowledge. The �gures above graph the combination of the ab-

straction with the hand-coded control knowledge to demonstrate that the integration will

provide improved performance. The combination of the abstraction and control knowledge,

as shown in Figure 15, produces signi�cantly better performance than any system alone on

the larger solvable problems. The di�erences between prodigy + alpine + hcr and

the other systems not using abstraction are statistically signi�cant with a p-value of 0.003

for prodigy and p-values of 0.000 for the rest. This combination improves performance

because the control rules provide search guidance within an abstraction level and the use

of abstraction provides better coverage at a lower cost than just using the control rules. In

[36] we show that integrating abstraction and the rules learned from ebl produce similar

results.

39

5.3 Comparison of ALPINE and ABSTRIPS

This section compares the abstractions generated by alpine to those generated by abstrips

and shows that alpine produces better abstractions with less speci�c domain knowledge

than abstrips. abstrips was the �rst system that automated the construction of abstrac-

tion hierarchies for problem solving. The resulting abstraction hierarchies were then used for

problem solving in an extended version of the strips planner [20]. This section compares

the abstraction hierarchies generated by abstrips and alpine in the strips domain. In

order to evaluate the e�ectiveness of the di�erent abstraction hierarchies, the abstractions

generated by each system are tested empirically in the prodigy problem solver.

abstrips is given an initial partial order of the predicates for a domain and then performs

some analysis on the domain to assign criticality values to the preconditions of each of the

operators. The criticalities specify which preconditions of each operator should be ignored at

each abstraction level. The technique used to construct the abstraction hierarchy is described

in Section 6. The basic idea is to separate those preconditions that could not be achieved

in isolation by a short plan and then use the given partial order to assign criticalities to the

remaining preconditions.

The generation of abstraction hierarchies in alpine di�er from abstrips in several

important ways. First, alpine completely automates the construction of the abstraction

hierarchies from only the initial de�nition of the problem space, while abstrips requires an

initial partial order to form the abstractions. Second, alpine forms abstractions that are

tailored to each problem, whereas abstrips constructs a single abstraction hierarchy for

the entire domain. Third, alpine forms reduced models where each level in the abstraction

hierarchy is an abstraction of the original problem space, while abstrips forms relaxed

models.

The best way to compare the abstractions generated by the two systems is to consider an

example. The example below is taken from one of the 200 randomly generated test problems

used to compare the systems. The goal state consists of �ve goal conjuncts as follows:

(and (in-room a room1)

(status door56 closed)

(status door12 closed)

(in-room robot room3)

(in-room b room6))

The initial state for the problem is shown in Figure 16. This problem is di�cult because the

doors must be closed after the boxes have been placed in the correct rooms and the robot

must be on the correct side of the door when it is closed.

The abstraction hierarchies generated by each system are shown in Figure 17. For the

entire problem domain, abstrips uses the same four-level abstraction hierarchy. The most

abstract space consists of all the static predicates (the predicates that cannot be changed),

the second level consists of the preconditions that cannot be achieved by a short plan. This

includes all of the in-room preconditions, and some of the next-to and status precondi-

tions. The third level consists of the remaining status preconditions that can be achieved

by a short plan, and the fourth level contains the remaining next-to conditions.

40

Door56

Door25

Door12 Door23

Door26

Door34

Door36

Room3Room2Room1

Room5 Room6 Room7

Room4

A

Robot

DE

B

C

Door 67

Figure 16: Initial State for the Example strips Problem

(connects door room room)

(pushable box)(inroom box room)

(inroom robot room) (status door status)

(next-to box door) (next-to box box)

(next-to robot door) (next-to robot box)

inroom

next-tostatus

status

next-to

connects

pushable

ABSTRIPS ALPINE

Figure 17: Abstraction Hierarchies Generated by abstrips and alpine

alpine can build �ner-grained hierarchies using the type hierarchy (Section 4.1.2) to

separate literals with the same predicate but di�erent argument types. The abstraction

hierarchy built by alpine for this problem consists of a three-level abstraction hierarchy (the

abstraction hierarchy selection heuristics described in Section 4.3.3 combine the bottom two

levels of an initial four-level hierarchy into a single level). The most abstract space consists of

all the static literals and the (in-room box room) literals. The next level contains both the

(in-room robot room) and the (status door status) literals. These two sets of literals

get combined to satisfy the ordered monotonicity property since it may be necessary to get

the robot into a particular room to open or close a door. Finally, the last level contains

the next-to literals for both the robot and the boxes. alpine uses 12.3 CPU seconds for

the one-time preprocessing of this domain. The time required to construct an abstraction

hierarchy for each problem ranges from 0.3 to 2.8 CPU seconds and is 1.2 CPU seconds on

average.

The example problem illustrates a limitation of the abstraction hierarchies that are

formed by abstrips. Since abstrips only drops preconditions and does not drop con-

ditions from the states or goals, all of the goal conjuncts must be considered in the abstract

space. As such, the system constructs a plan to move box a into room1, closes the door to

the room, and then moves the robot through the closed door. When the system is planning

at this abstraction level it ignores all preconditions involving door status, so it does not

41

notice that it will later have to open this door to make the plan work. When the plan is

re�ned to the next level of detail the steps are added to open the door before moving the

robot through the door, deleting a condition that was achieved in the abstract space (which

is a violation of the ordered monotonicity property). At this point the problem solver would

need to either backtrack or insert additional steps for closing the door again.

alpine would �rst solve this problem in the abstract space by generating the plan for

moving the boxes into the appropriate rooms. At the next level it would deal with both

closing the doors and moving the robot. If it closed the door from the wrong side and then

tried to move the robot to another room, it would immediately notice the interaction since

these goals are considered at the same abstraction level. After producing a plan at the

intermediate level it would re�ne this plan into the ground space by inserting the remaining

details, which consists of the next-to preconditions.

To illustrate the di�erence between alpine's and abstrips's abstractions, the use of

these abstractions are compared in prodigy. This is not a completely fair comparison since

the abstraction hierarchies generated by abstrips were intended to be used by the strips

problem solver. strips employed a best-�rst search instead of a depth-�rst search, so the

problem of expanding an abstract plan that is then violated during the re�nement of that

plan would probably be less costly. Nevertheless, the comparison emphasizes the di�erence

between the abstraction hierarchies generated by alpine and abstrips and demonstrates

that a poorly chosen abstraction hierarchy can degrade performance rather than improve it.

First consider the results on the example problem described above. Table 9 shows the

CPU time, nodes searched and solution length. prodigy + alpine produces a small per-

formance improvement over prodigy and generates shorter solutions. In contrast prodigy

+ abstrips takes almost 6 times longer than prodigy, although it too produces the same

length solution as prodigy + alpine.

Table 9: Performance Comparison for the Example strips Problem

System CPU Time (sec.) Nodes Searched Solution Length

Prodigy 14.5 259 25

Prodigy + Alpine 10.2 114 19

Prodigy + Abstrips 83.0 1,631 19

The graphs in Figure 18 compare the average solution times and average solution lengths

of prodigy without using abstraction, prodigy using the abstractions produced by ab-

strips (prodigy + abstrips), and prodigy using the abstractions produced by alpine

(prodigy + alpine). (This section presents average time instead of total time since almost

all of the problems were solvable.) Each con�guration was run on 200 randomly generated

problems in the strips robot planning domain. prodigy was run in each con�guration and

given 600 CPU seconds to solve each of the problems. Out of the 200 problems, 197 of the

problems were solvable in principle. The solution time graph in Figure 18 shows the average

solution times for the 197 solvable problems. The solution length graph shows the average

solution lengths on the 153 problems that were solved by all three con�gurations. In both

42

0

50

100

150

200

250

300

350

400

450

500
A

ve
ra

g
e

T
im

e
(C

P
U

 s
ec

.)

0 10 20 30 40 50 60
Shortest Solution Length

Solution Time

Prodigy + Alpine
Prodigy
Prodigy + Abstrips

0

10

20

30

40

50

60

70

80

90

A
ve

ra
g

e
S

o
lu

ti
o

n
 L

en
g

th

0 10 20 30 40 50 60
Shortest Solution Length

Solution Length

Prodigy + Alpine
Prodigy + Abstrips
Prodigy

Figure 18: Comparison of the Average Solution Times and Average Solution Lengths

graphs the problems are ordered by the shortest solution found by any of the con�gurations.

The graphs show that the use of abstrips' abstractions signi�cantly degrades perfor-

mance, while alpine's abstractions improve performance over the basic prodigy system.

The di�erence between prodigy + abstrips and both prodigy + alpine and prodigy

is signi�cant with p-values of 0.000 for both systems. The reason for the poor performance

using abstrips' abstractions is that in the analysis abstrips performs to assign criticalities

it assumes that the preconditions are independent. When this assumption fails to hold, the

abstraction generated by abstrips may be inappropriate for the given problem.

The di�erences between the solution times for prodigy + alpine and prodigy are

not signi�cant. This is because prodigy only needs to search a small portion of the search

space since most mistakes can be undone by adding additional steps. Thus, on problem-

solving time prodigy performed quite well, but it achieved this performance by trading

solution quality. On the hardest set of problems, prodigy produces solutions that were on

average �fty percent longer than prodigy + alpine. In contrast, the use of abstrips'

abstractions signi�cantly increased the problem solving time, but they did improve the

quality of the solutions. Both prodigy + alpine and prodigy + abstrips produces

shorter solutions than prodigy and the di�erences are signi�cant with p-values of 0.000.

In addition, the di�erence in solution length between prodigy + alpine and prodigy

+ abstrips is signi�cant with a p-value of 0.008.

6 Related Work

This section describes the related work on abstraction in problem solving. The �rst sub-

section describes how abstractions are used in various systems. The second and third sub-

sections compare techniques for generating abstractions and other types of related control

knowledge. And the fourth subsection contrasts the various properties related to abstraction.

43

6.1 Using Abstraction

One approach to using abstractions is to employ a hierarchy of abstraction spaces, where a

problem is solved in the most abstract space and then re�ned at successively more detailed

levels. Each abstraction space is a \simpli�cation" of the original problem space, such as the

relaxed and reducedmodels described in Section 2.2. This general approach has been referred

to as state abstraction and was �rst used in Planning GPS [48]. This is also the approach

used in abstrips [53] and pablo [11], abtweak [68, 67], as well as alpine. absolver

[47] also employs a form of state abstraction, but instead of re�ning abstract plans found

using this simpli�ed model, the abstract plans are used in the evaluation function of an

admissible search procedure.

Another commonly used approach to hierarchical problem solving is to �rst build a

plan out of a set of abstract operators and then re�ne the plan by selectively expanding

individual operators into successively more detailed ones. The re�nement is done using a set

of action reductions [66], which specify the relationship between an abstract operator and

the re�nements of that operator. This approach di�ers from state abstraction in that there

is no abstraction of the state, but only of the operators. As such, this approach is sometimes

referred to as operator abstraction. There are a set of abstractions for each operator, and

each instance of an operator in an abstract plan can be expanded to a di�erent level of

detail during the re�nement of a plan. Operator abstractions have been used extensively in

least-commitment problem solvers such as noah [54], molgen [58], nonlin [59], and sipe

[64].

The di�erence between operator abstraction and state abstraction is small since operator

abstraction can be used to implement state abstraction by imposing constraints on the order

in which the operator abstractions are expanded. This is the approach taken in sipe [64, 65],

where the domain is partitioned into literals at di�erent abstraction levels and operators for

achieving those literals.

Another problem-solving method, similar to the use of state abstractions, is the use of

macro problem spaces. Instead of forming abstract problem spaces by constructing relaxed

or reduced models of a problem space, operators are combined into macro operators to form

a macro problem space [39]. This approach is similar to using state abstractions in that a

problem is mapped into an abstract space, which is de�ned by a set of macro operators, and

then solved in the abstract space. However, unlike the use of abstract problem spaces, once

a problem is solved in the macro space, the problem is completely solved since the macros

are de�ned by operators in the original problem space. A related idea is to construct macro

objects instead of operators and then reason about the macro objects [8].

Other systems have also used macro operators, but instead of constructing a new macro

space the macro operators are simply added to the original space [19, 26, 28, 38, 41, 52].

While this approach may reduce the depth of the search by providing sequences of operators

that can solve entire problems, it has the problem that it can signi�cantly increase the

branching factor since the problem solver must consider the original operators as well as the

new macros [43].

44

6.2 Generating Abstractions

alpine forms abstractions based on the ordered monotonicity property. This property

guarantees that any plan for achieving a literal ignored at an abstract level will not add

or delete a literal in a more abstract space. In e�ect, the ordered monotonicity property

partitions those literals that interact with one another and orders the partitioned sets of

literals in a way that minimizes the interactions among them. An important feature of

the ordered monotonicity property is that alpine can tractably generate problem-speci�c

abstractions that have this property.

abstrips [53] was the �rst system to automate the formation of abstraction hierarchies

for hierarchical planning. The system only partially automates this process since the user

must provide an initial partial order of predicates, which is used to assign criticalities to the

preconditions of the operators. abstrips places the static literals, literals whose truth value

cannot be changed by an operator, in the highest abstraction space. It places literals that

cannot be achieved with a \short" plan in the next highest abstraction space. And it places

the remaining literals at lower levels corresponding to their place in the user-de�ned partial

order.

abstrips determines whether a short plan exists by assuming that the preconditions

higher in the partial order hold and attempts to show the remaining conditions can then be

solved in a few steps. This criterion is quite di�erent than the one used by alpine since

it attempts to guarantee that the conditions ignored in the abstract space can be achieved

in a few steps. However, it does not actually guarantee this property since the algorithm

assumes that the di�erent goal conditions will not interact with one another. (See [34] for a

detailed discussion of this point.) Another limitation of this approach is that the conditions

that cannot be achieved by a short plan are placed in the same abstraction level. This limits

the usefulness of the abstraction hierarchies since the bulk of the work would occur in the

level with conditions that cannot be achieved by a short plan.

pablo [11] is another system that generates abstractions for hierarchical planning. It

uses a technique called predicate relaxation to determine the number of steps needed to

achieve each predicate by partially evaluating the operators. This information is then used

to focus the problem solver on the conditions that requires the greatest number of steps.

The approach is quite similar to the one used by abstrips in that the abstractions are

based on how many steps (in the worst case) it will take to achieve a given precondition

instead of whether or not a condition can be achieved in a few steps. While this approach

allows an arbitrary number of abstraction spaces, pablo also assumes that the preconditions

will not interact, so it may believe that a subgoal is achievable when it is not, and it may

underestimate the number of steps required to achieve a subgoal. Another limitation is that

the predicate relaxation process may be very expensive and result in complex expressions

that must be evaluated at planning time.

Anderson [3] developed a system called planereus that automatically generates hi-

erarchies of abstract operators and objects. The system constructs operator hierarchies by

examining the operators that share common e�ects and forming new abstract operators that

contain only the shared preconditions. Similarly, object hierarchies are formed by adding

a new abstract object type when two operators perform the same operations on di�erent

objects. This approach is di�erent than the previous ones since planereus forms abstract

45

operators by ignoring the di�erences between operators without regard to the di�culty of

achieving those di�erences. In contrast, abstrips and pablo consider the number of steps

required to achieved the conditions and alpine considers the potential interactions between

the conditions being ignored and those remaining.

6.3 Generating Control Knowledge

The use of abstraction in problem solving is a form of control knowledge. An alternative

to explicitly constructing the abstractions is to represent analogous control knowledge in

a di�erent form. There are many systems that use control knowledge, but this section

only describes the most closely related ones. All of these systems use techniques related to

abstraction to learn information to guide the problem solver at various control choices.

Unruh and Rosenbloom [62, 63] developed a weak method for soar [40] that dynamically

forms control knowledge by dropping preconditions of operators. When soar is working on

a goal and reaches an impasse, a point in the search where it does not know how to proceed,

it performs a look-ahead search to resolve this impasse. Since this search can be expensive,

the abstraction mechanism performs a look-ahead search that ignores all of the unmatched

preconditions that are encountered during the search. The choices made in the look-ahead

search are then stored by soar's chunking mechanism and the chunks are used to guide

the search in the original space. This is essentially a generate and test method for using

abstractions to �nd control knowledge. The approach di�ers from the one used by alpine

in that there is no analysis of the problem space.

gps [48] is a means-ends analysis problem solver, which employs a table of di�erences

to select relevant operators and thus focus the search. The problem solving proceeds by

attempting to reduce the di�erences between the initial state and goal. The problem of

�nding good orderings of the di�erences has been extensively explored in gps and is closely

related to the techniques for generating abstractions in alpine. The criterion for ordering

the di�erences in [12, 15] is to attempt to �nd an ordering such that achieving one di�er-

ence will not a�ect a di�erence reduced by operators selected earlier in the ordering. The

algorithm for �nding an ordering requires building a table of di�erences and �nding a lower-

triangular di�erence table. This is similar to the analysis performed by alpine, except the

ordering of di�erences is based only on the e�ects of operators, while the construction of

abstraction hierarchies in alpine is based on analysis of both the e�ects and preconditions

of the operators.

In a more recent system for generating di�erence orderings, Goldstein [14, 25] incorpo-

rated an additional restriction that also takes the preconditions into account and is thus

analogous to the ordered monotonicity property. The system produces di�erence orderings

by creating a di�erence table for the top-level goals and each set of precondition of the oper-

ators. Using this di�erence table, it then tries to �nd an ordering of all the goals such that

achieving one goal in the ordering will not interact with goals earlier in the ordering. The

algorithm for generating the di�erence ordering requires searching through the space of all

possible di�erences until one is found that does not depend on any other di�erences. This

di�erence is then placed on the bottom of the order and the process is repeated until all of

the di�erences are ordered. This algorithm is less e�cient than the one used by alpine and

46

does not provide a mechanism for grouping together di�erences if an ordering does not exist

that satis�es the property.

Irani and Cheng [10, 29] present an approach to ordering goals based on interactions

determined statically from the operator de�nitions. For each problem the goal orderings

are determined by backpropagating the goals through the operators to determine which of

the other goals must already hold to apply the relevant operators. The goal conditions are

�rst augmented with additional conditions that must also hold when the goal conditions

are achieved. The augmented and ordered goals are then used in an admissible heuristic

evaluation function. The augmentation of the goals is similar to the goal augmentation

performed in alpine (Section 4.3.2), but the approach to ordering the goals is much more

similar to the analysis in pablo [11].

Etzioni [16] developed a system called static, which statically analyzes the problem

space de�nition to identify potential interactions. Based on these interactions, static gen-

erates a set of search control rules for prodigy to guide the problem solving. The analysis is

done by proving that a particular condition will necessarily interact with another condition

and then constructing a control rule to avoid such an interaction. This analysis di�ers from

the analysis performed by alpine, since the control rules are based on necessary interactions,

while the abstractions are based on possible interactions.

Smith and Peot [57] developed an approach to analyzing potential conicts in order to

delay resolving conicts for partial-order planning. The analysis used to determine which

conicts can be delayed is similar to the analysis performed by alpine. In their analysis

graph, they distinguish between conict links (generated from the e�ects of operators) and

causal links (generated from the preconditions of operators). From this graph they can then

determine whether resolving a potential conict can be safely delayed.

6.4 Properties of Abstractions

When abstractions are used for hierarchical problem solving, the potential di�culties are in

re�ning an abstract plan into a plan in the original problem space. The various properties

that have been identi�ed are all related to this general problem in one way or another. There

is also a closely related issue in ordering goals. This section describes the various properties

for both abstraction and goal ordering.

The downward solution property, identi�ed by Tenenberg [61] states that the existence

of an abstract-level solution implies the existence of a ground-level solution. Ideally an ab-

straction space would have the downward solution property since once an abstract solution is

found it is just a matter of re�ning it into a ground-level solution. However, if an abstraction

space is formed by dropping conditions from the original problem space, information is lost

and operators in an abstract space can apply in situations in which they would not apply in

the original space. Thus, using an abstraction space formed by dropping information it is

di�cult to guarantee the downward solution property. The same problem arises in the use

of abstraction in theorem proving, where it is called the false proof problem [23, 51].

Bacchus and Yang [4, 5] identi�ed a closely related property called the downward re�ne-

ment property (DRP), which states that if a problem is solvable then any abstract solution

must have a re�nement. Thus, if a solution to a problem exists, then the conditions ignored

47

at the abstract level will be achievable. They also developed a set of su�cient conditions

that can be used to identify abstractions that have this property. The property can only

be guaranteed in restricted cases, although they have developed some techniques to �nd

\near-DRP" abstractions.

The ordered monotonicity property is orthogonal to both the downward solution and

downward re�nement properties. The ordered monotonicity property, as described in Sec-

tion 2, imposes the additional restriction that all re�nements of those plans leave the literals

established in the abstract plans unchanged. This property does not guarantee that any

abstract solution can be re�ned. What it does guarantee is that some abstract solution can

be re�ned and more importantly, that it can be re�ned in a particular manner. The property

captures the idea that an abstract solution should solve some aspect of the problem, which

can then be held invariant while the remaining unsolved aspects of the problem are succes-

sively elaborated. As noted by Smith and Peot [56], this property addresses the problem of

operator interference, but does not deal with the problem that the planner may select a set of

bindings that prevent a solution from being re�ned and force the system to backtrack across

abstraction levels. More recently, Bacchus and Yang [5] developed a system called high-

point that addresses this problem by combining their \near-DRP" property with alpine

to generate abstractions.

Fink [21] recently identi�ed a number of re�nements to the de�nition of justi�cation

that eliminate unnecessary operators in plans to various degrees. He uses these re�nements

to restrict the de�nition of ordered monotonicity. These restricted de�nitions avoid certain

pathological cases such as plans that achieve, undo and then reachieve the same condition.

However, it is unclear whether these re�nements will generate improved hierarchies over

those produced by alpine.

In work on ordering goals for problem solving there are a set of closely related properties

to those described above. In Korf's work on generating macro operators [38], he identi�ed a

property called serial decomposability, which is su�cient to guarantee that a set of macros

can serialize a problem. A problem is said to be serializable if there exists an ordering

among the goals, such that once a goal is satis�ed, it need never be violated in order to

satisfy the remaining goals. A problem space is serially decomposable if there exists an

ordering of the operators such that the e�ect of each operator only depends on the state

variables (e.g., location of a tile in the eight puzzle) that precede it in the ordering. If a

problem space is serially decomposable, then there exists a set of macros that can make any

problem serializable. This analogue of this property for an abstraction space is a property

that guarantees both the downward solution and ordered monotonicity property. This is

because it guarantees both that the problem will be solvable and that once a goal is satis�ed

it never needs to be violated to satisfy the remaining goals.

Banerji and Ernst [6, 7] developed a formal model of di�erence ordering in gps [13], which

requires that any goal condition that is already achieved cannot be reintroduced. This means

that after a given di�erence is solved, the problem solver is prevented from reintroducing

that di�erence. This restriction on di�erence ordering serves as the foundation for the work

by Goldstein described in Section 6.3.

48

7 Limitations and Future Work

While the techniques described in this article are e�ective in generating useful abstractions

for a variety of problem solving domains, they are not without their limitations. This section

describes some of the limitations of both the theory and approach for generating abstractions

and presents some ideas about how to produce better abstraction hierarchies automatically

7.1 Ordered Monotonicity Property

The ordered monotonicity property does not guarantee that an abstraction hierarchy will

be useful. Because an abstract space is a simpli�cation of the original problem space there

may exist plans in that abstract space that are not realizable, which means that there is no

way to re�ne the abstract plan into a plan in the original problem space. If the ratio of

unrealizable to realizable abstract plans is too large, the use of a particular abstract space

could prove to be more expensive than no abstraction at all. The problem arises because

the property on which the abstractions is based does not take into account the di�culty

of achieving the conditions that are ignored. It only considers whether the achievement of

the conditions can be delayed without interfering with those parts of the problem that have

already been solved.

A direction for future work would be to consider not only whether the ordered mono-

tonicity property can be ensured, but also the di�culty of achieving those conditions that

are ignored. This could be dealt with in several ways. The system could attempt to prove

that the conditions are achievable. The problem with this approach is that either the proofs

must be done assuming the conditions are independent, as done in abstrips, or in general

the proofs will be as hard as the original planning problem. Another problem is that requir-

ing that the ignored conditions are always achievable is not necessary for producing useful

abstractions. The empirical results indicate that even on problems that require backtracking

across levels, the use of the abstraction may still reduce search overall. A more attractive

approach is to maintain statistics on the costs and bene�ts of each abstraction and eliminate

those abstraction whose cost outweigh their bene�t.

7.2 Generating Abstraction Hierarchies

alpine generates abstraction hierarchies that have the ordered monotonicity property. The

algorithm used in alpine guarantees that any abstraction it �nds will have this property,

but it does not guarantee that all ordered monotonic abstractions will be found. If alpine

cannot �nd an abstraction then the directed graph of literals will collapse into a single

strongly connected component. There are two limitations of the current approach that can

prevent alpine from generating an abstraction for a given problem space and problem.

First, the representation of the operators may limit the granularity of the abstractions.

Second, the algorithm may generate constraints that are unnecessary to ensure the ordered

monotonicity property.

49

7.2.1 Representing the Abstraction Hierarchies

The granularity of the abstraction hierarchies is determined by the language used to express

the preconditions and e�ects of the operators. If an operator uses a parameterized literal

for either a precondition or e�ect, then whether or not alpine can place two instances of

this literal at di�erent levels in the hierarchy depends on whether the two literals are distin-

guishable in the type hierarchy. This is because the algorithm determines the interactions

between literals based on the typed preconditions and typed e�ects of the operators.

Consider how di�erent representations of the Tower of Hanoi problem impose di�erent

constraints on the abstraction language. The completely instantiated representation, shown

in Table 4, does not impose any constraints on the abstraction language (although the poten-

tial interactions of the preconditions and e�ects of operators still impose some constraints)

because the operators are de�ned by fully-instantiated literals. In contrast, a representation

consisting of one operator for moving each disk would constrain the literals for each di�erent

size disk to be in the same abstraction level. For example, (on large peg1), (on large

peg2), and (on large peg3) would be forced into the same abstraction level regardless

of the interactions between these literals. This is because the operators have preconditions

and e�ects such as (on large peg), where peg is a variable, which prevents the system from

distinguishing between di�erent instances of the same literal. In this particular case, alpine

would generate the same abstraction hierarchy for either representation.

Another possible representation of the Tower of Hanoi consists of a single operator for

moving any disk. This operator is shown in Table 10. In the other two representations

the conditions referring to di�erent size disks were explicitly represented, so it was clear

which disks would interact with which other disks. In this representation there is only the

condition (on disk peg), so the potential interactions are not made explicit in the operator

representation. Instead the interactions of the di�erent conditions are implicitly determined

by the smaller relation. That is, moving a particular disk will only interact with smaller

disks, but this is determined when the operator is matched during planning. Thus, the

algorithm described earlier would not �nd any abstractions given this representation of the

problem.

To avoid this problem, an extended version of alpine was built that does �nd the ab-

straction of the Tower of Hanoi described earlier from the single-operator representation of

the problem. The extended system partially evaluates the operators and determines the pre-

cise interactions for any given literal in a domain. Thus, instead of grouping literals together

based on the granularity of the literals in the operators, each operator is partially evaluated

to determine both the potential e�ects and potential preconditions when the operator is used

to achieve various possible instantiated literals. To perform the partial evaluation, the static

conditions in the initial state are used to generate the bindings for the operator precondi-

tions. For the single-disk Tower of Hanoi representation the smaller, equal, and is-peg

relations would be used to partially evaluate the operator. Once the potential interactions

are determined for each literal in the domain, the basic algorithm for generating abstractions

is used to construct the abstraction hierarchy.

In the process planning and scheduling domain, the system can produce abstraction

spaces that distinguish between the various parts. Thus, the literals (shape a cylindrical)

and (shape b cylindrical) could be placed at separate levels in the abstraction hierarchy.

50

Table 10: Single-Operator Version of the Tower of Hanoi

(Move Disk

(preconds (and (is-peg source-peg)

(is-peg dest-peg)

(not (equal source-peg dest-peg))

(on disk source-peg)

(forall (smaller-disk)(smaller smaller-disk disk)

(and (not (on smaller-disk source-peg))

(not (on smaller-disk dest-peg))))))

(effects ((del (on disk source-peg))

(add (on disk dest-peg)))))

This allows the process planning for one part to be done separately from the process plan-

ning for another part because the di�erent parts will not interact until they are placed in the

schedule and the scheduling is done last. In the robot planning domain, partial evaluation

allows alpine to place the literals involving di�erent doors at separate abstraction levels.

Thus, some doors can be treated as details while other doors are dealt with in more abstract

spaces. Such a discrimination, for instance, is useful if the status of only some of the doors

are mentioned in the goal state.

The di�culty with abstracting instances of literals is that the complexity of the algorithm

is dependent on the number of literal classes and this extension signi�cantly increases the

number of literal classes. A good direction for future work would be to �nd ways to selectively

instantiate literals. One way to reduce the number of literal classes is to expand only some

of the argument types in a domain. For example, expanding only the parts in the scheduling

domains would allow di�erent parts to be placed on separate levels. Another approach to

control the number of literals is to determine which literals will actually be used in solving

a particular problem and only reason about those literals.

7.2.2 Constraints on the Abstraction Hierarchy

The most di�cult problem of generating the abstraction hierarchies is �nding a set of con-

straints that are su�cient to guarantee the ordered monotonicity problem, but do not over-

constrain the possible abstraction hierarchies. alpine attempts to identify only those in-

teractions that could actually occur in solving the given problem. However, since it forms

the abstractions by analyzing the operator schemas, it must make assumptions about which

operators could be used and in what context. Thus, the abstraction hierarchies are based

on the possible interactions, which are a superset of the actual interactions. As a result it

will in many cases overconstrain the hierarchy, thus reducing the granularity of the possible

abstraction hierarchies.

The \blocks world" [49] is a domain in which alpine is unable to generate abstractions,

51

although there are ordered monotonic abstractions for some problems. For example, given

the problem of building a stack of blocks with A on B, B on C, and C on the table, an ordered

monotonic abstraction hierarchy would deal with the conditions on each block in the opposite

order. For this example, the abstraction hierarchy would contain three levels, with C in the

most abstract level, B on the next level, and A in the �nal level. Thus, the problem would

be solved by �rst getting the bottom block on the table, next stacking the block above that

one, �nally placing the last block on the top of the stack. This abstraction hierarchy has

the ordered monotonicity property because as the plan is re�ned it will never be necessary

to undo any of the conditions involving a block in a more abstract space. However, alpine

cannot generate this abstraction because simply analyzing the possible interactions of the

operators, it appears that every condition will interact with all other conditions.

A promising direction for future work is to use explanation-based learning to acquire a set

of necessary conditions to guarantee the ordered monotonicity property. The system would

begin with no constraints on the abstraction hierarchy and add constraints on the possible

hierarchies whenever the ordered monotonicity property is violated. When a violation is

detected, which occurs any time an operator is applied at one level and changes a condition

in a more abstract level, the problem solver halts and invokes the ebl system to explain why

the violation occurred. From the proof of the violation, the system constructs a rule that

constrains some literal to be placed before some other literal in the abstraction hierarchy

whenever the conditions arise under which the violation occurs. The rules learned by the

ebl system would then be used to constrain the selection of the abstraction hierarchy for

the given problem as well as future problems in the same domain. The resulting constraints

on the abstraction hierarchy would be necessary, but not su�cient to guarantee the ordered

monotonicity property.

8 Conclusion

This paper presented an approach to automatically generating abstraction hierarchies. This

approach takes a problem and reformulates the initial problem space into a hierarchy of

abstract problem spaces that can then be used to solve the problem. This allows the problem

solver to focus on the di�cult parts �rst, decomposing the problem into simpler subproblems

and gradually reintroducing the details that were ignored. This section summarizes the

contributions of this work.

First, this article identi�ed the ordered monotonicity property, which is based on the

idea that the structure of an abstract plan should not be changed in the process of re�ning

the plan. This property provides an e�ective criterion for generating useful abstraction

hierarchies. It requires that the literals in an abstraction hierarchy are ordered such that

achieving literals at one level will not interact with a solution at a more abstract level.

Second, this article provided a completely automated approach to generating abstraction

hierarchies based on this property. The algorithm presented in this article is given a problem

space and problem as input and, by analyzing the potential interactions, it �nds a set

of constraints on the possible abstractions hierarchies that are su�cient to guarantee the

ordered monotonicity property. Because the best abstraction hierarchy varies from problem

to problem, the algorithm generates abstraction hierarchies that are tailored to the individual

52

problems. These abstraction spaces are then used for hierarchical problem solving.

Third, this article described an implementation of these ideas and demonstrated em-

pirically the e�ectiveness of the resulting abstractions. The abstractions are generated by

a system called alpine and then used in a hierarchical version of the prodigy problem

solver. The article presented results on both generating and using abstractions on large sets

of problems in multiple problem spaces. The use of abstraction is compared in prodigy to

single-level problem solving, as well as problem solving with hand-coded control knowledge

and control knowledge learned by ebl [44] and static [16]. The results show that the

abstractions provide considerable reductions in search and improvements in solution quality

over the basic prodigy system and provide comparable results to the EBL methods for

learning control knowledge.

Acknowledgments

There are many people that contributed in one way or another to this work. Jaime Carbonell,

my thesis advisor, provided invaluable guidance on this work. The other members of me

thesis committee, Tom Mitchell, Paul Rosenbloom, and Herb Simon, all contributed to

both the ideas and presentation of this work. Steve Minton, Oren Etzioni, Manuela Veloso,

Yolanda Gil, Qiang Yang, Josh Tenenberg, and Claire Bono all provided a great deal of

inspiration and support, as well as a lot of good ideas. Qiang and Josh also worked on the

initial formalization of the ordered monotonicity property with me. Oren gave me the code

to run the statistical signi�cance test. Finally, Oren, Yolanda, and the anonymous reviewers

all provided very helpful comments on earlier drafts of this article. I am grateful to all of

these people.

The research reported here was supported in part by an Air Force Laboratory Graduate

Fellowship through the Human Resources Laboratory at Brooks AFB, in part by the Avion-

ics Laboratory, Wright Research and Development Center, Aeronautical Systems Division

(AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-

90-C-1465, Arpa Order No. 7597, and in part by Rome Laboratory of the Air Force Systems

Command and the Defense Advanced Research Projects Agency under contract no. F30602-

91-C-0081. Views and conclusions contained in this report are the author's and should not

be interpreted as representing the o�cial opinion or policy of DARPA, HRL, AL, RL, the

U.S. Government, or any person or agency connected with them.

A Proofs

Lemma 1 If an abstraction hierarchy satis�es Restriction 1, then any justi�ed plan for

achieving a literal l does not add or delete any literal whose level is higher than Level(l).

Proof: Let �i be a justi�ed plan at level i that achieves l. Since �i is justi�ed, every

operator in �i is used either directly or indirectly to achieve l. Thus, the establishment

relations in �i form a directed, acyclic proof graph in which l is the root. The operators

form the nodes and the establishment relations form the arcs of the graph. The depth of a

53

node in the proof graph is the minimal number of arcs to the root l. Below, we prove by

induction on the depth of the proof graph that 8� 2 Ops(�i); e 2 E�, Level (l) � Level (e).

This condition will guarantee that no operator in �i a�ects any literal higher than Level (l)

in the hierarchy.

For the base case, consider the operator � at depth 1. Since �i achieves l and Justi�ed(�i; l),

then l 2 E�. From Restriction 1, 8e 2 E�, Level (l) = Level (e).

For the inductive case, assume that for each operator � at depth i, 8e 2 E�, Level (l) �

Level (e). Let � be an operator at depth i+1. Since �i is justi�ed, there exists an operator �

at depth i with p 2 P� , such that p 2 E�. FromRestriction 1, 8e 2 E�, Level (e) � Level (p).

From the inductive hypothesis, Level (l) � Level (e). Therefore, Level (l) � Level (p). From

Restriction 1, 8e0 2 E�, Level(p) = Level(e0). Thus, 8e0 2 E�, Level (l) � Level (e0). 2

Theorem 1 Every abstraction hierarchy satisfying Restriction 1 is an ordered monotonic

hierarchy.

Proof: From De�nition 5 we need to show that every re�nement of a justi�ed plan �i is an

ordered re�nement. By way of contradiction, assume that there exists a plan �i�1 that is a

re�nement of �i at level i� 1, but is not an ordered re�nement. It follows from De�nition 4

that an operator � in �i�1 changes a literal l, with Level (l) � i, but the corresponding

abstract operatorMi(�) is not in �i. Since �i�1 is a re�nement, it follows from De�nition 3

that �i�1 is justi�ed. Since �i�1 is justi�ed and � 2 Ops(�i�1), � must achieve some

condition p and be justi�ed with respect to that condition. In addition, since Mi(�) is

not in �i, it follows from De�nition 3 that Level (p) = i � 1. But � also achieves l, where

Level (l) � i, which contradicts lemma 1. 2

Lemma 2 If an abstraction hierarchy satis�es Restriction 2, then any justi�ed plan for

achieving a literal l does not add or delete any literal whose level is higher than Level(l).

Proof: The proof is analogous to the proof of Lemma 1. As above, let �i�1 be a justi�ed

plan at level i that achieves l, where the establishment relations in �i�1 form a directed,

acyclic proof graph in which l is the root. The proof is by induction on the depth of the

proof graph and shows that 8� 2 Ops(�); e 2 E�, Level (l) � Level (e).

For the base case, consider the operator � at depth 1. Since �i�1 achieves l and

Justi�ed(�; l), then l 2 E�. From Restriction 2, since l 2 Relevant(�; l), 8e 2 E�,

Level (l) � Level (e).

For the inductive case, assume that for each operator � at depth i, 8e 2 E�, Level (l) �

Level (e). Let � be an operator at depth i + 1. Since �i�1 is justi�ed, there exists an

operator � at depth i with precondition p 2 P� , such that p 2 E�. From Restriction 2, 8q 2

Relevant (�; Sg), Level (q) � Level (p). From the inductive hypothesis, Level (l) � Level (q).
Therefore, Level (l) � Level(p). Since p 2 Relevant (�; l), from Restriction 2, 8e0 2 E�,

Level (p) � Level (e0). Thus, 8e0 2 E�, Level (l) � Level (e0). 2

Theorem 2 Every abstraction hierarchy satisfying Restriction 2 with respect to a problem

� is a problem-speci�c ordered monotonic hierarchy with respect to �.

Proof: The proof is the same as the proof of Theorem 5 with Lemma 1 replaced by

Lemma 2. 2

54

References

[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA, 1983.

[3] John S. Anderson and Arthur M. Farley. Plan abstraction based on operator general-

ization. In Proceedings of the Seventh National Conference on Arti�cial Intelligence,

Saint Paul, MN, 1988, 100{104.

[4] Fahiem Bacchus and Qiang Yang. The downward re�nement property. In Proceedings of
the Twelfth International Joint Conference on Arti�cial Intelligence, Sydney, Australia,

1991, 286{292.

[5] Fahiem Bacchus and Qiang Yang. Downward re�nement and the e�ciency of hierar-

chical problem solving. Research Report CS-92-45, Department of Computer Science,

University of Waterloo, 1992.

[6] Ranan B. Banerji and George W. Ernst. A comparison of three problem-solving meth-

ods. In Proceedings of the Fifth International Joint Conference on Arti�cial Intelligence,
Cambridge, MA, 1977, 442{449.

[7] Ranan B. Banerji and George W. Ernst. Some properties of GPS-type problem solvers.

Technical Report 1179, Department of Computer Engineering, Case Western Reserve

University, 1977.

[8] Paul Benjamin, Leo Dorst, Indur Mandhyan, and Madeleine Rosar. An introduction to

the decomposition of task representations in autonomous systems. In D. Paul Benjamin,

editor, Change of Representation and Inductive Bias, Kluwer, Boston, MA, 1990, 125{

146.

[9] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton. PRODIGY: An integrated

architecture for planning and learning. In Kurt VanLehn, editor, Architectures for

Intelligence, Lawrence Erlbaum, Hillsdale, NJ, 1991, 241{278.

[10] Jie Cheng and Keki B. Irani. Ordering problem subgoals. In Proceedings of the Eleventh

International Joint Conference on Arti�cial Intelligence, Detroit, MI, 1989, 931{936.

[11] Jens Christensen. Automatic Abstraction in Planning. PhD thesis, Department of

Computer Science, Stanford University, 1991.

[12] Daniel S. Eavarone. A program that generates di�erence orderings for GPS. Technical

Report SRC-69-6, Systems Research Center, Case Western Reserve University, 1969.

[13] George W. Ernst. Su�cient conditions for the success of GPS. Journal of the Association

for Computing Machinery, 16(4), 1969, 517{533.

55

[14] George W. Ernst and Michael M. Goldstein. Mechanical discovery of classes of problem-

solving strategies. Journal of the Association for Computing Machinery, 29(1), 1982,

1{23.

[15] George W. Ernst and Allen Newell. GPS: A Case Study in Generality and Problem

Solving. ACM Monograph Series. Academic Press, New York, NY, 1969.

[16] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD thesis, School

of Computer Science, Carnegie Mellon University, 1990.

[17] Oren Etzioni. A structural theory of explanation-based learning. Arti�cial Intelligence,

60(1), 1993, 93{140.

[18] Oren Etzioni and Ruth Etzioni. Statistical methods for analyzing speedup learning

experiments. Machine Learning, forthcoming.

[19] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized

robot plans. Arti�cial Intelligence, 3(4), 1972, 251{288.

[20] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Arti�cial Intelligence, 2(3/4), 1971, 189{208.

[21] Eugene Fink. Justi�ed plans and ordered hierarchies. Master's Thesis, Department of

Computer Science, University of Waterloo, 1992.

[22] Eugene Fink and Qiang Yang. Automatically abstracting the e�ects of operators. In

J. Hendler, editor, Arti�cial Intelligence Planning Systems: Proceedings of the First

International Conference (AIPS92), Morgan Kaufmann, San Mateo, CA, 1992, 243{

251.

[23] Fausto Giunchiglia and Toby Walsh. Abstract theorem proving. In Proceedings of the
Eleventh International Joint Conference on Arti�cial Intelligence, Detroit, MI, 1989,

372{377.

[24] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Arti�cial Intelligence,

57(2-3), 1992, 323{390.

[25] Michael M. Goldstein. The mechanical discovery of problem solving strategies. Tech-

nical Report ESCI-77-1, Systems Engineering, Computer Engineering and Information

Sciences, Case Western Reserve University, 1978.

[26] H. Altay Guvenir and George W. Ernst. Learning problem solving strategies using

re�nement and macro generation. Arti�cial Intelligence, 44(1-2), 1990, 209{243.

[27] Robert Holte, Robert Zimmer, and Alan MacDonald. When does changing representa-

tion improve problem-solving performance? In Proceedings of the Workshop on Change
of Representation and Problem Reformulation, Nasa Ames Research Center, Technical

Report FIA-92-06, 1992, 100{105.

56

[28] Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Machine
Learning, 3(4), 1989, 285{317.

[29] Keki B. Irani and Jie Cheng. Subgoal ordering and goal augmentation for heuristic

problem solving. In Proceedings of the Tenth International Joint Conference on Arti�cial

Intelligence, Milan, Italy, 1987, 1018{1024.

[30] Craig A. Knoblock. Abstracting the Tower of Hanoi. In Proceedings of the Workshop on

Automatic Generation of Approximations and Abstractions, Boston, MA, 1990, 13{23.

[31] Craig A. Knoblock. Learning abstraction hierarchies for problem solving. In Proceedings

of the Eighth National Conference on Arti�cial Intelligence, Boston, MA, 1990, 923{928.

[32] Craig A. Knoblock. Automatically Generating Abstractions for Problem Solving. PhD

thesis, School of Computer Science, Carnegie Mellon University, 1991.

[33] Craig A. Knoblock. Search reduction in hierarchical problem solving. In Proceedings of
the Ninth National Conference on Arti�cial Intelligence, Anaheim, CA, 1991, 686{691.

[34] Craig A. Knoblock. An analysis of ABSTRIPS. In J. Hendler, editor, Arti�cial Intelli-
gence Planning Systems: Proceedings of the First International Conference (AIPS92),

Morgan Kaufmann, San Mateo, CA, 1992, 126{135.

[35] Craig A. Knoblock. Generating Abstraction Hierarchies: An Automated Approach to

Reducing Search in Planning. Kluwer Academic Publishers, Norwell, MA, 1993.

[36] Craig A. Knoblock, Steven Minton, and Oren Etzioni. Integrating abstraction and

explanation-based learning in PRODIGY. In Proceedings of the Ninth National Con-
ference on Arti�cial Intelligence, Anaheim, CA, 1991, 541{546.

[37] Craig A. Knoblock, Josh D. Tenenberg, and Qiang Yang. Characterizing abstraction

hierarchies for planning. In Proceedings of the Ninth National Conference on Arti�cial

Intelligence, Anaheim, CA, 1991, 692{697.

[38] Richard E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelligence,

26(1), 1985, 35{77.

[39] Richard E. Korf. Planning as search: A quantitative approach. Arti�cial Intelligence,
33(1), 1987, 65{88.

[40] John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: An architecture for

general intelligence. Arti�cial Intelligence, 33(1), 1987, 1{64.

[41] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in Soar: The anatomy

of a general learning mechanism. Machine Learning, 1(1), 1986, 11{46.

[42] Vladimir Lifschitz. On the semantics of STRIPS. In Proceedings of the Workshop on

Reasoning about Actions and Plans, Timberline, Oregon, 1986, 1{9.

57

[43] Steven Minton. Selectively generalizing plans for problem solving. In Proceedings of the
Ninth International Joint Conference on Arti�cial Intelligence, Los Angeles, CA, 1985,

596{599.

[44] Steven Minton. Learning E�ective Search Control Knowledge: An Explanation-Based

Approach. PhD thesis, Computer Science Department, Carnegie Mellon University,

1988.

[45] Steven Minton. Quantitative results concerning the utility of explanation-based learn-

ing. Arti�cial Intelligence, 42(2-3), 1990, 363{392.

[46] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R. Kuokka, Oren Et-

zioni, and Yolanda Gil. Explanation-based learning: A problem solving perspective.

Arti�cial Intelligence, 40(1-3), 1989, 63{118.

[47] Jack Mostow and Armand E. Prieditis. Discovering admissible heuristics by abstracting

and optimizing: A transformational approach. In Proceedings of the Eleventh Interna-
tional Joint Conference on Arti�cial Intelligence, Detroit, MI, 1989, 701{707.

[48] Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-Hall, Englewood

Cli�s, NJ, 1972.

[49] Nils J. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Co., Palo Alto,

CA, 1980.

[50] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, MA, 1984.

[51] David A. Plaisted. Theorem proving with abstraction. Arti�cial Intelligence, 16(1),

1981, 47{108.

[52] Patricia Riddle. Automating problem reformulation. In D. Paul Benjamin, editor,

Change of Representation and Inductive Bias, Kluwer, Boston, MA, 1990, 105{124.

[53] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cial Intelligence,

5(2), 1974, 115{135.

[54] Earl D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier, New York,

NY, 1977.

[55] Alberto Segre, Charles Elkan, and Alex Russell. A critical look at experimental evalu-

ations of EBL. Machine Learning, 6(2), 1991, 183{195.

[56] David E. Smith and Mark A. Peot. A critical look at Knoblock's hierarchy mechanism.

In J. Hendler, editor, Arti�cial Intelligence Planning Systems: Proceedings of the First

International Conference (AIPS92), Morgan Kaufmann, San Mateo, CA, 1992, 307{

308.

58

[57] David E. Smith and Mark A. Peot. Postponing conicts in nonlinear planning. In

Proceedings of the Eleventh National Conference on Arti�cial Intelligence, Washington,

DC, 1993.

[58] Mark Ste�k. Planning with constraints (MOLGEN: Part 1). Arti�cial Intelligence,

16(2), 1981, 111{140.

[59] Austin Tate. Project planning using a hierarchic non-linear planner. Research Report 25,

Department of Arti�cial Intelligence, University of Edinburgh, Edinburgh, Scotland,

1976.

[60] Austin Tate, James Hendler, and Mark Drummond. A review of AI planning techniques.

In Readings in Planning, Morgan Kaufmann Publishers, San Mateo, CA, 1990, 26-49.

[61] Josh D. Tenenberg. Abstraction in Planning. PhD thesis, Computer Science Depart-

ment, University of Rochester, 1988.

[62] Amy Unruh and Paul S. Rosenbloom. Abstraction in problem solving and learning.

In Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence,
Detroit, MI, 1989, 681{687.

[63] Amy Unruh and Paul S. Rosenbloom. Two new weak method increments for abstrac-

tion. In Proceedings of the Workshop on Automatic Generation of Approximations and
Abstractions, Boston, MA, 1990, 78{86.

[64] David E. Wilkins. Domain-independent planning: Representation and plan generation.

Arti�cial Intelligence, 22(3), 1984, 269{301.

[65] David E. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.

Morgan Kaufmann, San Mateo, CA, 1988.

[66] Qiang Yang. Improving the E�ciency of Planning. PhD thesis, Department of Com-

puter Science, University of Maryland, 1989.

[67] Qiang Yang, Josh Tenenberg, and Steve Woods. Abstraction in nonlinear planning.

Research Report CS-91-65, Department of Computer Science, University of Waterloo,

1991.

[68] Qiang Yang and Josh D. Tenenberg. Abtweak: Abstracting a nonlinear, least commit-

ment planner. In Proceedings of the Eighth National Conference on Arti�cial Intelli-

gence, Boston, MA, 1990, 204{209.

59

