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aAbstra
tAI resear
h has developed an extensive 
olle
tion of methods to solvestate-spa
e problems. Using the 
hallenging domain of Sokoban, this pa-per studies the e�e
t of general sear
h enhan
ements on program perfor-man
e. We show that the 
urrent state of the art in AI generally re-quires a large resear
h and programming e�ort to use domain-dependentknowledge to solve even moderately 
omplex problems in su
h diÆ
ultdomains. The appli
ation of domain-spe
i�
 knowledge to exploit prop-erties of the sear
h spa
e 
an result in large redu
tions in the size ofthe sear
h tree, often several orders of magnitude per sear
h enhan
e-ment. This appli
ation-spe
i�
 knowledge is dis
overed and applied usingappli
ation-independent sear
h enhan
ements. Understanding the e�e
tof these enhan
ements on the sear
h leads to a new taxonomy of sear
henhan
ements, and a new framework for developing single-agent sear
happli
ations. This is used to illustrate the large gap between what isportrayed in the literature versus what is needed in pra
ti
e.Keywords: single-agent sear
h, IDA*, Sokoban, transposition table, pat-tern sear
h, pattern database, rapid random restart1 Introdu
tionThe AI resear
h 
ommunity has developed an impressive suite of te
hniquesfor solving state-spa
e problems. These te
hniques range from general-purposedomain-independent methods su
h as A*, to enhan
ements using domain-spe
i�
knowledge. There is a strong movement toward developing domain-independentmethods to solve problems. While these approa
hes require minimal e�ort tospe
ify a problem to be solved, the performan
e of these solvers is often limited,ex
eeding available resour
es on even simple problem instan
es. This requires1



the development of domain-dependent methods that exploit additional knowl-edge about the sear
h spa
e. These methods 
an greatly improve the eÆ
ien
yof a sear
h-based program, as measured in the size of the sear
h tree needed tosolve a problem instan
e.This paper presents a study on solving 
hallenging single-agent sear
h prob-lems for the domain of Sokoban. Sokoban is a one-player puzzle and is of generalinterest as an instan
e of robot motion planning problems [4℄. Sokoban is anal-ogous to the problem of having a robot in a warehouse move spe
i�ed goodsfrom their 
urrent lo
ation to their �nal destination, subje
t to the topology ofthe warehouse and any obsta
les in the way. Sokoban has been shown to beNP-hard and PSPACE-
omplete [2, 4℄.Previously, we reported on our attempts to solve Sokoban problems using thestandard single-agent sear
h te
hniques available in the literature [10℄. Whenthese proved inadequate, solving only 10 problems of a 90-problem test suite,new algorithms had to be developed to improve sear
h eÆ
ien
y [8, 9, 11, 12℄.This allowed 47 problems to be solved optimally or near-optimally. Additionale�orts have sin
e in
reased this number to 57. The results reported here do
-ument the large gains a
hieved by adding appli
ation-dependent knowledge toour program, Rolling Stone. Many of the sear
h enhan
ements added to RollingStone result in the sear
h-tree size being redu
ed by several orders of magnitude.Analyzing all the additions made to the Sokoban solver reveals that themost valuable enhan
ements are based on sear
h (both on-line and o�-line). We
lassify the sear
h enhan
ements along several dimensions in
luding generality,
omputational model, 
ompleteness and admissibility. Not surprisingly, themore spe
i�
 an enhan
ement is, the greater its impa
t on sear
h performan
e.When presented in the literature, single-agent sear
h (usually IDA*) 
onsistsof a few lines of 
ode. Most textbooks do not dis
uss sear
h enhan
ements, otherthan 
y
le dete
tion. In reality, non-trivial single-agent sear
h problems requiremu
h more extensive programming (and often resear
h) e�ort. For example,a
hieving high performan
e for solving sliding tile puzzles requires enhan
ementssu
h as 
y
le dete
tion, pattern databases, move ordering and enhan
ed lower-bound 
al
ulations [3℄. In this paper, we outline a new framework for developinghigh-performan
e single-agent sear
h programs.This paper 
ontains the following 
ontributions:1. A 
ase study showing the evolution of a Sokoban solver's performan
e,beginning with a domain-independent solver and ending with a highly-tuned, appli
ation-dependent program.2. Pattern sear
hes are a new proof pro
edure for improving a lower bound.They attempt to show that the lower bound for part of a state 
on�gura-tion 
an be in
reased.3. Relevan
e 
uts are a new way to add lo
ality to a global sear
h.4. A taxonomy of single-agent sear
h enhan
ements.2
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h, in
luding sear
h enhan
ementsand their 
ontrol fun
tions.In this paper, the term domain-dependent refers to knowledge about the(Sokoban) sear
h spa
e that is used by a sear
h enhan
ement. The sear
h en-han
ements dis
ussed are otherwise generally appli
able to appli
ation domainsthat have ne
essary sear
h-spa
e prerequisites (e.g. dire
ted versus undire
tedgraphs, or tree- versus graph-stru
ture of the sear
h spa
e). Many of the te
h-niques des
ribed in this paper have been su

essfully applied to other single-agent sear
h domains (as well as for other 
lasses of sear
h problems). Someof the te
hniques that were initially 
on
eived for Sokoban (su
h as patternsear
hes) have been used in other domains (the 15-puzzle and Bri
ks).2 SokobanFigure 1 shows a sample Sokoban problem, the �rst and easiest of a 90 problemtest suite available at http://xsokoban.l
s.mit.edu/xsokoban.html. The goal issimple: use the man to push (but not pull) all the stones in the maze to theshaded goal squares, abiding by the wall 
onstraints. Only one stone 
an bepushed at a time. These rather simple rules belie the diÆ
ulty of Sokobanproblems, espe
ially with respe
t to 
omputer solutions. The rules of Sokobangive rise to beautiful problems that 
an be extraordinarily 
omplex.To refer to squares in a Sokoban problem, we use a 
oordinate notation. Thehorizontal axis is labeled from \A" to \T", and the verti
al axis from \a" to \t"(assuming the maximum sized 20x20 problem), starting in the upper left 
orner.3



A move 
onsists of pushing a stone from one square to another. For example,in Figure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-Eh-Dh to indi
ate a sequen
e of pushes of the same stone. A move, of 
ourse, isonly legal if there is a valid path by whi
h the man 
an move behind the stoneand push it. Thus, although we only indi
ate stone moves (su
h as Fh-Eh),impli
it in this is the man's moves from its 
urrent position to the appropriatesquare to do the push (for Fh-Eh the man would have to move from Li to Ghvia the squares Lh, Kh, Jh, Ih and Hh).Throughout this paper, only a limited number of the strategi
 prin
iplesintrinsi
 to Sokoban will be mentioned. The full depth of Sokoban 
an onlybe appre
iated by a more dire
t en
ounter with the game. Nevertheless, wewant to mention brie
y the 
hallenge of deadlo
k positions resulting from therestri
tion of being able to push only one stone at a time. In the simplest 
asethe man 
ould push a stone into a 
orner, e�e
tively immobilizing it on a non-goal square. Sin
e all stones need to be pushed to a goal, any su
h �xed stonerenders the problem unsolvable. We will 
all these and similarly unsolvablepositions deadlo
ked.In this paper we attempt to optimally solve Sokoban problems. One def-inition of optimal is to minimize the number of stone pushes in the solution.Another de�nition is to minimize the number of man movements. It is un-
ommon for a single solution to a
hieve both goals. In this work, optimality isde�ned as the minimal number of stone pushes.1There are several properties that make Sokoban a 
hallenging domain [10℄:� The 
ombination of long solution lengths (from 97 to 674 stone pushesin the test set) and potentially large bran
hing fa
tors (up to 136) makeSokoban diÆ
ult for 
onventional sear
h algorithms to solve. The size ofthe sear
h spa
e for 20 � 20 Sokoban mazes has been estimated at 1098[7℄.� Sokoban solutions are inherently sequential; only limited parts of a solu-tion are inter
hangeable. Subgoals are often interrelated and thus 
annotbe solved independently. Attempts to de
ompose problems are also inef-fe
tive. For example, removing a single stone from a problem may make ittrivial to solve, o�ering no insights as to how to solve the original problem.� A simple and e�e
tive lower bound on the solution length of a Sokobanproblem remains elusive. The best lower-bound estimator is expensive to
al
ulate, and is often ine�e
tive.� The underlying stru
ture of Sokoban 
an be represented by a dire
tedgraph, meaning that some moves are not reversible. Consequently, thereare deadlo
k states from whi
h no solution 
an be rea
hed.1Optimizing man movements may be harder in pra
ti
e be
ause of the diÆ
ulty in �ndinga good lower-bound fun
tion. 4



Property Spe
i�
s 24-Puzzle Rubik's Cube SokobanBran
hing Fa
tor Average 2.37 13.35 12Range 1-3 12-15 0-136Solution Length Average 100+ 18 260Range 1-unknown 1-20 97-674Sear
h-Spa
e Size Upper Bound 1025 1019 1098Cal
ulation of Full O(n) O(n) O(n3)Lower Bound In
remental O(1) O(1) O(n2)Underlying Graph Undire
ted Undire
ted Dire
tedTable 1: Sear
h-Spa
e Properties of Di�erent Domains

Figure 2: Two Trivial Sokoban ProblemsSokoban exhibits a large number of diÆ
ult sear
h-spa
e properties. Tradi-tional domains for the s
ienti�
 investigation of sear
h methods, su
h as N�N -puzzles and Rubik's Cube, are usually \easier" with respe
t to at least onesear
h-spa
e property. Table 1 
ompares several sear
h-spa
e properties ofthe above mentioned domains. It is un
lear whether the 
on
lusions obtainedfrom these simpler domains will be e�e
tive for diÆ
ult sear
h domains su
h asSokoban, mu
h less \real-world" problems.3 Appli
ation-Independent Te
hniquesIdeally, we would like appli
ations to be spe
i�ed with minimal e�ort, and a\generi
" solver 
ould be used to 
ompute the solutions. In small domains thisis attainable (e.g., by exhaustive enumeration). For more 
hallenging domains,there have been a number of interesting attempts at domain-independent solvers(e.g., Bla
kbox [13℄). Before investing a lot of e�ort in developing a Sokoban-spe
i�
 program, it is important to understand the 
apabilities of 
urrent AItools. The 
omparison reveals a large disparity between what appli
ation-independent and appli
ation-dependent problem solvers 
an a
hieve.5



The Sokoban problems in Figure 2 were given to Bla
kbox to solve. Bla
kboxwas a winner in the AIPS'98 fastest planner 
ompetition. The �rst problem,
ontaining a single stone, was solved by Bla
kbox 3.3 in a few se
onds. These
ond problem, 
ontaining two stones, requires 90 se
onds to solve. Note thatthe sear
h spa
e (
onsidering only the stones, not the man) is (43 
hoose 2) =903 positions. In 
ontrast, the non-trivial six-stone position shown in Figure 1
an be solved in less than a se
ond by Rolling Stone. The sear
h spa
e is(52 
hoose 6) = 293; 162; 688; 000.Clearly, generalized planners, like Bla
kbox, have a long way to go if theyare to solve even the simplest problem in the test suite (Figure 1). Domain-independent solvers are 
urrently unable to automati
ally identify the knowledgeneeded to traverse large sear
h spa
es eÆ
iently. Hen
e, for Sokoban we haveno 
hoi
e but to pursue using appli
ation-dependent knowledge in our imple-mentation.4 Appli
ation-Dependent Te
hniquesIterative deepening A* (IDA*) was the basis for our Sokoban implementation[10℄. We gave the algorithm a �xed node limit of 20 million nodes for all exper-iments (varying from 1 to 3 hours of CPU time on a single 195 MHz pro
essorof an SGI Origin 2000). Over a period of 3 years, numerous enhan
ements weremade to the basi
 IDA* algorithm. After ea
h enhan
ement was added, the pro-gram's performan
e was assessed by running Rolling Stone on the 90-problemtest suite to �nd out how many problems 
ould be solved, and how mu
h sear
he�ort was required to do so. Detailed results of the following experiments 
anbe found in Tables 2 and 3 (pages 20 and 21). Starting with the basi
 IDA*and a simple lower-bound estimator, ea
h version of the program (labeled fromR0 to R10, ordered 
hronologi
ally) adds one enhan
ement.Although this se
tion is 
alled \appli
ation-dependent te
hniques", in realityall the te
hniques 
an be des
ribed in an appli
ation-independent way. However,their e�e
tiveness depends on domain-spe
i�
 knowledge.The following se
tions des
ribe ea
h of the enhan
ements in Rolling Stone.For well-known ideas, only a brief des
ription is given here. Full details areprovided in the Appendi
es.4.1 Simple Lower Bound (0 problems solved):IDA* with a simple lower bound has no hope of �nding a solution to any of theproblems in our test suite. An obvious lower bound is the distan
e of ea
h stoneto its 
losest goal, a Manhattan distan
e for Sokoban. However, the gap betweenthe lower-bound value and the a
tual solution length for any non-trivial problemis so large that the number of IDA* iterations, and thus their respe
tive treesizes, make solving these problems e�e
tively impossible. Improving the lowerbound is the key to better performan
e. Appli
ation-dependent knowledge isneeded to produ
e the best possible bound.6



4.2 Minimum Mat
hing Lower Bound (R0, 0 solved):To obtain a better admissible estimate for the distan
e of a position to a goal,a minimum-
ost, perfe
t bipartite mat
hing algorithm is used. The mat
hingassigns ea
h stone to a goal and returns the total (minimum) distan
e of allstones to their goals. The minimum 
ost augmentation algorithm is O(N3),where N is the number of stones [18℄. During the sear
h the lower bound onlyneeds to be updated, whi
h requires �nding negative-
ost 
y
les [14℄, and isless expensive to 
ompute. Other optimizations are possible and redu
e the
omputational 
ost. Nevertheless, maintaining the lower bound dominates theexe
ution time of our program. More details 
an be found in Appendix A.1.For the test suite, minimum mat
hing improves the simple lower bound byan average of 30 pushes. Given that minimum mat
hing preserves the solutionparity,2 this represents a de
rease of 15 iterations for the IDA* sear
h. Theheuristi
 bran
hing fa
tor for Sokoban is more than 10, so this represents ade
rease in the size of the sear
h tree by a fa
tor in ex
ess of 1015! Nevertheless,IDA* with minimum mat
hing alone 
annot solve any of the test problemswithin the 20 million node sear
h limit. The sear
h limit was in
reased to onebillion nodes, but still no problems 
ould be solved. In the experiments, thisversion of the program is referred to as \R0".4.3 Transposition Table (R1, 5 solved):Even though sear
h spa
es are generally graphs, most sear
h algorithms treatthem as trees. If a state 
an have several prede
essors, this 
an lead to du-pli
ate work. The sear
h 
ould revisit nodes and even entire subtrees severaltimes. These \transpositions" or 
y
les are dete
ted using a transposition tablein whi
h useful information about previously visited nodes is stored [22℄. Beforeexpanding a node, the transposition table is 
onsulted, and if valid informationis found, it is used to potentially 
urtail the sear
h. Further details 
an be foundin Appendix A.2.Adding transposition tables with 218 entries to IDA* allows the sear
h tosolve 5 problems in our test suite within the 20 million node limit. Figure 3shows the e�ort needed to solve those problems, ordered by sear
h-tree sizeon a linear and a logarithmi
 s
ale. The verti
al axis shows the number ofnodes sear
hed to solve the problems. The horizontal axis shows the numberof problems solved. We will use this kind of graph throughout the paper andrefer to them as e�ort graphs. The keys of the e�ort graphs refer to di�erentversions of Rolling Stone. In Figure 3, \R1" is a version of Rolling Stone thatadds transposition tables to version \R0".2If the minimum-mat
hing fun
tion returns an odd (even) number, then the 
orre
t solutionlength will also be odd (even). This 
an easily be veri�ed by imposing a 
he
ker-board 
oloringof the squares and realizing that pushing a stone between di�erently 
olored squares requiresan odd number of pushes, otherwise even. Furthermore, the di�eren
e in the number ofbla
k/white stones and goals determines the odd- or evenness of the solution length, regardlessof stone-goal assignments and detours ne
essary be
ause of stone interdependen
ies.7
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4.4 Move Ordering (R2, 4 solved):Instead of visiting su

essors of a position in an arbitrary order, one 
an tryto look at \good" su

essors �rst. Move (or su

essor) ordering is not usedin best-�rst sear
hes; the algorithm itself provides for a global ordering of thealternatives. In depth-�rst and breadth-�rst sear
hes, move ordering 
an leadto eÆ
ien
y gains be
ause goals are found earlier (left in the tree) rather thanlater (right in the tree). For IDA*, ordering moves at interior nodes makes nodi�eren
e to the sear
h, ex
ept for the �nal iteration. Sin
e the �nal iterationis aborted on
e a solution is found, �nding a solution early in this iteration 
ansigni�
antly improve the performan
e [21℄.The s
heme used in Rolling Stone, inertia, does an ex
ellent job of pla
ingthe best moves near the beginning of the move list (see Appendix A.3). Fig-ure 3 shows the e�e
t of adding move ordering to a program with the minimummat
hing lower bound and transposition tables (R2). Surprisingly, one prob-lem 
an no longer be solved (in 20 million nodes) and two others require morenodes. This result is not favorable for move ordering. However, this appears tobe bad lu
k for this small set of problems. After other features are added, moveordering shows up as a valuable 
ontribution (as shown in Se
tion 5 page 18).4.5 Deadlo
k Table (R3, 5 solved):The pattern database is a re
ent idea that has been su

essfully used in thesliding-tile puzzles [3℄ and Rubik's Cube [17℄. An o�-line sear
h is used toenumerate all possible stone/wall pla
ements in a 4�5 region to determine if adeadlo
k is present. These results are stored in deadlo
k tables. During the IDA*sear
h, the table is queried to see if the 
urrent move leads to a lo
al deadlo
k.Thus, deadlo
k tables 
ontain sear
h results of partial problem 
on�gurations.In the IDA* sear
h, before making a move, the program queries the deadlo
ktable to see if the move would result in a known deadlo
k. If so, the move isnot 
onsidered further. On average, deadlo
k tables redu
e the bran
hing fa
torby 20% (see Appendix A.4). Given that the sear
h is exponential in depth (bdwhere b is the bran
hing fa
tor and d is the average sear
h depth) this representsan enormous redu
tion in the sear
h spa
e 
onsidered ((:8� b)d).Figure 3 shows the e�e
t of adding deadlo
k tables (R3). On
e again 5problems 
an be solved, regaining the one lost with move ordering. For someproblems, the sear
h-tree size has been redu
ed by several orders of magnitude(see Tables 2 and 3, pages 20 and 21). It is illuminating to dis
over that su
han impressive redu
tion in the bran
hing fa
tor does not allow more problemsto be solved.4.6 Tunnel Ma
ros (R4, 6 solved):The sear
h algorithms dis
ussed so far treat all moves equally. After making amove, all legal moves are 
onsidered as su

essors. These algorithms are there-fore treating all moves as if they were unrelated. The method of ma
ro moves9



[15℄ is an attempt to group related atomi
 a
tions into higher level 
ompositea
tions: ma
ros. This 
an result in impressive sear
h-spa
e redu
tions. How-ever, spe
ial attention must be paid to the side-e�e
ts that ma
ros 
an have.They might in
uen
e the 
orre
tness and/or the 
ompleteness of the sear
h, aswell as the ability of the algorithm to �nd optimal solutions.A tunnel is the part of a maze where the maneuverability of the man isrestri
ted to a width of one. Sin
e there 
an be at most one stone in a tun-nel without 
reating an immediate deadlo
k, we 
an 
omplete the remainingtunnel moves without loss of generality or optimality. If a tunnel is 
omposedof arti
ulation squares3, we 
all the tunnel a one-way tunnel. Whenever themove generator 
reates a move into a one-way tunnel, the move is substitutedwith the ma
ro pushing the stone all the way through the tunnel. This elimi-nates all the interleavings with other legal moves. More details are provided inAppendix A.5.Tunnel ma
ros result in one additional problem being solved, for a new totalof 6 (Figure 3, page 8, version R4). However, the signi�
ant redu
tion in thesize of the sear
h tree 
ontributes to the solvability of many future problems.4.7 Goal Ma
ros (R5, 17 solved):Many of the Sokoban problems have all the goal squares grouped together inrooms. These goal areas are usually a

essible through only a few squares whi
hwe 
all entran
es. One 
an de
ompose the problem of solving a maze into:� how to get ea
h stone to one of the entran
es, and� how to pa
k stones into the goal areas.Often these subgoals 
an be solved independently, thus redu
ing the sear
hspa
e enormously. Problem #1 is a good example. As soon as a stone rea
hesthe entran
e to the goal area at the right side of the maze (e.g. square Mh), thestone 
an be pushed dire
tly to its �nal destination.This is a
hieved by de�ning a goal area, marking its entran
es, and pre
om-puting the order in whi
h goal squares are �lled without introdu
ing deadlo
kin the goal area. During the sear
h, if a move is generated that pushes a stoneonto the entran
e square of a goal area, that move is repla
ed with a goal ma
rothat generates a sequen
e of moves to push the stone dire
tly to an appropriategoal square (in Figure 1, underlined sequen
es of moves are goal ma
ros andare treated as a single move). Depending on the pre
omputation, there 
ouldbe one or more goal-ma
ro moves. All other moves are deleted from the movelist; only the goal-ma
ro moves are 
onsidered. If a stone 
an be pushed to its�nal destination, nothing else should matter at the moment, sin
e 
ompletion ofthis task will redu
e the 
omplexity of the remaining problem. This di�ers fromtunnel ma
ros, where alternative moves are still sear
hed. By removing othermoves when a goal ma
ro is present, the e�e
t on the sear
h-tree size is moredramati
 than for tunnel ma
ros. More details are provided in Appendix A.6.3Squares dividing the maze into otherwise dis
onne
ted parts.10



Figure 4 shows the dramati
 e�e
ts of goal ma
ros. Instead of solving 6problems, Rolling Stone 
an now solve 17. The savings for individual problemsare again several orders of magnitude. For example, the number of sear
h nodesfor problem #55 drops from over 20 million down to a mere 333 (see Table 2,page 20) { almost 5 orders of magnitude! On average, the sear
hes are smallerby a fa
tor of 20 with the goal ma
ros. This is a 
onservative estimate, sin
eunsu

essful sear
hes are stopped at 20 million nodes. However, it is importantto mention that goal 
uts are unsafe and therefore in
omplete.4.8 Goal Cuts (R6, 24 solved):The goal-ma
ro heuristi
 eliminates all alternative moves from 
onsiderationwhen a goal ma
ro is present. The reason for this is that if we 
an push a stoneto its �nal destination, it will not a�e
t other moves and they 
an be ignored.The same reasoning 
an be applied to the previous move: the move that pushedthe stone to the square from whi
h it will be \ma
ro"-pushed to the goal square.Goal 
uts do exa
tly that re
ursively further up the tree: if a stone is pushed toa goal with a goal ma
ro at the end without interleaving other stone pushes, allalternatives to pushing that stone are deleted from the move list. More detailsare in Appendix A.7.Figure 4 shows savings of approximately one to two orders of magnitude insear
h-tree size for the version using goal 
uts (R6). Now 24 problems 
an besolved. Problem #65 was not solved without goal 
uts; now it is solved withjust over 600 nodes { the sear
h tree is over 4 orders of magnitude smaller. Forsolved problems, the median sear
h tree is a fa
tor of 6 smaller.4.9 Pattern Sear
h (R7, 48 solved):Establishing the presen
e of deadlo
k 
an be quite involved. The deadlo
k mayrequire as few as one and as many as all the stones on the board. Ideally, havingdis
overed a subset of a state that 
auses a deadlo
k (a pattern of stones), anystate 
ontaining that pattern should be assigned the lower bound of 1.Pattern sear
hes �nd patterns of stones that prove that the lower boundis in error. The errors 
ould be small, improving the lower bound by as littleas 2, or as mu
h as 1 in the 
ase of a deadlo
k. All dis
overed patterns aresaved and used throughout the sear
h. If a pattern mat
hes a subset of stonesin a position, then the penalty asso
iated with that pattern is added to thelower-bound estimate for the position. In e�e
t, the program learns lower-bound penalty patterns and uses them to dynami
ally improve the lower-boundfun
tion.In the following, we will refer to two di�erent mazes: the original maze, thedata stru
ture used by the IDA* sear
h, and the test maze whi
h will be usedfor the pattern sear
hes.A pattern sear
h iterates on the number of stones in the test maze. Byde�nition, a deadlo
k is a 
on�guration of stones su
h that not all of the stones
an rea
h a goal. If we make a move A-B, we might introdu
e a deadlo
k. If this11
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Figure 5: Deadlo
k Example

Figure 6: Sequen
e of Test Mazes as Passed to PIDA* (a, b, 
 and d)deadlo
k was not present before the move, then the moved stone, now on squareB, must be part of that pattern. This is the initial stone in
luded into the testmaze for the pattern sear
h. PIDA*, a version of IDA* tailored to be eÆ
ientat pattern sear
hing, is 
alled to solve this test maze (see Appendix A.8). Iteither returns in failure (no solution, hen
e deadlo
k), or it �nds a solution. Inthe latter 
ase, the number of pushes in the solution may disagree with that ofour minimum mat
hing lower bound. If so, then we know that the lower boundfun
tion is in error and 
an be improved.Figure 5 shows a simple position, before and after the move Gd-Fd. Thequestion is whether this move introdu
es a deadlo
k. Figure 6 shows how thetest maze is built. Sin
e the last move ended up on square Fd, the test mazeis initialized with this single stone (Figure 6a). A PIDA* sear
h �nds a trivialsolution. However, the sear
h reveals that there is a 
on
i
t in the original mazethat prevents this solution: the stone on E
. This 
on
i
t is resolved by addingthe stone to the test maze and trying to solve it (Figure 6b).PIDA* will sear
h the two-stone maze and again �nd a solution. This timethere are no stone 
on
i
ts. However, the man had to move through square Geto get behind the stone on Fd, again 
on
i
ting with the original maze. This13



stone is added to the test maze (Figure 6
) and another sear
h is 
ommen
ed.A solution will be found, requiring a fourth stone to be added (Figure 6d).The next 
all to PIDA* will return no solution and announ
e a deadlo
kwith this pattern of four stones. Identifying the 
riti
al stones to examine hasbeen driven by whether they 
on
i
t with a potential solution. The irrelevantparts of the maze (su
h as the stone on H
) have been ignored.The notion of bit (stone) patterns is similar to the Method of Analogies [1℄.Pattern sear
hes are a 
on
i
t-driven top-down proof of 
orre
tness, while theMethod of Analogies is a bottom-up heuristi
 approximation.The fewer stones in a penalty pattern, the more likely it will mat
h an arbi-trary position and be used to eliminate futile bran
hes of the sear
h. A minimalpenalty pattern is a pattern from whi
h no stone 
an be removed without de-
reasing its penalty. The attentive reader will have noti
ed that only threestones are needed to guarantee deadlo
k in Figure 6; the stone on E
 is notne
essary. Before saving the pattern, our program will attempt to minimize thenumber of stones in it. The minimization routine takes an N-stone pattern and
onsiders ea
h of the possible N-1-stone sub-patterns. Ea
h of the sub-patternsis sear
hed to verify whether removing that stone preserves the deadlo
k orpenalty. If the penalty still exists, then the stone was not part of the minimalpattern and is removed.During an IDA* sear
h, at ea
h node the normal minimum mat
hing lowerbound is 
omputed. If this value is insuÆ
ient to 
ause a 
uto�, then the 
ol-le
tion of penalty patterns is mat
hed against the position. Of the patternsthat mat
h, the largest penalty is 
omputed and added to the lower bound. Iftwo or more patterns overlap, only a maximal non-overlapping subset of themis 
ounted towards the position penalty. To prevent ex
essive pattern mat
h-ing during the sear
h (utility problem [20℄), the number of patterns stored isrestri
ted. The least re
ently used patterns are removed if ne
essary.Figure 8 (page 19) shows the e�ort graph, now in
luding the version ofRolling Stone using pattern sear
hes (R7). The program 
an now solve 48problems, 24 more than the previously best version!In Table 3 (page 21), the sear
h-tree size for R7 is broken down into two
ategories. The \total nodes" 
olumn re
e
ts all positions visited in the sear
h.The \IDA*" 
olumn gives the number of positions that the IDA* sear
h visits.The di�eren
e is the number of pattern sear
h nodes (PIDA*).Ex
ept for the small sear
hes (<20,000 nodes), the 
ost of performing theadditional PIDA* sear
hes is o�set by the redu
tion in the IDA* sear
h nodes.Problem #53 is an example. The savings for the IDA* tree are dramati
. Pre-viously, the sear
h was unable to solve this problem given 20,000,000 nodes.Now the sear
h su

eeds with only 159 IDA* nodes and a total of 22,310 nodes.Clearly, the pattern sear
hes dominate the sear
h 
ost, but the knowledge un-
overed allows the program to solve the problem where it failed previously. Inthis example, Rolling Stone sear
hes fewer IDA* nodes than the length of thesolution! The sear
h ba
ktra
ks a mere 13 times for a solution of 186 pushes.Pattern sear
hes are a gamble: we invest sear
h e�ort (PIDA* nodes) ex-pe
ting to �nd useful knowledge. Problem #78 is one example of where the14



gamble does not pay o�. Even though the tree size (IDA*) is redu
ed about 50fold, in
luding the PIDA* nodes triples the total number of nodes sear
hed.The results reported here are not the best numbers that 
an be a
hieved.The PIDA* nodes dominate the 
ost of the sear
h for some problems. Someadditional heuristi
s for de
iding when to exe
ute pattern sear
hes 
ould resultin further improvements in the overall sear
h eÆ
ien
y. There are numerousparameters in the sear
h, ea
h of whi
h 
an be tuned for maximal performan
e[7, 11℄.Pattern sear
hes have also been applied to sliding-tile puzzles [7℄. The pro-gram dynami
ally learns penalty patterns, su
h as linear 
on
i
ts [6℄. The 
ostof the pattern sear
hes is small 
ompared to the large redu
tions in the IDA*sear
h tree.Deadlo
k tables (or pattern databases) are another way to store patterninformation. However, the patterns in su
h databases are ne
essarily smaller,be
ause pre
omputing these patterns requires 
onsiderable 
omputing resour
esand the resulting data needs to be stored, often exhaustively for fast hashing.Pattern sear
hes avoid both these problems, be
ause they are demand drivenand only patterns that a
tually appear in the sear
h are explored.4.10 Relevan
e Cuts (R8, 50 solved):Analysis of the trees built by an IDA* sear
h qui
kly reveals that the sear
halgorithm 
onsiders move sequen
es that no human would ever 
onsider. Even
ompletely unrelated moves are tested in every legal 
ombination|all in ane�ort to prove that there is no solution for the 
urrent threshold. How 
an aprogram mimi
 an \understanding" of relevan
e? We suggest that a reasonableapproximation of relevan
e is in
uen
e. If two moves do not in
uen
e ea
hother, then it is unlikely that they are relevant to ea
h other. If a programhad a good \sense" of in
uen
e, it 
ould assume that in a given position allprevious moves belong to a (unknown) plan of whi
h a 
ontinuation 
an onlybe a move that is relevant|in our approximation, is in
uen
ing whatever wasplayed previously. Relevan
e 
uts eliminate moves from that sear
h that appearto be irrelevant to the pre
eding sequen
e of moves.A move is 
onsidered relevant only if the previous m moves in
uen
e it. Thesear
h is only allowed to make relevant moves with respe
t to previous moves,and only a few ex
eptions are permitted. With these restri
tions in pla
e, thesear
h is for
ed to spend its e�ort lo
ally, sin
e random jumps within the sear
harea are dis
ouraged. For
ing the program to 
onsider lo
al moves is making itadopt a pseudo-plan; an ex
eption 
orresponds to a de
ision to 
hange plans. Of
ourse, restri
ting the number 
onsidered for a node will result in the possibilityof optimal solutions being found.An in
uen
e metri
 
an be a
hieved in di�erent, domain-spe
i�
 ways. Ap-pendix A.9 gives an overview of our implementation. Even though the spe
i�
saren't ne
essarily appli
able to other domains, the basi
 philosophy of the ap-proa
h is. We approximate the in
uen
e of two moves on ea
h other by thein
uen
e between their from squares. In
uen
e is determined using the notion15



Figure 7: Example Maze With Lo
alityof a \most in
uential path" between the squares. Small o�-line sear
hes areused to stati
ally pre
ompute an Influen
eTable 
ontaining the in
uen
e val-ues between any pair of from squares. For ea
h pair of squares, a breadth-�rstsear
h is used to �nd the path(s) with the largest in
uen
e. The algorithm issimilar to a shortest-path �nding algorithm, ex
ept that we use in
uen
e hereand not geographi
 distan
e.Figure 7 shows an example where humans immediately identify that solvingthis problem involves 
onsidering two separate sub-problems. The solution tothe left and right sides of the problem are 
ompletely independent of ea
h other.An optimal solution needs 82 moves; Rolling Stone's lower-bound estimatorreturns a value of 70. Standard IDA* will need 7 iterations to �nd a solution(our lower-bound estimator preserves the odd/even parity of the solution length,meaning that it iterates by 2 at a time). IDA* will try every possible (legal)move 
ombination, intermixing moves from both sides of the problem. Clearly,this is unne
essary and ineÆ
ient. Solving one of the sub-problems requires only4 iterations, sin
e the lower bound is o� by only 6. Considering this positionas two separate problems will result in an enormous redu
tion in the sear
h
omplexity.Our implementation of in
uen
e 
onsiders all moves on the left side as dis-tant from those on the right, and vi
e versa. This way only a limited numberof swit
hes is 
onsidered during the sear
h. Our parameter settings allow foronly one non-lo
al move per 9-move sequen
e. For this 
ontrived problem, rel-evan
e 
uts de
rease the number of nodes sear
hed from 32,803 to 24,748 whilestill returning an optimal solution (the pattern sear
hes were turned o� for sim-pli
ity). The savings (25%) appear relatively small be
ause the transpositiontable 
at
hes repeated positions (many of whi
h may be the result of irrelevantmoves) and eliminates them from the sear
h. Although the relevan
e 
uts pro-vide a wel
ome redu
tion in the sear
h e�ort required, it is only a small step to-wards a
hieving all the possible savings. For example, ea
h of the sub-problems
an be solved by itself in only 329 nodes! The di�eren
e between 329� 2 and16



32,803 illustrates why IDA* in its 
urrent form is inadequate for solving large,non-trivial real-world problems; the algorithm is in
apable of taking advantageof exploitable stru
tural properties of the domain. Clearly, more sophisti
atedmethods are needed. Further re�nement of the relevan
e 
ut parameters 
anlikely make a big di�eren
e in performan
e.The overhead of the relevan
e 
uts is negligible; the in
uen
e of two moves
an be established by a simple table lookup. This is in stark 
ontrast to ourpattern sear
hes, where the overhead dominates the 
ost of the sear
h for mostproblems. The addition of relevan
e 
uts in
reases the number of solved prob-lems to 50. Figure 8 shows that the bene�ts of relevan
e 
uts are only dis
ernibleon the largest sear
hes. This is not a negative 
omment on the e�e
tiveness ofrelevan
e 
uts; it only re
e
ts the observation that most of the solved problemsalready have very eÆ
ient sear
hes.4.11 Overestimation (R9, 54 solved):To ensure optimality of solutions produ
ed by A*-based algorithms, the heuristi
has to be admissible. This limits the 
hoi
e of knowledge that 
an be used. Evenif some knowledge 
orrelates well with the distan
e to the goal, but there is a
han
e that it overestimates, it 
annot be used be
ause the solution optimalitywould not be guaranteed. This shows that optimality has its pri
e. Insteadof �tting the heuristi
 distan
e to a solution h as 
losely as possible to thea
tual distan
e h�, we are restri
ted to 
reating a lower bound. The error ofsu
h a lower-bound fun
tion is often larger than a fun
tion that is allowed too

asionally overestimate. The larger the error of the lower-bound fun
tion, theless eÆ
ient the sear
h.We have seen in previous se
tions that an aggressive treatment of the sear
hspa
e is needed to make signi�
ant progress. The examples of the goal ma
rosand relevan
e 
uts have shown the bene�ts that are a
hievable when the smallrisk of losing optimality and 
ompleteness is taken. Therefore, it seems logi
alto question the admissibility 
onstraint for the heuristi
 fun
tion. The hope isto a
hieve a 
loser �t of h to h�, albeit at the 
ost of non-optimal solutions.Our overestimation te
hnique 
ombines the penalties for all pattern-sear
hpatterns that mat
h in a position. Further details are in Appendix A.10.Figure 8 shows that 3 additional problems 
an now be solved. There isroughly one order of magnitude savings in sear
h-tree size (see Table 3). Withoverestimation, almost all solved problems, ex
ept #49, have smaller or insignif-i
antly larger number of nodes. Problem #26, for example, drops from over 20million nodes to just under 123,000. While some sear
hes with overestimationuse more iterations to �nd a goal, the sear
h for problem #26 uses less; theinitial position is overestimated enough to allow the sear
h to �nd a solution infewer iterations. On average, the IDA* and total nodes are redu
ed by roughlyhalf.
17



4.12 Rapid Random Restart (R10, 57 solved):Some problem 
lasses exhibit the property of heavy tails. Heavy tails refer tothe high likelihood of problem instan
es being very hard to solve with a 
er-tain algorithm, its heuristi
s and (random) parameters used. Rapid RandomRestart (RRR) assumes that by varying parameters to the solution algorithm(here sear
h), it is possible to redu
e the solution time dramati
ally [5℄. There-fore, instead of using all the available time with one parameter setting, RRRrepeatedly aborts the sear
h after a given e�ort limit and restarts it with dif-ferent (random) parameters.In Rolling Stone, RRR is used to interrupt an iteration and restart it witha di�erent move ordering tie-breaking s
heme (see Appendix A.11). Now 57 ofthe 90 problems 
an be solved, as shown in Figure 8.5 Single-Agent Sear
h Enhan
ementsThe performan
e gap between the �rst and last versions of Rolling Stone inFigure 8 is astounding. For example, 
onsider extrapolating the performan
eof Rolling Stone with transposition tables so that it 
an solve the same numberof problems as the 
omplete program (57). 1050 (not a typo!) seems to be areasonable lower bound on the di�eren
e in sear
h-tree sizes.For ea
h of the unsolved problems, an additional sear
h to 200 million nodeswas performed. This resulted in two more problems being solved (numbers 25and 28), bringing the total number of solved problems to 90. It is dis
ouragingto see an order of magnitude more 
omputing power translating into su
h asmall improvement, 
learly an indi
ation of the diÆ
ulty of solving Sokobanproblems. For some problems (notably number 50), the IDA* sear
h thresholdis so far from the best known human solution, that there is no hope of eversolving this problem with our 
urrent te
hniques.The ordering of the pre
eding sub-se
tions 
losely 
orresponds to the orderin whi
h enhan
ements were initially added to Rolling Stone (although mostenhan
ements have been 
ontinually re�ned). Figure 9 shows how these resultswere a
hieved over the 3-year development time. The development e�ort equatesto a full-time PhD student, a part-time professor, one summer student, andvaluable feedba
k from many people. Additionally, a large number of ma
hine
y
les were used for tuning and debugging. It is interesting to note the o

asionalde
rease in the number of problems solved, the result of (favorable) bugs being�xed. The long, slow, steady in
rease is indi
ative of the reality of building alarge system. Progress is in
remental and often painfully slow.The results in Figure 8 may misrepresent the importan
e of ea
h feature.Consider removing a single enhan
ement from Rolling Stone. In the absen
eof a parti
ular method, other sear
h enhan
ements 
an 
ompensate to allow asolution to be found. Most notably, while the lower-bound fun
tion alone 
annotsolve a single problem, neither 
an the 
omplete system solve a single problemwithout the lower-bound fun
tion. Turning o� goal ma
ros redu
es the number18
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# R1 = R0 + R2 = R1 + R3 = R2 + R4 = R3 + R5 = R4 + R6 = R5 +Transposition Table Move ordering Deadlo
k Tables Tunnel Ma
ros Goal Ma
ros Goal CutsIDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes1 41,640 319 261 223 53 532 > 20,000,000 > 20,000,000 640,680 620,030 2,176 3163 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,4934 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 5975 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,1466 10,214,381 12,061,182 10,294,734 10,107,621 4,546 2837 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,2098 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,0009 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,97210 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00011 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00012 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00017 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,91019 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00021 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,97123 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00025 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00026 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00030 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00033 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00034 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00036 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00038 2,311,000 2,500,678 460,089 415,485 33,812 19,08340 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00043 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,36945 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00049 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,49451 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,50453 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00054 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00055 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 14456 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00057 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00058 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00059 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00060 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00061 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00062 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,33763 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00064 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00065 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 60467 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00068 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00070 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00071 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00072 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00073 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00075 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00076 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00077 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00078 66,309 2,555 1,408 871 480 46579 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,96480 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,93081 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,69082 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,23683 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295>1,059,134,220 >1,074,564,734 >1,051,397,172 >1,041,817,035 >811,732,061 >684,840,912Table 2: Adding Enhan
ements (I)20



# R7 = R6 + Pattern Sear
h R8 = R7 + Relevan
e Cuts R9 = R8 + Overestimation R10 = R9 + Rapid RestartIDA* nodes total nodes IDA* nodes total nodes IDA* nodes total nodes IDA* nodes total nodes1 50 1,042 50 1,042 55 1,267 55 1,2672 82 7,532 80 7,530 80 7,530 80 7,5303 94 13,445 87 12,902 94 14,095 94 14,0954 187 50,369 187 50,369 187 50,369 187 50,3695 436 59,249 202 43,298 153 33,755 239 35,9746 85 5,119 84 5,118 84 5,503 84 5,5037 1,704 28,561 1,392 28,460 338 14,832 237 15,7908 317 339,255 291 311,609 315 409,714 315 409,7149 704 168,412 1,884 435,388 1,591 385,084 1,734 407,10310 1,909 1,480,115 1,810 1,713,429 2,920 2,539,524 25,034 19,967,87511 14,048 4,691,929 5,679 2,994,297 4,058 2,527,286 3,902 2,331,95012 162,129 4,373,802 4,912 559,184 951 372,264 951 372,26417 2,473 30,111 2,038 29,116 2,158 30,242 2,336 33,90119 59,433 > 20,000,000 16,606 7,269,595 14,178 6,631,475 12,801 6,089,18221 1,853 154,593 1,177 179,734 573 113,042 1,774 258,85223 87,744 > 20,000,000 59,498 > 20,000,000 23,337 6,555,398 23,679 7,082,58425 1,239 553,900 21,536 5,784,086 683 366,035 1,231 592,58526 2,606,167 > 20,000,000 2,125,116 > 20,000,000 380 122,997 496 126,37930 14,297 > 20,000,000 14,124 > 20,000,000 27,731 17,795,114 3,595 3,467,26033 5,035 866,085 2,765 586,684 604 283,926 1,865 551,40634 542 298,674 11,431 1,981,993 9,746 749,787 731 442,02536 78,325 > 20,000,000 23,467 > 20,000,000 18,338 12,150,606 10,196 5,785,29038 2,539 51,276 7,011 154,969 10,473 160,176 2,340 56,56340 41,131 > 20,000,000 23,274 17,004,253 16,725 10,086,547 19,125 11,505,83643 5,308 690,426 1,729 421,483 2,225 535,148 2,332 523,90745 1,685 508,124 339 181,566 602 404,217 588 410,13449 375,293 1,670,236 53,113 327,643 441,638 3,486,905 136,700 1,168,19451 137 8,825 256 21,491 256 21,491 306 29,56953 159 22,310 157 22,308 157 22,308 157 22,30854 106,663 910,532 163,757 2,031,577 269 45,332 872 66,30655 97 2,993 97 2,993 97 2,993 97 2,99356 353 57,785 377 61,189 911 55,865 605 50,92457 256 121,384 234 114,416 209 128,282 209 128,28258 426 268,713 211 130,474 231 138,838 231 138,83859 795 348,214 1,420 775,753 602 337,905 1,437 409,47060 223 41,310 160 27,386 18,100 114,642 304 31,41361 314 106,206 309 105,411 299 77,555 299 77,55562 211 70,478 195 101,934 180 69,728 180 69,72863 567 259,537 703 312,546 473 237,196 1,371 578,06664 378 300,684 405 332,402 193 186,508 193 186,50865 196 21,442 196 21,442 165 23,004 165 23,00467 18,107 601,178 12,669 512,488 298 104,356 298 104,35668 2,278 541,080 1,953 538,509 324 236,157 324 236,15770 412 125,454 431 140,765 446 178,657 446 178,65771 1,432,332 > 20,000,000 8,234,574 > 20,000,000 1,132,180 > 20,000,000 183,170 1,973,35272 134 44,908 134 44,908 123 45,735 123 45,73573 201 87,019 214 94,568 225 103,494 225 103,49475 61,973 > 20,000,000 55,274 > 20,000,000 259,971 > 20,000,000 12,786 5,095,05476 185,633 6,236,656 74,315 3,775,394 251 183,656 4,123 1,980,09477 1,092,369 > 20,000,000 1,019,702 > 20,000,000 1,108,195 > 20,000,000 251,768 6,277,71578 64 4,451 64 4,913 64 4,913 64 4,91379 125 15,833 122 15,527 127 13,114 127 13,11480 100 16,114 165 26,943 176 26,309 176 26,30981 21,501 234,235 2,662 42,445 875 111,033 2,651 206,42382 86 33,445 86 33,445 117 45,014 117 45,01483 91 7,294 80 5,631 108 6,856 108 6,85684 94 5,960 106 7,938 108 7,818 108 7,8186,391,084 >206,536,295 11,950,910 >189,388,544 3,105,947 >128,361,597 715,741 79,833,557Table 3: Adding Enhan
ements (II)21
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timeFigure 9: Number of Problems Solved Over Timeof problems solved by 33, almost 60%! Turning o� pattern sear
hes redu
es thenumber of solved problems by 22, while disabling transposition tables loses 19problems. Other than the lower-bound fun
tion, these three methods are themost important for Rolling Stone; losing any one of them dramati
ally redu
esthe performan
e. While other enhan
ements don't have as dramati
 an e�e
t,turning any one of them o� loses at least one problem.5.1 Knowledge TaxonomyIn looking at the domain-spe
i�
 knowledge used to solve Sokoban problems,we 
an identify several di�erent ways of 
lassifying the knowledge:Generality. Classify based on how general the knowledge is: domain (e.g.,Sokoban), instan
e (a parti
ular Sokoban problem), and subtree (within aSokoban sear
h).Knowledge Sour
e. Di�erentiate how the knowledge was obtained: stati
(su
h as advi
e from a human expert) and dynami
 (gleaned from asear
h).Admissibility/Completeness. Knowledge 
an be: admissible (preserve op-timality in a solution) or non-admissible. Non-admissible knowledge 
aneither preserve 
ompleteness of the algorithm or render it in
omplete. Ad-missible knowledge is ne
essarily 
omplete.Figure 10 summarizes the sear
h enhan
ements used in Rolling Stone. Otherenhan
ements from the literature 
ould easily be added into spa
es that are stillblank, e.g. perimeter databases [19℄ (dynami
, admissible, instan
e). Note thatsome of the enhan
ement 
lassi�
ations are �xed by the type of the enhan
e-ment. For example, any type of forward pruning is in
omplete by de�nition, andmove ordering always preserves admissibility. For some enhan
ements, the prop-erties depend on the implementation. For example, overestimation te
hniques22



Classi�
ation Domain Instan
e SubtreeStati
 admissible lower tunnel movebound ma
ros ordering
ompletein
omplete relevan
e goal
uts 
utsDynami
 admissible deadlo
k patterntables sear
hestransposi-tion table
omplete overesti-mationin
omplete goalma
rosFigure 10: Taxonomy of Sear
h Enhan
ements in Sokoban
an be stati
 or dynami
; goal ma
ros 
an be admissible or non-admissible;pattern databases 
an be domain-based or instan
e-based.It is interesting to note that, apart from the lower-bound fun
tion itself, thethree most important program enhan
ements in terms of program performan
eare all dynami
 (sear
h-based) and instan
e/subtree spe
i�
. The stati
 en-han
ements, while of value, turn out to be of less importan
e. Stati
 knowledgeis usually rigid and does not in
lude the myriad of ex
eptions that sear
h-basedmethods 
an un
over and rea
t to.5.2 Control Fun
tionsThere is another type of appli
ation-dependent knowledge that is 
riti
al toperforman
e, but re
eives s
ant attention in the literature. Control fun
tionsare intrinsi
 parts of eÆ
ient sear
h programs, 
ontrolling when to use or notuse a sear
h enhan
ement. In Rolling Stone numerous 
ontrol fun
tions are usedto improve the sear
h eÆ
ien
y. Some examples in
lude:Transposition Table: Control knowledge is needed to de
ide when new in-formation is worth repla
ing older information in the table. Also, whenreading from the table, 
ontrol information 
an de
ide whether the bene-�ts of the lookup justify the 
ost.Goal Ma
ros: If a goal area has too few goal squares, then goal ma
ros aredisabled. With a small number of goals or too many entran
es, the sear
hwill likely not need ma
ro moves, and the potential savings are not worththe risk of eliminating possible solutions.Pattern Sear
hes: Pattern sear
hes are exe
uted only when a non-trivial heuris-ti
 fun
tion indi
ates the likelihood of a penalty being present. Exe
uting23



a pattern sear
h is expensive, so this overhead should be introdu
ed onlywhen it is likely to be 
ost e�e
tive. Control fun
tions are also used tostop a pattern sear
h when su

ess appears unlikely.Implementing a sear
h enhan
ement is often only one part of the program-ming e�ort. Implementing and tuning its 
ontrol fun
tion(s) 
an be signi�-
antly more time 
onsuming and more 
riti
al to performan
e. We estimatethat whereas the sear
h enhan
ements take about 90% of the 
oding e�ort andthe 
ontrol fun
tions only 10%, the reverse distribution applies to the amountof tuning e�ort needed and ma
hine 
y
les 
onsumed.A 
lear separation between the sear
h enhan
ements and their respe
tive
ontrol fun
tions 
an help the tuning e�ort. For example, while the goal ma
ro
reation only 
onsiders whi
h order the stones should be pla
ed into the goalarea, the 
ontrol fun
tion 
an determine if goal ma
ros should be 
reated at all.Both tuning e�orts have very di�erent obje
tives: one is sear
h eÆ
ien
y, theother risk minimization. Separating the two seems natural and 
onvenient.5.3 Single-Agent Sear
h FrameworkAs presented in the literature, single-agent sear
h 
onsists of a few lines of 
ode(usually IDA*). Most textbooks do not dis
uss sear
h enhan
ements, otherthan 
y
le dete
tion. In reality, non-trivial single-agent sear
h problems requirea more extensive programming (and possibly resear
h) e�ort.Figure 11 illustrates the basi
 IDA* routine, with our enhan
ements in
luded(in itali
s). This routine is spe
i�
 to Rolling Stone, but 
ould be written in moregeneral terms. It does not in
lude a number of well-known single-agent sear
henhan
ements available in the literature. Control fun
tions are indi
ated byparameters to sear
h enhan
ement routines. In pra
ti
e, some of these fun
tionsare implemented as simple if statements 
ontrolling a

ess to the enhan
ement
ode.Examining the 
ode in Figure 11, one realizes that there are really only threetypes of sear
h enhan
ements:1. Modifying the lower bound (as indi
ated by the updates to lb). This 
antake two forms: optimally in
reasing the bound (e.g. using patterns) whi
hredu
es the distan
e to sear
h, or non-optimally (using overestimation)whi
h redistributes where the sear
h e�ort is 
on
entrated.2. Removing bran
hes unlikely to add additional information to the sear
h(the next and break statements in the for loop). This forward pruning 
anresult in large redu
tions in the sear
h tree, at the expense of possiblya�e
ting the 
ompleteness.3. Collapsing the tree height by repla
ing a sequen
e of moves with one move(for example, ma
ros).Some of the sear
h enhan
ements involve 
omputations outside of the sear
h.Figure 12 shows where the pre-sear
h pro
essing o

urs at the domain and24



IDA*() f/** Compute the best possible lower bound **/lb = ComputeLowerBound();lb += UsePatterns(); /** Mat
h Patterns **/lb += UseDeadlo
kTable();lb += UseOverestimate( CntrlOverestimate() );if( 
utoff ) return;/** Prepro
ess **/lb += ReadTransTable();if( 
uto� ) return;PatternSear
h( CntrlPatternSear
h() );lb += UsePatterns();if( 
uto� ) return;/** Generate moves to 
onsider **/movelist = GenerateMoves();RemoveDeadMoves( movelist );IdentifyMa
ros( movelist );OrderMoves( movelist );for( ea
h move ) fif( Irrelevant( move, CntrlIrrelevent() )) next;solution = IDA*();if( solution) return;if( GoalCut() ) break;UpdateLowerBound(); /** Use New Patterns **/if( 
uto� ) return;g/** Post-pro
ess **/SaveTransTable( CntrlTransTable() );return;g Figure 11: Enhan
ed IDA*
25



for( ea
h domain ) f/** Prepro
ess **/BuildDeadlo
kTable( CntrlDeadlo
kTable() );for( ea
h instan
e ) f/** Prepro
ess **/FindTunnelMa
ros();FindGoalMa
ros( CntrlGoalMa
ros() );while( not solved ) fSetSear
hParamaters();IDA*();g/** Postpro
ess **/SavePatterns( CntrlSavingPatterns() );gg Figure 12: Prepro
essing Hierar
hyinstan
e levels. O�-line 
omputation of pattern databases or pre-pro
essingof problem instan
es are powerful te
hniques that re
eive s
ant attention inthe literature (
hess endgame databases are a notable ex
eption). Yet thesete
hniques are an important step towards the automation of knowledge dis
overyand ma
hine learning. Prepro
essing is involved in many of the most valuableenhan
ements that are used in Rolling Stone.Similar issues o

ur with other sear
h algorithms. For example, althoughit takes only a few lines to spe
ify the alpha-beta algorithm, the Deep Blue
hess program's sear
h pro
edure in
ludes numerous enhan
ements (many simi-lar in spirit to those used in Rolling Stone) that 
umulatively redu
e the sear
h-tree size by several orders of magnitude. If nothing else, the Deep Blue re-sult demonstrated the degree of engineering required to build high-performan
esear
h-based systems.Figure 13 shows a di�erent perspe
tive on the problem of knowledge lev-els. The diagram shows a hierar
hy of problems, solvers, and the 
orrespond-ing knowledge used. The appli
ation domain is lo
ated at the 
ore; the basi
solver is stri
tly 
on
erned with this 
ore appli
ation and ex
lusively uses 
ore-appli
ation-spe
i�
 knowledge. The next higher level in the hierar
hy treats thisentire pro
ess as the appli
ation. It supplies the 
ore-appli
ation knowledge tothe 
ore-solver. The knowledge required at this level is 
ontrol knowledge|
ontrolling the 
ore-knowledge gathering. When viewed in this 
ontext, it is
lear why pattern sear
hes and goal ma
ros are su
h important enhan
ements.This diagram also shows an important dire
tion of future resear
h: automationof the next higher levels of the knowledge hierar
hy.
26
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Figure 13: Framework6 Con
lusionsThis paper des
ribed our experien
es working with a 
hallenging single-agentsear
h domain. In 
ontrast to the simpli
ity of the basi
 IDA* formulation,building a high-performan
e single-agent sear
her 
an be a 
omplex task that
ombines both resear
h and engineering. Appli
ation-dependent knowledge,spe
i�
ally that obtained using sear
h, 
an result in an orders-of-magnitudeimprovement in sear
h eÆ
ien
y. This 
an be a
hieved through a judi
ious
ombination of several sear
h enhan
ements. Control fun
tions are overlookedin the literature, yet are 
riti
al to performan
e. They represent a signi�
antportion of the program development time and most of the program experimen-tation resour
es.Domain-independent tools o�er a qui
k programming solution when 
om-pared to the e�ort required to develop domain-dependent appli
ations. How-ever, with 
urrent AI tools, performan
e is 
ommensurate with e�ort. Domain-dependent solutions 
an be vastly superior in performan
e. The trade-o� be-tween programming e�ort and performan
e is the 
riti
al design de
ision thatneeds to be made.7 A
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esA.1 Minimum Mat
hingFigure 14 shows an example of the lower-bound 
al
ulation. The table lists thedistan
es from the three stones to ea
h of the three goals in the maze. The boldentries represent a minimum 
ost mat
hing. It is important to note here thatthe minimum mat
hing algorithm solves one important problem. Even thoughthe stone on C
 and the stone on Id both have goals 
lose by, they have tobe pushed to a goal further away. While 
ounting how many stones are o� agoal square would return a lower bound of 3, and summing the distan
es ofall stones to their 
losest goal squares would return 5, the minimum mat
hinglower bound returns 14. This higher heuristi
 bound allows the sear
h algorithmto eliminate a large fra
tion of the total sear
h spa
e that is irrelevant to anoptimal solution.The distan
e of a stone to a goal 
an depend on the lo
ation of the man.Consider Figure 15. While the stone is only 3 squares away from the goal, 7pushes are required to move the stone to the goal (two pushes away from thegoal are needed for the man to rea
h the opposite side of the stone). Therefore,29
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Figure 15: Distan
e Depends on the Position of the Manthe stone distan
es used for minimum mat
hing take the 
urrent position of theman into a

ount.A.2 Transposition TablesTransposition tables are usually implemented as (large) hash tables. The hashkeys we use in
orporate only the exa
t stone positions. To mat
h an entry, thekeys must be identi
al. Sin
e the position of the man is important, a se
ond testis performed. The lo
ations of the man in both positions must be 
onne
ted bya legal man path. Thus multiple positions that di�er only in the man's lo
a-tion may map to identi
al transposition entries. This simpli�
ation is possiblebe
ause we only optimize stone pushes.Transposition tables 
an handle 
y
le dete
tion. The table entry for a po-sition 
an be 
agged before doing a sear
h from that position, and the 
agremoved after the sear
h 
ompletes. If a sear
h ever rea
hes a 
agged state thena 
y
le has o

urred.A.3 Move OrderingThe information used to order moves 
an 
ome from di�erent sour
es, but isusually domain-dependent knowledge. Sometimes knowledge gathered duringthe sear
h (e.g., tree sizes or tree depths) 
an be useful. In the 
ase of iterative30
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Figure 16: The E�e
t of Move Orderingdeepening, move ordering information is passed from one iteration to the nextby means of the transposition table.Rolling Stone uses a move-ordering s
heme that we 
all inertia. Analysis ofsolution sequen
es shows long runs where the same stone is repeatedly pushed.Hen
e, moves are ordered to preserve the inertia of the previous move in thefollowing way:1. Inertia moves are 
onsidered �rst.2. Then all the moves that de
rease the lower bound (optimal moves) aretried, sorted by the distan
e from the stone pushed to the goal it is targetedto, with 
lose stones �rst.3. Then all the \non-optimal" moves are tried, sorted similarly.Figure 16 shows the e�e
t of move ordering.4 The verti
al axis shows thenumber of moves 
onsidered. The horizontal axis shows the depth of the nodein the tree in per
ent. The upper 
urve indi
ates the average number of moves
onsidered by the program.5 The middle 
urve shows where the a
tual solutionmove is lo
ated in the list returned by the move generator. Not surprisingly,the solution move is in the middle of the move list on average. The lower 
urveshows that inertia ordering results in solution moves being pla
ed 
loser to thefront of the move list. Move ordering be
omes more a

urate with de
reasingdistan
e to the goal. In fa
t, after rea
hing a depth of about 20% of the solutionlength, the move ordering be
omes 
lose to perfe
t. At the start of a Sokobanproblem, with many 
ompli
ations in the maze, seemingly good moves mighta
tually lead to deadlo
ks. Many of the problems in the test suite are designedin su
h a way that an initial \knot" has to be freed up. This 
an usually be4The data was 
ompiled from all the positions on the solution paths for the 57 problemsthat Rolling Stone 
an solve.5Some of the legal moves are dis
arded immediately be
ause they lead to trivially provabledeadlo
ks. These moves are not in
luded in the graph. See Appendix A.4 for more detail.31
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Figure 17: E�e
t of Deadlo
k Tablesa
hieved only with moves that the lower-bound estimator views as being non-optimal. After the knot is untangled, a \mop-up phase" 
ommen
es duringwhi
h stones are simply pushed to the goals. This is where our heuristi
 ex
els.A.4 Deadlo
k TableFigure 17 shows the number of moves in the move list versus the depth of thetree. Only positions on paths to solutions were used to generate the data forthe �gure to avoid pathologi
al 
ases. The top 
urve shows how many legalmoves those positions have, averaged over all test positions. The se
ond 
urveshows how many legal moves exist that do not dire
tly push stones onto deadsquares (squares from whi
h no goal is rea
hable, su
h as moving a stone intoa 
orner). Note that this simple test redu
es the e�e
tive bran
hing fa
tor byabout 20%. The third 
urve shows how many moves are a
tually 
onsideredafter s
reening moves with the deadlo
k tables. The savings are similar to thesimple dead-square 
he
king, almost an additional 20%.A.5 Tunnel Ma
rosFigure 18 illustrates the impa
t of the move sequen
e a-b-
 being treated as atunnel ma
ro. Instead of exploring every possible inter
hanging 
ombination ofmoves a, b, 
 of one stone, and d, e, f of another stone, most of the sear
h tree
an be eliminated by treating the sequen
e a-b-
 as a single move. The ma
roalso has the e�e
t of redu
ing the depth of the tree.32
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Figure 18: Impa
t of Ma
ro MovesA.6 Goal Ma
rosFigure 18 illustrates the impa
t of goal ma
ros on the sear
h.The goal ma
ros in the 
urrent implementation have limitations. One under-lying assumption is that no stone will leave the goal area on
e inside. Problem#50, for example, 
annot be solved without pushing stones through the goalarea. A se
ond, even stri
ter assumption is that on
e a stone is inside the goalarea, it will never move again. This does not allow for parking inside goal areas.Sometimes it is ne
essary to leave a stone in a key position inside the goal areauntil later in the solution, when it 
an �nally be pushed to its goal square. An-other limitation is that a goal area 
ontaining several entran
es is often a travelarea for the man; 
ertain parts of the maze need to remain unblo
ked to allowthe man to push stones in a 
ertain way outside the goal area. Problem #38 isan example where the 
areless pa
king of stones in the goal area 
an obstru
tthe man from other areas of the maze.These problems show that goal ma
ro 
reation is still far from being solvedsatisfa
torily. Intera
tions between the goal area and the outside parts of themaze make it diÆ
ult to 
reate good goal ma
ros. However, their positiveimpa
t in the problems where they work is so large that any high-performan
eSokoban program needs to use this type of knowledge in one form or another.A.7 Goal CutsWe implemented a s
heme that will 
ut moves only after a stone push towardsits ma
ro move is explored. The sear
h ba
ks up the 
ut information, insteadof stati
ally trying to dedu
e that su
h a move exists in a 
ertain position. This
ould potentially lead to missed opportunities for additional 
uts if other movesare explored before the one that leads to the goal 
ut. Sin
e ordering puts movesthat are 
lose to goals towards the front of the move list, lead-o� moves to goalma
ros are likely to be 
onsidered early in the list.33



A.8 Pattern Sear
hesFigure 19 shows the pseudo 
ode for pattern sear
hes. We are interested in theset of squares that are used by the stones and the man to e�e
t the solution:the squares o

upied by the stones(s) on their path to the goal(s) (StonePath),and the squares tou
hed by the man while pushing the stone(s) to a goal(s)(ManPath). In e�e
t, these sets of squares are pre
onditions for the solution towork. The ManPath and StonePath are used to determine whi
h stone from theoriginal maze to in
lude next in the test maze (i.e. add a stone that violates oneof the pre
onditions). The stone in StonePath 
losest to square B (the squarethe stone was moved to in the original maze) is in
luded next. If su
h a stonedoes not exist, the stone on ManPath 
losest to square A is used.6 If none ofthose exists, the pattern sear
h returns without �nding a deadlo
k.After in
luding the next stone, PIDA* is 
alled again, returning with asolution determination and the two 
on
i
t sets. If deadlo
k has not been found,then the 
on
i
t sets are used to add another stone to the test maze. If any ofthe returning sear
hes indi
ates a longer solution than the lower-bound estimateof the position, the 
urrent pattern is stored with a 
orresponding lower-boundin
rease.Figure 5 (page 13) shows a simple position, before and after the move Gd-Fd.The question is whether this move introdu
es a deadlo
k. Figure 6 (page 13)shows how the test maze is built. Sin
e the last move ended up on square Fd,the test maze is initialized with this single stone (Figure 6a). A PIDA* sear
hreveals a 5-move solution (Fd-F
-E
-D
-C
-B
) whi
h is also the StonePath,and sets ManPath to the squares needed by the man (Gd-Ge-Fe-Fd-Gd-G
-F
-E
-D
-C
). Sin
e there is a solution, we 
ontinue the pattern sear
h.The original maze has a stone on one of the squares that the stone moved over(square E
) whi
h now gets in
luded in the test maze (Figure 6b). PIDA* willsolve the two-stone maze and again �nd a solution. The ManPath is (Gd-G
-F
-E
-D
-Dd-Cd-C
-D
-E
-F
-G
-Gd-Ge-Fe-Fd-Gd-G
-F
-E
-D
-C
) and theStonePath is (E
-D
-C
-Cb Fd-F
-E
-D
-C
-B
). This time there are no stonesin 
on
i
t with StonePath. However, there is a 
on
i
t with the ManPath,square Ge. This stone is added to the test maze (Figure 6
) and another sear
his 
ommen
ed. A solution will be found, requiring a fourth stone to be added(Figure 6d).The fourth 
all to PIDA* will return no solution and announ
e a deadlo
kwith this pattern of four stones.A.9 Relevan
e CutsWhen judging how two squares in a Sokoban maze in
uen
e ea
h other, Eu-
lidean distan
e is not adequate. Taking the stru
ture of the maze into a

ountwould lead to a simple geographi
 distan
e whi
h is not proportional to in
uen
e6Closest is always with respe
t to the distan
e of either the stone or the man to the
on
i
ting stone. These distan
e measures are possibly di�erent due to the more restri
tedmovement of the stones. 34



PatternSear
h( From, To ) f
lear TestMaze;StonePath = To;for( i=1; i <= MAX PATTERN SIZE AND NOT EffortLimit(); i++ ) fif( stone s on a square in StonePath )add 
losest s to TestMazeelse if( stone s on a square in ManPath )add 
losest s to TestMazeelse break;/* Call to PIDA* modifies SolLength, ManPath and StonePath */solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );/* Test for a deadlo
k */if( solution == NO AND NOT EffortLimit() ) fGeneralizeAndAddPattern( TestMaze, infinity );break;g/* Test for a lower-bound in
rease */if( solution == YES ) flb = LowerBound( TestMaze );if( SolLength > lb )GeneralizeAndAddPattern( TestMaze, SolLength - lb );ggg Figure 19: Pseudo Code for Pattern Sear
heseither. For example, 
onsider two squares 
onne
ted by a tunnel; the squaresare equally in
uen
ing ea
h other, no matter how long the tunnel is. Elongatingthe tunnel without 
hanging the general topology of the problem would 
hangethe geographi
 distan
e, but not the in
uen
e.The in
uen
e measure should re
e
t the following properties:Alternatives: The more alternatives that exist on a path between two squares,the less the squares in
uen
e ea
h other. That is, squares in the middle ofa room, where stones 
an go in all 4 dire
tions, should de
rease in
uen
emore than squares in a tunnel, where no alternatives exist.Goal-Skew: For a given square sq, any squares on the optimal path from sq toa goal should have stronger in
uen
e than squares o� the optimal path.Conne
tion: Two neighboring squares 
onne
ted su
h that a stone 
an movebetween them should in
uen
e ea
h other more than two squares 
on-ne
ted su
h that only the man 
an move between them.Tunnel: In a tunnel, in
uen
e remains equal, regardless of length.Our implementation of relevan
e 
uts uses small o�-line sear
hes to stati-
ally pre
ompute an Influen
eTable 
ontaining the in
uen
e values for ea
h35



square of a 20 � 20 maze to every other square in the maze [7, 12℄. Betweenevery pair of squares, a breadth-�rst sear
h is used to �nd the path(s) with thelargest in
uen
e. The algorithm is similar to a shortest-path �nding algorithm,ex
ept that we use in
uen
e here and not geographi
 distan
e. The smaller thein
uen
e number, the more two squares in
uen
e ea
h other. Our approa
h isquite simple and 
an undoubtedly be improved. For example, in
uen
e is stat-i
ally 
omputed. A dynami
 measure, one that takes into a

ount the 
urrentpositions of the stones, would undoubtedly be more e�e
tive.A.10 OverestimationSin
e the pattern sear
hes are limited in 
ertain ways to keep them tra
table,the 
orre
t size of the penalties and shape of the patterns might not be known.Therefore, the patterns represent in
omplete knowledge. Furthermore, whenpatterns are mat
hed, only some of the penalties 
an be used to preserve admis-sibility. However, the presen
e of mat
hing patterns that are not in
luded in thelower-bound 
al
ulations suggests that there may be additional 
ompli
ationsin the 
urrent position. Not using the penalty of su
h a pattern is equivalentto ignoring available knowledge. The following des
ribes the best of our at-tempts to use the knowledge 
ontained in the patterns that mat
h a position.It was a
hieved after a signi�
ant e�ort spent on experimentation and tuning.We 
all this method maximum partial penalties. More straightforward ways ofoverestimation suggested in the literature were not e�e
tive [16℄.One simple overestimation idea is to sum the penalties for all the patternsthat mat
h in a position (a worst-
ase s
enario). Predi
tably, this does notperform well. Instead of attributing penalties to patterns, they 
an be assignedto stones in the maze. The penalty of a mat
hed pattern is split equally amongall the stones 
ontained in that pattern. For ea
h stone the maximum of thesepartial penalties is stored. The total penalty of a position is the sum of allthe maximum partial penalties for ea
h stone. Thus, every stone involved ina penalty pattern 
ontributes to the total penalty assigned to a stone 
on�gu-ration. To tune the overestimation further, the penalty is s
aled by a fa
tor s(
urrently set to 1.8, as determined by experimentation). A �nal rounding stepassures that the total penalty is an even number to preserve the parity propertyof the heuristi
.Adding a limited penalty to the heuristi
 estimation of the distan
e to thegoal will only delay the examination of a node to a later iteration. If no solu-tion 
an be found, the threshold will in
rease until the position's lower-boundestimate is not enough to 
ause a 
uto� anymore. The exploration of the nodeis only postponed. This is in stark 
ontrast to forward pruning with �xed rules,su
h as deterministi
 relevan
e 
uts, that will prune the same node in everyiteration. Be
ause new patterns are added and useless patterns are dropped,the de
ision to postpone a node 
hange dynami
ally over the 
ourse of a sear
has new knowledge is found or other knowledge is dis
arded.36



A.11 Rapid Random RestartEa
h iteration of IDA* is in prin
iple a restart with a di�erent parameter set-ting: the threshold. However, in the 
lassi
 IDA* the threshold is only in
reasedafter an iteration is exhaustively sear
hed. When RRR aborts an iteration early,it is un
lear whether to restart with the same iteration or to in
rease the thresh-old. Rolling Stone uses a \double impatien
e" approa
h. If a 
ertain numberof restarts in a spe
i�
 threshold iteration have not produ
ed a solution, thethreshold is in
reased. Furthermore, with ea
h new restart within an iterationthe randomization of the move ordering is in
reased. This 
an be justi�ed bysimply stating that if the move ordering was good the solution would have beenfound by now. With ea
h restart our 
on�den
e in the move ordering shrinksand more randomization is used. When the threshold is in
reased, the random-ization is redu
ed to 0 again, be
ause it is assumed that no solution existed forthe lower threshold.

37


