
Sequencing Operator Counts with State-Space Search

Wesley L. Kaizer, André G. Pereira, Marcus Ritt
Federal University of Rio Grande do Sul, Brazil
{wlkaizer, agpereira, marcus.ritt}@inf.ufrgs.br

Abstract

A search algorithm with an admissible heuristic function is
the most common approach to optimally solve classical plan-
ning tasks. Recently Davies et al. (2015) introduced the solver
OpSeq using Logic-Based Benders Decomposition to solve
planning tasks optimally. In this approach, the master prob-
lem is an integer program derived from the operator-counting
framework that generates operator counts, i.e., an assignment
of integer counts for each task operator. Then, the operator
counts sequencing subproblem verifies if a plan satisfying
these operator counts exists, or generates a necessary violated
constraint to strengthen the master problem. In OpSeq the
subproblem is solved by a SAT solver. In this paper we show
that operator counts sequencing can be better solved by state-
space search. We introduce OpSearch, an A∗-based algorithm
to solve the operator counts sequencing subproblem: it either
finds an optimal plan, or uses the frontier of the search to
derive a violated constraint. We show that using a standard
search framework has two advantages: i) search scales better
than a SAT-based approach for solving the operator counts
sequencing, ii) explicit information in the search frontier can
be used to derive stronger constraints. We present results on
the IPC-2011 benchmarks showing that this approach solves
more planning tasks, using less memory. On tasks solved by
both methods OpSearch usually requires to solve fewer oper-
ator counts sequencing problems than OpSeq, evidencing the
stronger constraints generated by OpSearch.

Introduction
In optimal classical planning a solution for a planning task is
a plan – a sequence of operators that achieve some goal state
from an initial state. Finding solutions to planning tasks is
a PSPACE-complete problem (Bäckström and Nebel 1995).
However, heuristic search algorithms such as A∗ (Hart, Nils-
son, and Raphael 1968) with automatically derived heuris-
tic functions (heuristics) – e.g., pattern databases (Edelkamp
2014) and merge-and-shrink (Helmert et al. 2007) – have
achieved notable progress. A∗ with these strong heuristics
can search large state-spaces efficiently, solving many plan-
ning tasks in practice.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many recently proposed heuristics are based on linear
programming optimization. The operator-counting frame-
work (Pommerening et al. 2014) is of particular interest be-
cause it combines in a declarative form the information of
many admissible heuristics by constraints of a linear pro-
gram, that must be satisfied by every plan for the plan-
ning task. Thus, the optimal value of the objective function
is an admissible estimate of the cost of an optimal plan –
an admissible heuristic. Among the sources of admissible
operator-counting constraints are: disjunctive action land-
marks hLMC (Bonet and van den Briel 2014), state equa-
tion hSEQ (Bonet 2013), and the optimal delete relaxation
h+ (Imai and Fukunaga 2014).

Davies et al. (2015) introduced a novel approach for cost-
optimal planning, recognizing that the primal solution of the
operator-counting linear program contains useful informa-
tion that can be understood as a possible incomplete and un-
ordered plan. This approach interprets the operator-counting
framework beyond its primary use as a heuristic function and
decomposes the process of finding solutions to a planning
task into two independent but related subproblems, in a sim-
ilar way to Logic-Based Benders Decomposition (Hooker
and Ottosson 2003). There is a master problem and a com-
binatorial subproblem used to explain the infeasibility of a
solution of the master problem. The master problem is mod-
eled as an integer program, corresponding to an operator-
counting heuristic. The subproblem is modeled as a propo-
sitional satisfiability (SAT) problem encoding the planning
task and the operator counts obtained from the solution of
the master. A SAT solver is then used to sequence the oper-
ator counts, i.e., to check if a plan with these counts exists.
If there is no plan with the given operator counts, the SAT
solver returns a violated constraint for the master problem.

In this paper, we solve the operator counts sequencing
subproblem using heuristic search instead of a SAT-based
formulation. This new approach is based on an A∗ search
that employs information unavailable to SAT solvers, such
as the f -value of search nodes and the explicit structure of
the search graph. We present a novel strategy to construct
a violated constraint during the expansion of the search
graph by considering the frontier of the search. We show
that this strategy generates an admissible operator-counting

constraint. We show experimentally that the resulting algo-
rithm OpSearch has better coverage and less computational
requirements than a SAT-based approach and can generate
smaller and more informative explanations of infeasibility,
as shown by the total number of solved subproblems re-
quired to solve planning tasks. We believe this approach is
relevant because it opens new research directions towards
specialized operator counts sequencing methods based on
well-known classical planning technology.

Background
SAS+ Planning Task An SAS+ planning
task Π = 〈V, O, s0, s∗, c〉 is defined by a set of vari-
ables V , a set of operators O, an initial state s0, a goal
condition s∗, and a cost function c. Each variable v ∈ V
has a finite domain D(v). A partial state s is a partial
assignment over V and a state s is a complete assignment
over V . We write vars(s) for the set of variables in state s,
s(v) for the value of variable v in s, and S for the set of all
states of Π, also known as the state-space. State s0 is a state
and s∗ is a partial state. We call a state s consistent with
state s′ if s(v) = s′(v) for all v ∈ vars(s′). A goal is a state
consistent with s∗. Each operator o ∈ O is a pair of partial
states 〈pre(o), post(o)〉. Partial state pre(o) represents
preconditions: operator o is applicable in all states s that
are consistent with pre(o). Partial state post(o) represents
effects of applying operator o to a state s, which produces
a new state s′ with updated values for v ∈ vars(post(o)).
Function c : O → Z+

0 assigns a non-negative cost c(o)
to each operator o ∈ O. An s-plan π is a sequence of
operators 〈o1, . . . , on〉 such that there exists a sequence of
states 〈s1 = s, . . . , sn+1〉 where oi is applicable to si and
produces state si+1, and sn+1 is consistent with s∗. The
cost of an s-plan π is defined as cost(π) =

∑
o∈π c(o).

Finally, an s0-plan is simply called a plan, and solving a
planning task optimally means to find a plan π for Π of
minimal cost or prove that no plan exists.

Heuristic Search A∗ is the most prominent heuristic
search algorithm in classical planning (Hart, Nilsson, and
Raphael 1968). It systematically expands nodes from a set
of open nodes in order of non-decreasing f -values. The
f -value of a state s estimates the cost of a plan going through
s and is defined as f(s) = g(s) + h(s), where g(s) is the
current cost from s0 to s and h(s) is a heuristic estimate of
the remaining cost to some goal state. Expanded nodes are
stored in a closed set. A heuristic function h : S → R∪{∞}
maps a state s to its h-value, an estimate of the cost of an s-
plan. The perfect heuristic h∗ maps a state s to its optimal
plan cost or∞ if no plan exists. A heuristic is admissible if it
is a lower bound on the optimal plan cost, i.e., h(s) ≤ h∗(s)
for all s ∈ S. A∗ is itself admissible, i.e., always returns a
cost-optimal plan, when using an admissible heuristic func-
tion h, if a plan exists.

Integer Programming Integer programming (Wolsey
1998) is an optimization technique aiming to find feasible
values for a set of decision variables that optimizes some lin-
ear objective function, subject to a set of linear constraints,

where some variables can assume only integer values. The
problem of finding an optimal solution to an integer pro-
gram (IP) is NP-complete, but its linear program (LP) re-
laxation, which ignores the integrality constraints, can be
solved in polynomial time (Karmarkar 1984). Early uses of
linear programming in cost-optimal planning relate to cost-
partitioning, a method to admissibly combine several heuris-
tics by partitioning operator costs among them (Katz and
Domshlak 2008; Karpas and Domshlak 2009).

The Operator-Counting Framework Operator-counting
(Pommerening et al. 2014) is a recently proposed frame-
work that unifies information from several conceptually dif-
ferent heuristics into a single integer program. The pro-
gram contains a variable Yo, for each operator o ∈ O, that
counts the number of occurrences of the operator o in some
plan. Its objective function is to minimize the total operator
costs while satisfying all its operator-counting constraints.
Operator-counting constraints and heuristics are defined be-
low as in Pommerening et al. (2014).

Definition 1 (Operator-counting constraints). Let Π be a
planning task with operator set O, and s be a state of Π. Let
Y be a set of non-negative real-valued and integer variables,
including an integer variable Yo for each operator o ∈ O
along with any number of additional variables. Variables
Yo are called operator-counting variables. We say that π is
an s-plan in Π if it is a valid plan that leads from a state s
to a goal s∗. If π is an s-plan, we denote the number of
occurrences of operator o ∈ O in π with Yπo . A set of lin-
ear inequalities over Y is called an operator-counting con-
straint for s if for every s-plan there exists a feasible solu-
tion with Yo = Yπo for all o ∈ O. A constraint set for s is
a set of operator-counting constraints for s where the only
common variables between constraints are the operator-
counting variables.

Definition 2 (Operator-Counting IP/LP Heuristic). The
operator-counting integer program IPC for a set of operator-
counting constraints C for state s is

minimize
∑
o∈O

c(o)Yo

subject to C,

Yo ∈ Z+
0 .

The IP heuristic hIP
C is the objective value of IPC , and the LP

heuristic hLP
C is the objective value of its linear relaxation. If

the IP or LP is infeasible, the heuristic estimate is∞.

If π is a plan for Π then Yo = Yπo is a solution for IPC .
Thus, the cost of an optimal plan π∗ is an upper bound for
the objective value of IPC , and the IP heuristic is admissible.
Since an integer solution for IPC is also a solution for its lin-
ear relaxation, the LP heuristic is also admissible. Note also
that adding more constraints can only improve the heuristic
estimates at a possibly higher computational cost.

There are many available sources of operator-counting
constraints proposed in the literature (Bonet and van den
Briel 2014; Pommerening, Röger, and Helmert 2013; Bonet
2013; Imai and Fukunaga 2014; van den Briel et al. 2007).

For example, the operator-counting constraint correspond-
ing to a disjunctive action landmark is a set of operators for
a state s such that every plan from s must contain at least
one operator from the disjunctive action landmark:
Definition 3. The operator-counting constraint correspond-
ing to a disjunctive action landmark L ⊆ O for a state s of
planning task Π is ∑

o∈L
Yo ≥ 1.

Since every plan from s contains at least one operator
from L the constraint is an operator-counting constraint.

Operator Counts An operator counts Cs : O → Z+
0 is

a function that assigns to each operator o ∈ O the inte-
ger count Yo of the primal solution of the operator-counting
IPC for state s. The total number of operators of an operator
counts Cs is defined as |Cs| =

∑
o∈O Cs(o).

Generalized Landmarks Davies et al. (2015) introduced
the generalized landmark constraint (GLC) that contains bi-
nary variables called bounds literals in the form [Yo ≥ ko],
being true if there are at least ko occurrences of operator o
in the solution of the IPC . This generalization is compatible
with operator-counting constraints and can be used to ex-
press constraints of the form [Yo1

≥ ko1
] + [Yo2

≥ ko2
] +

· · ·+ [Yon ≥ kon] ≥ 1. To satisfy this constraint at least one
of the bounds literals must be true.
Definition 4 (Generalized Landmark Constraint). A gen-
eralized landmark constraint L for A ⊆ O × Z+ for a state
s in planning task Π is defined as:∑

〈o,k〉∈A

[Yo ≥ k] ≥ 1.

Domain constraints are used to link bounds literals with
operator-counting variables Yo: we have for all k ≥ 1

[Yo ≥ k] ≤ [Yo ≥ k − 1] , (1)

Yo ≥
k∑
i=1

[Yo ≥ i] , (2)

Yo ≤M [Yo ≥ k] + k − 1. (3)

Constraint (1) ensures that bound [Yo ≥ k] is only valid
when the next smallest bound [Yo ≥ k − 1] is; (2) ensures
that the total number of valid bounds literals for operator
o is a lower bound on the number of operators Yo; and (3)
ensures that bound [Yo ≥ k] is set when Yo ≥ k. Combined,
(2) and (3) guarantee that Yo is the number of occurrences
of operator o.

Planning using Logic-Based Benders
Decomposition
Usually in classical planning, only the objective function
value of the operator-counting heuristic guides the search.
However, variables Yo in the primal solution of IPC con-
tains useful information. This suggests a novel approach to
solve planning tasks optimally.

Figure 1: Logic-Based Benders Decomposition to cost-
optimal planning (adapted from Davies et al. (2015)).

Davies et al. (2015) propose a Logic-Based Benders De-
composition that decomposes the process of solving plan-
ning tasks into two related problems: a master problem that
solves IPC – a relaxation of the original planning task, which
generates operator counts Cs, and a subproblem that tries to
sequence Cs, constructing a violated constraint on failure.

The main idea consists of incrementally strengthening the
master problem relaxation with some learned knowledge
about the infeasibility of its current solution. These con-
straints should be as informative as possible to decrease the
number of total iterations between master and the subprob-
lem. The process stops when the Branch and Cut algorithm
(BC) from master proves the optimality of the current in-
cumbent plan. Figure 1 illustrates the overall process.

This decomposition establishes an interface between
operator-counting heuristics and operator counts sequenc-
ing procedures. In the next section we discuss how Davies
et al. (2015) solve the sequencing subproblem.

Sequencing Operators Counts with SAT
The solver OpSeq introduced by Davies et al. (2015) applies
a SAT model that encodes the planning task limited to an
operator counts Cs as a formula in conjunctive normal form.
They use this model to solve the sequencing operator counts
subproblem. If the formula is satisfiable, OpSeq can directly
extract a plan. If the operator counts is not a plan i.e., if the
formula is not satisfiable, OpSeq uses assumptions to gen-
erate an explanation of its infeasibility. The assumptions are
special variables that relates to the current operator counts.
The generated explanation is a disjunction of negated as-
sumptions that can be directly translated to a generalized
landmark constraint and added to the master problem.

OpSeq does not solve the entire operator-counting IPC
at each step of their Logic-Based Benders Decomposition.
Instead, it solves the linear relaxation and obtains a valid
operator counts by rounding up the primal solution values
to the nearest integers, only if its cardinality and objective
value are within 20% of the fractional operator counts and
ignoring it otherwise. Consequently, it is able to generate vi-
olated constraints that also remove relaxed solutions. Most
IP solvers support the definition of control callbacks to dy-
namically interact with the optimization procedure. OpSeq
uses this mechanism to heuristically construct plans using
the round-up method and to add constraints to strengthen
linear relaxations or invalidate integer solutions that cannot
derive a feasible plan.

The SAT model is composed of layers, and only one op-
erator can be applied in each layer. Thus, its memory usage
grows with the total number of layers. OpSeq uses the vari-

able YT to limit the total number of layers, computed as the
total number of operators available in the operator counts. It
constructs a set of assumptions about a feasible plan using
the current operator counts and YT and informs the solver
to use these assumptions while searching for a solution. On
failure, the SAT model is able to construct a generalized
landmark constraint based on these assumptions, explaining
why the operator counts is not sequencable. This constraint
is derived by the Conflict-Directed Clause Learning algo-
rithm implemented in SAT solvers, that backtracks until it
reaches to the assumptions that cause the formula’s unsatis-
fiability.

Proposed Approach
We propose a solver OpSearch, which uses the A∗ search
algorithm to solve the operator counts sequencing subprob-
lem. Given an initial operator counts Cs0 , it returns a plan
π if Cs0 is sequencable, or a violated condition as a gen-
eralized landmark constraint L, otherwise. The presence of
potentially useful information in the search graph, such as
f -values, motivates its use as base for an alternative algo-
rithm. This approach could generate smaller and more in-
formed constraints and, as observed by Ciré, Coban, and
Hooker (2013), eliminating irrelevant parts of constraints
can significantly decrease solving time of an integer pro-
gram.

Our approach follows the main idea of planning using
Logic-Based Benders Decomposition. We initiate the pro-
cess using a BC to solve the IPC . If BC finds an integer
solution it calls OpSearch and we try to sequence the cor-
responding operator counts. If BC finds a relaxed solution
we obtain a valid operator counts by rounding up the pri-
mal solution values to the nearest integers, and sequencing
only if its cardinality and objective value are within 20% of
the linear count. If the operator counts provided is sequenca-
ble OpSearch informs the BC that a new solution has been
found. This process continues until BC proves that one of
the found plans is optimal.

Extended State and Generation of Successors
In this section, we use a planning task Π1 as an exam-
ple, containing V = 〈v1〉 with D(v1) = {0, 1, 2}, O =
{o1, o2, o3, o4}, o1 = 〈v1 = 1, v1 := 2〉, o2 = 〈v1 =
0, v1 := 2〉, o3 = 〈v1 = 1, v1 := 2〉, o4 = 〈v1 = 1, v1 := 3〉
c(o1) = 2, c(o3) = 0, and c(o2) = c(o4) = 1, with
initial state s0 = {v1 = 1} and goal s∗ = {v1 = 2}.
Note that, even though o1 and o3 have identical precon-
ditions and effects, they have distinct costs and, therefore,
are different operators. Suppose the initial operator counts is
Cs0 = {o1 7→ 1} (we only list non-zero operator counts).

States generated through different sequences of operators
are considered different states by OpSearch. Given the cur-
rent operator counts for the initial state Cs0 we extend the
A∗ state representation with a variable vo for each o ∈ O
if Cs0(o) > 0 and c(o) > 0. The domain of vo is D(vo) =
{0, . . . , Cs0(o)}. The example task Π1 would be changed by
including a variable vo1

with domain D(vo1
) = {0, 1}, but

no variable for o2 or o4 since their counts are zero, or for

o3 since c(o3) = 0. The value of vo in s0 is Cs0(o). There-
fore, our final extended representation for state s0 would be
{v1 = 0, vo1

= 1}. Extended states are used to test for
equality and for successor generation. However, for comput-
ing the heuristic function only the original variables of the
planning task are considered.

This new state representation requires another modifica-
tion in the behavior of A∗, which needs to consider the ex-
tended variables and limit the number of times an operator
o is applied. Effectively, if A∗ could generate s′ from s us-
ing operator o, it will in fact generate s′ in two situations.
First, if c(o) = 0, i.e., we generate states freely for zero-
cost operators. Second, if vo ∈ vars(s) and s(vo) > 0 then
s′ is generated and the value of variable vo in s′ is set to
s′(vo) = s(vo) − 1. Our approach applies zero-cost oper-
ators independently of Cs0 and only generates bounds liter-
als for operators o with c(o) > 0. Zero-cost operators can
be applied freely during the search, even if they are absent
from the current operator counts. This is motivated by the
observation that bounds literals for zero-cost operators do
not directly force the operator-counting objective function
to increase. In the example task Π1, OpSearch would gener-
ate two states from s0: state s′ = {v1 = 2, vo1 = 0} with
operator o1 and state s′′ = {v1 = 1, vo1

= 1} with operator
o3. No state is generated from the application of operator o4,
since it is not contained in vars(s).

Constraint Generation Strategy
We now explore the situation when vo /∈ vars(s)∧c(o) > 0
and s(vo) = 0 to derive some violated condition on the cur-
rent operator counts. This condition is modeled as a general-
ized landmark constraint with bounds literals for operator o
and can be interpreted as follows: if we had one more in-
stance of o, we could further expand a state, that could possi-
bly reach a goal state with optimal cost. Additionally, we can
use other information available during A∗ to strengthen the
generated constraints, such as the f -value of state s, since it
is an estimate of the plan cost through s.

Next we present the strategy to generate violated con-
straints from non-sequencable operator counts. It incremen-
tally generates bounds literals during A∗ search to compose
the final learned generalized landmark constraint L, that in-
cludes at most one bounds literal for each operator. The strat-
egy returns bounds for operators that currently have count 0
but might generate new states with an f -value at most fmax,
the objective value of the relaxation of the node in the BC
tree that called the sequencing subproblem. State s denotes
a state expanded by A∗ and s′ is a generated one.

L = { [Yo ≥ Cs0(o) + 1] | ∃s o−→ s′ : f(s′) ≤ fmax∧
((vo /∈ vars(s) ∧ c(o) > 0) ∨ s(vo) = 0)}

Further, if the f -value is more than fmax then we directly
bound the plan cost. To this end we introduce an auxiliary
variable Yf which represents the objective function value to
the operator-counting model, and is defined as

Yf =
∑
o∈O

c(o)Yo.

Now let fmin = mins′|f(s′)>Yf
{f(s′)}. Then, if fmin >

−∞, we add the bounds literal [Yf ≥ fmin] to L.
To illustrate the solving process of OpSearch, we

define an example planning task Π2 with O =
{o0, o1, o2, o3, o4, o5} and costs c(o0) = 0, c(o1) = c(o2) =
c(o3) = 1, c(o4) = 2 and c(o5) = 0. We assume that o1 is an
action landmark for Π2 and the initial operator-counting IPC
contains the constraint Yo1 ≥ 1. The primal solution for this
IPC provides the initial operator counts Cs0 = {o1 7→ 1}
and the objective function value gives the fmax = 1. Fig-
ure 2 illustrates the state-space generated by A∗ with the per-
fect heuristic h∗, where vertices represent nodes and arcs the
application of operators. Solid vertices and edges represent
nodes and operators that are generated or applied according
to Cs0 . Nodes and operators that cannot be generated or ap-
plied during the search are dashed. Goals are indicated by
doubly circled vertices.

n0
〈s0,

o1 7→1〉
f=3

n1
〈s1〉
f=3

n2
〈s2〉
f=3

n3
〈s1〉
f=5

n4
〈s4〉
f=4

n5
〈s5〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2
o5

o3

o0
o2

o4

o2

o4

o1

o1

Figure 2: State-space of example problem Π2, 1st iteration.

Since f(n0) > Yf , OpSearch generates the constraint
[Yf ≥ 3] ≥ 1 informing that the f -value bound fmax must
increase to 3. Assume now that after adding this constraint
the master returns Cs0 = {o1 7→ 3} and Yf = 3. The result-
ing state-space is illustrated in Figure 3:

n0
〈s0,

o1 7→3〉
f=3

n1
〈s1,

o1 7→3〉
f=3

n2
〈s2,

o1 7→2〉
f=3

n3
〈s1,

o1 7→2〉
f=5

n4
〈s4〉
f=4

n5
〈s5〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2
o5

o3

o0
o2

o4

o2

o4

o1

o1

Figure 3: State-space of example problem Π2, 2nd iteration.

Now OpSearch expands n0 and generates node n2 by ap-
plying o1. Since we apply zero-cost operators freely during

search OpSearch also generates n1 and n3 by applying o0

to n0 and n2. Note that n1 and n3 have the same variable
assignment s1 but different operator counts {o1 7→ 3} and
{o1 7→ 2} and therefore are treated as different states. From
this state-space, OpSearch returns the constraint [Yo3

≥ 1]+
[Yf ≥ 4] ≥ 1. The bound [Yo3

≥ 1] comes from the tran-
sition n2

o3−→ n5 and [Yf ≥ 4] from n1
o2−→ n4, since

transition n2
o0−→ n3 would generate the bound [Yf ≥ 5].

Suppose that, after adding this constraint, the IPC returns
Cs0 = {o1 7→ 2, o3 7→ 1} and Yf = 3. The resulting state-
space is shown in Figure 4:

n0
〈s0,

o1 7→1,
o3 7→1〉
f=3

n1
〈s1,

o1 7→1,
o3 7→1〉
f=3

n2
〈s2,

o3 7→1〉
f=3

n3
〈s1,

o3 7→1〉
f=5

n4
〈s4〉
f=4

n5
〈s5〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2o5

o3

o0
o2

o4

o2

o4

o1

o1

Figure 4: State-space of example problem Π2, 3rd iteration.

From this state-space, OpSearch returns the constraint
[Yo2 ≥ 1]+[Yf ≥ 4] ≥ 1. The bound [Yo2 ≥ 1] comes from
the transition n5

o2−→ n8 and [Yf ≥ 4] from n1
o2−→ n4. After

adding this constraint, OpSearch returns a sequencable oper-
ator counts Cs0 = {o1 7→ 1, o2 7→ 1, o3 7→ 1} and Yf = 3,
as illustrated in Figure 5.

n0
〈s0,

o1 7→1,
o2 7→1,
o3 7→1〉
f=3

n1
〈s1,

o1 7→1,
o2 7→1,
o3 7→1〉
f=3

n2
〈s2,

o2 7→1,
o3 7→1〉
f=3

n3
〈s1,

o2 7→1,
o3 7→1〉
f=5

n4
〈s4〉
f=4

n5
〈s5,

o2 7→1〉
f=3

n6
〈s6〉
f=5

n7
〈s7〉
f=4

n8
〈s8〉
f=3

n9
〈s9〉
f=5

o0

o1

o2o5

o3

o0
o2

o4

o2

o4

o1

o1

Figure 5: State-space of example problem Π2, 4th iteration.

Theorem 1. For a solvable SAS+ planning task Π, an
operator counts Cs with an associated f -bound value fmax,
such that OpSearch’s modified A∗ with an admissible heuris-
tic function h cannot sequence Cs, OpSearch always returns
an admissible constraint to the master integer program.

Proof sketch. Consider an optimal plan π∗ = 〈o1, . . . , ok〉

with a corresponding state sequence 〈s0, s1, . . . , s∗〉. Let L
be an GLC generated by OpSearch with Cs and f -bound
fmax, and S be the set of (extended) states expanded by
OpSearch. Now, extend the state sequence 〈s0, s1, . . . , s∗〉
to an (extended) state sequence 〈s′0, s′1, . . . , s′∗〉 with
operator-counting variables, such that the operator count of
s′0 is Cs, and that of the subsequent states is decreased ac-
cording to π∗. Since OpSearch failed to sequence Cs and
maintains an extended state, there must be a first state s′i /∈
S. If i = 0, then f(s0) > fmax and the bounds literal
[Yf ≥ fmin] must be satisfied since the heuristic h is ad-
missible. Otherwise, there is a predecessor state s′i−1 ∈ S

with s′i−1
o−→ s′i, and OpSearch did not generate s′i. The rea-

son for this is either f(s′i) > fmax or s(o) = 0 or vo /∈
vars(s′i)∧c(o) > 0. But in the first case f(s′i) ≥ fmin and by
admissibility of h the bounds literal [Yf ≥ fmin] is satisfied,
and in the second case the bounds literal [Yo ≥ Cs(o) + 1]
must be satisfied by π∗.

Different Heuristic Functions The heuristic function
used in A∗ plays an important role in GLCs generation and
we expect that OpSearch with more informed heuristics gen-
erates smaller and stronger constraints. To illustrate this we
use the gripper example from (Davies et al. 2015): there are
two balls, two rooms and a robot that can transport one ball
at a time. The robot starts at the left room and the goal is to
move the balls from the left to right. Operators pij and dij
causes the robot to pick or drop ball i at room j and mij
causes the robot to move from room i to j. All operators
have unit cost and the optimal plan with total cost of 7 is
〈p1l,mlr, d1r,mrl, p2l,mlr, d2r〉.

Assume that fmax = 5 and Cs = {d1r 7→ 1, d2r 7→
1,mlr 7→ 1, p1l 7→ 1, p2l 7→ 1}. We use an IPC with con-
straints from disjunctive action landmarks hLMC (Bonet and
van den Briel 2014), state equation hSEQ (Bonet 2013), and
the optimal delete relaxation h+ (Imai and Fukunaga 2014).
OpSeq generates an GLC with five bounds: [YT ≥ 6] +
[Yd1l ≥ 1] + [Yd2l ≥ 1] + [Ymrl ≥ 1] + [Yp1r ≥ 1] ≥ 1;
OpSearch with hblind also generates an GLC with five
bounds, but replaces the bound YT by Yp2r: [Yd1l ≥ 1] +
[Yd2l ≥ 1] + [Ymrl ≥ 1] + [Yp1r ≥ 1] + [Yp2r ≥ 1] ≥ 1;
OpSearch with the hLMCut heuristic generates an GLC with
only one bound: [Yf ≥ 6] ≥ 1; Finally, OpSearch with h∗
generates a perfect GLC that forces the IPC objective value
to increase up to the cost of π∗: [Yf ≥ 7] ≥ 1.

Experiments
The goals of the experiments are: i) to evaluate the perfor-
mance of OpSearch compared to OpSeq; ii) to contrast the
computational resources required by both approaches; and
iii) to experimentally validate the hypothesis that OpSearch
can generate stronger GLCs.

We use the same benchmarks from IPC-2011 used by
Davies et al. (2015), totaling 11 domains with 20 instances
each. We used an Intel Core i7 930 CPU (2.80 GHz) with a
memory limit of 4 GB and a time limit of one hour for each
planner execution. We implemented OpSearch and OpSeq
inside the Fast Downward planning system, version 19.06
(Helmert 2006). The SAT solver is MiniSat 2.2 (Eén and

Sörensson 2003) and the IP solver is CPLEX 12.8. Since
OpSeq’s is not publicly available, we re-implemented it.
OpSearch and OpSeq are available to facilitate future work1.

The initial IPC contains constraints from the disjunctive
action landmarks hLMC (Bonet and van den Briel 2014), state
equation hSEQ (Bonet 2013) and the optimal delete relax-
ation h+ base formulation from (Imai and Fukunaga 2014).
We use hLMCut to guide OpSearch when sequencing.

The Benchmark Set
Table 1 presents information about the benchmark set, sum-
marized by domain. |V| denotes the mean number of vari-
ables; |O| is the mean number of operators; zco indicates the
presence of zero-cost operators; cmin is the mean minimum
operator cost, ignoring zero-cost operators; cmax is the mean
maximum operator cost; lb is the mean best lower bound
on the optimal plan cost2; z0 is the mean initial relaxed
operator-counting solution of our initial operator-counting
master problem; and r0 and c0 are the mean number of rows
and columns in the initial IPC , respectively.

We see that domains elevators, parcprinter, openstacks,
pegsol and sokoban have zero-cost operators and the last
three only have zero-cost and unit-cost operators. Two do-
mains with only unit cost operators, nomystery and visitall.
Ignoring zero-cost operators, some domains have diverse
operators costs such as barman, elevators, parcprinter, sc-
analyzer, transport and woodworking. Among these, par-
cprinter is notable due to its very wide operator costs range.

We observe that some domains have few operators and
variables, such as nomystery and transport and others have a
large number of operators but few variables, such as visitall,
sokoban and scanalyzer. We can also note that z0 is very
close to lb in parcprinter, sokoban, transport and visitall.
Some domains have huge IPC such as visitall and sokoban
and others have small ones, for instance, nomystery, par-
cprinter and transport.

IP Solver Settings
We noticed that settings for IP solvers can change the BC
process and interfere with the operator counts sequencing
subproblem. In particular, some primal heuristics executed
by the IP solver can generate very large operator counts
which are not useful to sequence, and which in OpSeq lead
to memory problems when constructing the SAT models. We
have turned off these heuristics in both approaches. We used
legacy callbacks of the C++ interface in CPLEX to add the
learned constraints through user cuts and lazy constraints.

Another relevant parameter is the IP emphasis. With de-
fault setting “balanced” the solver tries to balance progress
on good feasible solution and a proof of optimality. When
set to “best bound” it prioritizes increasing the current best
bound with low effort in detecting feasible integer solutions.
Considering the incremental lower bounding technique used
by OpSeq, we use the “best bound” setting in our experi-
ments. Figure 6 shows plots of the total number of sequence

1Available at https://github.com/kaizerw/PlanningLP
2Obtained from http://editor.planning.domains

domain |V| |O| zco cmin cmax lb z0 r0 c0

barman 53.3 358.3 − 1 10 30.15 15.75 7408.2 3896.0
elevators 40.0 866.0 6 32 3.75 1.00 12810.3 6265.0
nomystery 34.0 185.0 − 1 1 8.85 3.92 3701.9 1772.0
openstacks 108.2 663.2 1 1 123.35 76.58 14456.3 6231.6
parcprinter 59.9 254.8 987 217007 1223929.00 1223929.00 4340.6 2167.9
pegsol 12.2 572.5 1 1 59.05 34.09 8201.0 4120.8
scanalyzer 9.7 1280.0 − 1 3 521.90 295.91 26130.9 12515.8
sokoban 7.1 1380.8 1 1 24.85 21.60 47324.4 25688.1
transport 38.6 176.0 − 1 95 41.80 40.78 2096.2 1406.5
visitall 15.5 1659.5 − 1 1 36.90 30.62 189001.6 91734.2
woodworking 74.5 908.8 − 5 44 329.50 296.40 17438.5 7980.7

Table 1: Information of benchmark set.

Figure 6: IP emphasis (log2-log2 scale).

calls, comparing IP emphasis “balanced” to “best bound”.
We can see that when the IP emphasis is set to “best bound”,
both OpSearch and OpSeq require fewer sequencing calls
than with the “balanced” setting.

OpSeq and OpSearch
Table 3 shows results grouped by domain for OpSeq and
OpSearch. Best results are highlighted. Column C presents
the coverage for that particular domain; S the total number
of sequencing calls; R the total number of restarts; T̄t the
mean total solving time in seconds; M the mean memory
usage in MB; u the mean percentage of operators included
in the generated constraints; p the mean percentage of total
sequencing times by total solving time; and bb is the best
bound found by the IP solver. Since it is not possible to dy-
namically allocate new variables during the BC, the linear
model IPC has a limited number of bounds literals, up to
k = 2, for each operator o ∈ O and for Yf . However, it can
be necessary to add new bounds literals during BC due to
the learned GLCs. In this case, both OpSeq and OpSearch
rebuild the model and restart BC.

We see that OpSearch has better coverage than OpSeq,
solving 10 more planning tasks. OpSearch performs better
on domains nomystery, openstacks, scanalyzer and sokoban.
OpSearch on openstacks and sokoban solves 13 and 5 tasks
not solved by OpSeq. We find that OpSearch uses 57%
less memory and generates violated constraints that are on
average 70% smaller than OpSeq. We also observe that
OpSearch has a smaller total number of sequencing calls,

approximately 18%, more restarts, and that it found higher
best bounds than OpSeq in seven domains.

An important comparison between the solvers is the per-
centage of operators in the learned constraints. On average,
constraints generated by OpSeq have 20% of the operators,
while constraints generated by OpSearch have only 6% of
the operators. Also, OpSeq learns constraints with more than
10% of the operators on seven domains, while OpSearch
learns constraints with more than 10% of the operators on
only two domains, which confirms the potential of search-
based methods to solve the operator counts sequencing sub-
problem generating smaller and potentially more informed
constraints.

Figure 7 shows plots comparing the total number of se-
quencing calls S, memory usageM , mean percentage of op-
erators by learned constraints ū, total sequence times St and
total solve time Tt for OpSearch and OpSeq. Visually, we
can confirm the results presented before: i) OpSearch solved
fewer sequencing subproblems; ii) in most of the times
OpSearch uses less memory than OpSeq; and iii) OpSearch
usually generates smaller constraints than OpSeq. Table 2
summarises the results only considering instances solved by
both OpSearch and OpSeq, showing that OpSearch solves
fewer subproblems, uses slightly less memory, generates
smaller constraints than OpSeq, but spends more time se-
quencing, as indicated by p̄.

S R T̄t M̄ ū p̄

OpSearch 2169 1 191 118 9 46.4
OpSeq 2738 6 92 122 15 0.3

Table 2: Summary for 50 instances solved by both methods.

Impact of OpSearch’s Heuristic Function
Table 4 shows results for OpSearch using different heuris-
tic functions in A∗. We have tested the hblind, hLMCut and
operator-counting hOC with constraints from state-equation
and action landmarks. We have chosen these functions be-
cause hOC is usually more informed than hLMCut and hblind is
the simplest one.

Using in general more informed heuristic functions in
OpSearch results in: i) fewer sequencing subproblems

Figure 7: Detailed comparison between OpSeq and OpSearch (log2-log2 scale).

OpSeq OpSearch
domain C S R T̄t M̄ ū p̄ bb C S R T̄t M̄ ū p̄ bb

barman 0 40556 16 3417 857 20 0.1 2484 0 36565 1 3548 202 5 0.1 2496
elevators 0 5922 0 3275 2931 17 0.8 690 0 10802 7 3555 254 4 0.2 865
nomystery 0 3660 0 1459 736 44 0.6 437 3 10383 4 1120 322 1 0.1 443
openstacks 0 24383 3 1709 433 29 0.1 20 13 266 14 966 968 0 23.6 67
parcprinter 20 21 0 1 126 0 74.0 8524162 16 21 0 271 377 0 55.9 8524162
pegsol 11 22998 15 1964 175 47 0.0 154 10 12906 2 1888 123 16 0.0 166
scanalyzer 0 3377 0 1305 955 18 0.0 585 1 700 5 1001 1046 2 0.0 592
sokoban 0 7907 0 3208 2385 9 0.8 319 5 17695 51 2779 183 3 0.2 455
transport 0 5800 0 1879 265 8 0.0 6251 0 910 11 1707 222 1 0.0 6235
visitall 15 5632 0 957 298 19 0.2 848 14 9078 10 1112 119 29 0.0 839
woodworking 17 946 0 437 355 4 0.5 6348 11 111 0 974 224 5 43.7 6258
Total 63 121202 34 1783 865 20 0.4 8542298 73 99437 105 1720 367 6 4.4 8542578

Table 3: Results for OpSeq and OpSearch.

C S R T̄t M̄ ū p̄

hblind 79 3717 1 93 171 10 21.5
hLMCut 73 2161 1 183 116 9 22.9
hOC 70 1119 3 141 99 8 17.4
OpSeq 63 2725 6 90 121 16 23.4

Table 4: Summary for 49 instances solved by all heuristics.

C S R T̄t M̄ ū p̄

hblind 191 25059 57 10 82 18 11.2
hLMCut 195 13304 75 11 82 11 2.5
hOC 200 7215 40 39 81 10 13.3
h∗ 241 3214 19 13 234 8 1.3
OpSeq 169 29106 53 37 95 18 12.4

Table 5: Summary for 154 instances solved by all heuristics.

solved, as indicated by S; ii) greater mean total solving times
T̄t since computing the heuristics are more expensive; iii)
less mean memory usage, as indicated by M̄ ; and iv) smaller
constraints are generated on average, as indicated by ū.

Table 5 shows results for OpSearch using all the 282 in-
stances from IPC-1998 to IPC-2014 in which h∗ can be com-
puted by a full pattern database (PDB) using at most 4 GB
of memory. Similarly to the previous test, we used hblind,
hLMCut, operator-counting hOC with constraints from state-
equation and action landmarks, and h∗.

We can observe that: i) the total number of sequencing

subproblems solved decreases as the heuristic function is
more informed (S); ii) the total solving times T̄t for hOC is
twice as much as for the other heuristics; iii) h∗ uses much
more memory M̄ than the other heuristics due to the full
PDB; and iv) on average, smaller constraints are generated
by more informed heuristics, as indicated by ū.

Conclusions and Future Work

In this work we introduced OpSearch, a technique inspired
by Logic-Based Benders Decomposition that uses an A∗-
based algorithm to solve the problem of sequencing opera-
tor counts. As main results we showed that heuristic search
is able to sequence operator counts or to generate admis-
sible constraints in the form of generalized landmarks, and
that it can perform better than OpSeq, a SAT-based approach
to sequencing, solving fewer subproblems and presenting a
higher coverage. We also presented results indicating that an
approach based on A∗ can scale better than OpSeq in terms
of overall memory usage.

Future work could address the development of specific
heuristic functions to explore structural properties of the op-
erator counts sequencing problem, possibly giving rise to
specialized and more efficient algorithms. Other directions
would be to investigate improvements on the master inte-
ger program, studying strategies to generate operator counts
more likely to be sequencable earlier during the solving pro-
cess; or improving methods to deal with zero-cost operators
to increase the integer program lower bound faster.

Acknowledgements
Wesley L. Kaizer thanks the financial support from Con-
selho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico (CNPq). André G. Pereira acknowledges support
from FAPERGS with project 17/2551-0000867-7. Marcus
Ritt thanks CNPq for support with grants 420348/2016-6
and 307522/2016-4. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior - Brasil (CAPES) - Finance Code 001.

References
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Inter-
national Conference on Automated Planning and Schedul-
ing, 47–55.
Bonet, B. 2013. An admissible heuristic for SAS+ plan-
ning obtained from the state equation. International Joint
Conference on Artificial Intelligence 2268–2274.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Ciré, A.; Coban, E.; and Hooker, J. N. 2013. Mixed Integer
Programming vs. Logic-Based Benders Decomposition for
Planning and Scheduling. In Gomes, C., and Sellmann, M.,
eds., Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 325–
331. Berlin, Heidelberg: Springer Berlin Heidelberg.
Davies, T. O.; Pearce, A. R.; Stuckey, P. J.; and Lipovetzky,
N. 2015. Sequencing operator counts. In International Con-
ference on Automated Planning and Scheduling, 61–69.
Edelkamp, S. 2014. Planning with pattern databases. In
European Conference on Planning, 84–90.
Eén, N., and Sörensson, N. 2003. An extensible SAT-solver.
In International conference on theory and applications of
satisfiability testing, 502–518. Springer.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In International Conference on Automated Planning and
Scheduling, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96(1):33–60.
Imai, T., and Fukunaga, A. 2014. A practical, integer-
linear programming model for the delete-relaxation in cost-
optimal planning. In European Conference on Artificial In-
telligence, 459–464.
Karmarkar, N. 1984. A new polynomial-time algorithm for
linear programming. Combinatorica 4:373–395.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In International Joint Conference on Arti-
ficial Intelligence, 1728–1733.

Katz, M., and Domshlak, C. 2008. Optimal additive compo-
sition of abstraction-based admissible heuristics. In Interna-
tional Conference on Automated Planning and Scheduling,
174–181.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet,
B. 2014. LP-based heuristics for cost-optimal planning.
In International Conference on Automated Planning and
Scheduling, 226–234.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Get-
ting the most out of pattern databases for classical planning.
In International Joint Conference on Artificial Intelligence,
2357–2364.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 651–665. Springer.
Wolsey, L. 1998. Integer Programming. Wiley Series in
Discrete Mathematics and Optimization. Wiley.

