
Engineering an Efficient Canonical Labeling Tool

for Large and Sparse Graphs

Tommi Junttila
∗

Petteri Kaski
†

Abstract

The problem of canonically labeling a graph is stud-
ied. Within the general framework of backtracking
algorithms based on individualization and refinement,
data structures, subroutines, and pruning heuristics es-
pecially for fast handling of large and sparse graphs are
developed. Experiments indicate that the algorithm im-
plementation in most cases clearly outperforms existing
state-of-the-art tools.

1 Introduction.

1.1 Background and Motivation. Consider the
task of querying a large database of chemical com-
pounds for a compound described in terms of con-
stituent atoms and bonds. To describe the compound,
we must be able to name the atoms that bond with each
other, and this in general requires associating a unique
label to each constituent atom. The compound itself,
however, is independent of any labeling. In particular,
we are faced with the difficulty that the labeling used
to describe the compound in the database may be dif-
ferent from the labeling we use to specify the query.
This example serves to illustrate a recurrent problem
in combinatorial computation. Given a labeled combi-
natorial object as input, the task is to label the object
in a manner that is independent of the input labeling.
Such a labeling is called a canonical labeling of the input
object.

Because essentially any explicitly given combina-
torial object can be concisely represented as a graph
for purposes of canonical labeling, in practice the fun-
damental problem is to efficiently canonically label a
given graph. Unfortunately, no polynomial-time algo-
rithm is known for this task. Indeed, a polynomial-
time canonical labeling algorithm immediately implies

∗Laboratory for Theoretical Computer Science, Helsinki Uni-

versity of Technology, P.O.Box 5400, FI-02015 TKK, Finland.

e-mail: Tommi.Junttila@tkk.fi

†Helsinki Institute for Information Technology HIIT, Depart-

ment of Computer Science, University of Helsinki, P.O.Box 68,

FI-00014 University of Helsinki, Finland.

e-mail: Petteri.Kaski@cs.helsinki.fi

a polynomial-time algorithm for the graph isomorphism

problem—the problem of deciding whether two given
graphs are the same up to a change of labels—which
from a theoretical perspective ranks among the most
extensively studied computational problems [2, 3, 4, 18,
19, 24, 36, 39]. To briefly summarize current theoret-
ical knowledge, while no polynomial-time algorithm is
known in the context of arbitrary graphs, polynomial-
time algorithms are known for numerous restricted fam-
ilies of graphs, including [5, 16, 28, 34], and there is con-
siderable theoretical evidence, including [7, 23, 30], that
the graph isomorphism problem is not NP-complete;
cf. [27, 29, 38]. Currently the best asymptotic running
time bound for canonical labeling of graphs remains
quasi-exponential in the number of vertices [4, 6].

The unresolved theoretical status withstanding, ca-
nonical labeling techniques are required in practice in
a wide range of disciplines from chemistry to combi-
natorics and computer science [1, 10, 17, 21, 22]. In
particular, there is a demand for practical software tools
that perform well on graphs encountered in applications,
even if the worst-case performance can be witnessed to
scale exponentially on crafted instances. In this respect
the current situation bears a resemblance to the sub-
stantial algorithm engineering effort in the last few years
aimed at practical algorithms for the propositional sat-
isfiability (SAT) problem [33, 43].

1.2 Contribution and Earlier Work. In this pa-
per we take an algorithm engineering approach to
canonical labeling, and develop a backtrack algorithm
and data structures appropriate for fast handling of
large and sparse graphs. To relate the present con-
tribution to earlier research, the present algorithm be-
longs to the family of backtrack algorithms based on the
technique of partition refinement alternated with indi-
vidualization of vertices; see, for example, [25, 26, 31].
The present algorithm is most closely related to the al-
gorithm in the celebrated software tool nauty [31, 44].
Also related is the tool saucy [14, 45], which is especially
designed for large and sparse graphs. These two tools
constitute the state of the art from the perspective of
practical algorithms.

Comparing with nauty, the main contribution in the
present work lies in the design of data structures and
subroutines accommodating large graphs and facilitat-
ing fast searching. To accommodate large and sparse
graphs, the total space usage of the algorithm must
be linear in the number of edges in the input graph;
this in particular precludes the incidence matrix repre-
sentation used by nauty for the input graph. Storing
the input graph in a sparse format is essentially just
the beginning, however. For graphs with thousands of
vertices, careful attention needs to be paid to the de-
sign of basic data structures for ordered partitions and
the subroutines that manipulate them. Compared with
nauty, the present algorithm in many cases avoids a lin-
ear time overhead at a search tree node by additional
bookkeeping and by accessing only essential parts of the
ordered partition and the graph at hand. In addition,
the present algorithm design improves the heuristics for
eliminating redundancy and facilitates early pruning by
means of an incremental leaf certificate.

Comparing saucy with both nauty and the present
algorithm design, there are two essential differences.
First, saucy does not compute a canonical labeling for
the input graph, but only a set of generators for its
automorphism group. Second, saucy apparently imple-
ments a less effective set of heuristics for structuring
and pruning the search tree. This design choice pays
off as less overhead in situations where the input graph
lacks regularity, but—as can be observed in the subse-
quent experiments—significantly degrades performance
on many instances of combinatorial origin.

In more detail, the central contributions over nauty

and saucy are as follows. (a) We develop a novel linear-
space data structure for chains of ordered partitions that
enables local and at most linear-time solutions to basic
tasks such as splitting a cell, color degree computation,
and undoing any number of cell splits. (b) We introduce
a technique for computing leaf certificates incrementally
when descending from the root node to a leaf node. This
both amortizes work from the leaves towards the root
node and enables early pruning of the search tree com-
pared with existing algorithms that evaluate leaf certifi-
cates only at the leaf nodes; a substantial performance
gain is obtained by being able to abort an emerging node
in certain situations before the partition refinement pro-
cess completes. (c) We strengthen existing heuristics
for pruning redundant subtrees by keeping track of an
additional automorphism orbit partition; this achieves
additional pruning in certain situations with negligible
overhead.

Experiments carried out on an extensive catalogue
of benchmark graphs indicate that the present tool in
most cases clearly outperforms nauty and saucy on large

and sparse graphs, and exhibits comparable or better
performance also on dense and highly regular graphs
of combinatorial origin, such as graphs constructed
from various finite geometries and Hadamard matrices.
Exponential scaling can nevertheless be observed for all
tools on specifically crafted families of graphs.

The open-source algorithm implementation and the
catalogue of graphs compiled for the experiments are
available at [46].

1.3 Organization of the Paper. In §2 we review
the basic definitions and notational conventions used
throughout this paper. In §3 we present the general
individualization and refinement scheme for canonical
labeling algorithms; the subsequent sections proceed to
describe the implementation of the scheme in the case
of the present algorithm. In §4 we describe and justify
the techniques employed for detecting automorphisms
and pruning redudant subtrees. In §5 we describe the
data structures and subroutines for chains of ordered
partitions. In §6 we describe the incremental leaf cer-
tificate together with an additional pruning technique.
In §7 we present the experiments comparing the present
algorithm implementation with nauty and saucy. In §8
we conclude the paper with a brief discussion.

2 Preliminaries.

We assume familiarity with graphs, permutation groups,
and group actions [8, 15].

A graph is an ordered pair G = (V,E), where V is
a finite set and E is a set of 2-element subsets of V .
The elements of V are called vertices and the elements
of E edges. We write G(V) for the set of all graphs with
vertex set V . Throughout this paper we assume that
V = {1, 2, . . . , n}.

We denote by Sym(V) the group of all permutations
of V . The image of x ∈ V under γ ∈ Sym(V) is denoted
by xγ . The composition of permutations γ1, γ2 ∈
Sym(V) is defined for all x ∈ V by x(γ1γ2) = (xγ1)γ2 .
For example, in cycle notation, (1 2)(2 3) = (1 3 2). A
permutation acts on a subset W ⊆ V by W γ = {xγ :
x ∈W} and on a graph G by Gγ = (V γ , Eγ), V γ = V ,
and Eγ = {{xγ , yγ} : {x, y} ∈ E}.

A partition of V is a set of nonempty pairwise
disjoint subsets of V whose union is V . An ordered

partition of V is a list π = (W1,W2, . . . ,Wm) such that
the set {W1,W2, . . . ,Wm} is a partition of V . We write
Π(V) for the set of all ordered partitions of V . Each
set Wi is called a cell of the partition. A partition is
discrete if all its cells are singleton sets and unit if it
has only one cell (the set V).

An ordered partition π associates with each x ∈ V
the index π(x) of the cell of π in which x occurs, that is,

π(x) = i if and only if x ∈Wi. If π is discrete, the map-
ping π̄ : x 7→ π(x) is a permutation of V . Conversely, a
permutation γ ∈ Sym(V) corresponds to the discrete or-

dered partition ({1γ−1

}, {2γ−1

}, . . . , {nγ−1

}). We iden-
tify discrete ordered partitions with permutations in this
manner. For example, if π = ({3}, {1}, {2}), then the
corresponding permutation is π̄ = (1 2 3). A per-
mutation γ ∈ Sym(V) acts on an ordered partition
π = (W1,W2, . . . ,Wm) by πγ = (W γ

1 ,W
γ
2 , . . . ,W

γ
m). In

particular, if π is discrete, πγ = γ−1π̄.
For ordered partitions π1, π2 ∈ Π(V), we say that

π1 is at least as fine as π2 and write π1 � π2 if π2

can be obtained from π1 by replacing zero or more
times two consecutive cells with the union of the cells.
Equivalently, π1 � π2 if and only if for all x, y ∈ V
it holds that π1(x) ≤ π1(y) implies π2(x) ≤ π2(y). If
π1 � π2 and π1 6= π2, we say that π1 is finer than π2

and write π1 ≺ π2. The relation ≺ is a partial order on
Π(V) whose minimum elements are the discrete ordered
partitions and the unique maximum element is the unit
ordered partition.

Two graphs G1, G2 are isomorphic if there exists a
permutation γ ∈ Sym(V) such that Gγ

1 = G2. Such
a permutation γ is called an isomorphism of G1 onto
G2. We write G1

∼= G2 to indicate that G1 and G2

are isomorphic. An isomorphism of a graph onto itself
is an automorphism. The automorphism group Aut(G)
of a graph G consists of all automorphisms of G with
composition as the group operation. We extend these
notions of isomorphism and automorphism to ordered
tuples of objects on which Sym(V) acts elementwise.
For example, for G1, G2 ∈ G(V) and π1, π2 ∈ Π(V), we
have (G1, π1) ∼= (G2, π2) if and only if there exists a
permutation γ ∈ Sym(V) with Gγ

1 = G2 and πγ
1 = π2.

Let Ω be a finite set on which Sym(V) acts. A
function I of Ω is an (isomorphism) invariant on Ω if for
all X,Y ∈ Ω it holds that X ∼= Y implies I(X) = I(Y).
An invariant is a certificate if for all X,Y ∈ Ω it holds
that I(X) = I(Y) implies X ∼= Y .

Let Σ be an ordered set. Let a = (a1, a2, . . . , ak)
and b = (b1, b2, . . . , bℓ) be two ordered tuples consisting
of elements in Σ. The lexicographic order for such tuples
is defined by setting a < b if and only if either (i) k < ℓ
and ai = bi for all 1 ≤ i ≤ k or (ii) there exists a
1 ≤ j ≤ min(k, ℓ) such that aj < bj and ai = bi for
all 1 ≤ i ≤ j − 1. We say that a is prefix of b if either
a = b or (i) holds. In particular, lexicographically a ≤ b
whenever a is a prefix of b.

3 Search Trees and Certificates.

The present algorithm is best described by means of an
associated backtrack search tree, which is common to
essentially all algorithms relying on the individualiza-

tion and refinement scheme [25, 26, 31]. Differences in
algorithms start to appear when one considers how the
data structures and subroutines are implemented and
how the basic search tree is traversed and pruned us-
ing information discovered during the traversal. These
implementation aspects for the present algorithm are
discussed in more detail in subsequent sections.

It is technically convenient to work with colored

graphs, that is, ordered pairs (G, π) ∈ G(V) × Π(V),
the intuition being that π associates a “color” π(x) with
every x ∈ V . A graph corresponds to a colored graph
where π is the unit ordered partition.

A partition refiner is a function R that associates
with every colored graph (G, π) an ordered partition
R(G, π) such that (i) R(G, π) � π and (ii) R(Gγ , πγ) =
R(G, π)γ for all γ ∈ Sym(V).

A cell selector is a function S that associates with
every colored graph (G, π) with non-discrete π a subset
S(G, π) ⊆ V such that (i) S(G, π) is a non-singleton cell
of π and (ii) S(Gγ , πγ) = S(G, π)γ for all γ ∈ Sym(V).

3.1 Search Trees. Assuming a partition refiner R
and a cell selector S, the search tree T (G, π) associated
with a colored graph (G, π) is an edge-labeled rooted
tree inductively defined by the following two rules:

1. If R(G, π) is discrete, then the tree T (G, π) consists
of the single leaf node R(G, π).

2. Otherwise, assume that

ν = R(G, π) = (W1,W2, . . . ,Wm)

and that

S(G, ν) = Wi = {x1, x2, . . . , xk}.

The tree T (G, π) consists of the root node ν that
has as its children the trees T (G, πj), 1 ≤ j ≤ k,
where

πj =(W1, . . . ,Wi−1, {xj},Wi\{xj},Wi+1, . . . ,Wn).

The edge from the root node ν to the root node νj

of the child tree T (G, πj) is labeled with the vertex
xj . The node νj is called the xj -child of ν, denoted

by ν
xj

−→ νj .

Obviously, for each path

µ1
x1−→ µ2

x2−→ · · ·
xd−1
−−−→ µd

in a search tree T (G, π) it holds that

µ1 ≻ µ2 ≻ · · · ≻ µd.

Furthermore, the nodes in T (G, π) are distinct ordered
partitions; each leaf node is a discrete ordered partition.

Theorem 3.1. For all γ ∈ Sym(V), a node ν is the

x-child of the node µ in the search tree T (G, π) if and

only if the node νγ is the xγ-child of the node µγ in the

search tree T (Gγ , πγ).

Proof. Starting from the root nodes, by induction on
the levels of the trees T (G, π) and T (Gγ , πγ).

It follows that we can define an action of Sym(V)
on the set of all search trees associated with colored
graphs by setting T (G, π)γ = T (Gγ , πγ) for all (G, π) ∈
G(V) × Π(V) and γ ∈ Sym(V). Equivalently, T (G, π)γ

is obtained by acting on the nodes, edges, and edge
labels of T (G, π) with γ. This group action induces a
notion of isomorphism for search trees.

A fundamental observation is now that every iso-
morphism of colored graphs is also an isomorphism of
the associated search trees. In particular, any automor-
phism of a colored graph maps an associated search tree
onto itself. Because only the identity permutation fixes
a discrete ordered partition, it follows that the automor-
phism group of a colored graph acts semiregularly on the
leaf nodes of an associated search tree. This observation
on one hand enables the discovery of automorphisms
while traversing the search tree, and, on the other hand,
shows that it is not feasible to traverse the entire tree for
graphs with a large automorphism group—indeed, by
the orbit-stabilizer theorem, the number of leaf nodes
in T (G, π) is a positive multiple of |Aut(G, π)|. Thus, a
search tree can be very large; as an extreme case, con-
sider the complete graph Kn.

3.2 Leaf Certificates and Canonical Labeling.

In practice the entire search tree is not traversed when
computing a canonical labeling, however. To give a de-
scription of the traversal process, it is convenient to rely
on the following abstract notions, whose implementa-
tion in the present algorithm is made precise in later
sections.

A node invariant is an invariant on three-tuples
(G, π, ν), where G ∈ G(V), π ∈ Π(V), and ν is a node
of T (G, π). For example, the number of child nodes
of a node ν in T (G, π) is a node invariant. A leaf

certificate is a certificate on three-tuples (G, π, λ), where
G ∈ G(V), π ∈ Π(V), and λ is a leaf node in T (G, π).

An elementary example of a leaf certificate is

C(G, π, λ) = (Gλ̄, πλ̄).

Indeed, for all γ ∈ Sym(V) we have

C(Gγ , πγ , λγ) = (Gγλγ

, πγλγ

) = (Gγγ−1λ̄, πγγ−1λ̄)

= (Gλ̄, πλ̄) = C(G, π, λ).

Conversely, we have that C(G1, π1, λ1) = C(G2, π2, λ2)

implies Gλ̄1

1 = Gλ̄2

2 and πλ̄1

1 = πλ̄2

2 . In other words,
for γ = λ̄1λ̄

−1
2 it holds that (Gγ

1 , π
γ
1 , λ

γ
1) = (G2, π2, λ2).

Thus, (G1, π1, λ1) ∼= (G2, π2, λ2).
Assuming a leaf certificate, a canonical labeling

algorithm is obtained as follows. Because isomorphic
colored graphs have isomorphic search trees, the search
trees have identical sets of leaf certificate values. We can
now arbitrarily declare one value in this set as canonical
(say, the minimum value with respect to an appropriate
order). It follows that if κ is a leaf node in T (G, π)
that has a canonical leaf certificate value, then (Gκ̄, πκ̄)
is a canonically labeled version of (G, π), where κ̄ is
a mediating isomorphism. Consequently, a canonical
labeling algorithm is obtained by traversing T (G, π) and
keeping track of the certificate values at the leaf nodes.
To this end, not necessarily all of T (G, π) needs to be
traversed; first, it is immediate that one has a lot of
freedom in choosing the leaf certificate to use, and a
careful choice allows one to restrict the traversal.

3.3 Pruning with a Node Invariant. The present
algorithm carries out a depth-first traversal of T (G, π)
and makes extensive use of the following prefix pruning
scheme, which is essentially due to McKay [31]. Let I
be an arbitrary node invariant that assumes values in
an ordered set. (The implementation of I in the present
algorithm is discussed in detail in §6.) Consider a node
νℓ in T (G, π). Associated with νℓ is the unique path

ν1
x1−→ ν2

x2−→ · · ·
xℓ−1
−−−→ νℓ from the root node ν1 to νℓ.

Define a node invariant ~I by setting

~I(G, π, νℓ) = (I1, I2, . . . , Iℓ),

where Ij = I(G, π, νj) for all 1 ≤ j ≤ ℓ, and order the

values of ~I lexicographically based on the ordering of the
values of I. We assume that the restriction of ~I to leaf
nodes is a leaf certificate; an elementary way to meet
this assumption is to assume that I is a leaf certificate
when restricted to leaf nodes. Selecting the minimum
value of ~I at the leaves as the canonical leaf certificate
value, it follows—by virtue of lexicographic order—that
at each level ℓ of T (G, π), it suffices to traverse only

nodes that have the minimum value of ~I among all
nodes at level ℓ. This pruning scheme is implemented
in the present algorithm by keeping a record of the
minimum invariant value so far encountered at a leaf,
and disregarding all nodes whose invariant value is
lexicographically greater than the current record. To
expedite the discovery of automorphisms, this basic
scheme is relaxed by allowing the traversal of nodes
whose invariant value is a prefix of the invariant value
at the first traversed leaf node.

4 Automorphism Discovery and Redundant

Subtree Pruning.

To arrive at a practical algorithm for graphs with a large
automorphism group, the basic individualization and
refinement scheme must be complemented with tech-
niques that enable the discovery of automorphisms dur-
ing the traversal of T (G, π); also required are techniques
that use the discovered automorphisms to prune redun-
dant subtrees of T (G, π). This section provides a brief
description of the techniques employed in the present al-
gorithm. For the most part the techniques are similar to
those described in [31] and implemented in nauty [44],
the essential novelty here being that we employ two or-
bit partitions instead of one to detect redundancy. This
achieves additional pruning in certain situations at the
negligible cost of maintaining the orbit partition.

4.1 Discovering Automorphisms. The fundamen-
tal observation enabling discovery of automorphisms is
that any automorphism α ∈ Aut(G, π) maps the search
tree T (G, π) onto itself. In particular, if λ is a leaf node
in T (G, π), then so is λα, and the two leaf nodes λ, λα

have equal values of the leaf certificate. Furthermore,

λ̄λα
−1

= λ̄(α−1λ̄)−1 = α. Conversely, if λ1, λ2 is a pair
of leaf nodes having the same leaf certificate value, then
α = λ̄1λ̄

−1
2 ∈ Aut(G, π) by definition of a leaf certificate.

This observation enables us to discover automorphisms
while traversing T (G, π).

Fix a reference leaf node φ in T (G, π) and record
its leaf certificate value; in practice we let φ be the first
traversed leaf node in a depth-first traversal. When we
subsequently traverse a leaf node λ with the same leaf
certificate value, we have discovered an automorphism
φ̄λ̄−1 ∈ Aut(G, π). It is clear that every α ∈ Aut(G, π)
can be explicitly discovered in this manner. However, in
practice we do not want to explicitly discover all the au-
tomorphisms, but only a set of generators for Aut(G, π);
otherwise we want to avoid traversing redundant parts
of the search tree as much as can be achieved in an
efficient manner.

4.2 Redundant Subtrees. Let us now make precise
what is meant by redundant. Let φ be the first traversed
leaf node. Suppose that we have either traversed or
pruned each node in a subtree of T (G, π) rooted at a
node ν, and let Φ ≤ Aut(G, π) be the group generated
by all automorphisms discovered so far; in particular,
we assume that for every leaf node λ in the subtree
rooted at ν it holds that if φ̄λ̄−1 ∈ Aut(G, π), then
φ̄λ̄−1 ∈ Φ. We claim that in this situation it is
redundant work to traverse the subtree rooted at να

for all α ∈ Φ. To justify this, first observe that
because α is an automorphism of (G, π)—and hence an

automorphism of T (G, π)—it follows that the subtrees
rooted at ν and να have identical sets of leaf certificate
values at their respective leaf nodes. Thus, by traversing
the subtree rooted at να, one would discover no new leaf
certificate values, so the traversal is redundant from the
perspective of determining the canonical leaf certificate
value. Second, for each leaf node λ in the subtree
rooted at να we claim that if φ̄λ̄−1 ∈ Aut(G, π), then
φ̄λ̄−1 ∈ Φ holds already. To this end, let λ be an
arbitrary leaf node in the subtree rooted at να such
that φ̄λ̄−1 ∈ Aut(G, π). Observe that λα−1

is a leaf
node in the subtree rooted at ν. Because Aut(G, π) is
closed under composition, we have

φ̄λα−1
−1

= φ̄(αλ̄)−1 = φ̄λ̄−1α−1 ∈ Aut(G, π).

Thus, φ̄λ̄−1α−1 ∈ Φ by the assumption on Φ. Since
α ∈ Φ, we have φ̄λ̄−1 ∈ Φ. Thus, traversing the subtree
rooted at να is redundant work also from the perspective
of discovering generators for Aut(G, π).

4.3 Eliminating Redundancy. Although it is the-
oretically possible to eliminate all redundancy in the
aforementioned sense, this is not done in practice be-
cause a complete elimination of redundancy is com-
putationally too expensive compared with the savings
gained. The present algorithm relies on three incom-
plete heuristics to prune redundant subtrees. (Com-
putationally more expensive strategies for eliminating
redundancy appear in [25, 26]; see also [37].)

We require some definitions to set up the heuristics.
Assuming a reference leaf node ρ, a leaf node λ 6= ρ is a
ρ-leaf with an associated automorphism ρ̄λ̄−1 if ρ̄λ̄−1 ∈
Aut(G, π). Let φ be the first traversed leaf node in
T (G, π). Call the path from φ to the root of T (G, π) the
first path. Let ψ be the first traversed leaf node whose
leaf certificate value is the best candidate so far for the
canonical leaf certificate value. Call the path from ψ
to the root of T (G, π) the current best path. We keep
track of two groups, Ψ ≤ Φ ≤ Aut(G, π), both initially
set to the identity group. The group Φ (respectively,
Ψ) is generated by all the automorphisms discovered so
far (respectively, by all automorphisms associated with
ψ-leaves discovered so far); in particular, Ψ is reset to
the identity group whenever ψ changes. For reasons of
efficiency, the algorithm stores in memory only the orbit
partitions {xΦ : x ∈ V } and {xΨ : x ∈ V }; however, to
ease the present exposition it is convenient to track the
groups themselves.

First Heuristic: Pruning upon Discovery. The
first heuristic occurs in connection with automorphism
discovery. In practice, automorphisms are discovered
via ρ-leaves with ρ = φ or ρ = ψ. Whenever we traverse
a ρ-leaf λ, we first update Φ and Ψ accordingly with

the associated automorphism α = ρ̄λ̄−1. Let µ be
the first common ancestor node of ρ and λ, and let
νρ (respectively, νλ) be the child of µ whose subtree
contains ρ (respectively, λ). The first heuristic now
prunes as redundant the subtree rooted at νλ; that is, in
practice the search backjumps to consider the next child
of µ. To justify redundancy, first observe that ρα = λ.
Because α is an automorphism of T (G, π), it follows
that µα = µ and that να

ρ = νλ. Because of the depth-
first traversal order, each node in the subtree rooted at
νρ has been either traversed or pruned, so the subtree
rooted at νλ is redundant.

Second Heuristic: First and Best Path Orbits. The
second heuristic is employed at each node µ in the first
path and, respectively, at each node in the current
best path but not in the first path. When µ is
being traversed, the way in which automorphisms are
discovered and the depth-first traversal order imply that
Φ ≤ Aut(G,µ) (respectively, Ψ ≤ Aut(G,µ)). Assume
that we have either traversed or pruned each node in the
subtree rooted at the x-child of µ for some x ∈ V , and
are selecting the next child of µ to traverse. The second
heuristic now prunes as redundant all the subtrees
rooted at the xΦ-children (respectively, xΨ-children) of
µ. To justify this, consider any y-child of µ with y ∈ xΦ

(respectively, y ∈ xΨ). Observe that y ∈ xΦ and Φ ≤
Aut(G,µ) (respectively, y ∈ xΨ and Ψ ≤ Aut(G,µ))
imply that there exists an α ∈ Φ (respectively, α ∈ Ψ)
with µα = µ and xα = y. Because α is an automorphism
of T (G, π), it follows that α takes the x-child of µ onto
the y-child of µ. Thus, the subtree rooted at the y-child
is redundant. In certain situations this observation can
be used to achieve further pruning in connection with
the first heuristic. Indeed, if we discover a ψ-leaf from
the subtree rooted at an y-child of a first-path node µ,
and the associated automorphism merges the Φ-orbits
of y and x for some already traversed or pruned x-child
of µ, then we can prune the entire subtree rooted at the
y-child as redundant.

Third Heuristic: Stored Automorphisms. The third
heuristic keeps track of m of the most recently discov-
ered automorphisms. (In the present algorithm imple-
mentation, m is the maximum integer at most 50 such
that the storage space required by the automorphisms
does not exceed 20 megabytes.) The stored automor-
phisms now affect which child nodes of a node are tra-
versed in the following manner. Let ν1

x1−→ ν2
x2−→

· · ·
xℓ−1
−−−→ νℓ be the path from the root node ν1 to the

current node νℓ, and let A be the set of all stored auto-
morphisms α that satisfy α(xi) = xi for all 1 ≤ i ≤ ℓ−1.
An y-child of νℓ is now traversed only if for every α ∈ A
it holds that either y is fixed by α or y is the minimum
element in its cycle in the decomposition of α into dis-

joint cycles. To justify redundancy, observe that the
group generated by A is a subgroup of Φ that fixes νℓ,
and it suffices to traverse only one y-child from each
orbit of this subgroup on S(G, νℓ).

4.4 Reporting Automorphisms. To limit the num-
ber of discovered automorphisms reported to the user,
the algorithm reports a discovered automorphism if and
only if it merges orbits in the orbit partition of Φ. Thus,
at most n − 1 automorphisms are reported. To see
that the reported automorphisms generate Aut(G, π),
observe inductively that whenever we have completed
the traversal of a node ν on the first path, the reported
automorphisms suffice to generate Aut(G, ν). For the
inductive step, let ν be the x-child µ, and observe that
to obtain a generator set for Aut(G,µ) it suffices to
report additional automorphisms (if necessary) so that
the reported automorphisms move x in the set xAut(G,µ);
any necessary automorphisms will be discovered and
reported when traversing the children of µ.

5 Data Structures and Subroutines for Ordered

Partitions.

This section provides a description of the novel ideas
in the low-level implementation of the individualization
and refinement scheme in the present algorithm.

5.1 Representing a Chain of Ordered Parti-

tions. Considering a depth-first traversal of the search
tree, the main low-level design challenge is presented by
the fact that we have to keep track of a chain of or-
dered partitions ν1 ≻ ν2 ≻ · · · ≻ νℓ when descending
from the root node towards a leaf node. Since ℓ may be
linear in the number of vertices, we are essentially left
with constant amortized space for each ordered parti-
tion in the chain. Comparing with nauty and saucy,
the present design contribution lies in the careful usage
of this space for bookkeeping to avoid costly recompu-
tations and updates when descending and ascending the
chain. Also, extra bookkeeping facilitates quick discov-
ery of essential parts of the ordered partition at hand,
such as the nonsingleton cells for purposes of refinement
and cell selection. In this respect the governing design
principle is that we want to avoid the time overhead
proportional to the number of vertices that results from
accessing the entire ordered partition whenever possi-
ble, and rather focus on what is essential to the task at
hand, as permitted by the space constraint.

We proceed to describe the low-level data structures
in more detail. The basic data structure for representing
an ordered partition νℓ = (W1,W2, . . . ,Wm) and a
chain of its predecessors consists of the following three
elements:

(a) An n-element integer array element array. The
elements in each cell are stored in consecutive
entries of element array so that the cells themselves
form contiguous subarrays.

(b) An ordered, doubly linked list of cell structures
describing the cells. Each cell structure has (i) the
integer fields first and length defining the subarray

element array[first, first + 1, . . . , first + length − 1]

containing the vertices in the cell, and (ii) the
integer field in level containing the level of the chain
at which the cell was created.

(c) An n-element array in cell of pointers to cell struc-
tures. For a vertex x, the element in cell[x] points
to the cell structure of the cell that contains x.
This information allows one to quickly find the cell
in which a neighbor vertex of a vertex belongs to
when computing the partition refiner and cell se-
lector functions.

When descending from the root towards the leaves,
the basic operation is that of splitting a cell Wi into two
nonempty subcells Z1, Z2, resulting in the finer ordered
partition

(W1,W2, . . . ,Wi−1, Z1, Z2,Wi+1,Wi+2, . . . ,Wm).

The aforementioned data structure enables the imple-
mentation of this operation so that only entries of ele-

ment array and in cell corresponding to the elements in
Wi are accessed. Also, the list of cell structures only
needs to be accessed at Wi (which becomes Z1) and its
successor cell to insert the new cell structure for Z2.

When ascending back up the chain, to rapidly
undo any number of splits we maintain also a stack
data structure refinement stack of integers recording the
values of the first fields of the cells that were split. Also
stored is the size of the stack at each level in the chain.
The crucial optimization is that when a cell Wi at level
ℓ is being recovered, we start with the current cell Yu

whose first value agrees withWi, and find the first cell Yv

succeeding Yu in the cell list such that the in level value
of Yv is at most ℓ. Then, all the cells Yu, Yu+1, . . . , Yv

are merged in one pass into Wi. Again observe that only
the essential elements of the data structure need to be
accessed.

When implementing the partition refiner and the
cell selector, for efficiency purposes it is important to
access only the nonsingleton cells and not the singleton
ones. Therefore, an ordered, doubly linked list of
nonsingleton cells is also maintained in conjunction with
the data structure for partition chains. When splitting

a cell in two, the first fields of the previous and next cell
in the list are first stored in a stack (a special value is
stored if the split cell was the first or the last in the list),
and then the list is updated appropriately (adding the
new cell after the split cell if the new cell is nonsingleton,
and dropping the split cell if it became singleton). When
ascending back up the chain, the stack is consulted to
recover the list. We embed the list of nonsingleton cells
in the cell structure so that only the cells that change
during refinement or backtracking have to be visited or
modified in the list.

5.2 Refinement to an Equitable Ordered Par-

tition. A colored graph (G, π) is equitable if any two
vertices with the same color have an equal number of
neighbors of each color. The number of neighbors of a
given color is alternatively called the color degree of a
vertex. Assuming that the graph G is clear from the
context, it is a convenient abuse of terminology to call
an ordered partition π equitable if (G, π) is an equitable
colored graph.

The partition refiner R(G, π) used in the present al-
gorithm implementation, as well as in nauty and saucy,
refines a given ordered partition π into a maximum equi-
table ordered partition ǫ such that ǫ � π. (The ordered
partition ǫ is unique up to ordering of the cells result-
ing from splits.) Pseudocode for an equitable partition
refiner can be found in [26, 31].

At implementation level, the key operation during
refinement is to split nonsingleton cells having neighbors
in a cell W into cells of vertices that have the same
number of neighbors in W . This is straightforward to
achieve by traversing all neighbors of each vertex in W ,
counting how many times each neighbor is visited, and
splitting the neighbor cells according to these counts.
To this end, the partition chain data structure and the
adjacency list representation for the input graph provide
the advantage that only cells including vertices that are
neighbors of vertices in W need to be accessed.

To provide a further implementation speedup, for
each neighbor cell Y of W , we keep track of the
maximum number of neighbors that a vertex in Y has in
W together with an occurrence count for the maximum.
This allows one to immediately discover whether Y has
to be split and also assists in selecting a fast sorting
algorithm when preparing element array for the split.
In particular, if the maximum neighbor count is less
than 2 (respectively, 256), an ad-hoc one pass sort
(respectively, a bucket sort) is applied.

5.3 Cell Selection. Two distinct cells in an equi-
table colored graph (G, π) are nonuniformly joined if
each vertex in one cell has both neighbors and non-

neighbors in the other cell. The default cell selector in
the present algorithm is identical to the default cell se-
lector employed in nauty. Namely, we select the first
nonsingleton cell that is nonuniformly joined to the
maximum number of other cells.

At implementation level, the main difference to
nauty is that the present data structures allow for a
relatively efficient evaluation of the cell selector. Thus,
we can use the cell selector in each node of the search
tree and not only at the first few levels.

The present data structures also facilitate the eval-
uation of other types of cell selectors. For example, the
first nonsingleton cell can be found in constant time be-
cause we keep track of the nonsingleton cells. Also the
first nonsingleton cell of the minimum size can be found
relatively efficiently. These two cell selectors introduce
less overhead and result in faster operation on many
graphs lacking significant regularity, but appear to be
less stable in general. The subsequent experiments are
carried out using the default cell selector only.

6 Incremental Leaf Certificate and Further

Pruning.

This section provides a high-level description of the
combined node invariant and leaf certificate in the
present algorithm. Also discussed is a further pruning
technique.

6.1 Incremental Leaf Certificate. The leaf certifi-
cate in the present algorithm is based on essentially
three ideas. First, we attempt to extract at each node
the maximum amount of invariant information that is
available with minor overhead from the basic traver-
sal process—in this respect the present implementation
closely parallels nauty [31, 44]. Second, we amortize
the leaf certificate construction by shifting the compu-
tational effort from the leaves towards the root, where
the partial certificate provides additional invariant in-
formation to assist in pruning. Third, if we know that
we can prune the current node and backtrack, we prefer
to do so at the earliest possible point of execution in the
low-level implementation. Compared with earlier algo-
rithm designs, the last two ideas are the main novelty in
the present design. In what follows we give a high-level
description of the implementation of these ideas; the ac-
tual low-level implementation is best studied from the
source code.

The main source of cheap labeling-invariant infor-
mation during the traversal of the search tree is the
partition refiner. Labeling-invariant information that
can be extracted from the refinement process includes
the ordered tuple of cell sizes at each step of refinement,
the index of a cell that splits, the invariant values (e.g.

the number of neighbors of each color) of the vertices in
a cell together with their multiplicity, and so forth.

Let (G, π) be the colored graph given as input,
G = (V,E), and consider a node νℓ at level ℓ in T (G, π).
The component node invariant, I(G, π, νℓ), consists of
two parts,

I(G, π, νℓ) = (F (G, π, νℓ), H(G, π, νℓ)).

The first part, F , consists of a fragment of a leaf
certificate. The second part, H , consists of invariant
information accumulated into a hash digest during the
refinement process—for the details of this accumulation
we refer to the source code.

The fragment F is constructed as follows. For a
node νℓ at level ℓ in T (G, π), let νℓ−1 be the parent node
of νℓ; for the root node ν1, let ν0 be the unit ordered
partition. Let S ⊆ V consist of all vertices that occur
in singleton cells in νℓ but not in νℓ−1. Let λ be any
discrete ordered partition with λ � νℓ. For each u ∈ S
and each v ∈ V such that {u, v} ∈ E, form the ordered
pair (uλ̄, vλ̄). Let F (G, π, νℓ) be the ordered tuple
consisting of these ordered pairs in lexicographic order;
for the root node, also include the ordered partition πλ̄

into the tuple. Now observe that because νℓ is equitable,
F (G, π, νℓ) is independent of the choice of λ � νℓ. For

every leaf node λ it follows that ~I(G, π, λ) essentially
consists of the colored graph (Gλ̄, πλ̄) interleaved with

invariant values from ~H(G, π, λ). Thus, ~I(G, π, νℓ) is a
leaf certificate when restricted to the leaf nodes.

Besides amortizing the leaf certificate construction
effort towards the root node, the lexicographic orga-
nization of the leaf certificate facilitates early pruning
already during the refinement process. Indeed, observe
that as soon as a singleton cell emerges during refine-
ment, we can determine the edges (uλ̄, vλ̄) associated
with that cell. By virtue of lexicographic order, this
information allows us to sometimes prune the emerging
node without ever completing the refinement process.
Since the refinement process accounts for the majority
of the execution time, this simple early abortion scheme
sometimes results in substantial gains in performance.

6.2 Pruning via Transitive First-Path Subtrees.

To give a complete description of the present algorithm,
we provide a brief description of the following pruning
heuristic, which is identical to one employed in nauty

[31, 44].
Suppose that Aut(G, π) acts transitively on the leaf

nodes in a subtree rooted at a first-path node µ, and
note that this can be detected by tracking the orbit
partition of Φ when traversing the first-path nodes.
Suppose that we are currently traversing a node ν at a
level at least that of µ. If the node invariant value of ν is

greater than the current minimum leaf certificate value
encountered, and not a prefix of the leaf certificate value
at the first leaf node φ, then we can backtrack to one
level above the level of µ, or to the first level whose node
invariant value is a prefix of the current minimum leaf
certificate value, whichever level is the maximum (that
is, provides the least pruning). To justify this, observe
on one hand that the pruned nodes cannot improve
the minimum leaf certificate value encountered so far,
and, on the other hand, no φ-leaf is pruned because by
transitivity a subtree containing a φ-leaf cannot contain
a node with invariant value equal to that of ν.

7 Experiments.

In this section we report on experiments that compare
the performance of the present algorithm with nauty

and saucy.

7.1 Benchmark Families. In the experiments we
consider the following families of graphs derived from
various combinatorial objects, lower bound construc-
tions, and industrial problem settings. Descriptions of
the combinatorial objects and related further references
can be found in [13].

Affine and projective geometries The benchmark
series ag2-〈q〉 and pg2-〈q〉 consist of the bipartite
point-line incidence graphs of the 2-dimensional af-
fine and projective geometries AG2(q) and PG2(q)
over the field GF(q).

Cai–Fürer–Immerman construction The series
cfi-〈n〉 consists of 3-regular graphs built from a
random 3-regular graph on n vertices by replacing
each vertex with a gadget graph and each edge with
two edges as described in [11].

Constraint satisfaction problems The series chnl,
difp, fpga, hole, s3-3-3, and Urq consists of
graphs translated from conjunctive normal form
propositional satisfiability instances available at
[42] by using the construction described in [14].

Hadamard matrices The series had-〈n〉 consists of
graphs built from n × n Hadamard matrices ob-
tained using various constructions [40]. The se-
ries had-sw-〈n〉 is derived by repeated application
of Orrick’s switching operations [35] to the base
Hadamard matrices to reduce the symmetry.

Miyazaki construction Miyazaki’s construction [32]
is based on the Cai–Fürer–Immerman construction
applied to a specific 3-regular multigraph. The
series mz-〈n〉 consists of the graphs resulting from
the base construction. The series mz-aug-〈n〉 and
mz-aug2-〈n〉 consists of graphs in which the base
construction is reinforced with gadgets to mislead
the cell selector.

Projective planes The series pp16-〈m〉 consists of
the bipartite point-line incidence graphs of the
known projective planes of order 16 [41].

Random regular graphs The series rnd-3-reg-〈n〉
consists of random 3-regular graphs on n vertices
constructed by rejection sampling using the config-
uration model [9, §2.4].

Strongly regular graphs The series latin-〈n〉 con-
sists of Latin square graphs srg(n2, 3(n − 1), n, 6).
The series lattice-〈n〉 consists of lattice graphs
srg(n2, 2(n−1), n−2, 2). The series paley-〈q〉 con-
sists of Paley graphs srg(q, (q−1)/2, (q−5)/4, (q−
1)/4). The series sts-〈v〉 consists of line graphs
srg(v(v − 1)/6, 3(v − 3)/2, (v + 3)/2, 9) of Steiner
triple systems. The series triang-〈n〉 consists of
triangular graphs srg(n(n−1)/2, 2(n−2), n−2, 4).
The series latin-sw-〈n〉 and sts-sw-〈v〉 consist of
aforementioned families whose base objects are per-
turbed using repeated Jacobson–Matthews switch-
ing operations [12, 20] to reduce the symmetry.

MiscellanyThe series k-〈n〉 consists of complete graphs
Kn. The series grid-〈d〉-〈n〉 and grid-w-〈d〉-〈n〉
consist of d-dimensional grid graphs where n is
the length of each dimension; the latter series has
wrapping boundary.

These families are motivated by the following gen-
eral considerations. First, to evaluate the efficiency of
the basic data structures, graphs with significant regu-
larity but little symmetry (as recorded by the automor-
phism group) are required. Second, graphs with exten-
sive symmetries are required to evaluate the heuristics
for eliminating redundancy. Third, to evaluate the data
structures and subroutines on large graphs encountered
in industrial contexts, graphs originating from indus-
trial applications are required—while such graphs are
arguably not as challenging as graphs of combinatorial
origin, their sheer size presents an effective scalability
test.

7.2 Experimental Setup. The present tool, which
we have chosen to call bliss, and the benchmark graphs
are available at [46]. The other tools considered in
the experiments are nauty (version 2.2) [44] and saucy

(version 1.1) [45].
The experiments were carried out on a network

of 105 Dell OptiPlex Linux PCs with 2.8-GHz Intel
Pentium 4 CPUs with 512 KB of in-processor cache and
1 GB of main memory. Each tool was compiled with the
GNU C Compiler (version 3.3.5) with the compilation
flags as configured by each tool.

The experiments consisted of randomly relabeling
every graph in every benchmark series 11 times, and
executing each tool on each graph with the canonical

labeling option set to both true and false (if appropri-
ate). The 5 · 11 = 55 experiments associated with each
individual graph in the benchmark set were executed in
succession on the same physical hardware.

From each experiment we recorded the execution
time, as reported by the operating system, and the
number of nodes in the corresponding search tree, as
reported by each tool. A time limit of 600 seconds
for each experiment was imposed, after which the
experiment was aborted. The total amount of CPU time
consumed by the experiments was about 5.38 million
seconds (62 days).

7.3 Results and Observations. Due to space con-
straints, we can provide here only a relatively succinct
summary of the data obtained from the experiments;
the reader is encouraged to consult [46] for a more ex-
tensive summary, on which some of the subsequent de-
tailed observations for individual benchmark series rely.

To provide a brief summary of the experiments,
Fig. 1 consists of 9 scatter plots, each providing a
pairwise comparison of the two indicated tools. Each
plot displays all the experiments associated with the
two tools in question; a logarithmic scale is used for both
axes. Experiments that have timed out are assigned the
values 600 (time) and 109 (traversed nodes) in the plots.

Figures 1(a) and 1(b) compare bliss with nauty

in the situation where only generators for the auto-
morphism group are computed. Figure 1(a) plots the
running time for both tools on each experiment, and
Fig. 1(b) plots the number of nodes traversed in the re-
spective search trees. It is immediate that bliss outper-
forms nauty on the benchmark set in terms of running
time. Looking at the number of traversed nodes, how-
ever, it appears that the numbers are roughly the same
but with some structural differences, for example, asso-
ciated with the series latin-sw and sts-sw. The differ-
ence in running times appears largely to be explained
by the fact that nauty suffers from the incidence ma-
trix representation and overhead apparently caused by
nonlocality in the data structures; this is observed, for
example, in the series cfi and rnd-3-reg.

Figures 1(c) and 1(d) compare bliss with saucy.
We observe that bliss clearly outperforms saucy on the
benchmark set both in terms of running time and in
terms of the traversed search tree nodes. It appears that
bliss has more effective heuristics for structuring and
pruning the search tree (series ag, cfi, mz, mz-aug and
pg). Also the basic traversal process is more efficient
(series rnd-3-reg in particular and also latin-sw and
sts-sw).

Figures 1(e) and 1(f) compare saucy and nauty.
From Fig. 1(f) it is immediate that nauty is clearly

superior in terms of heuristics that structure and prune
the search tree (series ag, cfi, mz, mz-aug, and pg);
however, in terms of the running times in Fig. 1(e) it
appears that nauty suffers at least from the incidence
matrix representation (series difp and rnd-3-reg).

Figures 1(g) and 1(h) compare bliss and nauty in
the situation where the canonical labeling option set to
true. Comparing with Figs. 1(a) and Figs. 1(b), the
same general behavior occurs—bliss in general outper-
forms nauty in terms of the running time. However,
now there are graphs for which bliss becomes unstable
already on slightly smaller graphs than nauty (series mz
and mz-aug).

Figure 1(i) compares the running times of bliss

with and without the canonical labeling option. It
appears that the additional cost incurred by computing
a canonical labeling is in a large number of cases not
significant compared with the cost of computing only a
set of generators for the automorphism group. Again
there are exceptions in which the canonical labeling
incurs an additional cost (series cfi and mz), sometimes
quite radically (series mz-aug).

To provide a somewhat more detailed analysis
within the present paper, Fig. 2 displays 12 more scatter
plots that compare bliss with nauty for selected bench-
mark series.

Figures 2(a) and 2(b) illustrate for the series cfi

apparently a polynomial improvement in running time
obtained compared with nauty; indeed, while the num-
ber of traversed nodes in the search trees is roughly the
same in Fig. 2(b), based on Fig. 2(a) it appears that
bliss is faster by a factor that grows roughly polynomi-
ally in n. This improvement in running time is most
likely explained by more efficient data structures and
subroutines.

Figures 2(c) and 2(d) show that the present data
structures and heuristics are competitive with nauty

also for the relatively dense graphs in the series had. For
example, nauty times out more often in situations where
bliss is still able to produce a canonical labeling within
the allocated time. The competitiveness is perhaps even
more clearly visible in Figs. 2(e) and 2(f) displaying
the series had-sw, where the graphs have only little
symmetry. Here it is immediate that both the running
times and the number of traversed nodes favor bliss.

Figures 2(g) and 2(h) illustrate the difference in
performance for the series sts-sw. Observe in Fig. 2(h)
that while bliss appears to traverse polynomially more
nodes than nauty, the running times in Fig. 2(g) are
roughly the same. This illustrates the efficiency of the
data structures, but also shows that the heuristics have
a strong effect on performance. In this particular case,
the larger number of traversed nodes results from a tie

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s

nauty

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s

nauty

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s

saucy

time

(a) (b) (c)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s

saucy

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

sa
uc

y

nauty

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

sa
uc

y

nauty

traversed nodes

(d) (e) (f)

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s
-c

an

nauty -can

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s
-c

an

nauty -can

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s
-c

an

bliss

time

(g) (h) (i)

Figure 1: Scatter plots summarizing the experiments

in the cell selector between the two nonsingleton cells
in each child node of the root node—apparently bliss

selects the larger cell and nauty the smaller cell due
to different ordering of the cells. Similar results are
obtained for the series latin, latin-sw, and sts.

Figures 2(i) to 2(l) illustrate the sometimes dra-
matic additional cost incurred by canonical labeling us-
ing the series mz. In Figs. 2(i) and 2(j) the canonical la-
beling option is set to false. We see that bliss is faster,

and that the numbers of traversed nodes are roughly
equal for both tools. In Figs. 2(k) and 2(l) the canonical
labeling option is set to true, and a qualitatively differ-
ent situation emerges. Now neither tool dominates the
other, and we see extensive timeouts, apparently due
to the fact that “bad” choices made by the cell selector
cause the algorithm to traverse an exponentially larger
subtree compared with a “good” choice. Similar results
are obtained for the series mz-aug.

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s

nauty

time

 100

 1000

 100 1000

bl
is

s

nauty

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s
-c

an

nauty -can

time

(a) cfi (b) cfi (c) had

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s
-c

an

nauty -can

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s
-c

an

nauty -can

time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s
-c

an

nauty -can

traversed nodes

(d) had (e) had-sw (f) had-sw

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

bl
is

s
-c

an

nauty -can

time

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06

bl
is

s
-c

an

nauty -can

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 0.001 0.01 0.1 1 10

bl
is

s

nauty

time

(g) sts-sw (h) sts-sw (i) mz

 100

 1000

 100 1000

bl
is

s

nauty

traversed nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

bl
is

s
-c

an

nauty -can

time

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

bl
is

s
-c

an

nauty -can

traversed nodes

(j) mz (k) mz (l) mz

Figure 2: Scatter plots for selected benchmark series

Table 1: Results for mz-aug2 series

nauty nauty -can bliss bliss -can

graph nodes time nodes time nodes time nodes time

mz-aug2-4 133–133 0–0 133–141 0–0 92–92 0–0 92–116 0–0

mz-aug2-6 599–599 0–0 599–631 0–0 310–310 0–0 311–403 0–0

mz-aug2-8 2777–2777 0–0 2777–2905 0–0 1112–1112 0–0 1120–1591 0–0

mz-aug2-10 12931–12931 0–0 12931–13443 0–0 4226–4226 0–0 4234–6105 0–0

mz-aug2-12 61621–61621 1–1 61621–61621 3–3 16564–16564 0–0 16700–24711 0–0

mz-aug2-14 270575–270575 5–5 270575–278767 22–22 65774–65774 1–1 66442–93147 1–2

mz-aug2-16 1212721–1212721 30–30 1212721–1245489 131–133 262448–262448 6–6 269280–390154 7–11

mz-aug2-18 5374331–5374331 147–166 ?–? t.o.–t.o. 1048954–1048954 27–33 1060666–1437802 33–47

mz-aug2-20 ?–? t.o.–t.o. ?–? t.o.–t.o. 4194764–4194764 126–129 4217180–6290680 148–229

mz-aug2-22 ?–? t.o.–t.o. ?–? t.o.–t.o. 16777766–? 532–t.o. ?–? t.o.–t.o.

Table 2: Results for rnd-3-reg series

nauty saucy bliss

graph nodes time nodes time nodes time

rnd-3-reg-1000-1 1001–1001 9.00–9.08 1001–1001 1.11–1.18 1001–1001 0.06–0.07

rnd-3-reg-2000-1 2001–2001 117.13–120.74 2001–2001 8.57–8.63 2001–2001 0.27–0.30

rnd-3-reg-3000-1 ?–? t.o.–t.o. 3001–3001 28.34–28.44 3001–3001 0.64–0.71

rnd-3-reg-4000-1 ?–? t.o.–t.o. 4001–4001 62.22–64.50 4001–4001 1.09–1.20

rnd-3-reg-5000-1 ?–? t.o.–t.o. 5001–5001 122.23–129.40 5001–5001 1.70–1.93

rnd-3-reg-6000-1 ?–? t.o.–t.o. 6001–6001 208.65–215.22 6001–6001 2.65–2.98

rnd-3-reg-7000-1 ?–? t.o.–t.o. 7001–7001 335.10–365.94 7001–7001 3.61–4.04

rnd-3-reg-8000-1 ?–? t.o.–t.o. 8001–8001 499.67–508.16 8001–8001 4.87–5.49

rnd-3-reg-9000-1 ?–? t.o.–t.o. ?–? t.o.–t.o. 9001–9001 7.43–8.28

rnd-3-reg-10000-1 ?–? t.o.–t.o. ?–? t.o.–t.o. 10001–10001 7.90–8.74

To illustrate exponential scaling, Table 1 displays
results for the series mz-aug2. Displayed in the table
are both the number of traversed nodes and the running
times for bliss and nauty, with both settings of the
canonical labeling option. Each row in the table
corresponds to one input graph; the interval in each
column consists of the minimum and maximum values
over the 11 random relabelings for each graph. A
time out is indicated by “t.o.” in the table. As
can be seen from the table, the number of nodes
traversed for both tools grows roughly exponentially in
n, which is explained by the fact that the cell selector
is systematically misled into making “bad” choices in
the top levels of the search tree (see [32] for a detailed
combinatorial analysis).

To illustrate scaling on large and sparse graphs,
Table 2 displays partial results for the series rnd-3-reg.
Displayed in the table are both the number of traversed
nodes and the running times for bliss, nauty, and saucy.
As can be seen from the table, all tools traverse the same
number of nodes, but bliss alone handles random 3-
regular graphs up to 10000 vertices within the allocated
time. Furthermore, it appears that the running time
of bliss grows roughly as a quadratic function in the
number of vertices, whereas the running time of saucy

is grows roughly as a cubic function in the number of
vertices. The poor performance of nauty is apparently
largely explained by the incidence matrix representation
for the input graph, which becomes cumbersome for
large and sparse graphs. The difference in running
times between bliss and saucy is apparently explained

by differences in implementation of the data structures
and subroutines that traverse the search tree.

For more extensive data on the experiments, com-
plete tables and scatter plots covering all the benchmark
families are available at [46].

8 Conclusions.

The objective of the present paper has been to improve
the practical performance of canonical labeling algo-
rithms relying on the individualization and refinement
scheme, especially in the context of large and sparse
graphs. The main contributions of the present paper are
(a) novel data structures to accommodate large graphs
and to facilitate fast traversal of the search tree, (b)
amortization of work from the leaves towards the root
of the search tree, and (c) improvement of heuristics for
pruning the search.

Experiments indicate that the present tool in most
cases clearly outperforms existing public tools on large
and sparse graphs, and exhibits comparable or better
performance also on dense and highly regular graphs of
combinatorial origin. In summary, we believe that the
present tool is one of the fastest general-purpose tools
for canonical labeling of graphs currently in existence.

It is, however, necessary to emphasize that the
aforementioned claim concerns only general-purpose
tools. Indeed, it is immediate that many restricted
families of graphs admit more efficient techniques both
in theory and in practice. Furthermore, whenever one
considers a specific family of graphs, the basic algorithm
design can typically be optimized for performance by

applying tailored isomorphism invariants during the
refinement process and by tailoring the cell selector
function. Thus, in this respect one can view the present
contribution as providing an improved template for the
construction of tailored algorithms.

Although this is not analyzed in detail in the
reported experiments, to arrive at a balanced algorithm
with stable performance on a broad range of graphs, our
general observation during the present engineering effort
has been that it is necessary to incorporate all of the
heuristics discussed in this paper into the algorithm. If
a heuristic is omitted, then performance will in general
suffer on some benchmark families. This is also why the
present algorithm design quite closely parallels nauty in
terms of the heuristics employed; in our experience, the
heuristics in nauty are very well balanced for practical
performance. If one aims for a tailored algorithm,
however, then a careful consideration should be given as
to which heuristics to include and which to leave out.

In addition to the algorithm engineering effort, we
have also made available an electronic catalogue of
graphs to provide a testbed for canonical labeling tools.
Many of the benchmark families are arguably among the
most difficult families of graphs currently known in the
context of canonical labeling and practical performance.
Keeping this in mind, it is interesting to observe that the
augmented Miyazaki construction provides currently
the only family with clear exponential scaling as the
size parameter is increased. Further contributions to
the catalogue are encouraged.

We conclude the paper with the general observa-
tion that there is an apparent gap between theory and
practice in the context of canonical labeling. In partic-
ular, there is a notable absence of actual implementa-
tions of the algorithms with the best theoretical running
time bounds, even in many cases where polynomial-
time algorithms are known, such as for bounded-degree
graphs [6]. From the perspective of practical perfor-
mance, it appears that the individualization and refine-
ment scheme remains uncontested.

Acknowledgments

This research was supported in part by the Academy
of Finland, Grant 117499. The authors thank Jani
Jaakkola and Pekka Niklander at the Department of
Computer Science of University of Helsinki for providing
computing resources for the experiments.

References

[1] F. A. Aloul, A. Ramani, I. L. Markov, and K. A.
Sakallah, Solving difficult instances of Boolean satisfia-
bility in the presence of symmetry, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and
Systems 22 (2003), 1117–1137.

[2] V. Arvind and J. Torán, Isomorphism testing: Per-
spective and open problems, Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS 86 (2005), 66–84.

[3] L. Babai, Moderately exponential bound for graph
isomorphism, in Fundamentals of Computation Theory
(F. Gécseg, Ed.), Springer-Verlag, Berlin, 1981, pp. 34–
50.

[4] L. Babai, Automorphism groups, isomorphism, recon-
struction, in Handbook of Combinatorics (R. L. Gra-
ham, M. Grötschel, and L. Lovász, Eds.), Vol. 2, Else-
vier, Amsterdam, 1995, pp. 1447–1540.

[5] L. Babai, D. Yu. Grigoryev, and D. M. Mount, Isomor-
phism of graphs with bounded eigenvalue multiplicity,
in Proc. 14th ACM Symposium on Theory of Comput-
ing, (San Francisco, May 5–7, 1982), ACM Press, New
York, 1982, pp. 310–324.

[6] L. Babai and E. M. Luks, Canonical labeling of graphs,
in Proc. 15th ACM Symposium on Theory of Com-
puting, (Boston, Apr. 25–27, 1983), ACM Press, New
York, 1983, pp. 171–183.

[7] L. Babai and S. Moran, Arthur-Merlin games: A ran-
domized proof system, and a hierarchy of complexity
classes, J. Comput. System Sci. 36 (1988), 254–276.

[8] B. Bollobás, Modern Graph Theory, Springer-Verlag,
New York, 1998.

[9] B. Bollobás, Random Graphs, 2nd ed., Cambridge
University Press, Cambridge, 2001.

[10] G. Brinkmann, Isomorphism rejection in structure gen-
eration programs, in Discrete Mathematical Chemistry
(P. Hansen, P. Fowler, and M. Zheng, Eds.), Amer.
Math. Soc., Providence, R.I., 2000, pp. 25–38.

[11] J.-Y. Cai, M. Fürer, and N. Immerman, An optimal
lower bound on the number of variables for graph
identification, Combinatorica 12 (1992), 389–410.

[12] P. J. Cameron, Random strongly regular graphs? Dis-
crete Math. 273 (2003), 103–114.

[13] C. J. Colbourn and J. H. Dinitz, Eds., Handbook of
Combinatorial Designs, 2nd ed., Chapman & Hall/
CRC, Boca Raton, Fla., 2007.

[14] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L.
Markov, Exploting structure in symmetry detection for
CNF, in Proc. 41th ACM IEEE Design Automation
Conference, (San Diego, June 7–11, 2004), ACM Press,
New York, 2004, pp. 530–534.

[15] J. D. Dixon and B. Mortimer, Permutation Groups,
Springer-Verlag, New York, 1996.

[16] S. A. Evdokimov and I. N. Ponomarenko, Recognition
and verification of an isomorphism of circulant graphs
in polynomial time (in Russian), Algebra i Analiz 15
(2003), 1–34. English translation in St. Petersburg
Math. J. 15 (2004), 813–835.

[17] J.-L. Faulon, M. J. Collins, and R. D. Carr, The sig-
nature molecular descriptor. 4. Canonizing molecules
using extended valence sequences, J. Chem. Inf. Com-
put. Sci. 44 (2004), 427–436.

[18] M. Goldberg, The graph isomorphism problem, in

Handbook of Graph Theory (J. L. Gross and J. Yellen,
Eds.), CRC Press, Boca Raton, Fla., 2004, pp. 68–78.

[19] C. M. Hoffmann, Group-Theoretic Algorithms and
Graph Isomorphism, Springer-Verlag, Berlin, 1982.

[20] M. T. Jacobson and P. Matthews, Generating uni-
formly distributed random Latin squares, J. Combin.
Des. 4 (1996), 405–437.

[21] T. Junttila, On the symmetry reduction method for
Petri nets and similar formalisms, Research Report
A80, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, 2003. Doctoral
dissertation.

[22] P. Kaski and P. R. J. Österg̊ard, Classification Algo-
rithms for Codes and Designs, Springer-Verlag, Berlin,
2006.

[23] A. R. Klivans and D. van Melkebeek, Graph noniso-
morphism has subexponential size proofs unless the
polynomial-time hierarchy collapses, SIAM J. Comput.
31 (2002), 1501–1526.

[24] J. Köbler, U. Schöning, and J. Torán, The Graph
Isomorphism Problem: Its Structural Complexity,
Birkhäuser, Boston, 1993.

[25] W. Kocay, On writing isomorphism programs, in Com-
putational and Constructive Design Theory (W. D.
Wallis, Ed.), Kluwer, Dordrecht, the Netherlands,
1996, pp. 135–175.

[26] D. L. Kreher and D. R. Stinson, Combinatorial Algo-
rithms: Generation, Enumeration, and Search, CRC
Press, Boca Raton, Fla., 1999.

[27] A. Lubiw, Some NP-complete problems similar to
graph isomorphism, SIAM J. Comput. 10 (1981), 11–
21.

[28] E. M. Luks, Isomorphism of graphs of bounded valence
can be tested in polynomial time, J. Comput. System
Sci. 25 (1982), 42–65.

[29] E. M. Luks, Permutation groups and polynomial-time
computation, in Groups and Computation (L. Finkel-
stein and W. M. Kantor, Eds.), Amer. Math. Soc.,
Providence, R.I., 1993, pp. 139–175.

[30] R. Mathon, A note on the graph isomorphism counting
problem, Inform. Process. Lett. 8 (1979), 131–132.

[31] B. D. McKay, Practical graph isomorphism, Congr.
Numer. 30 (1981), 45–87.

[32] T. Miyazaki, The complexity of McKay’s canonical
labeling algorithm, in Groups and Computation, II
(L. Finkelstein and W. M. Kantor, Eds.), Amer. Math.
Soc., Providence, R.I., 1997, pp. 239–256.

[33] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik, Chaff: Engineering an efficient SAT
solver, in Proc. 38th ACM IEEE Design Automation
Conference, (Las Vegas, June 18–22, 2001), ACM
Press, New York, 2001, pp. 530–535.

[34] M. Muzychuk, A solution of the isomorphism problem
for circulant graphs, Proc. London Math. Soc. (3) 88
(2004), 1–14.

[35] W. P. Orrick, Switching operations for Hadamard
matrices, preprint available at 〈http://arxiv.org/
abs/math.CO/0507515〉.

[36] R. C. Read and D. G. Corneil, The graph isomorphism
disease, J. Graph Theory 1 (1977), 339–363.

[37] Á. Seress, Permutation Group Algorithms, Cambridge
University Press, Cambridge, 2003.

[38] J. Torán, On the hardness of graph isomorphism, SIAM
J. Comput. 33 (2004), 1093–1108.

[39] B. Weisfeiler, Ed., On Construction and Identification
of Graphs, Springer-Verlag, Berlin, 1976.

[40] [Data]: A library of Hadamard matrices maintained
by N. J. A. Sloane, 〈http://www.research.att.com/
∼njas/hadamard/〉.

[41] [Data]: A library of projective planes of order 16
maintained by G. Royle, 〈http://www.csse.uwa.edu.
au/∼gordon/remote/planes16/index.html〉.

[42] [Data]: A library of SAT benchmarks maintained
by F. Aloul, 〈http://www.eecs.umich.edu/∼faloul/
benchmarks.html〉.

[43] [Link]: The SATLive! page, 〈http://satlive.org/〉.
[44] [Software]: nauty (version 2.2), 〈http://cs.anu.edu.

au/∼bdm/nauty/〉.
[45] [Software]: saucy (version 1.1), 〈http://vlsicad.

eecs.umich.edu/BK/SAUCY/〉.
[46] [Software]: The proposed tool, benchmark graphs, and

a summary of the experiments, 〈http://www.tcs.hut.
fi/Software/benchmarks/ALENEX-2007/〉.

