
Semi-Relaxed Plan Heuristics

Emil Keyder
INRIA

Nancy, France
emilkeyder@gmail.com

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Patrik Haslum
The Australian National University & NICTA

Canberra, Australia
patrik.haslum@anu.edu.au

Abstract

Heuristics based on the delete relaxation are at the forefront
of modern domain-independent planning techniques. Here
we introduce a principled and flexible technique for augment-
ing delete-relaxed tasks with a limited amount of delete in-
formation, by introducing special fluents that explicitly rep-
resent conjunctions of fluents in the original planning task.
Differently from previous work in this direction, conditional
effects are used to limit the growth of the task to be linear,
rather than exponential, in the number of conjunctions that
are introduced, making its use for obtaining heuristic func-
tions feasible. We discuss how to obtain an informative set of
conjunctions to be represented explicitly, and analyze and ex-
tend existing methods for relaxed planning in the presence of
conditional effects. The resulting heuristics are empirically
evaluated, and shown to be sometimes much more informa-
tive than standard delete-relaxation heuristics.

Introduction
Planning as heuristic search is one of the most successful ap-
proaches to planning. Some of the most informative heuris-
tics in both the optimal planning setting, in which heuris-
tics must be admissible, and the satisficing setting, in which
there is no such requirement, are obtained as the estimated
cost of the delete relaxation of the original planning task
(Helmert and Domshlak 2009; Bonet and Geffner 2001;
Hoffmann and Nebel 2001). This relaxation simplifies the
task by assuming that every variable value, once achieved,
persists during the execution of the rest of the plan.

While such heuristics are often informative, it is desirable
to be able to take into account delete information. Some
previous work in this direction has focused on local search
for low-conflict relaxed plans, while still considering the un-
derlying delete-relaxation problem (Baier and Botea 2009).
We instead look for inspiration in the admissible hm family
of heuristics (Haslum and Geffner 2000), which rather than
obtaining estimates by considering single fluents, consider
the costs of conjunctions of fluents of size ≤ m. The hm
heuristics provide the guarantee that there existsm such that
hm = h∗. Realizing this guarantee, however, comes at a
large computational cost, as the number of conjunctions that
must be considered is exponential in m. Furthermore, the

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

required m is often large, as the cost of a conjunction (e. g.,
the goal) is estimated as the cost of its most costly subset of
size ≤ m, ignoring the cost of the remaining fluents.

The hm heuristic has recently been recast as the hmax cost
of a planning task Πm with no deletes (Haslum 2009). This
is achieved by representing conjunctions c of size≤ m in the
original task with new fluents πc, called π-fluents, and mod-
ifying the operators of the planning task to have these flu-
ents as preconditions or add effects as appropriate. The Πm

compilation is not useful, however, for obtaining more in-
formative heuristic estimates, as h+(Πm) is not admissible.
The more recent ΠC construction (Haslum 2012) (hereafter
HPC) fixes this issue, at the cost of growth exponential in
the number of π-fluents.1 ΠC also offers the possibility of a
tradeoff between representation size and heuristic accuracy,
by allowing the choice of an arbitrary set of conjunctions
C and corresponding π-fluents, while treating the remaining
fluents in the task as in the standard delete relaxation. This
stands in contrast to the hm heuristic and the Πm compila-
tion, in which all conjunctions of size ≤ m are represented.

While the ΠC task has the potential to yield extremely in-
formative heuristics, its use in practice is precluded by its
exponential growth in the size of C. This severely limits
the number of conjunctions that can feasibly be considered.
Here, we introduce a related construction ΠC

ce that is simi-
lar to ΠC , but that makes use of conditional effects to limit
the growth of the task to be linear in |C|. This exponential
gain in size comes at the price of some information loss rel-
ative to ΠC . However, as we show, ΠC

ce is still perfect in the
limit: there always exists a set of conjunctions C such that
h+(ΠC

ce) = h∗. Furthermore, there exist families of tasks
for which ΠC

ce can represent the same heuristic function as
ΠC in exponentially less space.

To determine whether these theoretical properties can
translate into an improvement in planning performance, two
issues must be addressed: how to choose the conjunctions
in C so as to maximize the information gained from their
addition to the planning task, and how to solve the result-
ing relaxed planning task with conditional effects so as to
obtain an informative heuristic. We discuss our solutions to

1HPC focuses on solving ΠC optimally to obtain incremental
lower bounds on the cost of an optimal plan, here we consider the
use of these constructions to obtain heuristic functions.

these questions, and evaluate the resulting partial relaxation
heuristics on a wide range of planning benchmarks, showing
that for satisficing planning, they can significantly improve
on the state of the art. For optimal planning, i. e., admissible
approximations of h+(ΠC

ce), we discuss some major issues
that arise from the presence of conditional effects; address-
ing these comprehensively is a topic for future work.

Background
Our planning model is based on the propositional STRIPS
formalization, to which we add action costs and conditional
effects. States and operators are defined in terms of a set of
propositional variables, or fluents, with a state s ⊆ F given
by the set of fluents that are true in that state. A planning
task is described by a 4-tuple Π = 〈F,A, I,G〉, where F
is a set of such variables, A is the set of actions, I ⊆ F is
the initial state, and G ⊆ F describes the set of goal states,
given by {s | G ⊆ s}. Each action a ∈ A consists of a
4-tuple 〈pre(a), add(a), del(a), ce(a)〉 and a cost cost(a) ∈
R+

0 . Here, pre(a), add(a), and del(a) are subsets of F ;
ce(a) = {ce(a)1, . . . , ce(a)n} denotes a set of conditional
effects, each of which is a triple 〈c(a)i, add(a)i, del(a)i〉 of
subsets of F . If ce(a) = ∅ for all a ∈ A, we say that Π is a
STRIPS planning task.

An action a is applicable in s if pre(a) ⊆ s. The result of
applying it is s[a] = (s \ (del(a) ∪

⋃
{i|c(a)i⊆s} del(a)i)) ∪

(add(a) ∪
⋃
{i|c(a)i⊆s} add(a)i). A plan is a sequence of

actions σ = a1, . . . , an such that applying it in I results in a
goal state. The cost of σ is

∑n
i=1 cost(ai), with an optimal

plan σ∗ being a plan with minimal cost.
A heuristic for Π is a function h mapping states of Π

into R+
0 . The perfect heuristic h∗ maps each state s to

the cost of an optimal plan for s. A heuristic h is admis-
sible if h(s) ≤ h∗(s) for all s. By h(Π′), we denote a
heuristic function for Π whose value in s is given by esti-
mating the cost of the corresponding state s′ in a modified
task Π′. We specify Π′ in terms of the transformation of
Π = 〈F,A, I,G〉 into Π′ = 〈F ′, A′, I ′, G′〉; s′ is obtained
by applying to s the same transformation used to obtain I ′
from I . To make explicit that h is a heuristic computed on
Π itself, we write h(Π).

The delete relaxation Π+ of a planning task is obtained
by discarding the delete effects in all actions and condi-
tional effects. Formally, Π+ = 〈F,A+, I, G〉, where A+ =
{〈pre(a), add(a), ∅, ce+(a)〉 | a ∈ A}, where ce+(a) =
{〈c(a)i, add(a)i, ∅〉 | ce(a)i ∈ ce(a)}, and each action
a+ ∈ A+ has the same cost as the corresponding action
a in A. The optimal relaxation heuristic h+ for Π is defined
as the cost h∗(Π+) of an optimal plan for Π+.

We denote the powerset of F with P(F). As in the intro-
duction, in the context of ΠC and ΠC

ce we often refer to the
fluent subsets c ∈ C as conjunctions.

The Πm, ΠC and ΠC
ce Compilations

Πm was the first compilation to consider the computation of
heuristics similar to hm in a delete relaxation context, and
works by introducing fluents πc for each set {c ∈ P(F) |
|c| ≤ m} (Haslum 2009). The fluents πc are added to any

fluent set in the task (like an action precondition) that con-
tains the associated set c. Furthermore, representatives of
each action a are added to the task to model the situation in
which the elements of a set of fluents f of size ≤ m− 1 are
already true when a is applied, and a adds the fluents in c\f
while deleting no fluent in f , thereby making every fluent in
c, and therefore πc, true.

The non-admissibility of h∗(Πm) = h+(Πm) is due to
the construction of these representatives. Sets of fluents that
are simultaneously made true with a single application of an
action a in Π may require several representatives of a to ex-
plicitly achieve the same effect in Πm. Consider for example
an action a adding a fluent p in a state in which q and r are
already true. In Π this makes the fluents p, q, and r true si-
multaneously, whereas in Π2, two different representatives
of a are required: one with f = {q} adding π{p,q}, and one
with f = {r} adding π{p,r}.

The ΠC compilation solves this problem by instead cre-
ating an exponential number of representatives of a, each of
which corresponds to an application of a making a set of
π-fluents true (HPC). In the above example, separate rep-
resentatives of a are introduced for each of the π-fluent
sets ∅, {π{p,q}}, {π{p,r}}, and {π{p,q}, π{p,r}}, and the
representative resulting from the last of these can be ap-
plied to make the two π-fluents true simultaneously. ΠC

also differs from Πm in that it allows the choice of a set
C ⊆ P(F), and introduces fluents πc for only those c ∈ C
rather than for all subsets of size at most m. In what fol-
lows, given a set of fluents X ⊆ F , we use the shorthand
XC = X∪{πc | c ∈ C∧c ⊆ X}. In other words, XC con-
sists of the set of fluentsX itself, together with all fluents πc
representing c ∈ C such that c ⊆ X .

Definition 1 (The ΠC compilation) Given a STRIPS plan-
ning task Π = 〈F,A, I,G〉 and a set of conjunctions C ⊆
P(F), ΠC is the planning task 〈FC , AC , IC , GC〉, where
AC contains an action aC

′
for each pair a ∈ A, C ′ ⊆ C

such that ∀c′ ∈ C ′,
(1) del(a) ∩ c′ = ∅ ∧ add(a) ∩ c′ 6= ∅, and
(2) ∀c ∈ C((c ⊆ c′ ∧ add(a) ∩ c 6= ∅) =⇒ c ∈ C ′),

and aC
′

is given by del(aC
′
) = ∅,2 ce(aC

′
) = ∅, and

pre(aC
′
) = (pre(a) ∪

⋃
c′∈C′

(c′ \ add(a)))C

add(aC
′
) = (add(a) ∪ (pre(a) \ del(a)))C ∪ {πc′ | c′ ∈ C ′}

The representatives aC
′

of a enforce that no element of the
sets c′ ∈ C ′ is deleted, and require that the fluents that are
elements of any c′ ∈ C ′ but that are not added by a be true
before aC

′
can be executed. Constraint (2) ensures a form

of non-redundancy: if aC
′

adds a π-fluent πc′ , then it also
adds all π-fluents πc such that c ⊆ c′, as all fluents in c
necessarily become true with the application of the action.

2As defined by HPC, the actions in ΠC also have delete effects,
ensuring that real (non-relaxed) plans correspond to plans in the
original task. Since we only consider delete relaxations here, this
does not concern us.

ΠC enumerates all possible subsets of C and therefore
grows exponentially in |C|. This exponentiality is reminis-
cent of the canonical conditional effects compilation used to
convert planning tasks with conditional effects into classi-
cal STRIPS planning tasks with exponentially more actions
(Gazen and Knoblock 1997). The ΠC

ce compilation that we
introduce here is the result of applying roughly the reverse
transformation to ΠC , resulting in a closely related planning
task that has a number of conditional effects linear in |C|:
Definition 2 (The ΠC

ce compilation) Given a STRIPS plan-
ning task Π = 〈F,A, I,G〉 and a set of conjunctions C ⊆
P(F), ΠC

ce is the planning task 〈FC , AC
ce, I

C , GC〉 where

AC
ce = {〈pre(aC), add(aC), del(aC), ce(aC)〉 | a ∈ A},

and aC is given by

pre(aC) = pre(a)C

add(aC) = (add(a) ∪ (pre(a) \ del(a)))C

del(aC) = ∅
ce(aC) = {〈(pre(a) ∪ (c \ add(a)))C , {πc}, ∅〉

| c ∈ C ∧ c ∩ del(a) = ∅ ∧ c ∩ add(a) 6= ∅}
Rather than enumerating the sets of π-fluents that may be

made true by an action, ΠC
ce uses conditional effects to im-

plicitly describe the conditions under which each is made
true. The only information lost in doing so is the infor-
mation encoded by cross-context π-fluents in preconditions,
which appear in action representatives in ΠC , but not in the
preconditions or conditions of the corresponding actions in
ΠC

ce. For action representatives aC
′

in ΠC , these are π-
fluents πy ∈ pre(aC

′
) such that there is no single c ∈ C ′

for which y ⊆ (c \ add(a)) ∪ pre(a). Considering our ex-
ample above, π{q,r} is a precondition for the action repre-
sentative that adds both π{p,q} and π{p,r} in ΠC , but does
not appear as a condition in any of the conditional effects
of the action in ΠC

ce. Since effect conditions are determined
individually for each πc, such conditions are never included.
We will return to this below when discussing the theoretical
relationship between ΠC and ΠC

ce.

Example 1 Consider the STRIPS planning task (adapted
from Helmert and Geffner (2008)) with variables
{x0, . . . , xn, y}, initial state I = {x0, y}, goal G = {xn},
and actions

a : 〈∅, {y}, ∅, ∅〉 bi : 〈{xi, y}, {xi+1}, {y}, ∅〉
for i = 0, . . . , n− 1.

The optimal solution to this planning task takes the form
b0, a, b1, a, . . . , bn−1, and has cost 2n − 1. In the delete
relaxation of the task, the fact that y is deleted after each
application of bi is ignored, and the optimal plan has cost n.

When a π-fluent πxi,y is introduced in the ΠC
ce com-

pilation, it is added to the precondition of the action
bi, and a new conditional effect ce(a)i of the form
〈{xi}, {π{xi,y}}, ∅〉 is created for action a. No conditional
effects are added to any of the actions bi, as each deletes y
and therefore cannot be an achiever of the π-fluent. This in-
creases the optimal delete relaxation cost of the task by 1, as

an instance of amust be added to the relaxed plan to achieve
the newly introduced precondition of bi. If all π-fluents of
the form π{xi,y} are introduced, the delete relaxation cost of
ΠC

ce becomes 2n− 1, the optimal cost. While h2 would also
give the optimal cost of this problem, its computation would
require the consideration of Θ(n2) fluent pairs rather than
the linear number of π-fluents used here.

An important practical optimization for both ΠC and ΠC
ce

concerns mutex information. If such information about the
original planning task is available, then action representa-
tives and conditional effects created by the compilation that
have unreachable preconditions or conditions can be dis-
carded with no loss of information.3

Theoretical Properties of ΠC
ce

Here we outline some theoretical properties of ΠC
ce, consid-

ering the cost h+(ΠC
ce) of its optimal solutions instead of

more practical approximations (note that for ΠC
ce and the ver-

sion of ΠC considered here, h+ = h∗ as no delete effects are
present). We first show two fundamental properties:

Proposition 1 (Consistency and admissibility) h+(ΠC
ce)

is consistent and admissible.

Proof sketch: Consistency follows from the fact that ΠC
ce

defines a state space in which the cost of a state h+(ΠC
ce)(s

′)
is necessarily associated with a plan σ∗(s′). Given s, a such
that s[a] = s′, a · σ∗(s′) then necessarily constitutes a plan
for s, and therefore h+(ΠC

ce)(s) ≤ cost(a) + h+(ΠC
ce)(s

′).
Admissibility follows from consistency.

Proposition 2 (h+(ΠC
ce) dominates h+(Π)) Given a plan-

ning task Π and a set of conjunctions C, h+(ΠC
ce) ≥ h+(Π).

There are cases where the inequality is strict.

Proof sketch: This follows from the fact that any plan for
ΠC

ce is also a plan for Π+, yet the inverse is not the case.

We now consider the relationship between the ΠC and ΠC
ce

compilations. As mentioned above, information encoded by
cross-context preconditions is lost when moving from the
exponential ΠC to the linear ΠC

ce. Estimates obtained from
ΠC

ce may therefore be inferior to those obtained from ΠC :

Proposition 3 (h+(ΠC) dominates h+(ΠC
ce)) Given

a planning task Π and a set of conjunctions C,
h+(ΠC) ≥ h+(ΠC

ce).

Proof sketch: The claim follows directly from the fact that
the standard conditional effects compilation of ΠC

ce (Gazen
and Knoblock 1997) is equivalent to ΠC except for the pres-
ence of the cross-context preconditions discussed above.

3If enough π-fluents were added to the compilation, this mutex
information would be detected during the heuristic computation it-
self, as the relevant π-fluents would become unreachable. Includ-
ing all sets of fluents of size 2, for example, would lead to all h2

mutexes being found. Exploiting available mutex information al-
lows us to avoid the addition of unnecessary π-fluents, and thus
helps to keep the compilation small.

Proposition 4 (h+(ΠC) may strictly dominate h+(ΠC
ce))

There exist planning tasks Π and sets of conjunctions C
such that h+(ΠC) > h+(ΠC

ce).

Proof sketch: Consider the planning task with fluent set
F = {p1, p2, r, g1, g2}, initial state I = {p1}, goal G =
{g1, g2}, and actions

ap2 : 〈{p1}, {p2}, {r, p1}, ∅〉 ar : 〈∅, {r}, ∅, ∅〉
ag1 : 〈{p1, r}, {g1}, ∅, ∅〉 ag2 : 〈{p2, r}, {g2}, ∅, ∅〉

Let C be the set of all subsets of F of size 2. The
only optimal plan for both Π and ΠC is the sequence
〈ar, ag1 , ap2

, ar, ag2〉. However, 〈ap2
, ar, ag1 , ag2〉 is a plan

of lower cost for ΠC
ce. This plan takes advantage of the fact

that π{p1,r} and π{p2,r} can be simultaneously achieved by
the action ar, using two different conditional effects which
have the conditions p1 and p2, without making true the (un-
reachable) cross-context π-fluent π{p1,p2}.

The choice ofC as all conjunctions of size 2 in Proposition 4
implies that there exist tasks in which it is necessary to con-
sider strictly larger conjunctions in order to obtain equally
good heuristic estimates with ΠC

ce as are obtained with ΠC .
This is not necessarily problematic however, as differently
from hm, the sizes of ΠC

ce and ΠC are not exponential in the
size of the conjunctions considered.

The advantage of ΠC
ce over ΠC is that it is exponentially

smaller in |C|; the above “domination” therefore must be
qualified against this reduction in size. Furthermore, ΠC

ce
preserves the ability to compute a perfect heuristic given a
sufficiently large set C of conjunctions. We first consider
the equivalent result for ΠC (HPC):
Theorem 1 (h+(ΠC) is perfect in the limit) Given a plan-
ning task Π, there exists C such that h+(ΠC) = h∗(Π).
Proof sketch: It is known that hm(Π) = h∗(Π) for suffi-
ciently high values of m (Haslum and Geffner 2000), and as
shown by Haslum (2009), h1(Πm) = hm(Π). It can eas-
ily be demonstrated that for C = {c ∈ P(F) | |c| ≤ m},
h1(ΠC) = h1(Πm). Choosing an appropriate m and the
corresponding C, we then have that h∗(Π) = hm(Π) =
h1(Πm) = h1(ΠC) ≤ h+(ΠC) ≤ h∗(Π), with the last in-
equality following from the admissibility of ΠC .

This proof is different from that given (implicitly) in HPC.
We use it here as it can be conveniently adapted to show that
ΠC

ce preserves this property:
Theorem 2 (h+(ΠC

ce) is perfect in the limit) Given a plan-
ning task Π, there exists C such that h+(ΠC

ce) = h∗(Π).
Proof sketch: To show this, we first show that for any set
of conjunctions C, h1(ΠC) = h1(ΠC

ce). This is because
a minimum cost h1 path in ΠC need not make use of any
action that adds more than one π-fluent, since the critical
path passes through single fluents in the task. Therefore,
cross-context π-fluents do not play a role. The claim follows
from this fact and the proof of Theorem 1.

The proofs of Theorems 1 and 2 rely on obtaining perfect
hm, which is clearly unfeasible in general since this involves

enumerating all subsets of fluents (and hence all possible
states). However, ΠC and ΠC

ce offer flexibility, in allowing us
to choose the set C: while selecting all subsets guarantees a
perfect heuristic, this may be achieved with much less effort,
especially when using ΠC

ce, whose growth in |C| is linear.
Indeed, there are task families for which obtaining h∗ takes
exponential effort with hm, and requires exponentially-sized
ΠC , yet for which ΠC

ce remains small:
Proposition 5 (Expressive power of ΠC

ce vs. hm and ΠC)
There exist parametrized task families Πk such that (a) if
hm(Πk) = h∗(Πk) then m ≥ k; (b) h+((Πk)C) = h∗(Πk)
implies (Πk)C has ≥ 2k action representatives; (c) for
any k there exists Ck such that |Ck| ≤ k · α, where α is a
constant for the family Πk, and h+((Πk)Cce) = h∗(Πk).
Proof sketch: Members Πk of one such family are given
by the combination of k planning tasks of the type in Ex-
ample 1, each of size n. Πk has k goals, and hm = h∗ iff
m ≥ k + 1. For both (Πk)C and (Πk)Cce to be optimal, n π-
fluents for each of the individual subtasks, and therefore kn
π-fluents in total, must be introduced. The number of con-
ditional effects in (Πk)Cce is then linear in k, but the number
of action representatives in (Πk)C is exponential.

In practice, of course, our heuristic is not usually perfect,
and we instead try to select a setC that yields an informative
heuristic with a reasonably sized representation.

Practical Aspects of Using ΠC
ce

We now turn to the practical issues involved with using the
ΠC

ce compilation to obtain a heuristic for the original plan-
ning task. There are two questions to be answered: How
to obtain heuristic estimates from delete-free planning tasks
with conditional effects, and how to choose the set C.

LM-cut
We first consider optimal planning with admissible ap-
proximations of h+(ΠC

ce). The state-of-the-art approach to
approximating h+ is the LM-cut algorithm (Helmert and
Domshlak 2009). However, it cannot be directly applied
to the ΠC

ce task due to the presence of conditional effects,
for which its behaviour is undefined. This turns out to be a
formidable obstacle, as there is no straightforward extension
to the algorithm that preserves its two fundamental proper-
ties, (i) admissibility and (ii) domination of hmax.

For (ii), consider a planning task Π with a single action a
that has two conditional effects ce(a)1 = 〈{p}, {q}, ∅〉 and
ce(a)2 = 〈{q}, {r}, ∅〉, initial state {p}, and goal {r}. We
have h+(Π) = hmax(Π) = 2 due to the critical path 〈a, a〉,
and the justification graph considered by LM-cut consists
of this same sequence. The first cut found is {a}. When
the cost of a is reduced, the remaining task has hmax cost 0,
resulting in a cost estimate of 1.

The problem here is that different conditional effects of an
action may be part of the same critical path. A natural ap-
proach is therefore to reduce costs per individual conditional
effect, rather than for all of the effects of the action at once.
Unfortunately, it turns out that this does not preserve admis-
sibility. Indeed, it is possible to construct a STRIPS task Π

whose ΠC
ce compilation has the following properties. All ex-

cept a single action a have no conditional effects, and a has
exactly two. Reducing the cost of a globally when it is first
encountered in a cut leads to a heuristic estimate that is less
than hmax(ΠC

ce), while treating the effects separately leads to
an estimate greater than h+(ΠC

ce)=h
∗(Π). There is therefore

no strategy based on considering effects individually that
preserves both (i) and (ii) on all planning tasks. Since admis-
sibility cannot be sacrificed, we must reduce costs globally.
This means that despite Theorem 2, hLM-cut(ΠC

ce) does not
converge to h∗(Π). This could of course be fixed by using
max(hmax, hLM-cut) as the heuristic value, yet as hmax is typ-
ically not informative, this strategy is not useful in practice.

Even if every action in the original task need be applied
at most once, in the ΠC

ce compilation critical paths may con-
tain multiple occurences of the same action. This can lead to
situations in which the addition of a π-fluent decreases the
LM-cut estimate. Consider a task with goal G = {p, q}, ini-
tial state I = ∅, and unit-cost actions A = {a, b} which add
p and q respectively, with no preconditions. When LM-cut is
used on Π+, both landmarks {a} and {b} are easily discov-
ered, giving the correct estimate 2. After the introduction
of the fluent π{p,q}, however, its hmax value of 2 is higher
than that of each of p and q (1), and π{p,q} is the goal flu-
ent selected by the precondition choice function in LM-cut.
Each of a and b can achieve π{p,q}, leading to the cut {a, b}.
The cost of both actions is then reduced to 0, resulting in the
overall cost estimate 1.

On the IPC benchmarks, optimal planning performance
is worse with hLM-cut(ΠC

ce) than with hLM-cut(Π) in all but a
few cases. It remains an open question whether this can be
improved.

Non-Admissible Approximations
The problem of finding sub-optimal relaxed plans for plan-
ning tasks with conditional effects has previously been con-
sidered (Hoffmann and Nebel 2001). Here, we refine and ex-
tend those techniques. This is especially important because
(unlike in most IPC benchmarks) the structure of the condi-
tional effects introduced in ΠC

ce can be rather complex, with
multiple dependencies between different actions and even
between different executions of the same action.4

Non-admissible delete-relaxation heuristics are typically
obtained from a best-supporter function bs : F 7→ A with
the intuition that bs(p) is an action adding p that minimizes
the cost of making p true. This function is used in combina-
tion with a relaxed plan extraction algorithm, which when
no conditional effects are present, computes a set of actions
σ that form a relaxed plan for the planning task, as defined
by the following rules (Keyder and Geffner 2008):

σ(p) =

{
{} if p ∈ s
bs(p) ∪ σ(pre(bs(p))) otherwise

σ(P) =
⋃
p∈P

σ(p)

4We remark that similar issues arise in approaches compiling
uncertainty into classical planning with conditional effects (Pala-
cios and Geffner 2009; Bonet, Palacios, and Geffner 2009).

Existing methods for choosing best supporters, such as hadd

or hmax, can easily be extended to conditional effects by
treating each conditional effect in the task as a separate ac-
tion. In particular, this is the method employed (using hmax)
by the heuristic used in FF (Hoffmann and Nebel 2001):
for each relaxed conditional effect ce(a)+i with condition
c(a)i and add add(a)i, an action ai with the same add effect
add(ai) = add(a)i and precondition pre(ai) = pre(a) ∪
c(a)i is created. The resulting set of effects E = σ(G) then
form a relaxed plan. However as a single action execution
may trigger several of its conditional effects, there may exist
a relaxed plan that uses fewer occurrences of an action than
implied by E. The question then arises of how to optimally
schedule the plan so as to minimize the number of action
applications required. FF uses a simple heuristic solution to
this problem that we outline and improve upon below, but
we first note that the problem is actually NP-complete:

Proposition 6 (Scheduling conditional relaxed plans)
Let Π+ be a relaxed planning task with conditional effects
and E a set of effects that, viewed as a set of independent
actions, constitutes a plan for Π+. Deciding whether there
exists a sequence of actions of length ≤ k such that all
conditional effects in E are triggered is NP-complete.

Proof sketch: Membership is obvious. Hardness follows by
reduction from the shortest common supersequence prob-
lem (Garey and Johnson 1979). The fluents encode the cur-
rent position within each sequence. Each conditional effect
moves forward from one particular position, and each action
groups together all effects whose position bears one particu-
lar symbol in the respective sequence.

Note that Proposition 6 does not relate to the (known) hard-
ness of optimal relaxed planning: we wish only to schedule
effects that we have already selected and which we know to
form a relaxed plan. This source of complexity has, as yet,
been overlooked in the literature.

Due to this hardness result, we use a greedy minimiza-
tion technique that nevertheless gives good results. Starting
with the trivial schedule containing one action execution for
each effect in E, we considers pairs of effects e, e′ ∈ E of
the same action a. The two effects are merged into a single
execution of a if their conditions can be achieved without
the use of either of the effects. In contrast, FF merges e and
e′ when they appear in the same layer of the relaxed plan-
ning graph. This criterion is sound as the conditions of such
effects are necessarily independently achievable without us-
ing either, yet is less general than the technique that we use
here, as the same may also be the case for effects in differ-
ent layers of the relaxed planning graph. We capture this
independence between effects with the best supporter graph
(BSG) representation of the relaxed plan, assuming a single
goal fluent G′ and, if necessary, an action END that has as
preconditions the original goals of the task and adds G′:

Definition 3 (Best supporter graph) Given a relaxed
planning task Π+ and a best supporter function bs,
the best supporter graph is a directed acyclic graph
φ = 〈V,E〉, where V = σ(G), with σ(G) as above,

E = {〈v, v′〉 | ∃p ∈ pre(v′) ∧ v = bs(p)}, and each edge is
labelled with the precondition p that gives rise to the edge.

The nodes of this graph represent conditional effects that
appear in the relaxed plan, and there exists an edge 〈v, v′〉
between two nodes if the effect represented by v is the best
supporter of a (pre)condition of the effect represented by v′.
φ is an acyclic graph and therefore has at least one valid
topological sort, and it can easily be shown that any such
sort of φ is a valid relaxed plan. This implies that, if there
is no path in the BSG between two conditional effects of the
same action, they can occur as the result of the same action
application, and therefore can be merged into a single occur-
rence of the action. These nodes are then removed from the
BSG, and a new node is added that represents both effects,
combining their incoming and outgoing edges. This process
can be repeated until no further node merges are possible.
This algorithm is sound in that it results in a relaxed plan for
Π; it is suboptimal, and necessarily so due to Proposition 6.

Finally, an important optimization is eliminating domi-
nated preconditions. When a fluent πc is introduced as the
precondition of an action or a condition of a conditional ef-
fect, all fluents p ∈ c and π-fluents {πc′ | c′ ⊆ c} are
removed from that precondition: achieving πc implies that
they are necessarily made true as well, and counting their
cost separately would lead to an overestimation. A partic-
ular case is that where the fluent sets represented by sev-
eral different π-fluents have a non-empty intersection, yet
none is a subset of the other. Consider for example an ac-
tion a with pre(a) = {p, q, r}. If C = {{p, q}, {q, r}},
then pre(a) = {π{p,q}, π{q,r}}, and the cost of achieving q
will implicitly be counted twice when calculating the cost
of applying a. (We experimented with a fix treplacing over-
lapping π-fluents πc, πc′ with πc∪c′ , yet found this to not
generally improve performance.)

Strategies for Choosing C
Our general strategy for choosing a set of conjunctions is
shown in Algorithm 1: Relaxed plans are repeatedly gener-
ated for the initial state of the current ΠC

ce and new conjunc-
tions are added to C based on how the current relaxed plan
fails on the original planning task Π. The process stops ei-
ther when no further conflicts can be found, implying that
the current relaxed plan is also a plan for the original plan-
ning task, or when a user-specified bound on the size of ΠC

ce
is reached. In our experiments, we will express this bound
in terms of the size of ΠC

ce compared to Π. We will also
sometimes consider a bound in the runtime taken by the al-
gorithm. Algorithm 1 is complete if no bound is specified
and FindConflicts(σ) returns at least one conjunction unless
σ already is a plan for Π. Algorithm 1 is also optimal when
the relaxed planning method used is optimal.

In choosing the conjunctions to be added to C, we adapt
the strategy outlined in HPC to our purposes. They consider
only optimal plans and represent them by means of the re-
laxed plan dependency graph (RPDG), which is similar to
the BSG considered above except in a few particulars. The
RPDG graph encodes only necessary orderings between ac-
tions: There is a path from a node va to a node vb if and only

Algorithm 1: Generating C for ΠC
ce.

C = ∅
σ = RelaxedPlan(ΠC

ce)

while σ not a plan for Π and size(ΠC
ce) < bound do

C = C ∪ FindConflicts(σ)

σ = RelaxedPlan(ΠC
ce)

vd . . .
q1

vf

¬p

qn

(a)

vd

vf

¬r
. . .

q1

. . .
p1

vj

pn

qm

(b)

Figure 1: Relaxed plan failure scenarios. Wavy edges show dele-
tions of a precondition.

if a precedes b in every valid sequencing of σ. Disjunctive
dependencies in which one of several actions adding a pre-
condition must be applied before another are therefore not
captured, and there may exist topological sorts of RPDGs
that are not valid relaxed plans. In contrast, the BSG en-
codes information about the “intentions” of the relaxed plan
heuristic in the form of the chosen best supporters, some-
times imposing orderings that need not be respected in every
valid sequencing of the plan (for example, when a fluent p is
added by an action in the plan that is not its best supporter).
The property of introducing only necessary orderings in the
graph is not required by the conflict detection method dis-
cussed below, so we use the BSG instead.

As all preconditions of actions in a relaxed plan σ are
made true at some point, the failure of σ implies that some
action d, the deleter, deletes the precondition of some other
action f , the failed action. There are two possibilities for
this to happen, depicted in Figure 1. One corresponds the
case in which there is a path in the BSG from d to f , and the
other to the case in which there is no such path. HPC show
that the addition of the set of π-fluents

⋃n
i=1{π{p,qi}} in the

first case, and the addition of the set
⋃n

i=1

⋃m
j=1{π{pi,qj}} in

the second, ensures that the current relaxed plan σ no longer
constitutes a relaxed plan for ΠC . If either or both of the flu-
ents p, q are π-fluents, the resulting fluent πc represents the
union of the fluents represented by both, and possibly has
size |c| > 2. This notion of progress is important in their
setting as computing the cost h+(ΠC)(I) of an optimal plan
after each addition is very costly.

There are a number of differences between our setting and
that of HPC. In particular, “progress” is not as well-defined,
since we use ΠC

ce to generate heuristic estimates for all states
during search, not just for the initial state in which the π-
fluents are collected. We have observed that it is highly ben-
eficial to instead add conjunctions one at a time, introduc-
ing just a single π-fluent in each iteration of Algorithm 1.
This fluent is {p, qn} in the case depicted in Figure 1a and
{pn, qm} in that of (b). Intuitively, this works better because
conflicts found in the same round tend to be redundant and
needlessy grow the size of the task, leading to slow evalua-
tion times without much gain in informativeness.

vd vf

high priority conflict
. . . v′f

low priority conflict

Figure 2: High/low priority conflicts. Wavy edges show deletions
of a precondition.

Experiments
We evaluated the performance of relaxed plan heuristics ob-
tained from hadd best supporters for different growth bounds
x on the size of ΠC

ce. When x = 1, no π-fluents or condi-
tional effects are introduced and ΠC

ce = Π+, resulting in a
standard relaxed plan heuristic. For growth bounds x > 1,
π-fluents are introduced until the number of conditional ef-
fects in the task is ≥ (x − 1) · |A|. The compilation and
associated heuristic were implemented in the Fast Down-
ward planner (Helmert 2006), and used in conjunction with
greedy best-first search with lazy evaluation and a second
open list for states resulting from preferred operators, the
operators in the relaxed plan applicable in the current state.
Action costs were ignored, as taking them into account tends
to be detrimental to coverage (Richter and Westphal 2010),
the maximization of which is the primary aim in satisficing
planning. The resulting planners were tested on the 14 do-
mains of the 2011 International Planning Competition (IPC).
All experiments were run on Intel Xeon 2.67 GHz comput-
ers with the settings used in the competition: a memory limit
of 6Gb and a time limit of 30 minutes.

ΠC vs. ΠC
ce. We have not implemented ΠC , but the num-

ber of actions that would be induced by a set of π-fluents
C in ΠC can be inferred from the conditional effects found
in ΠC

ce compilations. Even with x = 1.5, this number runs
into the millions or billions for larger problems in several
domains, and there are 3 domains out of the 14 considered
in which it causes overflow in a 32-bit integer for at least one
task. In the barman domain for example, 19 of the problems
would have more than 107 actions, and 13 would have more
than 108. This confirms our hypothesis that the conditional
effects representation is in general necessary for scaling to
large numbers of π-fluents.

Conflict selection. The informativeness of the ΠC
ce com-

pilation is very sensitive to the choice of π-fluents added.
Our strategy is to first introduce π-fluents for conflicts that
lie along a single path in the relaxed plan (Figure 1 (a)), and
to only consider conflicts arising from two parallel paths if
none of the former are present (Figure 1 (b)). We also pri-
oritize conflicts by distance: The shorter the path from an
action deleting a precondition to the action whose precondi-
tion is deleted, the higher the conflict priority (Figure 2).

Improved informativeness. Relaxed plans obtained
from ΠC

ce with x > 1 are more informative than standard
relaxed plans in several domains, most notably in Barman,
Floortile, Parcprinter, and Woodworking (Table 1). The dif-
ference is most striking in the Floortile domain, in which
the relaxed plan obtained with x = 2.5 is 27000 times
more informative than the standard relaxed plan heuristic,
as measured by the median ratio of heuristic evaluations, and
x = 2.5 results in the solution of all 20 instances within 5

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ev
al

ua
tio

ns

Task

Π+

x = 1.5
x = 2

x = 2.5

Figure 3: Heuristic evaluations in the Floortile domain.

seconds. In comparison, only 7 instances are solved with
x = 1, requiring the evaluation of several hundred thou-
sand nodes, and the maximum number of instances solved
in this domain by any planner participating in the IPC is
9. The added information leads to a drastic decrease in the
number of heuristic evaluations required in order to find a
plan, rendering it trivial (Figure 3). A possible explanation
is that delete effects impose a fairly fixed ordering on the
goals in this domain, and this ordering can be discovered
with the addition of comparatively few π-fluents. Coverage
also increases in the Barman and Parcprinter domains, but
not in the Woodworking domain, in which the standard re-
laxed plan heuristic is already able to solve all 20 tasks. In
most of the remaining domains, informativeness is slightly
increased or does not significantly change, with the Tidybot
domain being the lone exception.

Performance on older benchmarks. We have evaluated
the performance of our planner with x = 2 on the full set
of benchmarks from the previous IPCs. Its performance is
generally similar to that seen on the domains shown here in
detail, being more informative in most domains and slightly
less informative in a few. In the Mystery domain, it is able to
solve all 19 of the solvable instances with less than 25 eval-
uations and (soundly) prove the remaining 11 unsolvable in
the initial state, making it the only heuristic we know of that
is able to achieve this.

Computational overhead. Increasing the number of ac-
tions in the relaxed task comes at a computational cost. The
slowdown in heuristic evaluation for the x = 2.5 case is
shown in column S in Table 1. When this is not accompanied
by an increase in heuristic informativeness, coverage with
π(ΠC

ce) suffers, sometimes significantly. This behavior can
be seen in the Openstacks, Parking, and Visitall domains, in
which neither heuristic is informative and node evaluations
in the ten thousands up to the millions are the norm.

The time required to select conflicts and iteratively con-
struct ΠC

ce is usually negligible, but can be large in domains
with very large relaxed plans in which recomputing a relaxed
plan after introducing a conflict takes a long time, or each π-
fluent induces few conditional effects. For x = 2.5, the time
dedicated to the construction of ΠC

ce exceeds 60 seconds in
Openstacks, Scanalyzer, Transport, and Visitall. In Visitall,
the procedure does not terminate within 30 minutes for some
of the larger tasks. The +60s column in Table 1 shows the

Coverage % fewer evals Median S
Domain 1 1.5 2 +60s 2.5 +60s ∞ 1.5 2 2.5 1.5 2 2.5 2.5
Barman 18 20 19 19 20 20 0 88 94 94 10.56 7.34 31.53 2.22

Elevators 18 16 19 19 16 16 0 60 53 53 1.04 1.00 1.15 1.97
Floortile 7 11 19 19 20 20 8 100 100 100 571 22709 27702 4.07

Nomystery 9 9 8 8 9 9 6 55 57 63 1.27 2.00 2.23 1.76
Openstacks 20 18 16 18 17 18 0 55 50 35 1.35 1.09 0.94 2.86
Parcprinter 13 15 17 17 19 19 20 33 27 58 0.92 0.82 1.04 1.04

Parking 13 14 13 13 10 10 0 67 73 67 1.07 1.47 1.31 4.36
Pegsol 20 20 20 20 20 20 0 40 60 55 0.95 1.55 1.57 1.06

Scanalyzer 20 20 20 20 20 20 0 70 75 85 1.79 1.98 3.11 1.33
Sokoban 18 18 18 18 18 18 1 71 47 47 1.08 0.98 0.86 1.32
Tidybot 15 16 16 16 14 14 0 38 28 29 0.77 0.22 0.24 0.69

Transport 10 8 8 8 7 8 0 67 57 29 1.20 1.14 0.70 1.26
Visitall 18 14 12 17 12 17 0 64 58 58 1.06 1.09 1.07 2.02

Woodworking 20 20 20 20 20 20 20 95 95 95 216.95 220.94 224.80 4.31
Total 220 219 225 232 222 229 55

Table 1: Coverage and heuristic evaluations comparison for IPC’11 domains containing 20 instances each, for different values of x. +60s
indicates that the conflict detection phase was bounded by whichever was reached first, the bound on task size, or a maximum runtime of
60 seconds. The columns % fewer evals and Median compare to x = 1, and show the percentage of tasks solved with fewer evaluations,
and the median of the ratios of heuristic evaluations for tasks solved with both heuristics, respectively. The last column shows the median
Slowdown per heuristic evaluation.

effects on coverage of setting a time bound of 60 seconds on
this procedure (in addition to the x bound).

Conditional effect merging. The impact of conditional
effect merging is mixed. Overall, it increases coverage and
informativeness, but in some domains it results in a less in-
formative heuristic, especially in the Elevators and Transport
domains where it decreases coverage by 1 and 2 problems
respectively with x = 2.

The overhead of the procedure is quite small, as the tran-
sitive closure operation required to check whether there is a
path between two nodes of the BSG can be implemented
very efficiently when the graph is known to be directed
acyclic, as is the case here.

Finding plans with no search. The∞ column in Table 1
shows the number of tasks solved when no limit is imposed
on the growth of ΠC

ce and the generated relaxed plan becomes
a valid plan for Π. Of these domains, Parcprinter and Wood-
working share the feature that plans can be decomposed into
many smaller subplans which have little interaction with one
another, in the sense that it rarely occurs that actions from
one subplan delete preconditions in another. The flaws in
each of the subplans can then be fixed independently of the
others. The maximum growth in task size required to ob-
tain a valid plan for any task in the Woodworking domain is
x = 1.38,5 while this value in Parcprinter is x = 17.

Contribution to the state of the art. Effective domain-
independent planners increasingly rely on combinations of
heuristics and planning techniques in order to obtain su-
perior performance. The winner of the most recent IPC,
LAMA-2011, uses two different heuristics in conjunction,
and 3 of the other planners in the top 5 are portfolio plan-
ners. In this context, we note that the best possible portfo-

5Informativeness continues to increase beyond x = 1.5 in Ta-
ble 1 as, for the purpose of these experiments, we continued to add
conjunctions even after a valid plan was found.

lio, for IPC 2011 using LAMA and the techniques proposed
here, would run LAMA for 1000 seconds and our compi-
lation with x = 2.5 for 800, resulting in 267 of 280 tasks
solved compared to LAMA’s 250. Any one of the planners
entered in the competition would gain at least 11 tasks in
coverage from running search with ΠC

ce and x = 2.5 for just
10 seconds, from the Floortile domain alone.

Conclusion

We have demonstrated a principled and flexible method for
improving delete-relaxation heuristics with a limited amount
of delete information. Similarly to the previously proposed
ΠC compilation, our method generalizes both relaxed plan
heuristics and the hm family of heuristics, yet guarantees
that the size of the task representation grows linearly, rather
than exponentially, in the number of conjunctions that are
explicitly represented. Our results show that the computa-
tional investment is worthwhile in certain domains, in one
of which the heuristic leads to solutions for tasks that are
not solved by any other planner.

Our work suggests a number of directions for future re-
search, including more principled methods for selecting in-
formative or optimal sets of conjunctions C to define ΠC

ce,
and alternative search algorithms that make use of the con-
flict learning mechanism only when heuristic plateaus are
encountered. The ΠC

ce compilation could also be used to en-
code domain-specific information about planning tasks ob-
tained from other sources, such as goal orderings. An order-
ing g1 ≺ g2 ≺ g3, for example, can be expressed by having
all effects adding π{g1,g2,g3} have π{g1,g2} as a condition,
and those adding π{g1,g2} have g1 as a condition.

Acknowledgments. Work performed while Jörg Hoffmann
was employed by INRIA, Nancy, France.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009). AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Auto-
matic derivation of memoryless policies and finite-state con-
trollers using classical planners. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009). AAAI Press.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability—A Guide to the Theory of NP-Completeness.
San Francisco, CA: Freeman.
Gazen, B. C., and Knoblock, C. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning. 4th European Conference on Planning (ECP’97), vol-
ume 1348 of Lecture Notes in Artificial Intelligence, 221–
233. Toulouse, France: Springer-Verlag.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS 2009), 354–357. AAAI
Press.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the Twenty-
second International Conference on Automated Planning
and Scheduling (ICAPS 2012). AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., In Proc.
ECAI 2008, 588–592. Wiley.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

