
Representing Normal Programs with Clauses

Tomi Janhunen1

Abstract. We present a new method for transforming nor-
mal logic programs into sets of clauses. This transformation is
based on a novel characterization of stable models in terms of
level numberings and it uses atomic normal programs, which
are free of positive body atoms, as an intermediary repre-
sentation. The corresponding translation function possesses a
unique combination of properties: (i) a bijective relationship
is established between stable models and classical models, (ii)
the models coincide up to the set of atoms At(P) appear-
ing in a program P , and (iii) the length of the translation as
well as the translation time are of order ||P || × log2 |At(P)|
where ||P || is the length of the program P . Our preliminary
experiments with an implementation of the transformation,
namely translators called lp2atomic and lp2sat, and SAT
solvers such as chaff and relsat suggest that our approach
is competitive when the task is to compute not just one but
all stable models for a normal program given as input.

1 INTRODUCTION

Normal logic programs under the stable model semantics [9]
are well-suited for a variety of knowledge representation tasks.
Typically, a programmer solves a problem at hand (i) by for-
mulating it as a logic program whose stable models correspond
to the solutions of the problem and (ii) by computing stable
models using a special-purpose search engine. The reader is
referred e.g. to [18, 20] for examples of using this kind of
methodology, also known as answer set programming (ASP).

Similar problems are solvable by formulating them as classi-
cal satisfiability (SAT) problems and using SAT solvers. How-
ever, such formulations tend to be more difficult and less con-
cise. E.g., formulating an AI planning problem is much easier
as a normal logic program [6] than as a set of clauses [12]. This
indicates of a real difference in expressive power which can be
established formally by showing that normal programs can-
not be translated into sets of clauses in a faithful and modular
way [20, 10, 11]. In spite of these intranslatability results, we
develop a faithful and non-modular, but still fairly system-
atic, translation from normal programs into sets of clauses.
Using a novel characterization of stable models based on level
numberings, the time complexity remains sub-quadratic.

The rest of this article is structured as follows. In Section
2, we review the syntax and semantics of normal logic pro-
grams as well as sets of clauses. As a further preparatory step,
we characterize stable models in terms of level numberings in
Section 3. The translation mentioned above is presented in

1 Helsinki University of Technology, Espoo, Otaniemi, Finland
email: Tomi.Janhunen@hut.fi

Section 4. We report on our preliminary experiments in Sec-
tion 5. The discussion in Section 6 concludes the paper.

2 PRELIMINARIES

In this paper, we restrict ourselves to the purely propositional
case and consider only programs that consist of propositional
atoms. A normal (logic) program P is a set of rules which are
expressions of the form

a ← b1, . . . , bn,∼c1, . . . ,∼cm (1)

where a is an atom, and {b1, . . . , bn} and {c1, . . . , cm} form
sets of atoms. Here ∼ denotes default negation or Clark’s
negation as failure to prove, which differs from classical nega-
tion denoted by ¬. Intuitively speaking, a rule r of the form
(1) is used as follows: if the positive body atoms in B+(r) =
{b1, . . . , bn} are inferable by the rules of the program, but
not the negative body atoms in B−(r) = {c1, . . . , cm}, then
the head atom H(r) = a can be inferred by applying r.

The positive part r+ of a rule r is defined as H(r) ← B+(r).
A (normal) program P is positive, if r = r+ holds for all
rules r ∈ P . In addition to positive programs, we distinguish
normal programs that are obtained by restricting the number
of positive body atoms, i.e. |B+(r)|, allowed in a rule r. A
rule r of a normal program is called atomic, unary or binary,
if |B+(r)| = 0, |B+(r)| ≤ 1, or |B+(r)| ≤ 2, respectively. We
extend these conditions to cover a normal program P in the
obvious way: P is atomic, unary, or binary if every rule of
P satisfies the respective condition. E.g., an atomic normal
program P contains only rules of the form a ← ∼c1, . . . ,∼cm.

Let us then turn our attention to the semantics of normal
programs. We write At(P) for the set of atoms that appear in
a program P . An interpretation I ⊆ At(P) of P determines
which atoms a ∈ At(P) are true (a ∈ I) and which atoms
are false (a ∈ At(P) − I). A rule r is satisfied in I, denoted
by I |= r, iff I |= H(r) is implied by I |= B(r) where B(r) =
{b1, . . . , bn}∪{∼c1, . . . ,∼cm} and ∼ is interpreted classically,
i.e. I |= ∼ci iff I 6|= ci. Then an interpretation I is a (classical)
model of P , denoted I |= P , iff I |= r for each r ∈ P .

But the semantics of normal programs is not solely based
on classical models. A model M |= P is a minimal model of P
iff there is no model M ′ |= P such that M ′ ⊂ M . In partic-
ular, every positive normal program P has a unique minimal
model which equals to the intersection of all models of P [16].
We let LM(P) stand for this particular model, i.e. the least
model of P . The least model semantics is inherently mono-
tonic: if P ⊆ P ′ holds for two positive programs P and P ′,
then LM(P) ⊆ LM(P ′). Gelfond and Lifschitz [9] extend the
least model semantics for arbitrary normal programs. Given a

model candidate M ⊆ At(P), the idea is to reduce P to a pos-
itive program P M = {r+ | r ∈ P and M ∩ B−(r) = ∅} hav-
ing the least model LM(P M). Equating this model with the
model candidate M implies the definition of a stable model [9]:
M = LM(P M) which implies M |= P , but not vice versa.

In general, a normal logic program need not have a unique
stable model nor stable models at all. The stable model se-
mantics of normal programs was preceded by an alternative
semantics, namely the one based on supported models [1]. A
classical model M of a normal program P is a supported
model of P iff for every atom a ∈ M there is a rule r ∈ P such
that H(r) = a and M |= B(r). Inspired by this idea, we define
for any program P and I ⊆ At(P), the set of supporting rules
SR(P, I) = {r ∈ P | I |= B(r)} ⊆ P . As shown in [17], any
stable model M ⊆ At(P) of a normal logic program P is also
a supported model of P , but not vice versa in general.

We define classical literals in the standard way using clas-
sical negation ¬ as the connective. Syntactically, a clause
C = {a1, . . . , an,¬b1, . . . ,¬bm} is a finite set of classical lit-
erals representing a disjunction of its constituents. A set of
clauses S represents a conjunction of the clauses contained
in it. We define the set of atoms At(S) and interpretations
I ⊆ At(S) in analogy to normal programs. A clause C of
the form above is satisfied in an interpretation I iff I |= ai

for some i ∈ {1, . . . , n} or I 6|= bi for some i ∈ {1, . . . , m}.
An interpretation I ⊆ At(S) is a classical model of S, de-
noted by I |= S, iff each clause C ∈ S is satisfied in I. Fi-
nally, a set of clauses S gives rise to a set of classical mod-
els CM(S) = {M ⊆ At(S) | M |= S}. This differs essentially
from a normal program P for which the set of stable models
SM(P) = {M ⊆ At(P) | M = LM(P M)} is of interest.

3 CHARACTERIZING STABILITY

In this section, we characterize stable models in terms of sup-
ported models and level numberings to be defined next.

Definition 1 Let M be a supported model of a normal pro-
gram P . A function # : M ∪ SR(P, M) → N is a level num-
bering w.r.t. M iff for all a ∈ M ,

#a = min{#r | r ∈ SR(P, M) and a = H(r)} (2)

and for all r ∈ SR(P, M),

#r = max{#b | b ∈ B+(r)}+ 1 (3)

where we interpret max ∅ as 0 to cover rules r with B+(r) = ∅.
It is important to realize that a level numbering need not

exist for every supported model, as demonstrated below.

Example 2 Consider a logic program P consisting of two
rules r1 = a ← b and r2 = b ← a. There are two sup-
ported models of P : M1 = ∅ and M2 = {a, b}. The first
model has a trivial level numbering with an empty domain,
since M1 ∪ SR(P, M1) = ∅. For the second, the domain
M2 ∪ SR(P, M2) = M2 ∪ P . The requirements in Definition 1
lead to four equations: #a = #r1, #r1 = #b + 1, #b = #r2,
and #r2 = #a + 1. These imply #a = #a + 2, which has no
solutions. Hence there is no level numbering w.r.t. M2. �
Proposition 3 Let M be a supported model of P . If there is
a level numbering # w.r.t. M , then # is unique.

The key observation is that the existence of a level num-
bering is inherently connected to stability. To determine
level numberings in practice, we resort to the van Emden-
Kowalski operator TP which is defined by TP (A) = {H(r) |
r ∈ P and B+(r) ⊆ A} for a positive program P and any set
of atoms A ⊆ At(P)2. The iteration sequence of TP is then
defined inductively as follows: TP ↑ 0 = ∅, TP ↑ i = TP (TP ↑
i− 1) for i > 0, and TP ↑ ω =

S
i<ω TP ↑ i. Then we

have LM(P) = TP ↑ ω = lfp(TP) for a positive program
P . In case of a finite program P , lfp(TP) is always reached
with a finite number of steps. We are now ready to define
the level number lev(a), i.e. the least natural number i such
that a ∈ TP ↑ i, for each true atom a ∈ LM(P). This defi-
nition extends for rules r ∈ SR(P, LM(P)) in analogy to (3):
lev(r) = max{lev(b) | b ∈ B+(r)}+ 1.

Assigning level numbers in this way is compatible with Def-
inition 1 which implies a characterization of stable models
based on the existence of level numberings.

Theorem 4 Let P be a normal program.

1. If M is a stable model of P , then M is a supported
model of P and there is a unique level numbering # :
M ∪ SR(P, M) → N w.r.t. M defined as follows.

(a) For atoms a ∈ M , let #a = lev(a).

(b) For rules r ∈ SR(P, M), let #r = lev(r+).

2. If M is a supported model of P and there is a level num-
bering # : M ∪ SR(P, M) → N w.r.t. M , then # is unique
and M is a stable model of P .

4 NEW CLAUSAL REPRESENTATION

In this section, we develop a new way to translate a normal
logic program into a set of clauses so that a tight correspon-
dence of models is obtained. More precisely, we aim at faith-
fulness in the sense proposed in [10, 11]: the stable models of
a program P and the (stable) models of its translation Tr(P)
are in a bijective relationship and coincide up to At(P). This
is to properly preserve the semantics of the program, including
the number of models3. As a further requirement, we try to
keep the length of the translation ||Tr(P)|| as low as possible;
preferably sub-quadratic, i.e. of order ||P || × log2 |At(P)|.

The translation of a normal program P takes place in
two subsequent steps. First, we remove positive body atoms
from all rules of P . The result is an atomic normal program
TrAT(P) which is then easy to convert into a set of clauses us-
ing Clark’s completion. However, the first step is much more
complicated. Our idea is to apply the characterization of sta-
ble models developed in Section 3 so that each stable model
M of a normal program P is eventually captured as a sup-
ported model M of P possessing a level numbering w.r.t. M .
Let us consider another example on a level numbering in order
to better understand the range taken by level numbers.

Example 5 Let P = {r1 = a ←; r2 = a ← b; r3 = b ← a}
be a (positive) normal program. The unique stable model M =
LM(P) = {a, b} is supported by the set of rules SR(P, M) =
P . The unique level numbering # w.r.t. M is determined by
#r1 = 1, #a = 1, #r3 = 2, #b = 2, and #r2 = 3. �
2 Note that an interpretation M ⊆ At(P) is a supported model of

P ⇐⇒ M = TP M (M).
3 This is essential, as models correspond to solutions in ASP.

4.1 Representing Level Numbers

It is natural to use a binary encoding when representing in-
dividual level numbers determined by a level numbering # in
terms of propositional atoms. Unfortunately, every atom in
At(P) may be assigned a different level number in the worst
case, as demonstrated in Example 5. Thus the level numbers
of atoms may vary from 1 to |At(P)| and the highest possible
level number of a rule r ∈ P is |At(P)| + 1, as for r2 in our
example. Although level numbers are positive by definition,
we leave room for 0 which is to act as the least binary value.
Therefore, the maximum number of bits in level numbers is

∇P = dlog2(|At(P)|+ 2)e. (4)

Given the number of bits b, a natural number 0 ≤ n < 2b,
and 0 < i ≤ b, we write n[i] for the ith bit in the binary
representation of n in the decreasing order of significance. Our
idea is to encode the level number #a of an atom a ∈ At(P)
using a vector a1, . . . , aj of new atoms. Such a vector can be
understood as a representation of a binary counter of j bits,
which is to hold #a as its binary value. Since atoms may take
only two values under the stable model semantics, we aim at
the following relationship: #a[i] = 1 (resp. #a[i] = 0) iff ai

evaluates to true (resp. false) under stable model semantics.
In order to capture level numberings with binary counters,

we need certain primitive operations to be used as subpro-
grams of the forthcoming translation TrAT(P). The first set
of subprograms, as listed in upper half of Table 1, concen-
trates on setting counters to particular values. Each subpro-
gram is to be activated only when an additional controlling
atom c cannot be inferred by other rules. The first subpro-
gram SELj(a, c) selects a value 0 ≤ n < 2j for the binary
counter a1, . . . , aj associated with an atom a. Note that the
new atoms a1, . . . , aj act as complements of a1, . . . , aj and we
need them to keep subprograms and the overall translation
TrAT(P) atomic. The second subprogram NXTj(a, b, c) binds
the values of the binary counters associated with atoms a and
b, respectively, so that the latter is the former increased by
one (modulo 2j). The last subprogram FIXj(a, n, c) assigns a
fixed value 0 ≤ n < 2j to the counter associated with a.

There is also a need to compare values. The fourth sub-
program LTj(a, b, c) checks if the value of the binary counter
associated with an atom a is strictly lower than the value
of the binary counter associated with another atom b. To
keep the program linear in j, we need a vector of new atoms
lt(a, b)1, . . . , lt(a, b)j plus their complements which we asso-
ciate with a and b. The atoms lt(a, b)1 and lt(a, b)1, which
refer to the most significant bits, capture the result of the
comparison. The fifth subprogram EQj(a, b, c) checks if the
counters associated with a and b hold the same value. Only
two new atoms eq(a, b) and eq(a, b) are needed for the result.

4.2 Removing Positive Body Atoms

Any non-binary rule r with |B+(r)| > 2 can be transformed
into a set of binary rules in a faithful way using new atoms
[10]. Thus we assume without loss of generality that programs
under consideration are free of such rules. Moreover, we par-
tition each program P into its strongly connected components
(SCCs) C1, . . . , Cn using positive dependencies (cf. [14]). In
the sequel, we describe the translation TrAT(Ci) for a SCC

Table 1. Encoding primitive operations for binary counters

Primitive Definition with atomic rules

SELj(a, c) : {ai ← ∼ai,∼c; ai ← ∼ai,∼c | 0 < i ≤ j}
NXTj(a, b, c) : {bi ← ∼ai,∼ai+1,∼bi+1,∼c | 0 < i < j}∪

{bi ← ∼ai,∼ai+1,∼c | 0 < i < j}∪
{bi ← ∼ai,∼bi+1,∼c | 0 < i < j}∪
{bi ← ∼bi,∼c | 0 < i < j}∪
{bj ← ∼aj ,∼c; bj ← ∼aj ,∼c}

FIXj(a, n, c) : {ai ← ∼c | 0 < i ≤ j and n[i] = 0}∪
{ai ← ∼c | 0 < i ≤ j and n[i] = 1}

LTj(a, b, c) : {lt(a, b)i ← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j}∪
{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j}∪
{lt(a, b)i ← ∼lt(a, b)i,∼c | 0 < i ≤ j}

EQj(a, b, c) : {eq(a, b) ← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{eq(a, b) ← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{eq(a, b) ← ∼eq(a, b),∼c}

Ci. Note that the atoms in the set H(Ci) = {H(r) | r ∈ Ci}
are mutually reachable in the positive dependency graph
DG+(P) having H(P) and {〈H(r), b〉 | r ∈ P and b ∈ B+(r)}
as the sets of vertices and edges, respectively. The translation
TrAT(P) is then obtained as

S
i TrAT(Ci). In the sequel, we

describe the contribution of an atom a ∈ H(Ci) to TrAT(Ci).
If a appears positively in P , we introduce a new atom a, i.e.
the complement of a, and its definition a ← ∼a in TrAT(Ci).

If |H(Ci)| = 1, i.e. H(Ci) = {a}, it is sufficient to include

a ← ∼b1, . . . ,∼bn,∼c1, . . . ,∼cm (5)

as the translation of a rule r ∈ Ci with H(ri) = a. If
a ∈ B+(r), then (5) can be omitted. On the other hand, if
|H(Ci)| > 1, we have to introduce two binary counters for a,
one for holding #a and the other for holding #a+1 mod 2∇Ci

where ∇Ci = dlog2(|H(Ci)| + 2)e is defined according to (4).
These counters are represented using vectors of new atoms
ctr(a)1, . . . , ctr(a)∇Ci and nxt(a)1, . . . , nxt(a)∇Ci , respectively,
including their complements. To set the values of these coun-
ters appropriately, we include subprograms SEL∇Ci(ctr(a), a)
and NXT∇Ci(ctr(a), nxt(a), a) in TrAT(Ci). Note that these
subprograms are activated only if a cannot be inferred, i.e. a
is inferable. The translation of a rule r ∈ Ci with H(r) = a is
more involved now. We introduce a new atom bt(r) denoting
that the body of r is satisfied and its complement bt(r). The
definition of bt(r) obtained from (5) by substituting bt(r) for
the head a. In addition to such a rule, we need bt(r) ← ∼bt(r)
and a ← ∼bt(r) in TrAT(Ci) to capture support for a (recall
the definition of a supported model). Moreover, we need cer-
tain constraints to ensure that the values held by counters
constitute a valid level numbering. The minimality of #a in
(2) is checked indirectly using a new atom min(a) and a con-
straint x ← ∼x,∼a,∼min(a) activating when a is true.

The constraints associated with a rule r having H(r) =
a will be conditioned with a negative body atom bt(r)
which — whenever not inferable — captures the fact that

r ∈ SR(P, M). If r is atomic, we use the subprogram
FIX∇Ci(ctr(a), 1, bt(r)) to ensure #a = 1 whenever r ∈
SR(P, M); and a rule min(a) ← ∼bt(r) to infer the minimality
of the value held by ctr(a), as insisted by (2).

On the other hand, if r is unary with H(r) = a and
B+(r) = {b}, two cases arise. If b 6∈ H(Ci), then r is trans-
lated like unary rules. Otherwise, we have b ∈ H(Ci) and the
value of (3) is held by nxt(b). This is needed to express the
contribution of r in (2) w.r.t. H(r) = a. For this purpose, we
have to compare the values held by the counters nxt(b) and
ctr(a) using subprograms LT∇Ci(ctr(nxt(b)), ctr(a), bt(r)) and
EQ∇Ci

(ctr(nxt(b)), ctr(a), bt(r)). Then the requirement that
#a ≥ #b + 1, as insisted by (2), can be expressed in terms of
a constraint x ← ∼x,∼bt(r),∼lt(nxt(b), ctr(a))1 where x is a
new atom. The other half of (2) is taken care by a rule of the
form min(a) ← ∼bt(r),∼eq(nxt(b), ctr(a)).

The case of a binary rule r with H(r) = a and B+(r) =
{b1, b2} follows. We may assume that B+(r) ⊆ H(Ci), be-
cause otherwise r can be handled like an atomic or a unary
rule. In this case, we need to compare the values of ctr(b1) and
ctr(b2) using LT∇Ci(ctr(b1), ctr(b2), bt(r)) to decide which one
is relevant for (3). Then the constraints associated with r
as well as the rules for min(a) are the same as for the two
unary rules a ← b1,∼lt(ctr(b1), ctr(b2)),∼B−(r) and a ←
b2,∼lt(ctr(b1), ctr(b2)),∼B−(r). No other rules are needed.

Given a (binary) normal logic program P and its translation
TrAT(P) as explained above, the stable models in SM(P) and
SM(TrAT(P)) are in a bijective relationship and coincide up
to At(P). Thus TrAT is faithful in the sense explained in the
beginning of Section 4. Furthermore, it can be established that
TrAT(P) can be produced in time of order ||P ||× log2 |At(P)|.
On the other hand, a faithful and modular translation function
from normal programs into atomic ones is impossible [10, 11].
Thus TrAT is necessarily non-modular and TrAT(P) cannot be
formed on a rule-by-rule basis. One source of non-modularity
is hidden in the numbers of bits: the counters in TrAT(P) and
TrAT(Q) are likely to have too few bits so that TrAT(P) and
TrAT(Q) cannot be joined together to form TrAT(P ∪Q).

Example 6 Let us reconsider the program P from Example
2. Both rules and atoms are involved in the only SCC of P ,
say C, so that ∇C = 2. The translation TrAT(P) = TrAT(C)
contains the following rules associated with a: a ← ∼a;
x ← ∼x,∼a,∼min(a); bt(r2) ← ∼a; bt(r2) ← ∼bt(r2);
b ← ∼bt(r2); x ← ∼x,∼bt(r2),∼lt(nxt(a), ctr(b))1; and
min(b) ← ∼bt(r2),∼eq(nxt(a), ctr(b)) in addition to four sub-
programs for choosing the values of ctr(a) and nxt(a) as well
as comparing the latter with ctr(b). The rules for b are sym-
metric, just exchange the roles of a and b; and r2 and r1. The
only stable model M = ∅ of P is then captured as the only
stable model N = {a, b, bt(r1), bt(r2)} of TrAT(P).

4.3 From Atomic Rules to Clauses

Atomic normal programs provide a promising intermediary
representation that is straightforward to translate into a set
of propositional clauses. Such programs are positive order con-
sistent in the sense proposed by Fages [8]. As a consequence,
stable and supported models coincide for this class of pro-
grams, and Clark’s program completion is sufficient to capture
stable models in a faithful way. However, new atoms must be

introduced in order to keep the translation linear. Since this
is a quite standard procedure, we skip the details.

5 EXPERIMENTS

We have implemented the translation described in Section
4. The implementation consists of two translators called
lp2atomic and lp2sat, which correspond to the two phases
of the translation. The task of lp2atomic is to translate away
positive body atoms from a normal program given as input
in the internal file format of the smodels system [21]; typi-
cally produced by the front-end lparse. The latter translator,
lp2sat takes the output of lp2atomic as its input and pro-
duces Clark’s completion for the program. The output is in the
DIMACS format which is understood by most SAT solvers.

As a test program, we use a normal logic program given in
Figure 1. The program is given in the input syntax of lparse
and it formalizes the problem of finding any subgraph of Dn,
i.e. the complete directed graph with n vertices and n2 edges,
in which all vertices are still reachable from each other. In
our benchmark, the task is to compute all stable models of
the program instantiated by lparse when n varies from 1 to 5.
As a result, the number of SCCs and positive loops increases.

Figure 1. Normal logic program used in the benchmark

vertex(1..n).
in(V1,V2) :- not out(V1,V2), vertex(V1;V2), V1!=V2.
out(V1,V2) :- not in(V1,V2), vertex(V1;V2), V1!=V2.
reach(V,V) :- vertex(V).
reach(V1,V3) :- in(V1,V2), reach(V2,V3),

vertex(V1;V2;V3), V1!=V2, V1!=V3.
:- not reach(V1,V2), vertex(V1;V2).

We run five benchmark instances generated by lparse on
six different systems also listed in Table 2: smodels, cmod-
els [13], and four combinations of lp2atomic and lp2sat
with other solvers. The first combines plain lp2atomic with
smodels just to get an idea how much overhead results from
the removal of positive body atoms. The second combina-
tion uses both translators and a state-of-the-art SAT solver
chaff [19] for the actual computation of classical models cor-
responding to stable models. The third is the same as the sec-
ond except another solver, namely relsat [3], is used as the
back-end. The last system incorporates a strengthened well-
founded reduction to this setting: we use smodels to simplify
the intermediate program representations before and after in-
voking lp2atomic. This has a favorable effect on the number
of clauses generated, as notable from Table 2.

Our benchmark is easy for smodels which reaches a per-
formance of 47 kMPS (models per second) on a 1.67 GHz
CPU. However, the main objective here is to compare cmod-
els with our approach, as it is also based on the idea of using
SAT solvers to compute stable models instead of a special
purpose engine like smodels. We did not include assat [15],
as it can compute only one stable model for a program given
as input. When n = 4 the performance of the systems based
on lp2atomic and lp2sat is between 1.0–2.8 kMPS, which
clearly exceeds that of cmodels, i.e. only 5.5 MPS. When
n = 5, cmodels exceeds the time limit of 24 hours and chaff

Table 2. Timings in seconds when computing all stable models

Vertices 1 2 3 4 5
smodels 0.004 0.003 0.003 0.033 12
cmodels 0.031 0.030 0.124 293 -
lp2atomic+smodels 0.004 0.008 0.013 0.393 353
lp2sat+chaff 0.011 0.009 0.023 1.670 -
lp2sat+relsat 0.004 0.005 0.018 0.657 1879
wf+lp2sat+relsat 0.009 0.013 0.018 0.562 1598
Models 1 1 18 1606 565080
SCCs with |H(C)| > 1 0 0 3 4 5
Rules (lparse) 3 14 39 84 155
Rules (lp2atomic) 3 18 240 664 1920
Clauses (lp2sat) 4 36 818 2386 7642
Clauses (wf+lp2sat) 2 10 553 1677 5971

runs out of memory (1 GB) as the back-end of the fourth sys-
tem. The systems perform differently when we compute only
one stable model for the program and n = 8. The respective
timings are 0.012, 0.043, >104, 0.80, 2.6 and 2.8 seconds for
the systems in Table 2; and 0.020 seconds for assat [15].

6 DISCUSSION

In this paper, we tackle a very challenging problem of translat-
ing normal logic programs into sets of clauses. As a solution,
we propose a novel translation that has a unique combination
of properties. First, a bijective correspondence of models is ob-
tained in contrast to the approach Ben-Eliyahu and Dechter
[4] whose translation TrBD(P) may posses several classical
models corresponding to one stable model M ∈ SM(P). More-
over, At(P) is not preserved, as At(P) ∩ At(TrBD(P)) = ∅.
Second, our translation is sub-quadratic, which differentiates
it from existing translations of quadratic [4, 14] and even ex-
ponential [5] worst-case complexities. Third, TrAT(P) can be
computed at once in spite of non-modularity. This differs from
approaches [15, 13] where loop formulas are gradually added
to the completion of the program and an exponential blow-up
may result even if one stable model is computed.

The new characterization of stable models developed in
Section 3 reveals that the computation of the least model
for a positive normal program can be viewed as a minimiza-
tion/maximization process. A particular novelty of a level
numbering conforming to Definition 1 is that the values as-
signed to atoms are uniquely determined. This is in sharp con-
trast with earlier characterizations of stable models [4, 2, 7],
where similar numberings are used to distinguish stable mod-
els, but the value assignment can be done in several ways.
Canonical level numberings are crucial for the objective of
obtaining a bijective correspondence between models.

Despite promising properties and experimental results, the
translation function TrAT is not yet optimal. In the future,
we intend to study techniques to reduce the number of binary
counters and the number of bits when translating a SCC.

ACKNOWLEDGMENTS

The research reported in this paper is partially funded by
the Academy of Finland (project #53695) and the European
commission (contract IST-FET-2001-37004).

REFERENCES
[1] K.R. Apt, H.A. Blair, and A. Walker, ‘Towards a the-

ory of declarative knowledge’, in Foundations of Deductive
Databases and Logic Programming, ed., J. Minker, 89–148,
Morgan Kaufmann, Los Altos, (1988).

[2] Y. Babovich, E. Erdem, and V. Lifschitz, ‘Fages’ theorem
and answer set programming’, in Proceedings of the 8th In-
ternational Workshop on Non-Monotonic Reasoning, Breck-
enridge, Colorado, USA, (April 2000). cs.AI/0003042.

[3] R.J. Bayardo and R. Schrag, ‘Using CSP look-back techniques
to solve real-world sat instances’, in Proceedings of the 12th
National Conference, pp. 203–208. AAAI, (1997).

[4] R. Ben-Eliyahu and R. Dechter, ‘Propositional semantics for
disjunctive logic programs’, Annals of Mathematics and Ar-
tificial Intelligence, 12(1–2), 53–87, (1994).

[5] S. Brass and J. Dix, ‘Semantics of (disjunctive) logic programs
based on partial evaluation’, Journal of Logic Programming,
38(3), 167–213, (1999).

[6] Y. Dimopoulos, B. Nebel, and J. Koehler, ‘Encoding planning
problems in non-monotonic logic programs’, in Proceedings
of the 4th European Conference on Planning, pp. 169–181,
Toulouse, France, (September 1997). Springer.

[7] E. Erdem and V. Lifschitz, ‘Tight logic programs’, Theory
and Practice of Logic Programming, 3(4–5), 499–518, (2003).

[8] F. Fages, ‘Consistency of Clark’s completion and existence
of stable models’, Journal of Methods of Logic in Computer
Science, 1, 51–60, (1994).

[9] M. Gelfond and V. Lifschitz, ‘The stable model semantics for
logic programming’, in Proceedings of the 5th International
Conference on Logic Programming, pp. 1070–1080, Seattle,
USA, (August 1988). MIT Press.

[10] T. Janhunen, ‘Comparing the expressive powers of some syn-
tactically restricted classes of logic programs’, in Computa-
tional Logic, First International Conference, eds., J. Lloyd
et al., pp. 852–866, London, UK, (July 2000). Springer.

[11] T. Janhunen, ‘Translatability and intranslatability results for
certain classes of logic programs’, Series A: Research re-
port 82, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, (2003).

[12] H. Kautz and B. Selman, ‘Pushing the envelope: Planning,
propositional logic, and stochastic search’, in Proceedings of
the 13th National Conference on Artificial Intelligence, Port-
land, Oregon, (July 1996).

[13] Y. Lierler and M. Maratea, ‘Cmodels-2: Sat-based answer
set solver enhanced to non-tight programs’, in Proceedings of
LPNMR-7, pp. 346–350, Fort Lauderdale, Florida, (January
2004). Springer. LNAI 2923.

[14] F. Lin and J. Zhao, ‘On tight logic programs and yet an-
other translation from normal logic programs to propositional
logic’, in Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pp. 853–858, (2003).

[15] F. Lin and Y. Zhao, ‘ASSAT: Computing answer sets of a logic
program by sat solvers’, in Proceedings of the 18th National
Conference on Artificial Intelligence, pp. 112–117, Edmon-
ton, Alberta, Canada, (July/August 2002). AAAI.

[16] J.W. Lloyd, Foundations of Logic Programming, Springer,
Berlin, 1987.

[17] V.W. Marek and V.S. Subrahmanian, ‘The relationship be-
tween stable, supported, default and autoepistemic semantics
for general logic programs’, Theoretical Computer Science,
103, 365–386, (1992).

[18] W. Marek and M. Truszczyński, ‘Stable models and an alter-
native logic programming paradigm’, in The Logic Program-
ming Paradigm: a 25-Year Perspective, Springer, (1999).

[19] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
‘Chaff: Engineering an efficient sat solver’, in Proceedings of
the 39th Design Automation Conference, Las Vegas, (2001).

[20] I. Niemelä, ‘Logic programs with stable model semantics as
a constraint programming paradigm’, Annals of Mathematics
and Artificial Intelligence, 25(3,4), 241–273, (1999).

[21] P. Simons, I. Niemelä, and T. Soininen, ‘Extending and imple-
menting the stable model semantics’, Artificial Intelligence,
138(1–2), 181–234, (2002).

