
Sokoban: Enhaning General Single-Agent SearhMethods Using Domain KnowledgeAndreas Junghanns and Jonathan Shae�erDepartment of Computing SieneUniversity of AlbertaEdmonton, AlbertaCANADA T6G 2H1Email: fandreas, jonathang�s.ualberta.aAbstratAI researh has developed an extensive olletion of methods to solvestate-spae problems. Using the hallenging domain of Sokoban, this pa-per studies the e�et of general searh enhanements on program perfor-mane. We show that the urrent state of the art in AI generally re-quires a large researh and programming e�ort to use domain-dependentknowledge to solve even moderately omplex problems in suh diÆultdomains. The appliation of domain-spei� knowledge to exploit prop-erties of the searh spae an result in large redutions in the size ofthe searh tree, often several orders of magnitude per searh enhane-ment. This appliation-spei� knowledge is disovered and applied usingappliation-independent searh enhanements. Understanding the e�etof these enhanements on the searh leads to a new taxonomy of searhenhanements, and a new framework for developing single-agent searhappliations. This is used to illustrate the large gap between what isportrayed in the literature versus what is needed in pratie.Keywords: single-agent searh, IDA*, Sokoban, transposition table, pat-tern searh, pattern database, rapid random restart1 IntrodutionThe AI researh ommunity has developed an impressive suite of tehniquesfor solving state-spae problems. These tehniques range from general-purposedomain-independent methods suh as A*, to enhanements using domain-spei�knowledge. There is a strong movement toward developing domain-independentmethods to solve problems. While these approahes require minimal e�ort tospeify a problem to be solved, the performane of these solvers is often limited,exeeding available resoures on even simple problem instanes. This requires1



the development of domain-dependent methods that exploit additional knowl-edge about the searh spae. These methods an greatly improve the eÆienyof a searh-based program, as measured in the size of the searh tree needed tosolve a problem instane.This paper presents a study on solving hallenging single-agent searh prob-lems for the domain of Sokoban. Sokoban is a one-player puzzle and is of generalinterest as an instane of robot motion planning problems [4℄. Sokoban is anal-ogous to the problem of having a robot in a warehouse move spei�ed goodsfrom their urrent loation to their �nal destination, subjet to the topology ofthe warehouse and any obstales in the way. Sokoban has been shown to beNP-hard and PSPACE-omplete [2, 4℄.Previously, we reported on our attempts to solve Sokoban problems using thestandard single-agent searh tehniques available in the literature [10℄. Whenthese proved inadequate, solving only 10 problems of a 90-problem test suite,new algorithms had to be developed to improve searh eÆieny [8, 9, 11, 12℄.This allowed 47 problems to be solved optimally or near-optimally. Additionale�orts have sine inreased this number to 57. The results reported here do-ument the large gains ahieved by adding appliation-dependent knowledge toour program, Rolling Stone. Many of the searh enhanements added to RollingStone result in the searh-tree size being redued by several orders of magnitude.Analyzing all the additions made to the Sokoban solver reveals that themost valuable enhanements are based on searh (both on-line and o�-line). Welassify the searh enhanements along several dimensions inluding generality,omputational model, ompleteness and admissibility. Not surprisingly, themore spei� an enhanement is, the greater its impat on searh performane.When presented in the literature, single-agent searh (usually IDA*) onsistsof a few lines of ode. Most textbooks do not disuss searh enhanements, otherthan yle detetion. In reality, non-trivial single-agent searh problems requiremuh more extensive programming (and often researh) e�ort. For example,ahieving high performane for solving sliding tile puzzles requires enhanementssuh as yle detetion, pattern databases, move ordering and enhaned lower-bound alulations [3℄. In this paper, we outline a new framework for developinghigh-performane single-agent searh programs.This paper ontains the following ontributions:1. A ase study showing the evolution of a Sokoban solver's performane,beginning with a domain-independent solver and ending with a highly-tuned, appliation-dependent program.2. Pattern searhes are a new proof proedure for improving a lower bound.They attempt to show that the lower bound for part of a state on�gura-tion an be inreased.3. Relevane uts are a new way to add loality to a global searh.4. A taxonomy of single-agent searh enhanements.2



He-Ge Hd-H-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri F-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-QiCh-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFigure 1: Sokoban problem 1 with one solution5. A new framework for single-agent searh, inluding searh enhanementsand their ontrol funtions.In this paper, the term domain-dependent refers to knowledge about the(Sokoban) searh spae that is used by a searh enhanement. The searh en-hanements disussed are otherwise generally appliable to appliation domainsthat have neessary searh-spae prerequisites (e.g. direted versus undiretedgraphs, or tree- versus graph-struture of the searh spae). Many of the teh-niques desribed in this paper have been suessfully applied to other single-agent searh domains (as well as for other lasses of searh problems). Someof the tehniques that were initially oneived for Sokoban (suh as patternsearhes) have been used in other domains (the 15-puzzle and Briks).2 SokobanFigure 1 shows a sample Sokoban problem, the �rst and easiest of a 90 problemtest suite available at http://xsokoban.ls.mit.edu/xsokoban.html. The goal issimple: use the man to push (but not pull) all the stones in the maze to theshaded goal squares, abiding by the wall onstraints. Only one stone an bepushed at a time. These rather simple rules belie the diÆulty of Sokobanproblems, espeially with respet to omputer solutions. The rules of Sokobangive rise to beautiful problems that an be extraordinarily omplex.To refer to squares in a Sokoban problem, we use a oordinate notation. Thehorizontal axis is labeled from \A" to \T", and the vertial axis from \a" to \t"(assuming the maximum sized 20x20 problem), starting in the upper left orner.3



A move onsists of pushing a stone from one square to another. For example,in Figure 1 the move Fh-Eh moves the stone on Fh left one square. We use Fh-Eh-Dh to indiate a sequene of pushes of the same stone. A move, of ourse, isonly legal if there is a valid path by whih the man an move behind the stoneand push it. Thus, although we only indiate stone moves (suh as Fh-Eh),impliit in this is the man's moves from its urrent position to the appropriatesquare to do the push (for Fh-Eh the man would have to move from Li to Ghvia the squares Lh, Kh, Jh, Ih and Hh).Throughout this paper, only a limited number of the strategi priniplesintrinsi to Sokoban will be mentioned. The full depth of Sokoban an onlybe appreiated by a more diret enounter with the game. Nevertheless, wewant to mention briey the hallenge of deadlok positions resulting from therestrition of being able to push only one stone at a time. In the simplest asethe man ould push a stone into a orner, e�etively immobilizing it on a non-goal square. Sine all stones need to be pushed to a goal, any suh �xed stonerenders the problem unsolvable. We will all these and similarly unsolvablepositions deadloked.In this paper we attempt to optimally solve Sokoban problems. One def-inition of optimal is to minimize the number of stone pushes in the solution.Another de�nition is to minimize the number of man movements. It is un-ommon for a single solution to ahieve both goals. In this work, optimality isde�ned as the minimal number of stone pushes.1There are several properties that make Sokoban a hallenging domain [10℄:� The ombination of long solution lengths (from 97 to 674 stone pushesin the test set) and potentially large branhing fators (up to 136) makeSokoban diÆult for onventional searh algorithms to solve. The size ofthe searh spae for 20 � 20 Sokoban mazes has been estimated at 1098[7℄.� Sokoban solutions are inherently sequential; only limited parts of a solu-tion are interhangeable. Subgoals are often interrelated and thus annotbe solved independently. Attempts to deompose problems are also inef-fetive. For example, removing a single stone from a problem may make ittrivial to solve, o�ering no insights as to how to solve the original problem.� A simple and e�etive lower bound on the solution length of a Sokobanproblem remains elusive. The best lower-bound estimator is expensive toalulate, and is often ine�etive.� The underlying struture of Sokoban an be represented by a diretedgraph, meaning that some moves are not reversible. Consequently, thereare deadlok states from whih no solution an be reahed.1Optimizing man movements may be harder in pratie beause of the diÆulty in �ndinga good lower-bound funtion. 4



Property Spei�s 24-Puzzle Rubik's Cube SokobanBranhing Fator Average 2.37 13.35 12Range 1-3 12-15 0-136Solution Length Average 100+ 18 260Range 1-unknown 1-20 97-674Searh-Spae Size Upper Bound 1025 1019 1098Calulation of Full O(n) O(n) O(n3)Lower Bound Inremental O(1) O(1) O(n2)Underlying Graph Undireted Undireted DiretedTable 1: Searh-Spae Properties of Di�erent Domains

Figure 2: Two Trivial Sokoban ProblemsSokoban exhibits a large number of diÆult searh-spae properties. Tradi-tional domains for the sienti� investigation of searh methods, suh as N�N -puzzles and Rubik's Cube, are usually \easier" with respet to at least onesearh-spae property. Table 1 ompares several searh-spae properties ofthe above mentioned domains. It is unlear whether the onlusions obtainedfrom these simpler domains will be e�etive for diÆult searh domains suh asSokoban, muh less \real-world" problems.3 Appliation-Independent TehniquesIdeally, we would like appliations to be spei�ed with minimal e�ort, and a\generi" solver ould be used to ompute the solutions. In small domains thisis attainable (e.g., by exhaustive enumeration). For more hallenging domains,there have been a number of interesting attempts at domain-independent solvers(e.g., Blakbox [13℄). Before investing a lot of e�ort in developing a Sokoban-spei� program, it is important to understand the apabilities of urrent AItools. The omparison reveals a large disparity between what appliation-independent and appliation-dependent problem solvers an ahieve.5



The Sokoban problems in Figure 2 were given to Blakbox to solve. Blakboxwas a winner in the AIPS'98 fastest planner ompetition. The �rst problem,ontaining a single stone, was solved by Blakbox 3.3 in a few seonds. Theseond problem, ontaining two stones, requires 90 seonds to solve. Note thatthe searh spae (onsidering only the stones, not the man) is (43 hoose 2) =903 positions. In ontrast, the non-trivial six-stone position shown in Figure 1an be solved in less than a seond by Rolling Stone. The searh spae is(52 hoose 6) = 293; 162; 688; 000.Clearly, generalized planners, like Blakbox, have a long way to go if theyare to solve even the simplest problem in the test suite (Figure 1). Domain-independent solvers are urrently unable to automatially identify the knowledgeneeded to traverse large searh spaes eÆiently. Hene, for Sokoban we haveno hoie but to pursue using appliation-dependent knowledge in our imple-mentation.4 Appliation-Dependent TehniquesIterative deepening A* (IDA*) was the basis for our Sokoban implementation[10℄. We gave the algorithm a �xed node limit of 20 million nodes for all exper-iments (varying from 1 to 3 hours of CPU time on a single 195 MHz proessorof an SGI Origin 2000). Over a period of 3 years, numerous enhanements weremade to the basi IDA* algorithm. After eah enhanement was added, the pro-gram's performane was assessed by running Rolling Stone on the 90-problemtest suite to �nd out how many problems ould be solved, and how muh searhe�ort was required to do so. Detailed results of the following experiments anbe found in Tables 2 and 3 (pages 20 and 21). Starting with the basi IDA*and a simple lower-bound estimator, eah version of the program (labeled fromR0 to R10, ordered hronologially) adds one enhanement.Although this setion is alled \appliation-dependent tehniques", in realityall the tehniques an be desribed in an appliation-independent way. However,their e�etiveness depends on domain-spei� knowledge.The following setions desribe eah of the enhanements in Rolling Stone.For well-known ideas, only a brief desription is given here. Full details areprovided in the Appendies.4.1 Simple Lower Bound (0 problems solved):IDA* with a simple lower bound has no hope of �nding a solution to any of theproblems in our test suite. An obvious lower bound is the distane of eah stoneto its losest goal, a Manhattan distane for Sokoban. However, the gap betweenthe lower-bound value and the atual solution length for any non-trivial problemis so large that the number of IDA* iterations, and thus their respetive treesizes, make solving these problems e�etively impossible. Improving the lowerbound is the key to better performane. Appliation-dependent knowledge isneeded to produe the best possible bound.6



4.2 Minimum Mathing Lower Bound (R0, 0 solved):To obtain a better admissible estimate for the distane of a position to a goal,a minimum-ost, perfet bipartite mathing algorithm is used. The mathingassigns eah stone to a goal and returns the total (minimum) distane of allstones to their goals. The minimum ost augmentation algorithm is O(N3),where N is the number of stones [18℄. During the searh the lower bound onlyneeds to be updated, whih requires �nding negative-ost yles [14℄, and isless expensive to ompute. Other optimizations are possible and redue theomputational ost. Nevertheless, maintaining the lower bound dominates theexeution time of our program. More details an be found in Appendix A.1.For the test suite, minimum mathing improves the simple lower bound byan average of 30 pushes. Given that minimum mathing preserves the solutionparity,2 this represents a derease of 15 iterations for the IDA* searh. Theheuristi branhing fator for Sokoban is more than 10, so this represents aderease in the size of the searh tree by a fator in exess of 1015! Nevertheless,IDA* with minimum mathing alone annot solve any of the test problemswithin the 20 million node searh limit. The searh limit was inreased to onebillion nodes, but still no problems ould be solved. In the experiments, thisversion of the program is referred to as \R0".4.3 Transposition Table (R1, 5 solved):Even though searh spaes are generally graphs, most searh algorithms treatthem as trees. If a state an have several predeessors, this an lead to du-pliate work. The searh ould revisit nodes and even entire subtrees severaltimes. These \transpositions" or yles are deteted using a transposition tablein whih useful information about previously visited nodes is stored [22℄. Beforeexpanding a node, the transposition table is onsulted, and if valid informationis found, it is used to potentially urtail the searh. Further details an be foundin Appendix A.2.Adding transposition tables with 218 entries to IDA* allows the searh tosolve 5 problems in our test suite within the 20 million node limit. Figure 3shows the e�ort needed to solve those problems, ordered by searh-tree sizeon a linear and a logarithmi sale. The vertial axis shows the number ofnodes searhed to solve the problems. The horizontal axis shows the numberof problems solved. We will use this kind of graph throughout the paper andrefer to them as e�ort graphs. The keys of the e�ort graphs refer to di�erentversions of Rolling Stone. In Figure 3, \R1" is a version of Rolling Stone thatadds transposition tables to version \R0".2If the minimum-mathing funtion returns an odd (even) number, then the orret solutionlength will also be odd (even). This an easily be veri�ed by imposing a heker-board oloringof the squares and realizing that pushing a stone between di�erently olored squares requiresan odd number of pushes, otherwise even. Furthermore, the di�erene in the number ofblak/white stones and goals determines the odd- or evenness of the solution length, regardlessof stone-goal assignments and detours neessary beause of stone interdependenies.7
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4.4 Move Ordering (R2, 4 solved):Instead of visiting suessors of a position in an arbitrary order, one an tryto look at \good" suessors �rst. Move (or suessor) ordering is not usedin best-�rst searhes; the algorithm itself provides for a global ordering of thealternatives. In depth-�rst and breadth-�rst searhes, move ordering an leadto eÆieny gains beause goals are found earlier (left in the tree) rather thanlater (right in the tree). For IDA*, ordering moves at interior nodes makes nodi�erene to the searh, exept for the �nal iteration. Sine the �nal iterationis aborted one a solution is found, �nding a solution early in this iteration ansigni�antly improve the performane [21℄.The sheme used in Rolling Stone, inertia, does an exellent job of plaingthe best moves near the beginning of the move list (see Appendix A.3). Fig-ure 3 shows the e�et of adding move ordering to a program with the minimummathing lower bound and transposition tables (R2). Surprisingly, one prob-lem an no longer be solved (in 20 million nodes) and two others require morenodes. This result is not favorable for move ordering. However, this appears tobe bad luk for this small set of problems. After other features are added, moveordering shows up as a valuable ontribution (as shown in Setion 5 page 18).4.5 Deadlok Table (R3, 5 solved):The pattern database is a reent idea that has been suessfully used in thesliding-tile puzzles [3℄ and Rubik's Cube [17℄. An o�-line searh is used toenumerate all possible stone/wall plaements in a 4�5 region to determine if adeadlok is present. These results are stored in deadlok tables. During the IDA*searh, the table is queried to see if the urrent move leads to a loal deadlok.Thus, deadlok tables ontain searh results of partial problem on�gurations.In the IDA* searh, before making a move, the program queries the deadloktable to see if the move would result in a known deadlok. If so, the move isnot onsidered further. On average, deadlok tables redue the branhing fatorby 20% (see Appendix A.4). Given that the searh is exponential in depth (bdwhere b is the branhing fator and d is the average searh depth) this representsan enormous redution in the searh spae onsidered ((:8� b)d).Figure 3 shows the e�et of adding deadlok tables (R3). One again 5problems an be solved, regaining the one lost with move ordering. For someproblems, the searh-tree size has been redued by several orders of magnitude(see Tables 2 and 3, pages 20 and 21). It is illuminating to disover that suhan impressive redution in the branhing fator does not allow more problemsto be solved.4.6 Tunnel Maros (R4, 6 solved):The searh algorithms disussed so far treat all moves equally. After making amove, all legal moves are onsidered as suessors. These algorithms are there-fore treating all moves as if they were unrelated. The method of maro moves9



[15℄ is an attempt to group related atomi ations into higher level ompositeations: maros. This an result in impressive searh-spae redutions. How-ever, speial attention must be paid to the side-e�ets that maros an have.They might inuene the orretness and/or the ompleteness of the searh, aswell as the ability of the algorithm to �nd optimal solutions.A tunnel is the part of a maze where the maneuverability of the man isrestrited to a width of one. Sine there an be at most one stone in a tun-nel without reating an immediate deadlok, we an omplete the remainingtunnel moves without loss of generality or optimality. If a tunnel is omposedof artiulation squares3, we all the tunnel a one-way tunnel. Whenever themove generator reates a move into a one-way tunnel, the move is substitutedwith the maro pushing the stone all the way through the tunnel. This elimi-nates all the interleavings with other legal moves. More details are provided inAppendix A.5.Tunnel maros result in one additional problem being solved, for a new totalof 6 (Figure 3, page 8, version R4). However, the signi�ant redution in thesize of the searh tree ontributes to the solvability of many future problems.4.7 Goal Maros (R5, 17 solved):Many of the Sokoban problems have all the goal squares grouped together inrooms. These goal areas are usually aessible through only a few squares whihwe all entranes. One an deompose the problem of solving a maze into:� how to get eah stone to one of the entranes, and� how to pak stones into the goal areas.Often these subgoals an be solved independently, thus reduing the searhspae enormously. Problem #1 is a good example. As soon as a stone reahesthe entrane to the goal area at the right side of the maze (e.g. square Mh), thestone an be pushed diretly to its �nal destination.This is ahieved by de�ning a goal area, marking its entranes, and preom-puting the order in whih goal squares are �lled without introduing deadlokin the goal area. During the searh, if a move is generated that pushes a stoneonto the entrane square of a goal area, that move is replaed with a goal marothat generates a sequene of moves to push the stone diretly to an appropriategoal square (in Figure 1, underlined sequenes of moves are goal maros andare treated as a single move). Depending on the preomputation, there ouldbe one or more goal-maro moves. All other moves are deleted from the movelist; only the goal-maro moves are onsidered. If a stone an be pushed to its�nal destination, nothing else should matter at the moment, sine ompletion ofthis task will redue the omplexity of the remaining problem. This di�ers fromtunnel maros, where alternative moves are still searhed. By removing othermoves when a goal maro is present, the e�et on the searh-tree size is moredramati than for tunnel maros. More details are provided in Appendix A.6.3Squares dividing the maze into otherwise disonneted parts.10



Figure 4 shows the dramati e�ets of goal maros. Instead of solving 6problems, Rolling Stone an now solve 17. The savings for individual problemsare again several orders of magnitude. For example, the number of searh nodesfor problem #55 drops from over 20 million down to a mere 333 (see Table 2,page 20) { almost 5 orders of magnitude! On average, the searhes are smallerby a fator of 20 with the goal maros. This is a onservative estimate, sineunsuessful searhes are stopped at 20 million nodes. However, it is importantto mention that goal uts are unsafe and therefore inomplete.4.8 Goal Cuts (R6, 24 solved):The goal-maro heuristi eliminates all alternative moves from onsiderationwhen a goal maro is present. The reason for this is that if we an push a stoneto its �nal destination, it will not a�et other moves and they an be ignored.The same reasoning an be applied to the previous move: the move that pushedthe stone to the square from whih it will be \maro"-pushed to the goal square.Goal uts do exatly that reursively further up the tree: if a stone is pushed toa goal with a goal maro at the end without interleaving other stone pushes, allalternatives to pushing that stone are deleted from the move list. More detailsare in Appendix A.7.Figure 4 shows savings of approximately one to two orders of magnitude insearh-tree size for the version using goal uts (R6). Now 24 problems an besolved. Problem #65 was not solved without goal uts; now it is solved withjust over 600 nodes { the searh tree is over 4 orders of magnitude smaller. Forsolved problems, the median searh tree is a fator of 6 smaller.4.9 Pattern Searh (R7, 48 solved):Establishing the presene of deadlok an be quite involved. The deadlok mayrequire as few as one and as many as all the stones on the board. Ideally, havingdisovered a subset of a state that auses a deadlok (a pattern of stones), anystate ontaining that pattern should be assigned the lower bound of 1.Pattern searhes �nd patterns of stones that prove that the lower boundis in error. The errors ould be small, improving the lower bound by as littleas 2, or as muh as 1 in the ase of a deadlok. All disovered patterns aresaved and used throughout the searh. If a pattern mathes a subset of stonesin a position, then the penalty assoiated with that pattern is added to thelower-bound estimate for the position. In e�et, the program learns lower-bound penalty patterns and uses them to dynamially improve the lower-boundfuntion.In the following, we will refer to two di�erent mazes: the original maze, thedata struture used by the IDA* searh, and the test maze whih will be usedfor the pattern searhes.A pattern searh iterates on the number of stones in the test maze. Byde�nition, a deadlok is a on�guration of stones suh that not all of the stonesan reah a goal. If we make a move A-B, we might introdue a deadlok. If this11
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Figure 5: Deadlok Example

Figure 6: Sequene of Test Mazes as Passed to PIDA* (a, b,  and d)deadlok was not present before the move, then the moved stone, now on squareB, must be part of that pattern. This is the initial stone inluded into the testmaze for the pattern searh. PIDA*, a version of IDA* tailored to be eÆientat pattern searhing, is alled to solve this test maze (see Appendix A.8). Iteither returns in failure (no solution, hene deadlok), or it �nds a solution. Inthe latter ase, the number of pushes in the solution may disagree with that ofour minimum mathing lower bound. If so, then we know that the lower boundfuntion is in error and an be improved.Figure 5 shows a simple position, before and after the move Gd-Fd. Thequestion is whether this move introdues a deadlok. Figure 6 shows how thetest maze is built. Sine the last move ended up on square Fd, the test mazeis initialized with this single stone (Figure 6a). A PIDA* searh �nds a trivialsolution. However, the searh reveals that there is a onit in the original mazethat prevents this solution: the stone on E. This onit is resolved by addingthe stone to the test maze and trying to solve it (Figure 6b).PIDA* will searh the two-stone maze and again �nd a solution. This timethere are no stone onits. However, the man had to move through square Geto get behind the stone on Fd, again oniting with the original maze. This13



stone is added to the test maze (Figure 6) and another searh is ommened.A solution will be found, requiring a fourth stone to be added (Figure 6d).The next all to PIDA* will return no solution and announe a deadlokwith this pattern of four stones. Identifying the ritial stones to examine hasbeen driven by whether they onit with a potential solution. The irrelevantparts of the maze (suh as the stone on H) have been ignored.The notion of bit (stone) patterns is similar to the Method of Analogies [1℄.Pattern searhes are a onit-driven top-down proof of orretness, while theMethod of Analogies is a bottom-up heuristi approximation.The fewer stones in a penalty pattern, the more likely it will math an arbi-trary position and be used to eliminate futile branhes of the searh. A minimalpenalty pattern is a pattern from whih no stone an be removed without de-reasing its penalty. The attentive reader will have notied that only threestones are needed to guarantee deadlok in Figure 6; the stone on E is notneessary. Before saving the pattern, our program will attempt to minimize thenumber of stones in it. The minimization routine takes an N-stone pattern andonsiders eah of the possible N-1-stone sub-patterns. Eah of the sub-patternsis searhed to verify whether removing that stone preserves the deadlok orpenalty. If the penalty still exists, then the stone was not part of the minimalpattern and is removed.During an IDA* searh, at eah node the normal minimum mathing lowerbound is omputed. If this value is insuÆient to ause a uto�, then the ol-letion of penalty patterns is mathed against the position. Of the patternsthat math, the largest penalty is omputed and added to the lower bound. Iftwo or more patterns overlap, only a maximal non-overlapping subset of themis ounted towards the position penalty. To prevent exessive pattern math-ing during the searh (utility problem [20℄), the number of patterns stored isrestrited. The least reently used patterns are removed if neessary.Figure 8 (page 19) shows the e�ort graph, now inluding the version ofRolling Stone using pattern searhes (R7). The program an now solve 48problems, 24 more than the previously best version!In Table 3 (page 21), the searh-tree size for R7 is broken down into twoategories. The \total nodes" olumn reets all positions visited in the searh.The \IDA*" olumn gives the number of positions that the IDA* searh visits.The di�erene is the number of pattern searh nodes (PIDA*).Exept for the small searhes (<20,000 nodes), the ost of performing theadditional PIDA* searhes is o�set by the redution in the IDA* searh nodes.Problem #53 is an example. The savings for the IDA* tree are dramati. Pre-viously, the searh was unable to solve this problem given 20,000,000 nodes.Now the searh sueeds with only 159 IDA* nodes and a total of 22,310 nodes.Clearly, the pattern searhes dominate the searh ost, but the knowledge un-overed allows the program to solve the problem where it failed previously. Inthis example, Rolling Stone searhes fewer IDA* nodes than the length of thesolution! The searh baktraks a mere 13 times for a solution of 186 pushes.Pattern searhes are a gamble: we invest searh e�ort (PIDA* nodes) ex-peting to �nd useful knowledge. Problem #78 is one example of where the14



gamble does not pay o�. Even though the tree size (IDA*) is redued about 50fold, inluding the PIDA* nodes triples the total number of nodes searhed.The results reported here are not the best numbers that an be ahieved.The PIDA* nodes dominate the ost of the searh for some problems. Someadditional heuristis for deiding when to exeute pattern searhes ould resultin further improvements in the overall searh eÆieny. There are numerousparameters in the searh, eah of whih an be tuned for maximal performane[7, 11℄.Pattern searhes have also been applied to sliding-tile puzzles [7℄. The pro-gram dynamially learns penalty patterns, suh as linear onits [6℄. The ostof the pattern searhes is small ompared to the large redutions in the IDA*searh tree.Deadlok tables (or pattern databases) are another way to store patterninformation. However, the patterns in suh databases are neessarily smaller,beause preomputing these patterns requires onsiderable omputing resouresand the resulting data needs to be stored, often exhaustively for fast hashing.Pattern searhes avoid both these problems, beause they are demand drivenand only patterns that atually appear in the searh are explored.4.10 Relevane Cuts (R8, 50 solved):Analysis of the trees built by an IDA* searh quikly reveals that the searhalgorithm onsiders move sequenes that no human would ever onsider. Evenompletely unrelated moves are tested in every legal ombination|all in ane�ort to prove that there is no solution for the urrent threshold. How an aprogram mimi an \understanding" of relevane? We suggest that a reasonableapproximation of relevane is inuene. If two moves do not inuene eahother, then it is unlikely that they are relevant to eah other. If a programhad a good \sense" of inuene, it ould assume that in a given position allprevious moves belong to a (unknown) plan of whih a ontinuation an onlybe a move that is relevant|in our approximation, is inuening whatever wasplayed previously. Relevane uts eliminate moves from that searh that appearto be irrelevant to the preeding sequene of moves.A move is onsidered relevant only if the previous m moves inuene it. Thesearh is only allowed to make relevant moves with respet to previous moves,and only a few exeptions are permitted. With these restritions in plae, thesearh is fored to spend its e�ort loally, sine random jumps within the searharea are disouraged. Foring the program to onsider loal moves is making itadopt a pseudo-plan; an exeption orresponds to a deision to hange plans. Ofourse, restriting the number onsidered for a node will result in the possibilityof optimal solutions being found.An inuene metri an be ahieved in di�erent, domain-spei� ways. Ap-pendix A.9 gives an overview of our implementation. Even though the spei�saren't neessarily appliable to other domains, the basi philosophy of the ap-proah is. We approximate the inuene of two moves on eah other by theinuene between their from squares. Inuene is determined using the notion15



Figure 7: Example Maze With Loalityof a \most inuential path" between the squares. Small o�-line searhes areused to statially preompute an InflueneTable ontaining the inuene val-ues between any pair of from squares. For eah pair of squares, a breadth-�rstsearh is used to �nd the path(s) with the largest inuene. The algorithm issimilar to a shortest-path �nding algorithm, exept that we use inuene hereand not geographi distane.Figure 7 shows an example where humans immediately identify that solvingthis problem involves onsidering two separate sub-problems. The solution tothe left and right sides of the problem are ompletely independent of eah other.An optimal solution needs 82 moves; Rolling Stone's lower-bound estimatorreturns a value of 70. Standard IDA* will need 7 iterations to �nd a solution(our lower-bound estimator preserves the odd/even parity of the solution length,meaning that it iterates by 2 at a time). IDA* will try every possible (legal)move ombination, intermixing moves from both sides of the problem. Clearly,this is unneessary and ineÆient. Solving one of the sub-problems requires only4 iterations, sine the lower bound is o� by only 6. Considering this positionas two separate problems will result in an enormous redution in the searhomplexity.Our implementation of inuene onsiders all moves on the left side as dis-tant from those on the right, and vie versa. This way only a limited numberof swithes is onsidered during the searh. Our parameter settings allow foronly one non-loal move per 9-move sequene. For this ontrived problem, rel-evane uts derease the number of nodes searhed from 32,803 to 24,748 whilestill returning an optimal solution (the pattern searhes were turned o� for sim-pliity). The savings (25%) appear relatively small beause the transpositiontable athes repeated positions (many of whih may be the result of irrelevantmoves) and eliminates them from the searh. Although the relevane uts pro-vide a welome redution in the searh e�ort required, it is only a small step to-wards ahieving all the possible savings. For example, eah of the sub-problemsan be solved by itself in only 329 nodes! The di�erene between 329� 2 and16



32,803 illustrates why IDA* in its urrent form is inadequate for solving large,non-trivial real-world problems; the algorithm is inapable of taking advantageof exploitable strutural properties of the domain. Clearly, more sophistiatedmethods are needed. Further re�nement of the relevane ut parameters anlikely make a big di�erene in performane.The overhead of the relevane uts is negligible; the inuene of two movesan be established by a simple table lookup. This is in stark ontrast to ourpattern searhes, where the overhead dominates the ost of the searh for mostproblems. The addition of relevane uts inreases the number of solved prob-lems to 50. Figure 8 shows that the bene�ts of relevane uts are only disernibleon the largest searhes. This is not a negative omment on the e�etiveness ofrelevane uts; it only reets the observation that most of the solved problemsalready have very eÆient searhes.4.11 Overestimation (R9, 54 solved):To ensure optimality of solutions produed by A*-based algorithms, the heuristihas to be admissible. This limits the hoie of knowledge that an be used. Evenif some knowledge orrelates well with the distane to the goal, but there is ahane that it overestimates, it annot be used beause the solution optimalitywould not be guaranteed. This shows that optimality has its prie. Insteadof �tting the heuristi distane to a solution h as losely as possible to theatual distane h�, we are restrited to reating a lower bound. The error ofsuh a lower-bound funtion is often larger than a funtion that is allowed tooasionally overestimate. The larger the error of the lower-bound funtion, theless eÆient the searh.We have seen in previous setions that an aggressive treatment of the searhspae is needed to make signi�ant progress. The examples of the goal marosand relevane uts have shown the bene�ts that are ahievable when the smallrisk of losing optimality and ompleteness is taken. Therefore, it seems logialto question the admissibility onstraint for the heuristi funtion. The hope isto ahieve a loser �t of h to h�, albeit at the ost of non-optimal solutions.Our overestimation tehnique ombines the penalties for all pattern-searhpatterns that math in a position. Further details are in Appendix A.10.Figure 8 shows that 3 additional problems an now be solved. There isroughly one order of magnitude savings in searh-tree size (see Table 3). Withoverestimation, almost all solved problems, exept #49, have smaller or insignif-iantly larger number of nodes. Problem #26, for example, drops from over 20million nodes to just under 123,000. While some searhes with overestimationuse more iterations to �nd a goal, the searh for problem #26 uses less; theinitial position is overestimated enough to allow the searh to �nd a solution infewer iterations. On average, the IDA* and total nodes are redued by roughlyhalf.
17



4.12 Rapid Random Restart (R10, 57 solved):Some problem lasses exhibit the property of heavy tails. Heavy tails refer tothe high likelihood of problem instanes being very hard to solve with a er-tain algorithm, its heuristis and (random) parameters used. Rapid RandomRestart (RRR) assumes that by varying parameters to the solution algorithm(here searh), it is possible to redue the solution time dramatially [5℄. There-fore, instead of using all the available time with one parameter setting, RRRrepeatedly aborts the searh after a given e�ort limit and restarts it with dif-ferent (random) parameters.In Rolling Stone, RRR is used to interrupt an iteration and restart it witha di�erent move ordering tie-breaking sheme (see Appendix A.11). Now 57 ofthe 90 problems an be solved, as shown in Figure 8.5 Single-Agent Searh EnhanementsThe performane gap between the �rst and last versions of Rolling Stone inFigure 8 is astounding. For example, onsider extrapolating the performaneof Rolling Stone with transposition tables so that it an solve the same numberof problems as the omplete program (57). 1050 (not a typo!) seems to be areasonable lower bound on the di�erene in searh-tree sizes.For eah of the unsolved problems, an additional searh to 200 million nodeswas performed. This resulted in two more problems being solved (numbers 25and 28), bringing the total number of solved problems to 90. It is disouragingto see an order of magnitude more omputing power translating into suh asmall improvement, learly an indiation of the diÆulty of solving Sokobanproblems. For some problems (notably number 50), the IDA* searh thresholdis so far from the best known human solution, that there is no hope of eversolving this problem with our urrent tehniques.The ordering of the preeding sub-setions losely orresponds to the orderin whih enhanements were initially added to Rolling Stone (although mostenhanements have been ontinually re�ned). Figure 9 shows how these resultswere ahieved over the 3-year development time. The development e�ort equatesto a full-time PhD student, a part-time professor, one summer student, andvaluable feedbak from many people. Additionally, a large number of mahineyles were used for tuning and debugging. It is interesting to note the oasionalderease in the number of problems solved, the result of (favorable) bugs being�xed. The long, slow, steady inrease is indiative of the reality of building alarge system. Progress is inremental and often painfully slow.The results in Figure 8 may misrepresent the importane of eah feature.Consider removing a single enhanement from Rolling Stone. In the abseneof a partiular method, other searh enhanements an ompensate to allow asolution to be found. Most notably, while the lower-bound funtion alone annotsolve a single problem, neither an the omplete system solve a single problemwithout the lower-bound funtion. Turning o� goal maros redues the number18
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Figure 8: E�ort Graph for R0 to R10 (Linear and Log Sale)19



# R1 = R0 + R2 = R1 + R3 = R2 + R4 = R3 + R5 = R4 + R6 = R5 +Transposition Table Move ordering Deadlok Tables Tunnel Maros Goal Maros Goal CutsIDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes IDA* nodes1 41,640 319 261 223 53 532 > 20,000,000 > 20,000,000 640,680 620,030 2,176 3163 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 29,148 2,4934 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 597 5975 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 1,275,1466 10,214,381 12,061,182 10,294,734 10,107,621 4,546 2837 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 126,023 48,2098 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,0009 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 659,97210 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00011 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00012 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00017 > 20,000,000 > 20,000,000 > 20,000,000 10,672,805 120,747 11,91019 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00021 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 10,643,97123 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00025 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00026 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00030 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00033 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00034 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00036 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00038 2,311,000 2,500,678 460,089 415,485 33,812 19,08340 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00043 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,084,36945 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00049 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 8,895,883 5,189,49451 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 390,690 80,50453 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00054 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00055 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 333 14456 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00057 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00058 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00059 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00060 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00061 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00062 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 6,33763 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00064 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00065 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 60467 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00068 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00070 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00071 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00072 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00073 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00075 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00076 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00077 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,00078 66,309 2,555 1,408 871 480 46579 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 156,203 5,96480 6,500,890 > 20,000,000 > 20,000,000 > 20,000,000 115,574 114,93081 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 853,607 221,69082 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 971,093 99,23683 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 31,096 20,84784 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 > 20,000,000 354,295>1,059,134,220 >1,074,564,734 >1,051,397,172 >1,041,817,035 >811,732,061 >684,840,912Table 2: Adding Enhanements (I)20



# R7 = R6 + Pattern Searh R8 = R7 + Relevane Cuts R9 = R8 + Overestimation R10 = R9 + Rapid RestartIDA* nodes total nodes IDA* nodes total nodes IDA* nodes total nodes IDA* nodes total nodes1 50 1,042 50 1,042 55 1,267 55 1,2672 82 7,532 80 7,530 80 7,530 80 7,5303 94 13,445 87 12,902 94 14,095 94 14,0954 187 50,369 187 50,369 187 50,369 187 50,3695 436 59,249 202 43,298 153 33,755 239 35,9746 85 5,119 84 5,118 84 5,503 84 5,5037 1,704 28,561 1,392 28,460 338 14,832 237 15,7908 317 339,255 291 311,609 315 409,714 315 409,7149 704 168,412 1,884 435,388 1,591 385,084 1,734 407,10310 1,909 1,480,115 1,810 1,713,429 2,920 2,539,524 25,034 19,967,87511 14,048 4,691,929 5,679 2,994,297 4,058 2,527,286 3,902 2,331,95012 162,129 4,373,802 4,912 559,184 951 372,264 951 372,26417 2,473 30,111 2,038 29,116 2,158 30,242 2,336 33,90119 59,433 > 20,000,000 16,606 7,269,595 14,178 6,631,475 12,801 6,089,18221 1,853 154,593 1,177 179,734 573 113,042 1,774 258,85223 87,744 > 20,000,000 59,498 > 20,000,000 23,337 6,555,398 23,679 7,082,58425 1,239 553,900 21,536 5,784,086 683 366,035 1,231 592,58526 2,606,167 > 20,000,000 2,125,116 > 20,000,000 380 122,997 496 126,37930 14,297 > 20,000,000 14,124 > 20,000,000 27,731 17,795,114 3,595 3,467,26033 5,035 866,085 2,765 586,684 604 283,926 1,865 551,40634 542 298,674 11,431 1,981,993 9,746 749,787 731 442,02536 78,325 > 20,000,000 23,467 > 20,000,000 18,338 12,150,606 10,196 5,785,29038 2,539 51,276 7,011 154,969 10,473 160,176 2,340 56,56340 41,131 > 20,000,000 23,274 17,004,253 16,725 10,086,547 19,125 11,505,83643 5,308 690,426 1,729 421,483 2,225 535,148 2,332 523,90745 1,685 508,124 339 181,566 602 404,217 588 410,13449 375,293 1,670,236 53,113 327,643 441,638 3,486,905 136,700 1,168,19451 137 8,825 256 21,491 256 21,491 306 29,56953 159 22,310 157 22,308 157 22,308 157 22,30854 106,663 910,532 163,757 2,031,577 269 45,332 872 66,30655 97 2,993 97 2,993 97 2,993 97 2,99356 353 57,785 377 61,189 911 55,865 605 50,92457 256 121,384 234 114,416 209 128,282 209 128,28258 426 268,713 211 130,474 231 138,838 231 138,83859 795 348,214 1,420 775,753 602 337,905 1,437 409,47060 223 41,310 160 27,386 18,100 114,642 304 31,41361 314 106,206 309 105,411 299 77,555 299 77,55562 211 70,478 195 101,934 180 69,728 180 69,72863 567 259,537 703 312,546 473 237,196 1,371 578,06664 378 300,684 405 332,402 193 186,508 193 186,50865 196 21,442 196 21,442 165 23,004 165 23,00467 18,107 601,178 12,669 512,488 298 104,356 298 104,35668 2,278 541,080 1,953 538,509 324 236,157 324 236,15770 412 125,454 431 140,765 446 178,657 446 178,65771 1,432,332 > 20,000,000 8,234,574 > 20,000,000 1,132,180 > 20,000,000 183,170 1,973,35272 134 44,908 134 44,908 123 45,735 123 45,73573 201 87,019 214 94,568 225 103,494 225 103,49475 61,973 > 20,000,000 55,274 > 20,000,000 259,971 > 20,000,000 12,786 5,095,05476 185,633 6,236,656 74,315 3,775,394 251 183,656 4,123 1,980,09477 1,092,369 > 20,000,000 1,019,702 > 20,000,000 1,108,195 > 20,000,000 251,768 6,277,71578 64 4,451 64 4,913 64 4,913 64 4,91379 125 15,833 122 15,527 127 13,114 127 13,11480 100 16,114 165 26,943 176 26,309 176 26,30981 21,501 234,235 2,662 42,445 875 111,033 2,651 206,42382 86 33,445 86 33,445 117 45,014 117 45,01483 91 7,294 80 5,631 108 6,856 108 6,85684 94 5,960 106 7,938 108 7,818 108 7,8186,391,084 >206,536,295 11,950,910 >189,388,544 3,105,947 >128,361,597 715,741 79,833,557Table 3: Adding Enhanements (II)21
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timeFigure 9: Number of Problems Solved Over Timeof problems solved by 33, almost 60%! Turning o� pattern searhes redues thenumber of solved problems by 22, while disabling transposition tables loses 19problems. Other than the lower-bound funtion, these three methods are themost important for Rolling Stone; losing any one of them dramatially reduesthe performane. While other enhanements don't have as dramati an e�et,turning any one of them o� loses at least one problem.5.1 Knowledge TaxonomyIn looking at the domain-spei� knowledge used to solve Sokoban problems,we an identify several di�erent ways of lassifying the knowledge:Generality. Classify based on how general the knowledge is: domain (e.g.,Sokoban), instane (a partiular Sokoban problem), and subtree (within aSokoban searh).Knowledge Soure. Di�erentiate how the knowledge was obtained: stati(suh as advie from a human expert) and dynami (gleaned from asearh).Admissibility/Completeness. Knowledge an be: admissible (preserve op-timality in a solution) or non-admissible. Non-admissible knowledge aneither preserve ompleteness of the algorithm or render it inomplete. Ad-missible knowledge is neessarily omplete.Figure 10 summarizes the searh enhanements used in Rolling Stone. Otherenhanements from the literature ould easily be added into spaes that are stillblank, e.g. perimeter databases [19℄ (dynami, admissible, instane). Note thatsome of the enhanement lassi�ations are �xed by the type of the enhane-ment. For example, any type of forward pruning is inomplete by de�nition, andmove ordering always preserves admissibility. For some enhanements, the prop-erties depend on the implementation. For example, overestimation tehniques22



Classi�ation Domain Instane SubtreeStati admissible lower tunnel movebound maros orderingompleteinomplete relevane goaluts utsDynami admissible deadlok patterntables searhestransposi-tion tableomplete overesti-mationinomplete goalmarosFigure 10: Taxonomy of Searh Enhanements in Sokobanan be stati or dynami; goal maros an be admissible or non-admissible;pattern databases an be domain-based or instane-based.It is interesting to note that, apart from the lower-bound funtion itself, thethree most important program enhanements in terms of program performaneare all dynami (searh-based) and instane/subtree spei�. The stati en-hanements, while of value, turn out to be of less importane. Stati knowledgeis usually rigid and does not inlude the myriad of exeptions that searh-basedmethods an unover and reat to.5.2 Control FuntionsThere is another type of appliation-dependent knowledge that is ritial toperformane, but reeives sant attention in the literature. Control funtionsare intrinsi parts of eÆient searh programs, ontrolling when to use or notuse a searh enhanement. In Rolling Stone numerous ontrol funtions are usedto improve the searh eÆieny. Some examples inlude:Transposition Table: Control knowledge is needed to deide when new in-formation is worth replaing older information in the table. Also, whenreading from the table, ontrol information an deide whether the bene-�ts of the lookup justify the ost.Goal Maros: If a goal area has too few goal squares, then goal maros aredisabled. With a small number of goals or too many entranes, the searhwill likely not need maro moves, and the potential savings are not worththe risk of eliminating possible solutions.Pattern Searhes: Pattern searhes are exeuted only when a non-trivial heuris-ti funtion indiates the likelihood of a penalty being present. Exeuting23



a pattern searh is expensive, so this overhead should be introdued onlywhen it is likely to be ost e�etive. Control funtions are also used tostop a pattern searh when suess appears unlikely.Implementing a searh enhanement is often only one part of the program-ming e�ort. Implementing and tuning its ontrol funtion(s) an be signi�-antly more time onsuming and more ritial to performane. We estimatethat whereas the searh enhanements take about 90% of the oding e�ort andthe ontrol funtions only 10%, the reverse distribution applies to the amountof tuning e�ort needed and mahine yles onsumed.A lear separation between the searh enhanements and their respetiveontrol funtions an help the tuning e�ort. For example, while the goal maroreation only onsiders whih order the stones should be plaed into the goalarea, the ontrol funtion an determine if goal maros should be reated at all.Both tuning e�orts have very di�erent objetives: one is searh eÆieny, theother risk minimization. Separating the two seems natural and onvenient.5.3 Single-Agent Searh FrameworkAs presented in the literature, single-agent searh onsists of a few lines of ode(usually IDA*). Most textbooks do not disuss searh enhanements, otherthan yle detetion. In reality, non-trivial single-agent searh problems requirea more extensive programming (and possibly researh) e�ort.Figure 11 illustrates the basi IDA* routine, with our enhanements inluded(in italis). This routine is spei� to Rolling Stone, but ould be written in moregeneral terms. It does not inlude a number of well-known single-agent searhenhanements available in the literature. Control funtions are indiated byparameters to searh enhanement routines. In pratie, some of these funtionsare implemented as simple if statements ontrolling aess to the enhanementode.Examining the ode in Figure 11, one realizes that there are really only threetypes of searh enhanements:1. Modifying the lower bound (as indiated by the updates to lb). This antake two forms: optimally inreasing the bound (e.g. using patterns) whihredues the distane to searh, or non-optimally (using overestimation)whih redistributes where the searh e�ort is onentrated.2. Removing branhes unlikely to add additional information to the searh(the next and break statements in the for loop). This forward pruning anresult in large redutions in the searh tree, at the expense of possiblya�eting the ompleteness.3. Collapsing the tree height by replaing a sequene of moves with one move(for example, maros).Some of the searh enhanements involve omputations outside of the searh.Figure 12 shows where the pre-searh proessing ours at the domain and24



IDA*() f/** Compute the best possible lower bound **/lb = ComputeLowerBound();lb += UsePatterns(); /** Math Patterns **/lb += UseDeadlokTable();lb += UseOverestimate( CntrlOverestimate() );if( utoff ) return;/** Preproess **/lb += ReadTransTable();if( uto� ) return;PatternSearh( CntrlPatternSearh() );lb += UsePatterns();if( uto� ) return;/** Generate moves to onsider **/movelist = GenerateMoves();RemoveDeadMoves( movelist );IdentifyMaros( movelist );OrderMoves( movelist );for( eah move ) fif( Irrelevant( move, CntrlIrrelevent() )) next;solution = IDA*();if( solution) return;if( GoalCut() ) break;UpdateLowerBound(); /** Use New Patterns **/if( uto� ) return;g/** Post-proess **/SaveTransTable( CntrlTransTable() );return;g Figure 11: Enhaned IDA*
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for( eah domain ) f/** Preproess **/BuildDeadlokTable( CntrlDeadlokTable() );for( eah instane ) f/** Preproess **/FindTunnelMaros();FindGoalMaros( CntrlGoalMaros() );while( not solved ) fSetSearhParamaters();IDA*();g/** Postproess **/SavePatterns( CntrlSavingPatterns() );gg Figure 12: Preproessing Hierarhyinstane levels. O�-line omputation of pattern databases or pre-proessingof problem instanes are powerful tehniques that reeive sant attention inthe literature (hess endgame databases are a notable exeption). Yet thesetehniques are an important step towards the automation of knowledge disoveryand mahine learning. Preproessing is involved in many of the most valuableenhanements that are used in Rolling Stone.Similar issues our with other searh algorithms. For example, althoughit takes only a few lines to speify the alpha-beta algorithm, the Deep Bluehess program's searh proedure inludes numerous enhanements (many simi-lar in spirit to those used in Rolling Stone) that umulatively redue the searh-tree size by several orders of magnitude. If nothing else, the Deep Blue re-sult demonstrated the degree of engineering required to build high-performanesearh-based systems.Figure 13 shows a di�erent perspetive on the problem of knowledge lev-els. The diagram shows a hierarhy of problems, solvers, and the orrespond-ing knowledge used. The appliation domain is loated at the ore; the basisolver is stritly onerned with this ore appliation and exlusively uses ore-appliation-spei� knowledge. The next higher level in the hierarhy treats thisentire proess as the appliation. It supplies the ore-appliation knowledge tothe ore-solver. The knowledge required at this level is ontrol knowledge|ontrolling the ore-knowledge gathering. When viewed in this ontext, it islear why pattern searhes and goal maros are suh important enhanements.This diagram also shows an important diretion of future researh: automationof the next higher levels of the knowledge hierarhy.
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Figure 13: Framework6 ConlusionsThis paper desribed our experienes working with a hallenging single-agentsearh domain. In ontrast to the simpliity of the basi IDA* formulation,building a high-performane single-agent searher an be a omplex task thatombines both researh and engineering. Appliation-dependent knowledge,spei�ally that obtained using searh, an result in an orders-of-magnitudeimprovement in searh eÆieny. This an be ahieved through a judiiousombination of several searh enhanements. Control funtions are overlookedin the literature, yet are ritial to performane. They represent a signi�antportion of the program development time and most of the program experimen-tation resoures.Domain-independent tools o�er a quik programming solution when om-pared to the e�ort required to develop domain-dependent appliations. How-ever, with urrent AI tools, performane is ommensurate with e�ort. Domain-dependent solutions an be vastly superior in performane. The trade-o� be-tween programming e�ort and performane is the ritial design deision thatneeds to be made.7 AknowledgementsThis researh was supported by a grant from the Natural Sienes and Engi-neering Researh Counil of Canada. Computational resoures were provided byMACI. This researh bene�ted from interations with Don Beal, Darse Billings,27
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Figure 15: Distane Depends on the Position of the Manthe stone distanes used for minimum mathing take the urrent position of theman into aount.A.2 Transposition TablesTransposition tables are usually implemented as (large) hash tables. The hashkeys we use inorporate only the exat stone positions. To math an entry, thekeys must be idential. Sine the position of the man is important, a seond testis performed. The loations of the man in both positions must be onneted bya legal man path. Thus multiple positions that di�er only in the man's loa-tion may map to idential transposition entries. This simpli�ation is possiblebeause we only optimize stone pushes.Transposition tables an handle yle detetion. The table entry for a po-sition an be agged before doing a searh from that position, and the agremoved after the searh ompletes. If a searh ever reahes a agged state thena yle has ourred.A.3 Move OrderingThe information used to order moves an ome from di�erent soures, but isusually domain-dependent knowledge. Sometimes knowledge gathered duringthe searh (e.g., tree sizes or tree depths) an be useful. In the ase of iterative30
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Figure 16: The E�et of Move Orderingdeepening, move ordering information is passed from one iteration to the nextby means of the transposition table.Rolling Stone uses a move-ordering sheme that we all inertia. Analysis ofsolution sequenes shows long runs where the same stone is repeatedly pushed.Hene, moves are ordered to preserve the inertia of the previous move in thefollowing way:1. Inertia moves are onsidered �rst.2. Then all the moves that derease the lower bound (optimal moves) aretried, sorted by the distane from the stone pushed to the goal it is targetedto, with lose stones �rst.3. Then all the \non-optimal" moves are tried, sorted similarly.Figure 16 shows the e�et of move ordering.4 The vertial axis shows thenumber of moves onsidered. The horizontal axis shows the depth of the nodein the tree in perent. The upper urve indiates the average number of movesonsidered by the program.5 The middle urve shows where the atual solutionmove is loated in the list returned by the move generator. Not surprisingly,the solution move is in the middle of the move list on average. The lower urveshows that inertia ordering results in solution moves being plaed loser to thefront of the move list. Move ordering beomes more aurate with dereasingdistane to the goal. In fat, after reahing a depth of about 20% of the solutionlength, the move ordering beomes lose to perfet. At the start of a Sokobanproblem, with many ompliations in the maze, seemingly good moves mightatually lead to deadloks. Many of the problems in the test suite are designedin suh a way that an initial \knot" has to be freed up. This an usually be4The data was ompiled from all the positions on the solution paths for the 57 problemsthat Rolling Stone an solve.5Some of the legal moves are disarded immediately beause they lead to trivially provabledeadloks. These moves are not inluded in the graph. See Appendix A.4 for more detail.31
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A.8 Pattern SearhesFigure 19 shows the pseudo ode for pattern searhes. We are interested in theset of squares that are used by the stones and the man to e�et the solution:the squares oupied by the stones(s) on their path to the goal(s) (StonePath),and the squares touhed by the man while pushing the stone(s) to a goal(s)(ManPath). In e�et, these sets of squares are preonditions for the solution towork. The ManPath and StonePath are used to determine whih stone from theoriginal maze to inlude next in the test maze (i.e. add a stone that violates oneof the preonditions). The stone in StonePath losest to square B (the squarethe stone was moved to in the original maze) is inluded next. If suh a stonedoes not exist, the stone on ManPath losest to square A is used.6 If none ofthose exists, the pattern searh returns without �nding a deadlok.After inluding the next stone, PIDA* is alled again, returning with asolution determination and the two onit sets. If deadlok has not been found,then the onit sets are used to add another stone to the test maze. If any ofthe returning searhes indiates a longer solution than the lower-bound estimateof the position, the urrent pattern is stored with a orresponding lower-boundinrease.Figure 5 (page 13) shows a simple position, before and after the move Gd-Fd.The question is whether this move introdues a deadlok. Figure 6 (page 13)shows how the test maze is built. Sine the last move ended up on square Fd,the test maze is initialized with this single stone (Figure 6a). A PIDA* searhreveals a 5-move solution (Fd-F-E-D-C-B) whih is also the StonePath,and sets ManPath to the squares needed by the man (Gd-Ge-Fe-Fd-Gd-G-F-E-D-C). Sine there is a solution, we ontinue the pattern searh.The original maze has a stone on one of the squares that the stone moved over(square E) whih now gets inluded in the test maze (Figure 6b). PIDA* willsolve the two-stone maze and again �nd a solution. The ManPath is (Gd-G-F-E-D-Dd-Cd-C-D-E-F-G-Gd-Ge-Fe-Fd-Gd-G-F-E-D-C) and theStonePath is (E-D-C-Cb Fd-F-E-D-C-B). This time there are no stonesin onit with StonePath. However, there is a onit with the ManPath,square Ge. This stone is added to the test maze (Figure 6) and another searhis ommened. A solution will be found, requiring a fourth stone to be added(Figure 6d).The fourth all to PIDA* will return no solution and announe a deadlokwith this pattern of four stones.A.9 Relevane CutsWhen judging how two squares in a Sokoban maze inuene eah other, Eu-lidean distane is not adequate. Taking the struture of the maze into aountwould lead to a simple geographi distane whih is not proportional to inuene6Closest is always with respet to the distane of either the stone or the man to theoniting stone. These distane measures are possibly di�erent due to the more restritedmovement of the stones. 34



PatternSearh( From, To ) flear TestMaze;StonePath = To;for( i=1; i <= MAX PATTERN SIZE AND NOT EffortLimit(); i++ ) fif( stone s on a square in StonePath )add losest s to TestMazeelse if( stone s on a square in ManPath )add losest s to TestMazeelse break;/* Call to PIDA* modifies SolLength, ManPath and StonePath */solution = PIDA*( TestMaze, SolLength, ManPath, StonePath );/* Test for a deadlok */if( solution == NO AND NOT EffortLimit() ) fGeneralizeAndAddPattern( TestMaze, infinity );break;g/* Test for a lower-bound inrease */if( solution == YES ) flb = LowerBound( TestMaze );if( SolLength > lb )GeneralizeAndAddPattern( TestMaze, SolLength - lb );ggg Figure 19: Pseudo Code for Pattern Searheseither. For example, onsider two squares onneted by a tunnel; the squaresare equally inuening eah other, no matter how long the tunnel is. Elongatingthe tunnel without hanging the general topology of the problem would hangethe geographi distane, but not the inuene.The inuene measure should reet the following properties:Alternatives: The more alternatives that exist on a path between two squares,the less the squares inuene eah other. That is, squares in the middle ofa room, where stones an go in all 4 diretions, should derease inuenemore than squares in a tunnel, where no alternatives exist.Goal-Skew: For a given square sq, any squares on the optimal path from sq toa goal should have stronger inuene than squares o� the optimal path.Connetion: Two neighboring squares onneted suh that a stone an movebetween them should inuene eah other more than two squares on-neted suh that only the man an move between them.Tunnel: In a tunnel, inuene remains equal, regardless of length.Our implementation of relevane uts uses small o�-line searhes to stati-ally preompute an InflueneTable ontaining the inuene values for eah35



square of a 20 � 20 maze to every other square in the maze [7, 12℄. Betweenevery pair of squares, a breadth-�rst searh is used to �nd the path(s) with thelargest inuene. The algorithm is similar to a shortest-path �nding algorithm,exept that we use inuene here and not geographi distane. The smaller theinuene number, the more two squares inuene eah other. Our approah isquite simple and an undoubtedly be improved. For example, inuene is stat-ially omputed. A dynami measure, one that takes into aount the urrentpositions of the stones, would undoubtedly be more e�etive.A.10 OverestimationSine the pattern searhes are limited in ertain ways to keep them tratable,the orret size of the penalties and shape of the patterns might not be known.Therefore, the patterns represent inomplete knowledge. Furthermore, whenpatterns are mathed, only some of the penalties an be used to preserve admis-sibility. However, the presene of mathing patterns that are not inluded in thelower-bound alulations suggests that there may be additional ompliationsin the urrent position. Not using the penalty of suh a pattern is equivalentto ignoring available knowledge. The following desribes the best of our at-tempts to use the knowledge ontained in the patterns that math a position.It was ahieved after a signi�ant e�ort spent on experimentation and tuning.We all this method maximum partial penalties. More straightforward ways ofoverestimation suggested in the literature were not e�etive [16℄.One simple overestimation idea is to sum the penalties for all the patternsthat math in a position (a worst-ase senario). Preditably, this does notperform well. Instead of attributing penalties to patterns, they an be assignedto stones in the maze. The penalty of a mathed pattern is split equally amongall the stones ontained in that pattern. For eah stone the maximum of thesepartial penalties is stored. The total penalty of a position is the sum of allthe maximum partial penalties for eah stone. Thus, every stone involved ina penalty pattern ontributes to the total penalty assigned to a stone on�gu-ration. To tune the overestimation further, the penalty is saled by a fator s(urrently set to 1.8, as determined by experimentation). A �nal rounding stepassures that the total penalty is an even number to preserve the parity propertyof the heuristi.Adding a limited penalty to the heuristi estimation of the distane to thegoal will only delay the examination of a node to a later iteration. If no solu-tion an be found, the threshold will inrease until the position's lower-boundestimate is not enough to ause a uto� anymore. The exploration of the nodeis only postponed. This is in stark ontrast to forward pruning with �xed rules,suh as deterministi relevane uts, that will prune the same node in everyiteration. Beause new patterns are added and useless patterns are dropped,the deision to postpone a node hange dynamially over the ourse of a searhas new knowledge is found or other knowledge is disarded.36



A.11 Rapid Random RestartEah iteration of IDA* is in priniple a restart with a di�erent parameter set-ting: the threshold. However, in the lassi IDA* the threshold is only inreasedafter an iteration is exhaustively searhed. When RRR aborts an iteration early,it is unlear whether to restart with the same iteration or to inrease the thresh-old. Rolling Stone uses a \double impatiene" approah. If a ertain numberof restarts in a spei� threshold iteration have not produed a solution, thethreshold is inreased. Furthermore, with eah new restart within an iterationthe randomization of the move ordering is inreased. This an be justi�ed bysimply stating that if the move ordering was good the solution would have beenfound by now. With eah restart our on�dene in the move ordering shrinksand more randomization is used. When the threshold is inreased, the random-ization is redued to 0 again, beause it is assumed that no solution existed forthe lower threshold.
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