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Abstract

AT research has developed an extensive collection of methods to solve
state-space problems. Using the challenging domain of Sokoban, this pa-
per studies the effect of general search enhancements on program perfor-
mance. We show that the current state of the art in AI generally re-
quires a large research and programming effort to use domain-dependent
knowledge to solve even moderately complex problems in such difficult
domains. The application of domain-specific knowledge to exploit prop-
erties of the search space can result in large reductions in the size of
the search tree, often several orders of magnitude per search enhance-
ment. This application-specific knowledge is discovered and applied using
application-independent search enhancements. Understanding the effect
of these enhancements on the search leads to a new taxonomy of search
enhancements, and a new framework for developing single-agent search
applications. This is used to illustrate the large gap between what is
portrayed in the literature versus what is needed in practice.

Keywords: single-agent search, IDA*, Sokoban, transposition table, pat-
tern search, pattern database, rapid random restart

1 Introduction

The AI research community has developed an impressive suite of techniques
for solving state-space problems. These techniques range from general-purpose
domain-independent methods such as A*, to enhancements using domain-specific
knowledge. There is a strong movement toward developing domain-independent
methods to solve problems. While these approaches require minimal effort to
specify a problem to be solved, the performance of these solvers is often limited,
exceeding available resources on even simple problem instances. This requires



the development of domain-dependent methods that exploit additional knowl-
edge about the search space. These methods can greatly improve the efficiency
of a search-based program, as measured in the size of the search tree needed to
solve a problem instance.

This paper presents a study on solving challenging single-agent search prob-
lems for the domain of Sokoban. Sokoban is a one-player puzzle and is of general
interest as an instance of robot motion planning problems [4]. Sokoban is anal-
ogous to the problem of having a robot in a warehouse move specified goods
from their current location to their final destination, subject to the topology of
the warehouse and any obstacles in the way. Sokoban has been shown to be
NP-hard and PSPACE-complete [2, 4].

Previously, we reported on our attempts to solve Sokoban problems using the
standard single-agent search techniques available in the literature [10]. When
these proved inadequate, solving only 10 problems of a 90-problem test suite,
new algorithms had to be developed to improve search efficiency [8, 9, 11, 12].
This allowed 47 problems to be solved optimally or near-optimally. Additional
efforts have since increased this number to 57. The results reported here doc-
ument the large gains achieved by adding application-dependent knowledge to
our program, Rolling Stone. Many of the search enhancements added to Rolling
Stone result in the search-tree size being reduced by several orders of magnitude.

Analyzing all the additions made to the Sokoban solver reveals that the
most valuable enhancements are based on search (both on-line and off-line). We
classify the search enhancements along several dimensions including generality,
computational model, completeness and admissibility. Not surprisingly, the
more specific an enhancement is, the greater its impact on search performance.

When presented in the literature, single-agent search (usually IDA*) consists
of a few lines of code. Most textbooks do not discuss search enhancements, other
than cycle detection. In reality, non-trivial single-agent search problems require
much more extensive programming (and often research) effort. For example,
achieving high performance for solving sliding tile puzzles requires enhancements
such as cycle detection, pattern databases, move ordering and enhanced lower-
bound calculations [3]. In this paper, we outline a new framework for developing
high-performance single-agent search programs.

This paper contains the following contributions:

1. A case study showing the evolution of a Sokoban solver’s performance,
beginning with a domain-independent solver and ending with a highly-
tuned, application-dependent program.

2. Pattern searches are a new proof procedure for improving a lower bound.
They attempt to show that the lower bound for part of a state configura-
tion can be increased.

3. Relevance cuts are a new way to add locality to a global search.

4. A taxonomy of single-agent search enhancements.
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He-Ge Hd-He-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-
Nh-Oh-Ph-Qh-Rh-Rg ~ Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-
Nh-Oh-Ph-Qh-Qi-Ri Fe-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-
Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-
Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh ~ Hd-He-Ge-Fe-
Ff-Fg-Fh-Gh-Hh-Th-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi
Ch-Dh-Eh-Fh-Gh-Hh-Th-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh

Figure 1: Sokoban problem 1 with one solution

5. A new framework for single-agent search, including search enhancements
and their control functions.

In this paper, the term domain-dependent refers to knowledge about the
(Sokoban) search space that is used by a search enhancement. The search en-
hancements discussed are otherwise generally applicable to application domains
that have necessary search-space prerequisites (e.g. directed versus undirected
graphs, or tree- versus graph-structure of the search space). Many of the tech-
niques described in this paper have been successfully applied to other single-
agent search domains (as well as for other classes of search problems). Some
of the techniques that were initially conceived for Sokoban (such as pattern
searches) have been used in other domains (the 15-puzzle and Bricks).

2 Sokoban

Figure 1 shows a sample Sokoban problem, the first and easiest of a 90 problem
test suite available at http://xsokoban.lcs.mit.edu/xsokoban.html. The goal is
simple: use the man to push (but mot pull) all the stones in the maze to the
shaded goal squares, abiding by the wall constraints. Only one stone can be
pushed at a time. These rather simple rules belie the difficulty of Sokoban
problems, especially with respect to computer solutions. The rules of Sokoban
give rise to beautiful problems that can be extraordinarily complex.

To refer to squares in a Sokoban problem, we use a coordinate notation. The
horizontal axis is labeled from “A” to “T”, and the vertical axis from “a” to “t”
(assuming the maximum sized 20x20 problem), starting in the upper left corner.



A move consists of pushing a stone from one square to another. For example,
in Figure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-
Eh-Dh to indicate a sequence of pushes of the same stone. A move, of course, is
only legal if there is a valid path by which the man can move behind the stone
and push it. Thus, although we only indicate stone moves (such as Fh-Eh),
implicit in this is the man’s moves from its current position to the appropriate
square to do the push (for Fh-Eh the man would have to move from Li to Gh
via the squares Lh, Kh, Jh, Ih and Hh).

Throughout this paper, only a limited number of the strategic principles
intrinsic to Sokoban will be mentioned. The full depth of Sokoban can only
be appreciated by a more direct encounter with the game. Nevertheless, we
want to mention briefly the challenge of deadlock positions resulting from the
restriction of being able to push only one stone at a time. In the simplest case
the man could push a stone into a corner, effectively immobilizing it on a non-
goal square. Since all stones need to be pushed to a goal, any such fixed stone
renders the problem unsolvable. We will call these and similarly unsolvable
positions deadlocked.

In this paper we attempt to optimally solve Sokoban problems. One def-
inition of optimal is to minimize the number of stone pushes in the solution.
Another definition is to minimize the number of man movements. It is un-
common for a single solution to achieve both goals. In this work, optimality is
defined as the minimal number of stone pushes.t

There are several properties that make Sokoban a challenging domain [10]:

e The combination of long solution lengths (from 97 to 674 stone pushes
in the test set) and potentially large branching factors (up to 136) make
Sokoban difficult for conventional search algorithms to solve. The size of
the search space for 20 x 20 Sokoban mazes has been estimated at 10%%

[7].

e Sokoban solutions are inherently sequential; only limited parts of a solu-
tion are interchangeable. Subgoals are often interrelated and thus cannot
be solved independently. Attempts to decompose problems are also inef-
fective. For example, removing a single stone from a problem may make it
trivial to solve, offering no insights as to how to solve the original problem.

e A simple and effective lower bound on the solution length of a Sokoban
problem remains elusive. The best lower-bound estimator is expensive to
calculate, and is often ineffective.

e The underlying structure of Sokoban can be represented by a directed
graph, meaning that some moves are not reversible. Consequently, there
are deadlock states from which no solution can be reached.

LOptimizing man movements may be harder in practice because of the difficulty in finding
a good lower-bound function.



| Property | Specifics | 24-Puzzle | Rubik’s Cube | Sokoban

Branching Factor Average 2.37 13.35 12
Range 1-3 12-15 0-136
Solution Length Average 100+ 18 260
Range 1-unknown 1-20 97-674

| Search-Space Size | Upper Bound | 10% | 101 | 10% |
Calculation of Full O(n) O(n) O(n?)
Lower Bound Incremental 0(1) 0(1) O(n?)

| Underlying Graph | | Undirected |  Undirected | Directed |

Table 1: Search-Space Properties of Different Domains
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Figure 2: Two Trivial Sokoban Problems

Sokoban exhibits a large number of difficult search-space properties. Tradi-
tional domains for the scientific investigation of search methods, such as N xN-
puzzles and Rubik’s Cube, are usually “easier” with respect to at least one
search-space property. Table 1 compares several search-space properties of
the above mentioned domains. It is unclear whether the conclusions obtained
from these simpler domains will be effective for difficult search domains such as
Sokoban, much less “real-world” problems.

3 Application-Independent Techniques

Ideally, we would like applications to be specified with minimal effort, and a
“generic” solver could be used to compute the solutions. In small domains this
is attainable (e.g., by exhaustive enumeration). For more challenging domains,
there have been a number of interesting attempts at domain-independent solvers
(e.g., Blackboz [13]). Before investing a lot of effort in developing a Sokoban-
specific program, it is important to understand the capabilities of current AI
tools. The comparison reveals a large disparity between what application-
independent and application-dependent problem solvers can achieve.



The Sokoban problems in Figure 2 were given to Blackbox to solve. Blackbox
was a winner in the ATPS’98 fastest planner competition. The first problem,
containing a single stone, was solved by Blackbox 3.3 in a few seconds. The
second problem, containing two stones, requires 90 seconds to solve. Note that
the search space (considering only the stones, not the man) is (43 choose 2) =
903 positions. In contrast, the non-trivial six-stone position shown in Figure 1
can be solved in less than a second by Rolling Stone. The search space is
(52 choose 6) = 293,162,688, 000.

Clearly, generalized planners, like Blackboz, have a long way to go if they
are to solve even the simplest problem in the test suite (Figure 1). Domain-
independent solvers are currently unable to automatically identify the knowledge
needed to traverse large search spaces efficiently. Hence, for Sokoban we have
no choice but to pursue using application-dependent knowledge in our imple-
mentation.

4 Application-Dependent Techniques

Iterative deepening A* (IDA*) was the basis for our Sokoban implementation
[10]. We gave the algorithm a fixed node limit of 20 million nodes for all exper-
iments (varying from 1 to 3 hours of CPU time on a single 195 MHz processor
of an SGI Origin 2000). Over a period of 3 years, numerous enhancements were
made to the basic IDA* algorithm. After each enhancement was added, the pro-
gram’s performance was assessed by running Rolling Stone on the 90-problem
test suite to find out how many problems could be solved, and how much search
effort was required to do so. Detailed results of the following experiments can
be found in Tables 2 and 3 (pages 20 and 21). Starting with the basic IDA*
and a simple lower-bound estimator, each version of the program (labeled from
RO to R10, ordered chronologically) adds one enhancement.

Although this section is called “application-dependent techniques”, in reality
all the techniques can be described in an application-independent way. However,
their effectiveness depends on domain-specific knowledge.

The following sections describe each of the enhancements in Rolling Stone.
For well-known ideas, only a brief description is given here. Full details are
provided in the Appendices.

4.1 Simple Lower Bound (0 problems solved):

IDA* with a simple lower bound has no hope of finding a solution to any of the
problems in our test suite. An obvious lower bound is the distance of each stone
to its closest goal, a Manhattan distance for Sokoban. However, the gap between
the lower-bound value and the actual solution length for any non-trivial problem
is so large that the number of IDA* iterations, and thus their respective tree
sizes, make solving these problems effectively impossible. Improving the lower
bound is the key to better performance. Application-dependent knowledge is
needed to produce the best possible bound.



4.2 Minimum Matching Lower Bound (RO, 0 solved):

To obtain a better admissible estimate for the distance of a position to a goal,
a minimum-cost, perfect bipartite matching algorithm is used. The matching
assigns each stone to a goal and returns the total (minimum) distance of all
stones to their goals. The minimum cost augmentation algorithm is O(N?3),
where N is the number of stones [18]. During the search the lower bound only
needs to be updated, which requires finding negative-cost cycles [14], and is
less expensive to compute. Other optimizations are possible and reduce the
computational cost. Nevertheless, maintaining the lower bound dominates the
execution time of our program. More details can be found in Appendix A.1.

For the test suite, minimum matching improves the simple lower bound by
an average of 30 pushes. Given that minimum matching preserves the solution
parity,? this represents a decrease of 15 iterations for the IDA* search. The
heuristic branching factor for Sokoban is more than 10, so this represents a
decrease in the size of the search tree by a factor in excess of 10'°! Nevertheless,
IDA* with minimum matching alone cannot solve any of the test problems
within the 20 million node search limit. The search limit was increased to one
billion nodes, but still no problems could be solved. In the experiments, this
version of the program is referred to as “R0”.

4.3 Transposition Table (R1, 5 solved):

Even though search spaces are generally graphs, most search algorithms treat
them as trees. If a state can have several predecessors, this can lead to du-
plicate work. The search could revisit nodes and even entire subtrees several
times. These “transpositions” or cycles are detected using a transposition table
in which useful information about previously visited nodes is stored [22]. Before
expanding a node, the transposition table is consulted, and if valid information
is found, it is used to potentially curtail the search. Further details can be found
in Appendix A.2.

Adding transposition tables with 2'® entries to IDA* allows the search to
solve 5 problems in our test suite within the 20 million node limit. Figure 3
shows the effort needed to solve those problems, ordered by search-tree size
on a linear and a logarithmic scale. The vertical axis shows the number of
nodes searched to solve the problems. The horizontal axis shows the number
of problems solved. We will use this kind of graph throughout the paper and
refer to them as effort graphs. The keys of the effort graphs refer to different
versions of Rolling Stone. In Figure 3, “R1” is a version of Rolling Stone that
adds transposition tables to version “R0”.

21f the minimum-matching function returns an odd (even) number, then the correct solution
length will also be odd (even). This can easily be verified by imposing a checker-board coloring
of the squares and realizing that pushing a stone between differently colored squares requires
an odd number of pushes, otherwise even. Furthermore, the difference in the number of
black/white stones and goals determines the odd- or evenness of the solution length, regardless
of stone-goal assignments and detours necessary because of stone interdependencies.
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4.4 Move Ordering (R2, 4 solved):

Instead of visiting successors of a position in an arbitrary order, one can try
to look at “good” successors first. Move (or successor) ordering is not used
in best-first searches; the algorithm itself provides for a global ordering of the
alternatives. In depth-first and breadth-first searches, move ordering can lead
to efficiency gains because goals are found earlier (left in the tree) rather than
later (right in the tree). For IDA*, ordering moves at interior nodes makes no
difference to the search, except for the final iteration. Since the final iteration
is aborted once a solution is found, finding a solution early in this iteration can
significantly improve the performance [21].

The scheme used in Rolling Stone, inertia, does an excellent job of placing
the best moves near the beginning of the move list (see Appendix A.3). Fig-
ure 3 shows the effect of adding move ordering to a program with the minimum
matching lower bound and transposition tables (R2). Surprisingly, one prob-
lem can no longer be solved (in 20 million nodes) and two others require more
nodes. This result is not favorable for move ordering. However, this appears to
be bad luck for this small set of problems. After other features are added, move
ordering shows up as a valuable contribution (as shown in Section 5 page 18).

4.5 Deadlock Table (R3, 5 solved):

The pattern database is a recent idea that has been successfully used in the
sliding-tile puzzles [3] and Rubik’s Cube [17]. An off-line search is used to
enumerate all possible stone/wall placements in a 4x5 region to determine if a
deadlock is present. These results are stored in deadlock tables. During the IDA*
search, the table is queried to see if the current move leads to a local deadlock.
Thus, deadlock tables contain search results of partial problem configurations.

In the IDA* search, before making a move, the program queries the deadlock
table to see if the move would result in a known deadlock. If so, the move is
not considered further. On average, deadlock tables reduce the branching factor
by 20% (see Appendix A.4). Given that the search is exponential in depth (b¢
where b is the branching factor and d is the average search depth) this represents
an enormous reduction in the search space considered ((.8 x b)?).

Figure 3 shows the effect of adding deadlock tables (R3). Once again 5
problems can be solved, regaining the one lost with move ordering. For some
problems, the search-tree size has been reduced by several orders of magnitude
(see Tables 2 and 3, pages 20 and 21). It is illuminating to discover that such
an impressive reduction in the branching factor does not allow more problems
to be solved.

4.6 Tunnel Macros (R4, 6 solved):

The search algorithms discussed so far treat all moves equally. After making a
move, all legal moves are considered as successors. These algorithms are there-
fore treating all moves as if they were unrelated. The method of macro moves



[15] is an attempt to group related atomic actions into higher level composite
actions: macros. This can result in impressive search-space reductions. How-
ever, special attention must be paid to the side-effects that macros can have.
They might influence the correctness and/or the completeness of the search, as
well as the ability of the algorithm to find optimal solutions.

A tunnel is the part of a maze where the maneuverability of the man is
restricted to a width of one. Since there can be at most one stone in a tun-
nel without creating an immediate deadlock, we can complete the remaining
tunnel moves without loss of generality or optimality. If a tunnel is composed
of articulation squares®, we call the tunnel a one-way tunnel. Whenever the
move generator creates a move into a one-way tunnel, the move is substituted
with the macro pushing the stone all the way through the tunnel. This elimi-
nates all the interleavings with other legal moves. More details are provided in
Appendix A.5.

Tunnel macros result in one additional problem being solved, for a new total
of 6 (Figure 3, page 8, version R4). However, the significant reduction in the
size of the search tree contributes to the solvability of many future problems.

4.7 Goal Macros (R5, 17 solved):

Many of the Sokoban problems have all the goal squares grouped together in
rooms. These goal areas are usually accessible through only a few squares which
we call entrances. One can decompose the problem of solving a maze into:

e how to get each stone to one of the entrances, and
e how to pack stones into the goal areas.

Often these subgoals can be solved independently, thus reducing the search
space enormously. Problem #1 is a good example. As soon as a stone reaches
the entrance to the goal area at the right side of the maze (e.g. square Mh), the
stone can be pushed directly to its final destination.

This is achieved by defining a goal area, marking its entrances, and precom-
puting the order in which goal squares are filled without introducing deadlock
in the goal area. During the search, if a move is generated that pushes a stone
onto the entrance square of a goal area, that move is replaced with a goal macro
that generates a sequence of moves to push the stone directly to an appropriate
goal square (in Figure 1, underlined sequences of moves are goal macros and
are treated as a single move). Depending on the precomputation, there could
be one or more goal-macro moves. All other moves are deleted from the move
list; only the goal-macro moves are considered. If a stone can be pushed to its
final destination, nothing else should matter at the moment, since completion of
this task will reduce the complexity of the remaining problem. This differs from
tunnel macros, where alternative moves are still searched. By removing other
moves when a goal macro is present, the effect on the search-tree size is more
dramatic than for tunnel macros. More details are provided in Appendix A.6.

38quares dividing the maze into otherwise disconnected parts.

10



Figure 4 shows the dramatic effects of goal macros. Instead of solving 6
problems, Rolling Stone can now solve 17. The savings for individual problems
are again several orders of magnitude. For example, the number of search nodes
for problem #55 drops from over 20 million down to a mere 333 (see Table 2,
page 20) — almost 5 orders of magnitude! On average, the searches are smaller
by a factor of 20 with the goal macros. This is a conservative estimate, since
unsuccessful searches are stopped at 20 million nodes. However, it is important
to mention that goal cuts are unsafe and therefore incomplete.

4.8 Goal Cuts (R6, 24 solved):

The goal-macro heuristic eliminates all alternative moves from consideration
when a goal macro is present. The reason for this is that if we can push a stone
to its final destination, it will not affect other moves and they can be ignored.
The same reasoning can be applied to the previous move: the move that pushed
the stone to the square from which it will be “macro”-pushed to the goal square.
Goal cuts do exactly that recursively further up the tree: if a stone is pushed to
a goal with a goal macro at the end without interleaving other stone pushes, all
alternatives to pushing that stone are deleted from the move list. More details
are in Appendix A.7.

Figure 4 shows savings of approximately one to two orders of magnitude in
search-tree size for the version using goal cuts (R6). Now 24 problems can be
solved. Problem #65 was not solved without goal cuts; now it is solved with
just over 600 nodes — the search tree is over 4 orders of magnitude smaller. For
solved problems, the median search tree is a factor of 6 smaller.

4.9 Pattern Search (R7, 48 solved):

Establishing the presence of deadlock can be quite involved. The deadlock may
require as few as one and as many as all the stones on the board. Ideally, having
discovered a subset of a state that causes a deadlock (a pattern of stones), any
state containing that pattern should be assigned the lower bound of oco.

Pattern searches find patterns of stones that prove that the lower bound
is in error. The errors could be small, improving the lower bound by as little
as 2, or as much as oo in the case of a deadlock. All discovered patterns are
saved and used throughout the search. If a pattern matches a subset of stones
in a position, then the penalty associated with that pattern is added to the
lower-bound estimate for the position. In effect, the program learns lower-
bound penalty patterns and uses them to dynamically improve the lower-bound
function.

In the following, we will refer to two different mazes: the original maze, the
data structure used by the IDA* search, and the test maze which will be used
for the pattern searches.

A pattern search iterates on the number of stones in the test maze. By
definition, a deadlock is a configuration of stones such that not all of the stones
can reach a goal. If we make a move A-B, we might introduce a deadlock. If this

11
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Figure 5: Deadlock Example
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Figure 6: Sequence of Test Mazes as Passed to PIDA* (a, b, ¢ and d)

deadlock was not present before the move, then the moved stone, now on square
B, must be part of that pattern. This is the initial stone included into the test
maze for the pattern search. PIDA*, a version of IDA* tailored to be efficient
at pattern searching, is called to solve this test maze (see Appendix A.8). It
either returns in failure (no solution, hence deadlock), or it finds a solution. In
the latter case, the number of pushes in the solution may disagree with that of
our minimum matching lower bound. If so, then we know that the lower bound
function is in error and can be improved.

Figure 5 shows a simple position, before and after the move Gd-Fd. The
question is whether this move introduces a deadlock. Figure 6 shows how the
test maze is built. Since the last move ended up on square Fd, the test maze
is initialized with this single stone (Figure 6a). A PIDA* search finds a trivial
solution. However, the search reveals that there is a conflict in the original maze
that prevents this solution: the stone on Ee. This conflict is resolved by adding
the stone to the test maze and trying to solve it (Figure 6b).

PIDA* will search the two-stone maze and again find a solution. This time
there are no stone conflicts. However, the man had to move through square Ge
to get behind the stone on Fd, again conflicting with the original maze. This

13



stone is added to the test maze (Figure 6¢) and another search is commenced.
A solution will be found, requiring a fourth stone to be added (Figure 6d).

The next call to PIDA* will return no solution and announce a deadlock
with this pattern of four stones. Identifying the critical stones to examine has
been driven by whether they conflict with a potential solution. The irrelevant
parts of the maze (such as the stone on He) have been ignored.

The notion of bit (stone) patterns is similar to the Method of Analogies [1].
Pattern searches are a conflict-driven top-down proof of correctness, while the
Method of Analogies is a bottom-up heuristic approximation.

The fewer stones in a penalty pattern, the more likely it will match an arbi-
trary position and be used to eliminate futile branches of the search. A minimal
penalty pattern is a pattern from which no stone can be removed without de-
creasing its penalty. The attentive reader will have noticed that only three
stones are needed to guarantee deadlock in Figure 6; the stone on FEc¢ is not
necessary. Before saving the pattern, our program will attempt to minimize the
number of stones in it. The minimization routine takes an N-stone pattern and
considers each of the possible N-1-stone sub-patterns. Each of the sub-patterns
is searched to verify whether removing that stone preserves the deadlock or
penalty. If the penalty still exists, then the stone was not part of the minimal
pattern and is removed.

During an IDA* search, at each node the normal minimum matching lower
bound is computed. If this value is insufficient to cause a cutoff, then the col-
lection of penalty patterns is matched against the position. Of the patterns
that match, the largest penalty is computed and added to the lower bound. If
two or more patterns overlap, only a maximal non-overlapping subset of them
is counted towards the position penalty. To prevent excessive pattern match-
ing during the search (utility problem [20]), the number of patterns stored is
restricted. The least recently used patterns are removed if necessary.

Figure 8 (page 19) shows the effort graph, now including the version of
Rolling Stone using pattern searches (R7). The program can now solve 48
problems, 24 more than the previously best version!

In Table 3 (page 21), the search-tree size for R7 is broken down into two
categories. The “total nodes” column reflects all positions visited in the search.
The “IDA*” column gives the number of positions that the IDA* search visits.
The difference is the number of pattern search nodes (PIDA¥*).

Except for the small searches (<20,000 nodes), the cost of performing the
additional PIDA* searches is offset by the reduction in the IDA* search nodes.
Problem #53 is an example. The savings for the IDA* tree are dramatic. Pre-
viously, the search was unable to solve this problem given 20,000,000 nodes.
Now the search succeeds with only 159 IDA* nodes and a total of 22,310 nodes.
Clearly, the pattern searches dominate the search cost, but the knowledge un-
covered allows the program to solve the problem where it failed previously. In
this example, Rolling Stone searches fewer IDA* nodes than the length of the
solution! The search backtracks a mere 13 times for a solution of 186 pushes.

Pattern searches are a gamble: we invest search effort (PIDA* nodes) ex-
pecting to find useful knowledge. Problem #78 is one example of where the
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gamble does not pay off. Even though the tree size (IDA*) is reduced about 50
fold, including the PIDA* nodes triples the total number of nodes searched.

The results reported here are not the best numbers that can be achieved.
The PIDA* nodes dominate the cost of the search for some problems. Some
additional heuristics for deciding when to execute pattern searches could result
in further improvements in the overall search efficiency. There are numerous
parameters in the search, each of which can be tuned for maximal performance
[7, 11].

Pattern searches have also been applied to sliding-tile puzzles [7]. The pro-
gram dynamically learns penalty patterns, such as linear conflicts [6]. The cost
of the pattern searches is small compared to the large reductions in the IDA*
search tree.

Deadlock tables (or pattern databases) are another way to store pattern
information. However, the patterns in such databases are necessarily smaller,
because precomputing these patterns requires considerable computing resources
and the resulting data needs to be stored, often exhaustively for fast hashing.
Pattern searches avoid both these problems, because they are demand driven
and only patterns that actually appear in the search are explored.

4.10 Relevance Cuts (R8, 50 solved):

Analysis of the trees built by an IDA* search quickly reveals that the search
algorithm considers move sequences that no human would ever consider. Even
completely unrelated moves are tested in every legal combination—all in an
effort to prove that there is no solution for the current threshold. How can a
program mimic an “understanding” of relevance? We suggest that a reasonable
approximation of relevance is influence. If two moves do not influence each
other, then it is unlikely that they are relevant to each other. If a program
had a good “sense” of influence, it could assume that in a given position all
previous moves belong to a (unknown) plan of which a continuation can only
be a move that is relevant—in our approximation, is influencing whatever was
played previously. Relevance cuts eliminate moves from that search that appear
to be irrelevant to the preceding sequence of moves.

A move is considered relevant only if the previous m moves influence it. The
search is only allowed to make relevant moves with respect to previous moves,
and only a few exceptions are permitted. With these restrictions in place, the
search is forced to spend its effort locally, since random jumps within the search
area are discouraged. Forcing the program to consider local moves is making it
adopt a pseudo-plan; an exception corresponds to a decision to change plans. Of
course, restricting the number considered for a node will result in the possibility
of optimal solutions being found.

An influence metric can be achieved in different, domain-specific ways. Ap-
pendix A.9 gives an overview of our implementation. Even though the specifics
aren’t necessarily applicable to other domains, the basic philosophy of the ap-
proach is. We approximate the influence of two moves on each other by the
influence between their from squares. Influence is determined using the notion
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Figure 7: Example Maze With Locality

of a “most influential path” between the squares. Small off-line searches are

used to statically precompute an InfluenceT able containing the influence val-
ues between any pair of from squares. For each pair of squares, a breadth-first
search is used to find the path(s) with the largest influence. The algorithm is
similar to a shortest-path finding algorithm, except that we use influence here
and not geographic distance.

Figure 7 shows an example where humans immediately identify that solving
this problem involves considering two separate sub-problems. The solution to
the left and right sides of the problem are completely independent, of each other.
An optimal solution needs 82 moves; Rolling Stone’s lower-bound estimator
returns a value of 70. Standard IDA* will need 7 iterations to find a solution
(our lower-bound estimator preserves the odd/even parity of the solution length,
meaning that it iterates by 2 at a time). IDA* will try every possible (legal)
move combination, intermixing moves from both sides of the problem. Clearly,
this is unnecessary and inefficient. Solving one of the sub-problems requires only
4 iterations, since the lower bound is off by only 6. Considering this position
as two separate problems will result in an enormous reduction in the search
complexity.

Our implementation of influence considers all moves on the left side as dis-
tant from those on the right, and wvice versa. This way only a limited number
of switches is considered during the search. Our parameter settings allow for
only one non-local move per 9-move sequence. For this contrived problem, rel-
evance cuts decrease the number of nodes searched from 32,803 to 24,748 while
still returning an optimal solution (the pattern searches were turned off for sim-
plicity). The savings (25%) appear relatively small because the transposition
table catches repeated positions (many of which may be the result of irrelevant
moves) and eliminates them from the search. Although the relevance cuts pro-
vide a welcome reduction in the search effort required, it is only a small step to-
wards achieving all the possible savings. For example, each of the sub-problems
can be solved by itself in only 329 nodes! The difference between 329 x 2 and
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32,803 illustrates why IDA* in its current form is inadequate for solving large,
non-trivial real-world problems; the algorithm is incapable of taking advantage
of exploitable structural properties of the domain. Clearly, more sophisticated
methods are needed. Further refinement of the relevance cut parameters can
likely make a big difference in performance.

The overhead of the relevance cuts is negligible; the influence of two moves
can be established by a simple table lookup. This is in stark contrast to our
pattern searches, where the overhead dominates the cost of the search for most
problems. The addition of relevance cuts increases the number of solved prob-
lems to 50. Figure 8 shows that the benefits of relevance cuts are only discernible
on the largest searches. This is not a negative comment on the effectiveness of
relevance cuts; it only reflects the observation that most of the solved problems
already have very efficient searches.

4.11 Overestimation (R9, 54 solved):

To ensure optimality of solutions produced by A*-based algorithms, the heuristic
has to be admissible. This limits the choice of knowledge that can be used. Even
if some knowledge correlates well with the distance to the goal, but there is a
chance that it overestimates, it cannot be used because the solution optimality
would not be guaranteed. This shows that optimality has its price. Instead
of fitting the heuristic distance to a solution h as closely as possible to the
actual distance h*, we are restricted to creating a lower bound. The error of
such a lower-bound function is often larger than a function that is allowed to
occasionally overestimate. The larger the error of the lower-bound function, the
less efficient the search.

We have seen in previous sections that an aggressive treatment of the search
space is needed to make significant progress. The examples of the goal macros
and relevance cuts have shown the benefits that are achievable when the small
risk of losing optimality and completeness is taken. Therefore, it seems logical
to question the admissibility constraint for the heuristic function. The hope is
to achieve a closer fit of h to h*, albeit at the cost of non-optimal solutions.

Our overestimation technique combines the penalties for all pattern-search
patterns that match in a position. Further details are in Appendix A.10.

Figure 8 shows that 3 additional problems can now be solved. There is
roughly one order of magnitude savings in search-tree size (see Table 3). With
overestimation, almost all solved problems, except #49, have smaller or insignif-
icantly larger number of nodes. Problem #26, for example, drops from over 20
million nodes to just under 123,000. While some searches with overestimation
use more iterations to find a goal, the search for problem #26 uses less; the
initial position is overestimated enough to allow the search to find a solution in
fewer iterations. On average, the IDA* and total nodes are reduced by roughly
half.
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4.12 Rapid Random Restart (R10, 57 solved):

Some problem classes exhibit the property of heavy tails. Heavy tails refer to
the high likelihood of problem instances being very hard to solve with a cer-
tain algorithm, its heuristics and (random) parameters used. Rapid Random
Restart (RRR) assumes that by varying parameters to the solution algorithm
(here search), it is possible to reduce the solution time dramatically [5]. There-
fore, instead of using all the available time with one parameter setting, RRR
repeatedly aborts the search after a given effort limit and restarts it with dif-
ferent (random) parameters.

In Rolling Stone, RRR is used to interrupt an iteration and restart it with
a different move ordering tie-breaking scheme (see Appendix A.11). Now 57 of
the 90 problems can be solved, as shown in Figure 8.

5 Single-Agent Search Enhancements

The performance gap between the first and last versions of Rolling Stone in
Figure 8 is astounding. For example, consider extrapolating the performance
of Rolling Stone with transposition tables so that it can solve the same number
of problems as the complete program (57). 10°° (not a typo!) seems to be a
reasonable lower bound on the difference in search-tree sizes.

For each of the unsolved problems, an additional search to 200 million nodes
was performed. This resulted in two more problems being solved (numbers 25
and 28), bringing the total number of solved problems to 90. It is discouraging
to see an order of magnitude more computing power translating into such a
small improvement, clearly an indication of the difficulty of solving Sokoban
problems. For some problems (notably number 50), the IDA* search threshold
is so far from the best known human solution, that there is no hope of ever
solving this problem with our current techniques.

The ordering of the preceding sub-sections closely corresponds to the order
in which enhancements were initially added to Rolling Stone (although most
enhancements have been continually refined). Figure 9 shows how these results
were achieved over the 3-year development time. The development effort equates
to a full-time PhD student, a part-time professor, one summer student, and
valuable feedback from many people. Additionally, a large number of machine
cycles were used for tuning and debugging. It is interesting to note the occasional
decrease in the number of problems solved, the result of (favorable) bugs being
fixed. The long, slow, steady increase is indicative of the reality of building a
large system. Progress is incremental and often painfully slow.

The results in Figure 8 may misrepresent the importance of each feature.
Consider removing a single enhancement from Rolling Stone. In the absence
of a particular method, other search enhancements can compensate to allow a
solution to be found. Most notably, while the lower-bound function alone cannot
solve a single problem, neither can the complete system solve a single problem
without the lower-bound function. Turning off goal macros reduces the number
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# R1=R0O + R2 =RI1 + R3 =R2 + R4 =R3 + R5=R4 + R6 = R5 +
Transposition Table | Move ordering | Deadlock Tables | Tunnel Macros | Goal Macros Goal Cuts
IDA* nodes IDA* nodes IDA* nodes IDA* nodes | IDA* nodes | IDA* nodes

1 41,640 319 261 223 53 53
2 > 20,000,000 | > 20,000,000 640,680 620,030 2,176 316
3 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 29,148 2,493
4 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 597
5 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 1,275,146
6 10,214,381 12,061,182 10,294,734 10,107,621 4,546 283
7 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,209
8 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
9 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 659,972
10 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
11 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
12 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
17 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,910
19 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
21 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 10,643,971
23 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
25 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
26 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
30 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
33 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
34 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
36 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
38 2,311,000 2,500,678 460,089 415,485 33,812 19,083
40 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
43 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 6,084,369
45 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
49 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 8,895,883 5,189,494
51 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 390,690 80,504
53 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
54 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
55 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 144
56 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
57 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
58 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
59 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
60 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
61 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
62 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 6,337
63 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000
64 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
65 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 604
67 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
68 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
70 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
71 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
72 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
73 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
75 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
76 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
7 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 | > 20,000,000
78 66,309 2,555 1,408 871 480 465
79 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,964
80 6,500,800 | > 20,000,000 > 20,000,000 | > 20,000,000 115,574 114,930
81 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 853,607 221,690
82 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 971,093 99,236
83 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 31,096 20,847
84 > 20,000,000 | > 20,000,000 > 20,000,000 | > 20,000,000 | > 20,000,000 354,205

>1,059,134,220

>1,074,564,734

>1,051,307,172

>1,041,817,035

>811,732,061

>684,840,012

Table 2: Adding Enhancements (I)
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# || R7 = R6 + Pattern Search || R8 = R7 + Relevance Cuts | R9 = R8 + Overestimation || R10 = R9 + Rapid Restart
IDA* nodes |  total nodes || IDA* nodes total nodes || IDA* nodes |  total nodes || IDA* nodes | total nodes

1 50 1,042 50 1,042 55 1,267 55 1,267

2 82 7,532 80 7,530 80 7,530 80 7,530

3 94 13,445 87 12,902 94 14,095 94 14,095

4 187 50,369 187 50,369 187 50,369 187 50,369

5 436 59,249 202 43,298 153 33,755 239 35,974

6 85 5,119 84 5,118 84 5,503 84 5,503

7 1,704 28,561 1,392 28,460 338 14,832 237 15,790

8 317 339,255 291 311,609 315 409,714 315 409,714

9 704 168,412 1,884 435,388 1,591 385,084 1,734 407,103

10 1,909 1,480,115 1,810 1,713,429 2,920 2,539,524 25,034 19,967,875
11 14,048 4,691,929 5,679 2,994,297 4,058 9,527,286 3902 | 2,331,950
12 162,129 4,373,802 4912 559,184 951 372,264 951 372,264
17 2,473 30,111 2,038 29,116 2,158 30,242 2,336 33,901
19 59,433 | > 20,000,000 16,606 7,269,595 14,178 6,631,475 12,801 6,089,182
21 1,853 154,593 1,177 179,734 573 113,042 1,774 258,852
23 87,744 | > 20,000,000 59,498 | > 20,000,000 93,337 6,555,398 23679 | 7,082,584
25 1,239 553,900 21,536 5,784,086 683 366,035 1,231 592,585
26 2,606,167 | > 20,000,000 2,125,116 | > 20,000,000 380 122,997 496 126,379
30 14,207 | > 20,000,000 14,124 | > 20,000,000 97,731 | 17,795,114 3505 | 3,467,260
33 5,035 866,085 2,765 586,684 604 283,926 1,865 551,406
34 542 298,674 11,431 1,981,993 9,746 749,787 731 442,025
36 78,325 | > 20,000,000 23,467 | > 20,000,000 18,338 12,150,606 10,196 5,785,290
38 2,539 51,276 7,011 154,969 10,473 160,176 2,340 56,563
40 41,131 | > 20,000,000 23,274 17,004,253 16,725 10,086,547 19,125 11,505,836
43 5,308 690,426 1,729 421,483 2,225 535,148 2,332 523,907
45 1,685 508,124 339 181,566 602 404,217 588 410,134
49 375,293 1,670,236 53,113 327,643 441,638 3,486,905 136,700 | 1,168,194
51 137 8,825 256 21,491 256 21,491 306 29,569
53 159 22,310 157 22,308 157 22,308 157 22,308
54 106,663 910,532 163,757 2,031,577 269 45,332 872 66,306
55 97 2,993 97 2,993 97 2,993 97 2,993
56 353 57,785 377 61,189 911 55,865 605 50,924
57 256 121,384 234 114,416 209 128,282 209 128,282
58 426 268,713 211 130,474 231 138,838 231 138,838
59 795 348,214 1,420 775,753 602 337,905 1,437 409,470
60 223 41,310 160 27,386 18,100 114,642 304 31,413
61 314 106,206 309 105,411 299 77,555 299 77,555
62 211 70,478 195 101,934 180 69,728 180 69,728
63 567 259,537 703 312,546 473 237,196 1,371 578,066
64 378 300,684 405 332,402 193 186,508 193 186,508
65 196 21,442 196 21,442 165 23,004 165 23,004
67 18,107 601,178 12,669 512,488 298 104,356 298 104,356
68 2,278 541,080 1,953 538,509 324 236,157 324 236,157
i 412 125,454 431 140,765 446 178,657 446 178,657
71 1,432,332 | > 20,000,000 8,234,574 | > 20,000,000 1,132,180 | > 20,000,000 183,170 1,973,352
72 134 44,908 134 44,908 123 45,735 123 45,735
73 201 87,019 214 94,568 225 103,494 225 103,494
75 61,973 | > 20,000,000 55,274 | > 20,000,000 259,971 | > 20,000,000 12,786 5,095,054
76 185,633 6,236,656 74,315 3,775,304 251 183,656 4123 | 1,980,094
7 1,092,369 | > 20,000,000 1,019,702 | > 20,000,000 1,108,195 | > 20,000,000 251,768 6,277,715
78 64 4451 64 1913 64 4913 64 1913
7 125 15,833 122 15,527 127 13,114 127 13,114
80 100 16,114 165 26,943 176 26,309 176 26,309
81 21,501 234,235 2,662 12445 875 111,033 2,651 206,423
82 86 33,445 86 33,445 117 45,014 117 45,014
83 91 7,294 80 5,631 108 6,856 108 6,856
84 94 5,960 106 7,938 108 7,818 108 7.818
6,391,084 | >206,536,295 || 11,950,910 | >189,388,544 3,105,947 | >128,361,597 715,741 79,833,557

Table 3: Adding Enhancements (II)
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Figure 9: Number of Problems Solved Over Time

of problems solved by 33, almost 60%! Turning off pattern searches reduces the
number of solved problems by 22, while disabling transposition tables loses 19
problems. Other than the lower-bound function, these three methods are the
most important for Rolling Stone; losing any one of them dramatically reduces
the performance. While other enhancements don’t have as dramatic an effect,
turning any one of them off loses at least one problem.

5.1 Knowledge Taxonomy

In looking at the domain-specific knowledge used to solve Sokoban problems,
we can identify several different ways of classifying the knowledge:

Generality. Classify based on how general the knowledge is: domain (e.g.,
Sokoban), instance (a particular Sokoban problem), and subtree (within a
Sokoban search).

Knowledge Source. Differentiate how the knowledge was obtained: static
(such as advice from a human expert) and dynamic (gleaned from a
search).

Admissibility /Completeness. Knowledge can be: admissible (preserve op-
timality in a solution) or non-admissible. Non-admissible knowledge can
either preserve completeness of the algorithm or render it incomplete. Ad-
missible knowledge is necessarily complete.

Figure 10 summarizes the search enhancements used in Rolling Stone. Other
enhancements from the literature could easily be added into spaces that are still
blank, e.g. perimeter databases [19] (dynamic, admissible, instance). Note that
some of the enhancement classifications are fixed by the type of the enhance-
ment. For example, any type of forward pruning is incomplete by definition, and
move ordering always preserves admissibility. For some enhancements, the prop-
erties depend on the implementation. For example, overestimation techniques
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| Classification ||D0main |Instance |Subtree |

Static | admissible || lower tunnel move
bound |macros |ordering
complete
incomplete relevance | goal
cuts cuts
Dynamic| admissible || deadlock pattern
tables searches
transposi-
tion table
complete overesti-
mation
incomplete goal
macros

Figure 10: Taxonomy of Search Enhancements in Sokoban

can be static or dynamic; goal macros can be admissible or non-admissible;
pattern databases can be domain-based or instance-based.

It is interesting to note that, apart from the lower-bound function itself, the
three most important program enhancements in terms of program performance
are all dynamic (search-based) and instance/subtree specific. The static en-
hancements, while of value, turn out to be of less importance. Static knowledge
is usually rigid and does not include the myriad of exceptions that search-based
methods can uncover and react to.

5.2 Control Functions

There is another type of application-dependent knowledge that is critical to
performance, but receives scant attention in the literature. Control functions
are intrinsic parts of efficient search programs, controlling when to use or not
use a search enhancement. In Rolling Stone numerous control functions are used
to improve the search efficiency. Some examples include:

Transposition Table: Control knowledge is needed to decide when new in-
formation is worth replacing older information in the table. Also, when
reading from the table, control information can decide whether the bene-
fits of the lookup justify the cost.

Goal Macros: If a goal area has too few goal squares, then goal macros are
disabled. With a small number of goals or too many entrances, the search
will likely not need macro moves, and the potential savings are not worth
the risk of eliminating possible solutions.

Pattern Searches: Pattern searches are executed only when a non-trivial heuris-
tic function indicates the likelihood of a penalty being present. Executing
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a pattern search is expensive, so this overhead should be introduced only
when it is likely to be cost effective. Control functions are also used to
stop a pattern search when success appears unlikely.

Implementing a search enhancement is often only one part of the program-
ming effort. Implementing and tuning its control function(s) can be signifi-
cantly more time consuming and more critical to performance. We estimate
that whereas the search enhancements take about 90% of the coding effort and
the control functions only 10%, the reverse distribution applies to the amount
of tuning effort needed and machine cycles consumed.

A clear separation between the search enhancements and their respective
control functions can help the tuning effort. For example, while the goal macro
creation only considers which order the stones should be placed into the goal
area, the control function can determine if goal macros should be created at all.
Both tuning efforts have very different objectives: one is search efficiency, the
other risk minimization. Separating the two seems natural and convenient.

5.3 Single-Agent Search Framework

As presented in the literature, single-agent search consists of a few lines of code
(usually IDA*). Most textbooks do not discuss search enhancements, other
than cycle detection. In reality, non-trivial single-agent search problems require
a more extensive programming (and possibly research) effort.

Figure 11 illustrates the basic IDA* routine, with our enhancements included
(in italics). This routine is specific to Rolling Stone, but could be written in more
general terms. It does not include a number of well-known single-agent search
enhancements available in the literature. Control functions are indicated by
parameters to search enhancement routines. In practice, some of these functions
are implemented as simple if statements controlling access to the enhancement
code.

Examining the code in Figure 11, one realizes that there are really only three
types of search enhancements:

1. Modifying the lower bound (as indicated by the updates to Ib). This can
take two forms: optimally increasing the bound (e.g. using patterns) which
reduces the distance to search, or non-optimally (using overestimation)
which redistributes where the search effort is concentrated.

2. Removing branches unlikely to add additional information to the search
(the next and break statements in the for loop). This forward pruning can
result in large reductions in the search tree, at the expense of possibly
affecting the completeness.

3. Collapsing the tree height by replacing a sequence of moves with one move
(for example, macros).

Some of the search enhancements involve computations outside of the search.
Figure 12 shows where the pre-search processing occurs at the domain and
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DA% () {
/** Compute the best possible lower bound **/
1b = ComputeLowerBound() ;
Ib += UsePatterns(); /** Match Patterns **/
Ib += UseDeadlockTable();
Ib += UseOuverestimate( CntrlOverestimate() );
if ( cutoff ) return;

/** Preprocess #*x/

Ib += ReadTransTable();

if( cutoff ) return;

PatternSearch( CntrlPatternSearch() );
Ib += UsePatterns();

if( cutoff ) return;

/** Generate moves to consider #**/
movelist = GenerateMoves();
RemoveDeadMoves( movelist );
IdentifyMacros( movelist );
OrderMoves( movelist );

for( each move ) {
if( Irrelevant( move, Cntrllrrelevent() )) next;
solution = IDA*();
if ( solution) return;
if( GoalCut() ) break;
UpdateLowerBound(); /** Use New Patterns *x/
if( cutoff ) return;

}

/*x Post-process **/
SaveTransTable( CntrlTransTable() );

return;

Figure 11: Enhanced IDA*
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for( each domain ) {
/** Preprocess *x*/

BuildDeadlockTable( CntrlDeadlockTable() );

for( each instance ) {
/** Preprocess **/
FindTunnelMacros();
FindGoalMacros( CntrlGoalMacros() );
while( not solved ) {
SetSearchParamaters() ;
IDA*();

}

/** Postprocess *x/
SavePatterns( CntriSavingPatterns() );

Figure 12: Preprocessing Hierarchy

instance levels. Off-line computation of pattern databases or pre-processing
of problem instances are powerful techniques that receive scant attention in
the literature (chess endgame databases are a notable exception). Yet these
techniques are an important step towards the automation of knowledge discovery
and machine learning. Preprocessing is involved in many of the most valuable
enhancements that are used in Rolling Stone.

Similar issues occur with other search algorithms. For example, although
it takes only a few lines to specify the alpha-beta algorithm, the Deep Blue
chess program’s search procedure includes numerous enhancements (many simi-
lar in spirit to those used in Rolling Stone) that cumulatively reduce the search-
tree size by several orders of magnitude. If nothing else, the Deep Blue re-
sult demonstrated the degree of engineering required to build high-performance
search-based systems.

Figure 13 shows a different perspective on the problem of knowledge lev-
els. The diagram shows a hierarchy of problems, solvers, and the correspond-
ing knowledge used. The application domain is located at the core; the basic
solver is strictly concerned with this core application and exclusively uses core-
application-specific knowledge. The next higher level in the hierarchy treats this
entire process as the application. It supplies the core-application knowledge to
the core-solver. The knowledge required at this level is control knowledge—
controlling the core-knowledge gathering. When viewed in this context, it is
clear why pattern searches and goal macros are such important enhancements.
This diagram also shows an important direction of future research: automation
of the next higher levels of the knowledge hierarchy.
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6 Conclusions

This paper described our experiences working with a challenging single-agent
search domain. In contrast to the simplicity of the basic IDA* formulation,
building a high-performance single-agent searcher can be a complex task that
combines both research and engineering. Application-dependent knowledge,
specifically that obtained using search, can result in an orders-of-magnitude
improvement in search efficiency. This can be achieved through a judicious
combination of several search enhancements. Control functions are overlooked
in the literature, yet are critical to performance. They represent a significant
portion of the program development time and most of the program experimen-
tation resources.

Domain-independent tools offer a quick programming solution when com-
pared to the effort required to develop domain-dependent applications. How-
ever, with current Al tools, performance is commensurate with effort. Domain-
dependent solutions can be vastly superior in performance. The trade-off be-
tween programming effort and performance is the critical design decision that
needs to be made.
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A Appendices

A.1 Minimum Matching

Figure 14 shows an example of the lower-bound calculation. The table lists the
distances from the three stones to each of the three goals in the maze. The bold
entries represent a minimum cost matching. It is important to note here that
the minimum matching algorithm solves one important problem. Even though
the stone on Cc¢ and the stone on Id both have goals close by, they have to
be pushed to a goal further away. While counting how many stones are off a
goal square would return a lower bound of 3, and summing the distances of
all stones to their closest goal squares would return 5, the minimum matching
lower bound returns 14. This higher heuristic bound allows the search algorithm
to eliminate a large fraction of the total search space that is irrelevant to an
optimal solution.

The distance of a stone to a goal can depend on the location of the man.
Consider Figure 15. While the stone is only 3 squares away from the goal, 7
pushes are required to move the stone to the goal (two pushes away from the
goal are needed for the man to reach the opposite side of the stone). Therefore,
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Figure 15: Distance Depends on the Position of the Man

the stone distances used for minimum matching take the current position of the
man into account.

A.2 Transposition Tables

Transposition tables are usually implemented as (large) hash tables. The hash
keys we use incorporate only the exact stone positions. To match an entry, the
keys must be identical. Since the position of the man is important, a second test
is performed. The locations of the man in both positions must be connected by
a legal man path. Thus multiple positions that differ only in the man’s loca-
tion may map to identical transposition entries. This simplification is possible
because we only optimize stone pushes.

Transposition tables can handle cycle detection. The table entry for a po-
sition can be flagged before doing a search from that position, and the flag
removed after the search completes. If a search ever reaches a flagged state then
a cycle has occurred.

A.3 Move Ordering

The information used to order moves can come from different sources, but is
usually domain-dependent knowledge. Sometimes knowledge gathered during
the search (e.g., tree sizes or tree depths) can be useful. In the case of iterative
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Figure 16: The Effect of Move Ordering

deepening, move ordering information is passed from one iteration to the next
by means of the transposition table.

Rolling Stone uses a move-ordering scheme that we call inertia. Analysis of
solution sequences shows long runs where the same stone is repeatedly pushed.
Hence, moves are ordered to preserve the inertia of the previous move in the
following way:

1. Inertia moves are considered first.

2. Then all the moves that decrease the lower bound (optimal moves) are
tried, sorted by the distance from the stone pushed to the goal it is targeted
to, with close stones first.

3. Then all the “non-optimal” moves are tried, sorted similarly.

Figure 16 shows the effect of move ordering.* The vertical axis shows the
number of moves considered. The horizontal axis shows the depth of the node
in the tree in percent. The upper curve indicates the average number of moves
considered by the program.® The middle curve shows where the actual solution
move is located in the list returned by the move generator. Not surprisingly,
the solution move is in the middle of the move list on average. The lower curve
shows that inertia ordering results in solution moves being placed closer to the
front of the move list. Move ordering becomes more accurate with decreasing
distance to the goal. In fact, after reaching a depth of about 20% of the solution
length, the move ordering becomes close to perfect. At the start of a Sokoban
problem, with many complications in the maze, seemingly good moves might
actually lead to deadlocks. Many of the problems in the test suite are designed
in such a way that an initial “knot” has to be freed up. This can usually be

4The data was compiled from all the positions on the solution paths for the 57 problems
that Rolling Stone can solve.

5Some of the legal moves are discarded immediately because they lead to trivially provable
deadlocks. These moves are not included in the graph. See Appendix A.4 for more detail.
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Figure 17: Effect of Deadlock Tables

achieved only with moves that the lower-bound estimator views as being non-
optimal. After the knot is untangled, a “mop-up phase” commences during
which stones are simply pushed to the goals. This is where our heuristic excels.

A.4 Deadlock Table

Figure 17 shows the number of moves in the move list versus the depth of the
tree. Only positions on paths to solutions were used to generate the data for
the figure to avoid pathological cases. The top curve shows how many legal
moves those positions have, averaged over all test positions. The second curve
shows how many legal moves exist that do not directly push stones onto dead
squares (squares from which no goal is reachable, such as moving a stone into
a corner). Note that this simple test reduces the effective branching factor by
about 20%. The third curve shows how many moves are actually considered
after screening moves with the deadlock tables. The savings are similar to the
simple dead-square checking, almost an additional 20%.

A.5 Tunnel Macros

Figure 18 illustrates the impact of the move sequence a-b-c being treated as a
tunnel macro. Instead of exploring every possible interchanging combination of
moves a, b, ¢ of one stone, and d, e, f of another stone, most of the search tree
can be eliminated by treating the sequence a-b-c as a single move. The macro
also has the effect of reducing the depth of the tree.
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Figure 18: Impact of Macro Moves

A.6 Goal Macros

Figure 18 illustrates the impact of goal macros on the search.

The goal macros in the current implementation have limitations. One under-
lying assumption is that no stone will leave the goal area once inside. Problem
#50, for example, cannot be solved without pushing stones through the goal
area. A second, even stricter assumption is that once a stone is inside the goal
area, it will never move again. This does not allow for parking inside goal areas.
Sometimes it is necessary to leave a stone in a key position inside the goal area
until later in the solution, when it can finally be pushed to its goal square. An-
other limitation is that a goal area containing several entrances is often a travel
area for the man; certain parts of the maze need to remain unblocked to allow
the man to push stones in a certain way outside the goal area. Problem #38 is
an example where the careless packing of stones in the goal area can obstruct
the man from other areas of the maze.

These problems show that goal macro creation is still far from being solved
satisfactorily. Interactions between the goal area and the outside parts of the
maze make it difficult to create good goal macros. However, their positive
impact in the problems where they work is so large that any high-performance
Sokoban program needs to use this type of knowledge in one form or another.

A.7 Goal Cuts

We implemented a scheme that will cut moves only after a stone push towards
its macro move is explored. The search backs up the cut information, instead
of statically trying to deduce that such a move exists in a certain position. This
could potentially lead to missed opportunities for additional cuts if other moves
are explored before the one that leads to the goal cut. Since ordering puts moves
that are close to goals towards the front of the move list, lead-off moves to goal
macros are likely to be considered early in the list.
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A.8 Pattern Searches

Figure 19 shows the pseudo code for pattern searches. We are interested in the
set of squares that are used by the stones and the man to effect the solution:
the squares occupied by the stones(s) on their path to the goal(s) (StonePath),
and the squares touched by the man while pushing the stone(s) to a goal(s)
(ManPath). In effect, these sets of squares are preconditions for the solution to
work. The ManPath and StonePath are used to determine which stone from the
original maze to include next in the test maze (i.e. add a stone that violates one
of the preconditions). The stone in StonePath closest to square B (the square
the stone was moved to in the original maze) is included next. If such a stone
does not exist, the stone on ManPath closest to square A is used.® If none of
those exists, the pattern search returns without finding a deadlock.

After including the next stone, PIDA* is called again, returning with a
solution determination and the two conflict sets. If deadlock has not been found,
then the conflict sets are used to add another stone to the test maze. If any of
the returning searches indicates a longer solution than the lower-bound estimate
of the position, the current pattern is stored with a corresponding lower-bound
increase.

Figure 5 (page 13) shows a simple position, before and after the move Gd-Fd.
The question is whether this move introduces a deadlock. Figure 6 (page 13)
shows how the test maze is built. Since the last move ended up on square Fd,
the test maze is initialized with this single stone (Figure 6a). A PIDA* search
reveals a 5-move solution (Fd-Fc-Ec-De-Ce-Be) which is also the StonePath,
and sets ManPath to the squares needed by the man (Gd-Ge-Fe-Fd-Gd-Gc-Fe-
Ec-Dc-Ce). Since there is a solution, we continue the pattern search.

The original maze has a stone on one of the squares that the stone moved over
(square Ee¢) which now gets included in the test maze (Figure 6b). PIDA* will
solve the two-stone maze and again find a solution. The ManPath is (Gd-Ge-
Fe-Ec-Dce-Dd-Cd-Ce-De-Ec-Fe-Ge-Gd-Ge-Fe-Fd-Gd-Ge-Fe-Ec-De-Ce) and the
StonePath is (Ec-De-Ce-Ch Fd-Fce-Ec-De-Ce-Be). This time there are no stones
in conflict with StonePath. However, there is a conflict with the ManPath,
square Ge. This stone is added to the test maze (Figure 6¢) and another search
is commenced. A solution will be found, requiring a fourth stone to be added
(Figure 6d).

The fourth call to PIDA* will return no solution and announce a deadlock
with this pattern of four stones.

A.9 Relevance Cuts

When judging how two squares in a Sokoban maze influence each other, Eu-
clidean distance is not adequate. Taking the structure of the maze into account
would lead to a simple geographic distance which is not proportional to influence

6 Closest is always with respect to the distance of either the stone or the man to the
conflicting stone. These distance measures are possibly different due to the more restricted
movement of the stones.
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PatternSearch( From, To ) {
clear TestMaze;
StonePath = To;
for( i=1; i <= MAX_PATTERN_SIZE AND NOT EffortLimit(); i++ ) {
if( stone s on a square in StonePath )
add closest s to TestMaze
else if( stone s on a square in ManPath )
add closest s to TestMaze
else break;
/* Call to PIDA* modifies SolLength, ManPath and StonePath */
solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );
/* Test for a deadlock */
if ( solution == NO AND NOT EffortLimit() ) {
GeneralizeAndAddPattern( TestMaze, infinity );
break;

}

/* Test for a lower-bound increase */
if ( solution == YES ) {
1b = LowerBound( TestMaze );
if ( SolLength > 1b )
GeneralizeAndAddPattern( TestMaze, SolLength - 1b );

Figure 19: Pseudo Code for Pattern Searches

either. For example, consider two squares connected by a tunnel; the squares
are equally influencing each other, no matter how long the tunnel is. Elongating
the tunnel without changing the general topology of the problem would change
the geographic distance, but not the influence.

The influence measure should reflect the following properties:

Alternatives: The more alternatives that exist on a path between two squares,
the less the squares influence each other. That is, squares in the middle of
a room, where stones can go in all 4 directions, should decrease influence
more than squares in a tunnel, where no alternatives exist,.

Goal-Skew: For a given square sq, any squares on the optimal path from sq to
a goal should have stronger influence than squares off the optimal path.

Connection: Two neighboring squares connected such that a stone can move
between them should influence each other more than two squares con-
nected such that only the man can move between them.

Tunnel: In a tunnel, influence remains equal, regardless of length.

Our implementation of relevance cuts uses small off-line searches to stati-
cally precompute an InfluenceT able containing the influence values for each
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square of a 20 x 20 maze to every other square in the maze [7, 12]. Between
every pair of squares, a breadth-first search is used to find the path(s) with the
largest influence. The algorithm is similar to a shortest-path finding algorithm,
except that we use influence here and not geographic distance. The smaller the
influence number, the more two squares influence each other. Qur approach is
quite simple and can undoubtedly be improved. For example, influence is stat-
ically computed. A dynamic measure, one that takes into account the current
positions of the stones, would undoubtedly be more effective.

A.10 Overestimation

Since the pattern searches are limited in certain ways to keep them tractable,
the correct size of the penalties and shape of the patterns might not be known.
Therefore, the patterns represent incomplete knowledge. Furthermore, when
patterns are matched, only some of the penalties can be used to preserve admis-
sibility. However, the presence of matching patterns that are not included in the
lower-bound calculations suggests that there may be additional complications
in the current position. Not using the penalty of such a pattern is equivalent
to ignoring available knowledge. The following describes the best of our at-
tempts to use the knowledge contained in the patterns that match a position.
It was achieved after a significant effort spent on experimentation and tuning.
We call this method mazimum partial penalties. More straightforward ways of
overestimation suggested in the literature were not effective [16].

One simple overestimation idea is to sum the penalties for all the patterns
that match in a position (a worst-case scenario). Predictably, this does not
perform well. Instead of attributing penalties to patterns, they can be assigned
to stones in the maze. The penalty of a matched pattern is split equally among
all the stones contained in that pattern. For each stone the maximum of these
partial penalties is stored. The total penalty of a position is the sum of all
the maximum partial penalties for each stone. Thus, every stone involved in
a penalty pattern contributes to the total penalty assigned to a stone configu-
ration. To tune the overestimation further, the penalty is scaled by a factor s
(currently set to 1.8, as determined by experimentation). A final rounding step
assures that the total penalty is an even number to preserve the parity property
of the heuristic.

Adding a limited penalty to the heuristic estimation of the distance to the
goal will only delay the examination of a node to a later iteration. If no solu-
tion can be found, the threshold will increase until the position’s lower-bound
estimate is not enough to cause a cutoff anymore. The exploration of the node
is only postponed. This is in stark contrast to forward pruning with fixed rules,
such as deterministic relevance cuts, that will prune the same node in every
iteration. Because new patterns are added and useless patterns are dropped,
the decision to postpone a node change dynamically over the course of a search
as new knowledge is found or other knowledge is discarded.
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A.11 Rapid Random Restart

Each iteration of IDA* is in principle a restart with a different parameter set-
ting: the threshold. However, in the classic IDA* the threshold is only increased
after an iteration is exhaustively searched. When RRR aborts an iteration early,
it is unclear whether to restart with the same iteration or to increase the thresh-
old. Rolling Stone uses a “double impatience” approach. If a certain number
of restarts in a specific threshold iteration have not produced a solution, the
threshold is increased. Furthermore, with each new restart within an iteration
the randomization of the move ordering is increased. This can be justified by
simply stating that if the move ordering was good the solution would have been
found by now. With each restart our confidence in the move ordering shrinks
and more randomization is used. When the threshold is increased, the random-
ization is reduced to 0 again, because it is assumed that no solution existed for
the lower threshold.
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