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Abstract. We present a new method for instance-specific algorithm
configuration (ISAC). It is based on the integration of the algorithm
configuration system GGA and the recently proposed stochastic off-
line programming paradigm. ISAC is provided a solver with cate-
gorical, ordinal, and/or continuous parameters, a training benchmark
set of input instances for that solver, and an algorithm that com-
putes a feature vector that characterizes any given instance. ISAC
then provides high quality parameter settings for any new input in-
stance. Experiments on a variety of different constrained optimiza-
tion and constraint satisfaction solvers show that automatic algorithm
configuration vastly outperforms manual tuning. Moreover, we show
that instance-specific tuning frequently leads to significant speed-ups
over instance-oblivious configurations.

1 Introduction
When developing a new heuristic or complete algorithm for a con-
straint satisfaction or a constrained optimization problem, we fre-
quently face the problem of choice. There may be multiple branch-
ing heuristics that we can employ, different types of inference mech-
anisms, various restart strategies, or a multitude of neighborhoods to
choose from. Furthermore, the way in which the choices we make
affect one another is not readily known. The task of making these
choices is known as algorithm configuration.

Developers often make many of the algorithmic choices during the
prototyping stage. Based on a few preliminary manual tests, certain
algorithmic components are discarded, even before all the remaining
components have been implemented. However, by doing this the de-
velopers can unknowingly discard algorithmic components that are
used in the optimal configuration. In addition, the developer of an
algorithm has limited knowledge about the instances that a user will
typically employ the solver for. That is the very reason why solvers
have parameters; to enable users to fine-tune a solver for their spe-
cific needs.

Manually tuning such a solver can take a lot of time and effort. Be-
fore even trying the numerous possible parameter settings, the user
must learn about the inner workings of the solver to understand what
each parameter does. Furthermore, it has even been shown that man-
ual tuning often leads to highly inferior performance [17].

The field of automatic algorithm configuration, which has experi-
enced a renaissance in the past decade, tries to overcome these lim-
itations of manual parameter tuning. The idea is that the developer
implements all alternatives of each algorithm component that can
be selected via parameters. Then, based on a set of representative
problem instances, an automatic configurator tunes the algorithm by
selecting the parameters that yield the best performance.

Existing techniques select one parameter set that works reason-
ably well on all instances in the training set. In this work, we de-
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velop a new type of configurator that provides high-quality parameter
sets that are based on the specific problem instance that needs to be
solved. That is, we make algorithm configuration instance-specific.

2 Related Work

2.1 Automatic Algorithm Configuration

Several approaches exist in the literature for the automatic tuning
of algorithms. Some of these were created for a specific algorithm
or task. For example, [24] devises a modular algorithm for solving
constraint satisfaction problems (CSPs). Using a combination of ex-
haustive enumeration of all possible configurations and parallel hill-
climbing, the technique automatically configures the system for a
given set of training instances. Another approach, presented in [30],
focuses on the configuration of adaptive algorithms, employing a se-
quential parameter optimization approach.

Other approaches automatically design and build an entire solver
to best tackle a set of example training instances. For example, [28]
uses genetic programming to create an evolutionary algorithm (EA).
Here the chromosome is an EA operation like the selection of par-
ents, mutation, or crossover, and the task is to find a sequence of
the genetic programming operators that is best suited for the speci-
fied problem. For SAT, [8] classifies local search (LS) approaches by
means of context-free grammars. This approach then uses a genetic
programming approach to select a good LS algorithm for a given set
of instances.

There also exist approaches that are applicable to more general al-
gorithms. For example, in order to tune continuous parameters, [5]
suggests an approach that determines good parameters for individual
training instances. This approach first evaluates the extreme param-
eter configurations and then fits a regression function to map the pa-
rameter/performance tuple. The minimization of the resulting func-
tion yields a set of parameters for a given instance. For a small set
of possible parameter configurations, [3] employs a racing mecha-
nism. During training, all potential algorithms are raced against each
other, whereby a statistical test eliminates inferior algorithms before
the remaining algorithms are run on the next training instance. Alter-
natively, the CALIBRA system [1] starts with a factorial design of
the parameters. Once these initial parameter sets have been run and
evaluated, an intensifying local search routine starts from a promis-
ing design, whereby the range of the parameters is limited according
to the results of the initial factorial design experiments.

To date, there are only two systems that can configure arbitrary al-
gorithms with very large numbers of parameters, ParamILS proposed
by [17], and GGA which was proposed by [2]. ParamILS conducts
an iterated local search, whereby a special technique is used to limit
the number of training instances that need to be run for each pa-
rameter set by focusing the test runs on promising parameter sets.
As the name suggests, GGA, an abbreviation for gender-based ge-
netic algorithm, conducts a population-based local search whereby



the separation of a competitive and a non-competitive gender bal-
ances exploitation and exploration of the parameter space.

2.2 Algorithm Selection

Algorithm selection is a topic that is closely related to algorithm con-
figuration. Given an instance the objective of the solver is to choose
an algorithm that is likely to yield best performance. For example,
in [22] a sampling technique selects one of several different branch-
ing variable selection heuristics in a branch-and-bound approach.

[11] proposed to run in parallel (or interleaved on a single proces-
sor) multiple stochastic solvers that tackle the same problem. These
“algorithm portfolios” were shown to work much more robustly than
any of the individual stochastic solvers. This insight has since then
led to the technique of randomization with restarts which is com-
monly used in all state-of-the-art complete SAT solvers.

On the other hand, [18] suggested to use algorithm portfolios in a
different way. Like before, they consider multiple algorithms for the
same problem. However, in this approach, a forecast of the runtime is
made for each algorithm for any given input instance based on char-
acteristic instance features. Then the algorithm with the shortest pre-
dicted runtime is employed. SATzilla [35] is a prominent example of
this approach for SAT. Since its initial introduction in 2007, SATzilla
has consistently been ranked highly at the SAT Competitions [31].

2.3 Instance-Specific Tuning

What is interesting about algorithm selection is that it considers the
input instance when “configuring” the solver to pick the correct al-
gorithm. The limitation of these methods is, of course, that the given
portfolio can only consist of a small set of solvers. Compared to al-
gorithm configuration, the number of choices in these portfolios is
extremely limited. Therefore, when an entire family of algorithms,
as represented by exponentially or even infinitely many parameter
settings is given, it is no longer possible to learn a prediction model
for each different setting.

Some methods therefore try to integrate the benefits of both ap-
proaches, considering a parameterized solver, i.e. an entire family
of algorithms in the portfolio, and base the selection of parameters
instance-specifically according to the features of the input instance.
In [29], a self-tuning WalkSAT approach is presented that chooses
WalkSAT parameters based on the input instance. In another ap-
proach, [15, 16] tackle solvers with continuous and ordinal (but not
categorical) parameters. Here, Bayesian linear regression is used to
learn a mapping from features and parameters into a prediction of
runtime. Based on this mapping for given instance features, a pa-
rameter set which minimizes predicted runtime is searched for. The
approach in [15] led to a twofold speed-up for the local search SAT
solver SAPS.

Alternatively, instead of using regression to map instance fea-
tures to a parameter configuration, [23] introduced the stochastic of-
fline programming paradigm. This is an iterated three step approach.
First, the training instances are clustered into distinct sets based on
the similarity of their feature vectors. Then, assuming that instances
with alike features behave similarly under the same algorithm, local
search is used to find good parameters for each cluster of instances.
Finally, the algorithm refines the distance metric in the feature space
so that it can find better clusters in future iterations. The entire pro-
cedure is repeated until no significant improvement or changes are
achieved. Experiments on the set covering problem showed that the
solutions computed by a randomized greedy algorithm can be mas-
sively improved in this way. The same paper also showed that, in

this domain, regression-based learning of instance-specific parame-
ters leads to no improvement over the best instance-oblivious param-
eters.

3 Instance-Specific Algorithm Configuration

The objective of this work is to develop a general configurator that
can tune any solver and choose solver parameters according to the
instance to be solved. Based on the limited research that has been
conducted on this subject, we decided to continue the most success-
ful approach so far, stochastic offline programming, which is based
on the clustering of instances followed by the computation of high-
quality parameters for all instances within each cluster.

Clustering is advantageous for parameter tuning for several rea-
sons. First, training parameters on a collection of instances generally
provides more robust parameters than one could obtain when tuning
on individual instances. That is, tuning on a collection of instances
helps prevent over-tuning and allows parameters to generalize to sim-
ilar instances. Secondly, the found parameters are “pre-stabilized,”
meaning they are proven to work well together. Note that this is not
the case for the approaches presented in [15, 16], which may provide
parameter sets that have never before been run in combination.

In order to use clustering, a metric in the feature space must be
provided. To this end, the approach in [23] employs the loss in per-
formance when using a parameter set computed for one cluster on
an instance from another. This works well when improving solution
quality of a heuristic for set covering, where it is possible to perfectly
assess algorithm performance. The situation changes when our ob-
jective is to minimize runtime. This is because parameter sets that
are not well suited for an instance are likely to run for a very long
time, necessitating the need to introduce a timeout. This then implies
that we do not always know the real performance, and all we can use
is a lower bound on the desired distance between two points in the
feature space.

This complicates learning a new metric for the feature space. In
our experiments, for example, we found that most instances from one
cluster timed out when run with the parameters of another. This not
only leads to poor feature metrics, but also costs a lot of processing
time. Consequently, for the purpose of tuning the speed of general
solvers we suggest a different approach. Instead of learning a fea-
ture metric over several iterations, we normalize the features using
translation and scaling so that, over the set of training instances, each
feature spans exactly the interval [−1, 1]. That is, for each feature
there exists at least one instance for which this feature has value 1
and at least one instance where the feature value is −1 (whereby we
discard features which are identical for all training instances). For all
other instances, the value lies between these two extremes.

Another issue with the approach from [23] is that it employs k-
means for clustering. This algorithm first selects k random points in
the feature space. It then alternates between two steps until some ter-
mination criterion is reached. The first step assigns each instance to
a cluster according to the shortest distance to one of the k points that
were chosen. The next step then updates the k points to the centers
of the current clusters.

The problem with k-means clustering is that it requires the user
to explicitly specify the number of clusters k. If k is too low, this
means that we lose some of our potential to tune parameters more
precisely for different parts of the instance feature space. On the other
hand, if there are too many clusters, we sacrifice the robustness and
generality of the parameter sets that we optimize for these clusters.
Furthermore, for a mixed set of training instances, it is unreasonable
to assume that the value of k is known.



1: g-Means(X)
2: k ← 1, i← 1
3: (C, S)← k-Means(X, k)
4: while i ≤ k do
5: (C̄, S̄)← k-Means(Si, 2)
6: v ← C̄1 − C̄2, w ←

P

v2
i

7: yi ←
P

vixi/w
8: if Anderson-Darling-Test(y) failed then
9: Ci ← C̄1, Si ← S̄1

10: k ← k + 1
11: Ck ← C̄2, Sk ← S̄2

12: else
13: i← i + 1
14: end if
15: end while
16: return (C, S, k)

Algorithm 1: g-means Clustering Algorithm

We address this issue by using g-means, a clustering algorithm
proposed in [12] which automatically determines the number of clus-
ters. [12] proposes that a good cluster exhibits a Gaussian distribution
around the cluster center. The algorithm, presented in Algorithm 1,
first considers all inputs as forming one large cluster. In each itera-
tion, we pick one of the current clusters and try to assess whether
it is already sufficiently Gaussian. To this end, g-means splits the
cluster in two by running 2-means clustering. We can then project
all points in the cluster onto the line that runs through the centers
of the two sub-clusters, obtaining a one-dimensional distribution of
points. g-means now checks whether this distribution is normal using
the widely accepted statistical Anderson-Darling test. If the current
cluster does not pass the test, it is split into the two previously com-
puted clusters, and we continue with the next cluster.

We found that the g-means algorithm works very well for our pur-
poses. The only problem we encountered was that sometimes clus-
ters can be very small, containing very few instances. To obtain ro-
bust parameter sets we do not allow clusters that contain fewer than
a manually chosen threshold, a value which depends on the size of
the data set. Beginning with the smallest cluster, we re-distribute the
corresponding instances to the nearest clusters, where proximity is
measured by the Euclidean distance of each instance to the cluster’s
center.

In summary, our approach works as follows (see Algorithm 2). In
the learning phase, we are provided with the parameterized solver A,
a list of training instances T , and their corresponding feature vec-
tors F . First, we normalize the features in the set and memorize the
scaling and translation values for each feature (s, t).

Then, we use the g-means algorithm to cluster the training in-
stances based on the normalized feature vectors. The resulting small
clusters with too few instances are re-distributed to larger clusters as
discussed above. The final result of the clustering is a number of k
clusters Si, a list of cluster centers Ci, and, for each cluster, a dis-
tance threshold di which determines when a new instance will be
considered as close enough to the cluster center to be solved with the
parameters computed for instances in this cluster.

Then, for each cluster of instances Si we compute favorable pa-
rameters Pi using the instance-oblivious tuning algorithm GGA. Af-
ter this is done, we compute parameter set R for all the training in-
stances. This serves as the recourse for all future instances that are
not near any of the clusters.

We use GGA because it is one of the most competitive and ro-
bust tuners available, able to handle any type of parameter. Also,
[2] compared GGA to ParamILS, the only other viable option, and

1: ISAC-Learn(A, T, F )
2: (F̄ , s, t)← Normalize(F )
3: (k, C, S, d)← Cluster (T, F̄ )
4: for all i = 1, . . . , k do
5: Pi ← GGA(A, Si)
6: end for
7: R← GGA(A, T )
8: return (k, P, C, d, s, t, R)

1: ISAC-Run(A, x, k, P, C, d, s, t, R)
2: f ← Features(x)
3: f̄i ← (fi − ti)/si ∀ i
4: for all j = 1, . . . , k do
5: if ||f̄ − Ci|| ≤ di then
6: return A(x, Pi)
7: end if
8: end for
9: return A(x, R)

Algorithm 2: Instance-Specific Algorithm Configuration

showed significant gains in performance and robustness for GGA
over ParamILS.

When running algorithm A on an input instance x, we first com-
pute the features of the input and normalize them using the previ-
ously stored scaling and translation values for each feature. Then,
we determine whether there is a cluster such that the normalized fea-
ture vector of the input is close enough to the cluster center. If so,
we run A on x using the parameters for this cluster. If the input is
not near enough to any of our clusters we use the instance-oblivious
parameters R that work well for the entire training set. Specifically,
in our experiments, an instance was considered too far away if it was
more than the average distance plus two standard deviations of the
distance of all points in the cluster to its center. This tended to be
only 9% of the test instances.

4 Numerical Results
4.1 Set Covering
We begin our empirical evaluation on one of the most studied com-
binatorial optimization problems: the set covering problem (SCP).
In SCP, given a finite set S := {1, . . . , m} of items, a family
F := {S1, . . . , Sn ⊆ S} of subsets of S, and a cost function
c : F → R+, the objective is to find a subset C ⊆ F such that
S ⊆

S

Si∈C Si and
P

Si∈C c(Si) is minimized. In the unicost SCP,
the cost of each set is set to one. This problem formulation appears in
numerous practical applications such as crew scheduling [14, 13, 4],
location of emergency facilities [33], and production planning in var-
ious industries [34].

Solvers: We consider three different solvers. The first is the greedy
randomized set covering heuristic “GS” from [23]. GS repeatedly
adds sets one at a time until reaching a feasible solution. During the
construction of the cover, a probability distribution is used to specify
the set selection heuristic at each step. The other two solvers are state-
of-the-art local search SCP solvers. The dialectic search algorithm
“Hegel” was introduced in [20], and the tabu search algorithm “TS”
was introduced in [27] which is restricted to unicost instances.

Benchmark: A highly diverse set of randomly generated set cover-
ing instances was introduced in [23]. These instances involve up to
100 items and 10,000 sets. We pre-compute the optimal values of
these instances. When tuning TS, we set the cost of each set uni-
formly to 1 to achieve unicost instances. The final data set comprises



200 training instances and 200 test instances.

Instance Features: The generation of a feature vector for each SCP
was done according to the process outlined in [23]. This process first
computes the following:
• normalized cost vector c′ ∈ [1, 100]m,
• vector of bag densities (|Si|/n)i=1...m,
• vector of item costs (

P

i,j∈Si
c′i)j=1...n,

• vector of item coverings (|{i | j ∈ Si}|/m)j=1...n,
• vector of costs over density (c′i/|Si|)i=1...m,
• vector of costs over square density (c′i/|Si|2)i=1...m,
• vector of costs over k log k-density (

c′i
(|Si| log |Si|)

)i=1...m, and

• vector of root-costs over square density (
p

c′i/|Si|2)i=1...m.

The final feature vector is then formed by computing the maxima,
minima, averages, and standard deviations of all these vectors. Com-
putation of these feature values on average took only 0.01 seconds
per instance.

Numerical Results: Unless otherwise noted, experiments were run
on dual processor dual core Intel Xeon 2.8 GHz computers with 8GB
of RAM. SCP solvers Hegel and TS were evaluated on quad core
dual processor Intel Xeon 2.53 Ghz processors with 24GB of RAM.

The first objective of our experiments is to compare ISAC with
the stochastic offline programming (SOP) approach from [23]. When
deterministically using the single best greedy heuristic, GS leaves,
on average, a 7.2% (7.6%) optimality gap on the training (testing)
data [23]. It is possible to shrink this gap using a uniform distribu-
tion over the six set selection heuristics used in GS. We refer to this
default version of the GS as Uniform. In [23], a configurator was
developed which could compute high-quality instance-oblivious GS
parameters. We refer to this approach as SOP-combined. Moreover,
[23] showed that clustering the training data into sets, and then tun-
ing these sets individually could lead to further improvements. We
refer to this approach as SOP-clustered. We compare these two con-
figurators with general-purpose instance-oblivious configuration of
GGA [2] and instance-specific parameter tuning of ISAC.

Solver: GS % Optimality Gap Closed
Train Test

Uniform 25.9 (4.2) 40 (4.1)
SOP - combined 39.0 (3.3) 43.4 (3.6)
SOP - clustered 47.7 (2.4) 50.3 (3.7)

GGA 40.0 (3.6) 46.1 (3.8)
ISAC 44.4 (3.3) 51.3 (3.8)

Table 1. Comparison of ISAC versus the default and instance-oblivious
parameters provided by SOP and GGA, and the instance-specific parameters
provided by SOP. We present the percent of optimality gap closed (stdev).

In Table 1, we compare the resulting five GS solvers, presenting
the percentage of optimality gap closed by each solver. Comparing
the average percent of optimality gap closed, we find that ISAC is as
capable of improving over the default approach as SOP, which was
developed particularly for the GS solver. That is, ISAC can effec-
tively liberate us from having to select the number of clusters while,
at the same time, enjoying wide applicability to other solvers. More-
over, ISAC works more efficiently than SOP since it does not require
multiple re-clustering steps for learning a metric in the instance fea-
ture space.

Table 1 shows a clear distinction between the instance-specific
and the instance-oblivious tuning methods. Both ISAC and SOP-
clustered perform significantly better than GGA and SOP-combined.
Instance-specific tuning is best realized by ISAC, closing the opti-
mality gap by more than 50% on average.

We next evaluate ISAC on two state-of-the-art local search SCP
solvers; Hegel and TS. For both solvers we measure the time to find
a set covering solution that is within 10% of optimal. Hegel and TS
had a timeout of 10 seconds for training and testing.

In Table 2, we compare the default configuration of the solvers, the
instance-oblivious configuration obtained by GGA, and the instance-
specifically tuned versions provided by ISAC. To provide a more
holistic view of ISAC’s performance, we present three performance
metrics: the arithmetic and geometric means of the runtime in sec-
onds and the average slow down (the arithmetic mean of the ratios of
the performance of the competing solver over ISAC).

For these experiments we set the minimum cluster size to 30 in-
stances. This setting resulted in 4 clusters of roughly equal size.

Solver Avg. Run Time Geo. Avg. Avg. Slow Down
Train Test Train Test Train Test

TS Default 2.79 3.45 2.36 2.60 1.49 1.79
GGA 2.58 3.40 2.27 2.63 1.35 1.72
ISAC 1.99 2.04 1.96 1.97 1.00 1.00

Hegel Default 3.04 3.15 2.52 2.49 2.20 2.03
GGA 1.58 1.95 1.23 1.33 1.10 1.15
ISAC 1.45 1.92 1.23 1.36 1.00 1.00

Table 2. Comparison of default, instance-oblivious parameters provided
by GGA, and instance-specific parameters provided by SOP for Hegel and
TS. We present the arithmetic and geometric mean runtimes in seconds and

the average degradation when comparing each solver to ISAC.

We first observe that the default configuration of both solvers
can be improved significantly by automatic parameter tuning. For
solver TS, we measure an arithmetic mean runtime of 2.18 seconds
for ISAC-TS, 3.33 seconds for GGA-TS, and 3.44 seconds for de-
fault TS. That is, instance-oblivious parameters run 50% slower than
instance-specific parameters. For Hegel, we find that the default ver-
sion runs more than 60% slower than ISAC-Hegel.

It is worth noting that we observe a high variance of the runtimes
from one instance to another, which is caused by the diversity of our
benchmark. To get a better understanding, we also compute the aver-
age slow down of each solver when compared with the correspond-
ing ISAC version. For this measure we find that, for an average test
instance, default TS requires more than 1.70 times the time of ISAC-
TS, and GGA-TS needs 1.62 times over ISAC-TS. For default Hegel,
an average test instance takes 2.10 times the time of ISAC-Hegel
while GGA-Hegel only runs 10% slower. This confirms the findings
in [20] that Hegel runs robustly over different instance classes with
one set of parameters.

We conclude that even highly sophisticated, state-of-the-art
solvers can greatly benefit from automatic parameter tuning. De-
pending on the solver, instance-specific parameter tuning works as
well or significantly better than instance-oblivious tuning. Note that
this is not self-evident since the instance-specific approach runs the
risk of over-tuning by considering fewer instances per cluster. In our
experiments, we do not observe these problems. Instead we find that
our instance-specific algorithm configurator offers the potential for
great performance gains without over-fitting the training data.

4.2 Mixed Integer Programming
We next consider mixed integer programming problems (MIPs).
MIPs involve optimizing a linear objective function while obeying
a collection of linear inequalities and variable integrality constraints.
Mixed integer programming is an area of great importance in opera-
tions research.

Solver: The fastest and best known MIP solver is IBM Cplex [6]. For
15 years it has represented the state-of-the-art in MIP solving. The



solver is ideal for our purposes because it is highly parameterized,
allowing the user to precisely choose the settings they think are best
suited for their MIP instances. For these experiments we use Cplex
12.1.

Benchmark: We assembled a highly diverse benchmark data set
composed of problem instances from six different sources. Net-
work flow instances, capacitated facility location instances, bounded
and unbounded mixed knapsack instances and capacitated lot sizing
problems, all taken from [25], as well as combinatorial auction in-
stances from [21]. In total there are 588 instances in this set, which
was split into 276 training and 312 test instances.

Instance Features: Even though solving MIPs is an active field, to
the best of our knowledge no prior research exists on the type of
features that can be used to classify a MIP instance. We therefore
propose to use the information about the objective vector, the right
hand side (RHS) vector, and the constraint matrix to formulate our
feature vector. We first compute the following values:
• number of variables and number of constraints,
• percentage of binary (integer or continuous) variables,
• percentage of variables (all, integer, or continuous) with non zero

coefficients in the objective function, and
• percentage of ≤ (≥ or =) constraints.
We also use the mean, min, max, and standard deviation of the
following vectors, where Z = {xi | xi is restricted to be integer},
R = {xi | xi is real valued}, and U = Z ∪R:
• vector of coefficients of the objective function (of all, integer, or

continuous variables): (ci|xi ∈ X) where X = U ∨ X = Z ∨
X = R,

• vector of RHS of the≤ (≥ or =) constraints: (bj |Ajx◦ bj) where
◦ = (≥) ∨ ◦ = (≤) ∨ ◦ = (=),

• vector of number of variables (all, integer or continuous) per con-
straint j: (#{A(i,j) | A(i,j) ̸= 0, xi ∈ X}) where X = U∨X =
Z ∨X = R,

• vector of the coefficients of variables (all, integer, or continuous)
per constraint j: (

P

i A(i,j)|∀j, xi ∈ X) where X = U ∨ X =
Z ∨X = R, and

• vector of the number of constraints each variable i (all, integer, or
continuous) belongs to: (#{A(i,j) | A(i,j) ̸= 0, xi ∈ X} where
X = U ∨X = Z ∨X = R.
Computation of these feature values on average took only 0.02

seconds per instance.

Numerical Results: Experiments were carried out with a timeout of
30 seconds for training and 300 seconds for evaluation on the train-
ing and testing sets. We set the size of the smallest cluster to be 30
instances. This resulted in 5 clusters, where 4 consisted of only one
problem type, and 1 cluster combined network flow and capacitated
lot sizing instances.

Solver Avg. Run Time Geo. Avg. Avg. Slow Down
Train Test Train Test Train Test

Cplex Default 6.1 7.3 2.5 2.5 2.0 1.9
GGA 3.6 5.2 1.7 1.8 1.3 1.2
ISAC 2.9 3.4 1.5 1.6 1.0 1.0

Table 3. Comparison of ISAC versus the default and the instance-oblivious
parameters provided by GGA when tuning Cplex. We present the arithmetic
and geometric mean runtimes as well as the average slowdown per instance.

Table 3 compares instance-specific ISAC with instance-oblivious
GGA and the default settings of Cplex. We observe again that the
default parameters can be significantly improved by tuning the algo-
rithm for a representative benchmark. On average, ISAC-Cplex needs

3.4 seconds, GGA-Cplex needs 5.2 seconds and default Cplex re-
quires 7.3 seconds. Instance-obliviously tuned Cplex is 50% slower,
and default Cplex even more than 110% slower than ISAC-Cplex.

The improvements achieved by automatic parameter tuning can
also be seen when considering the average per-instance slow-downs.
According to this measure, for a randomly chosen instance in the test
set we expect that GGA-Cplex needs 20% more time than required by
ISAC-Cplex. Default Cplex even needs 90% more time than ISAC-
Cplex.

We would like to note that due to license restrictions we could only
use a very small training set of 276 instances which is very few given
the high diversity of the considered benchmark. Taking this into ac-
count and seeing that Cplex is a highly sophisticated and extremely
well-tuned solver, the fact that ISAC boosts performance so signifi-
cantly is surprising and shows the great potential of instance-specific
tuning.

4.3 Satisfiability
Our final evaluation of ISAC is on the propositional satisfiability
problem (SAT), the prototypical NP-complete problem that has far
reaching effects on many areas of computer science. For SAT, given
a propositional logic formula F in conjunctive normal form, the ob-
jective is to determine whether there exists a satisfying truth assign-
ment to the variables of F . In recent years, there has been tremen-
dous progress in solving SAT problems, so that state-of-the-art SAT
solvers can now tackle instances with hundreds of thousands of vari-
ables and over one million clauses.

Solvers: We test ISAC on the highly parameterized stochastic local
search solver SAPS [19]. Unlike most existing SAT solvers, SAPS
was originally designed with automatic tuning in mind and therefore
all of the parameters influencing the solver are readily accessible to
users. Furthermore, since it was first released, the default parame-
ters of the solver have been drastically improved by general purpose
parameter tuners [2, 17].

Benchmarks: We consider the collection of SAT instances de-
scribed in Table 4. QCP is a collection of quasi-group completion
problems, SWGCP contains small-world based graph coloring prob-
lems, 3SAT-random has 3SAT instances created using the G2 gen-
erator, and 3SAT-structured are instances that are modeled to mimic
real world search problems.

Data set Train Test Ref.

QCP 1000 1000 [10]
SWGCP 1000 1000 [9]
3SAT-random 800 800 [26]
3SAT-structured 1000 1000 [32]

Table 4. Data sets used to evaluate ISAC on SAT.
Instance Features: We utilize the features proposed by [35] to clas-
sify each problem instance. We find that while the local search fea-
tures mentioned in [35] take a considerable amount of time to com-
pute, they are not imperative to finding a good clustering of instances.
Consequently, we exclude them and use only the following:
• problem size features: number of clauses c, number of variables

v, and their ratio c/v,
• variable-clause graph features: degree statistics for variable and

clause nodes,
• variable graph features: node degree statistics,
• balance features: ratio of positive to negative literals per clause,

ratio of positive to negative occurrences of each variable, fraction
of binary and ternary clauses,

• proximity to horn clauses: fraction of horn clauses and statistics
on the number of occurrences in a horn clause for each variable,



• unit propagations at depths 1, 4, 16, 64 and 256 on a random path
in the DPLL [7] search tree, and

• search space size estimate: mean depth to contradiction and esti-
mate of the log of number of nodes.

Computation of these feature values on average took only 0.01
seconds per instance.

Numerical Results: Experiments were carried out with a timeout of
30 seconds for training and 300 seconds for evaluation on the training
and testing sets. We set the size of the smallest cluster to be at least
100 instances. This resulted in 18 clusters each with roughly 210
instances. Here not only were all of the 4 types of instances correctly
separated into distinct clusters, a further partition of instances from
the same class was provided.

We evaluate the performance of SAPS using the default parame-
ters, GGA, and ISAC and present the results in Table 5.

Solver Avg. Run Time Geo. Avg. Avg. Slow Down
Train Test Train Test Train Test

SAPS Default 79.7 77.4 0.9 0.9 292.5 274.1
GGA 14.6 14.6 0.2 0.2 5.5 4.7
ISAC 4.0 5.0 0.1 0.1 1.0 1.0

Table 5. Comparison of the SAPS solvers with default, GGA tuned, and
ISAC-SAPS. The arithmetic and geometric mean runtimes in seconds are

presented as well as the average slow-down per instance.

Even though the default parameters of SAPS have been tuned
heavily in the past [17], tuning with GGA solves the benchmark over
5 times faster than default SAPS. Instance-specific tuning allows us
to gain another factor of 2.9 over the instance-oblivious parameters,
resulting in a total performance improvement of over one order of
magnitude. This refutes the conjecture of [16] that SAPS may not be
a good solver for instance-specific parameter tuning.

It is worth noting that over 95% of instances in this benchmark
can be solved in under 15 seconds. Consequently, some exception-
ally hard, long-running instances greatly dilute the average runtime.
We therefore present again the average slow-down per instance. For
the average SAT instance in our test set, default SAPS runs 274 times
slower than ISAC. Even if we use GGA to tune a parameter set
specifically for this benchmark, GGA is still expected to run almost
5 times slower than ISAC.

5 Conclusion
In this paper we presented ISAC, a new automatic algorithm config-
urator that provides high-quality parameter sets based on instance-
specific information. The proposed approach has two major steps.
First, employing normalized features the training instances are clus-
tered using g-means, a clustering algorithm that automatically deter-
mines the appropriate number of clusters. We assume that instances
with similar features are likely to behave similarly when solved
by the same solver. Therefore, the second step uses the instance-
oblivious algorithm configurator GGA to find the best parameters
for each cluster. At runtime, when a new instance needs to be solved,
we determine the cluster that is closest to the input instance feature
vector and then solve the instance with the parameters for the respec-
tive cluster. For instances that are very far from all clusters we use
instance-oblivious parameters obtained by GGA on the entire set of
training instances.

To our knowledge, ISAC is the first instance-specific configura-
tion algorithm that can handle a large number and any type of pa-
rameters: continuous, ordinal, as well as categorical. We evaluated
ISAC on five high-performance solvers for three different problems:

set covering, mixed integer programming, and satisfiability. In all
cases we found that automatic algorithm configuration could boost
the performance of the default solvers, including the cutting edge
solvers Hegel for set covering and Cplex for mixed integer program-
ming. Moreover, we found that instance-specific tuning never works
worse than instance-oblivious configuration. On the contrary, ISAC
outperformed the instance oblivious tuner GGA in all cases, for most
solvers quite substantially.
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